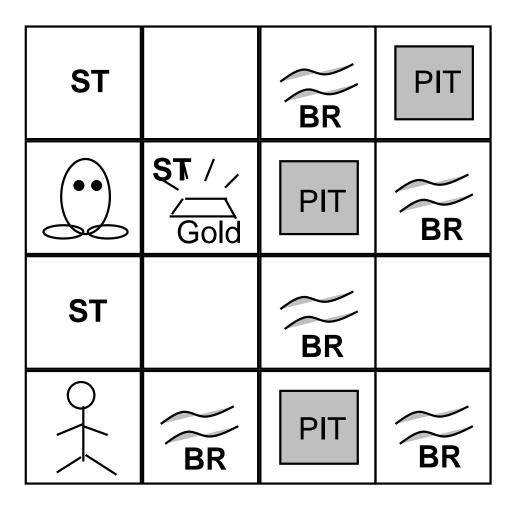
• Representação do Conhecimento: expressar conhecimento de forma tratável pelo computador.

• Linguagens:


- sintaxe: descreve as possíveis configurações da linguagem que constituem sentenças válidas.
- semântica: determina o significado de cada sentença.
- exemplo: x > y,
 - sintaxe: se x é um número e y é um número, então x>y é uma sentença sobre números.
 - semântica: se x > y retorna verdadeiro, senão retorna falso.

- Se linguagem tem sintaxe e semântica precisas, então podemos chamar esta linguagem de **lógica**.
- Mecanismo de inferência: derivado da sintaxe e semântica.
- Importante: distinguir entre os fatos e sua representação: não podemos colocar todos os fatos do mundo no computador! Neste caso, devemos operar em representações dos fatos (codificação em alguma linguagem).
- Raciocínio: processo de construir novas configurações a partir de configurações já existentes.
- Bom raciocínio deve assegurar que as novas configurações representam fatos que se seguem dos fatos já existentes.

- "Entailment": relação entre sentenças tal que novas sentenças geradas são verdadeiras, dado que as anteriores também são.
- $KB \models \alpha$.
- Mecanismo de inferência:
 - dada uma base de conhecimento KB, pode gerar novas sentenças que seguem de KB.
 - dada uma base de conhecimento e uma sentença α , pode dizer se α é consequência lógica de KB.
 - é sound ou truth-preserving se somente produzir sentenças que sejam consequência lógica de KB.

- Prova: procedimento de inferência "sound".
- Analogia: procurar uma agulha num palheiro.
 - "entailment": a agulha está no palheiro.
 - prova: encontrar a agulha.
 - se o palheiro for de tamanho finito, e
 procedimento sistemático de busca, então agulha vai ser encontrada: procedimento de inferência completo.
- Como obter um procedimento "sound"?
 - passos de inferência devem respeitar a semântica das sentenças já existentes no KB.
 - derivar novas sentenças que sejam consequência lógica dos fatos já representados no KB.

- Teoria de Prova: especifica passos de inferência "sound".
- Exemplo: $E = mc^2$
 - sintaxe: permite que duas expressões
 sejam conectadas por um =.
 - semântica: as duas expressões devem ter valores iguais.
 - $-ET = mc^2T$, nova sentença possível.

- Representação: duas classes de linguagens, programação e natural.
- Vantagens de linguagens de programação:
 - descrever algoritmos e estruturas de dados concretas.
 - Ex: World[2,2] ← Pit.
- Desvantagem: pouca expressividade. Como representar "há um buraco em [2,2] **ou** [3,1]"? Ou "há um monstro em **algum** quadrado"?
- Vantagens de linguagens naturais:
 - grande poder de expressao.
 - ideal para comunicação.
- Desvantagens:
 - mais para comunicação do que para representação.
 - sensível ao contexto.
 - ambígua.

- Boa linguagem para representação do conhecimento deve combinar vantagens de linguagens naturais e linguagens de programação.
- Lógica de primeira ordem: precisa, concisa, independente do contexto, e não ambígua.
- linguagem em si não importante: principal é como uma linguagem formal pode representar o conhecimento, e como mecanismos sistemáticos podem operar sobre as expressões da linguagem de forma a raciocinar.

- Semântica: significado de uma sentença.
- Interpretação.
- Linguagens composicionais: linguagem que impõe uma relação sistemática entre sentenças e fatos. O significado de uma sentença é função do significado de suas partes.
- Exemplos: " $S_{1,2}$ " verdadeiro na interpretação em que há "mau cheiro" no quadrado [1,2] do mundo do wumpus, falso em outros mundos ou se [1,2] tivesse interpretação de ter "brisa" invés de "mau cheiro".

- Inferência: qualquer processo pelo qual se chega a alguma conclusão.
- Inferência lógica ou dedução: raciocínio "sound".

• Validade e satisfabilidade

- uma sentença é válida se for verdadeira para todas as interpretações. Ex: "há um mau cheiro na posição [1,1] ou não há um mau cheiro na posição [1,1]" $(p \lor \neg p)$.
- uma sentença é satisfatível se existir alguma interpretação para a qual a sentença é verdadeira.

- Outros exemplos:
 - "há uma posição aberta em frente de mim
 ou há uma parede em frente de mim": não
 necessariamente válida.
 - "Se todo quadrado tem uma área aberta ou uma parede, então há uma posição aberta em frente de mim ou há uma parede em frente de mim": válida.
- sinônimos para sentenças válidas:
 tautologia, sentenças analíticas.
- Sentenças **insatisfatíveis**: valor falso para todas as interpretações. Ex: "há uma parede em frente de mim e não há uma parede em frente de mim".

- Inferência em computadores: utiliza conceitos de validade e instatisfabilidade para chegar a conclusões.
- Computador tem duas desvantagens:
 - não conhece nada sobre a interpretação que estamos usando.
 - não conhece nada sobre o domínio do problema, exceto o que aparece no banco de conhecimento.
- Suponha: "posso mover para a posição [2,2]"?
- Computador deve provar que mover para posição [2,2] é consequência lógica dos fatos no banco de conhecimento (Sentença: "Se KB é verdadeiro então posso mover para [2,2]" deve ser provada).

- vantagem de aplicar inferência formal: pode ser usada para derivar conclusões válidas mesmo quando o computador não conhece nada sobre o domínio ou sobre a interpretação das sentenças.
- Uma **Lógica** consiste de:
 - sistema formal para descrever estados e relações (sintaxe e semântica).
 - teoria de prova: conjunto de regras para deduzir se uma sentença é consequência lógica do banco de conhecimento.

- Lógica proposicional e lógica de primeira ordem (cálculo de predicados de primeira ordem com igualdade).
- Lógica proposicional: símbolos são proposições. Ex: D pode ter a int de que o wumpus está morto. Pode assumir valor falso ou verdadeiro.
- símbolos proposicionais combinados através de **conectivos** booleanos formando sentenças mais complexas.
- Linguagem bem simples.
- Lógica de primeira ordem: **objetos** e **predicados** relacionando objetos.
- Admite quantificadores $(\forall e \exists)$.
- Mais expressividade do que proposicional.

Lógica Proposicional

Sintaxe:

$$S \longrightarrow AS \mid CS$$

$$AS \rightarrow \mathbf{True} \mid \mathbf{False} \mid P \mid Q \mid R \mid \dots$$

$$CS \rightarrow (S) \mid S C S \mid \neg S$$

$$C \rightarrow \wedge | \vee | \Leftrightarrow | \Rightarrow$$

Lógica Proposicional

- conjunções, disjunções.
- sentença atômica = **literal**.
- ordem de precedência (do maior p/ o menor): \neg , \wedge , \vee , \Rightarrow e \Leftrightarrow .
- $\neg P \lor Q \land R \Rightarrow S$ é equivalente a $((\neg P) \lor (Q \land R)) \Rightarrow S$.
- semântica simples.
- tabelas-verdade: definição de conectivos e teste de validade de sentenças.

Lógica Proposicional

Exemplo: $S = ((P \lor H) \land \neg H) \Rightarrow P$ é válida.

Р	Н	$P \lor H$	$(P \vee H) \wedge \neg H$	S
F	F	F	F	Т
F	Τ	${ m T}$	F	T
$\mid T \mid$	\mathbf{F}	${ m T}$	$\mid \mathrm{T} \mid$	\mathbf{T}
T	${ m T}$	${ m T}$	F	\mathbf{T}

• P: wumpus está na posição [1,3].

• H: wumpus está na posição [2,2].

• Se sabemos que $(P \lor H)$ é verdadeiro e $\neg H$ também é verdadeiro, então o wumpus só pode estar na posição [1,3].