
Appears in the IEEE International Symposium on Cluster Computing and the Grid, May 2005, Cardiff, UK.

ReGS: User-level Reliability in a Grid Environment

José Afonso Lajas Sanches, Patrı́cia Kayser Vargas,
Inês de Castro Dutra, Vı́tor Santos Costa

COPPE/Sistemas, UFRJ, Rio de Janeiro, RJ, Brazil�
sanches, kayser, ines, vitor � @cos.ufrj.br

Cláudio Fernando Resin Geyer
Instituto de Informática

UFRGS, Porto Alegre, RS, Brazil
geyer@inf.ufrgs.br

Abstract

Grid environments are ideal for executing applications
that require a huge amount of computational work, both due
to the big number of tasks to execute and to the large amount
of data to be analysed. Unfortunately, current tools may re-
quire that users deal themselves with corrupted outputs or
early termination of tasks. This becomes incovenient as the
number of parallel runs grows to easily exceed the thou-
sands. ReGS is a user-level software designed to provide
automatic detection and restart of corrupted or early termi-
nated tasks. ReGS uses a web interface to allow the setup
and control of grid execution, and provides automatic input
data setup. ReGS allows the automatic detection of job de-
pendencies, through the GRID-ADL task management lan-
guage. Our results show that besides automatically and ef-
fectively managing a huge number of tasks in grid environ-
ments, ReGS is also a good monitoring tool to spot grid
nodes pitfalls.

1. Introduction

Experiments in areas such as physics, machine learning
or bioinformatics require a huge amount of computational
work, both due to the big number of tasks to execute and to
the large amount of data to be analysed. One good exam-
ple are applications in machine learning, which often need
to repeat experiments on different data subsets [2]. Often,
as the size of the problem increases, the size of the data set
will grow very quickly, requiring a huge number of exper-
iments and computational jobs – sometimes with high exe-
cution times.

Performing such jobs in an uniprocessor environment
would require months or even years, and in practice would
make their realization impossible. Thus, parallelism must
be used. Namely, Grid environments have become a popu-
lar alternative, because they make a huge amount of com-
puting power available [5].

Grid environments bring new challenges. Most often, the
resources in a grid are outside the bounds of a local network,
so that their utilization might depend on accounting, autho-
risations, and communication speed. If the application re-
quires a large number of jobs, it is often the case that some
of those jobs will be lost. Even worse, because of the hetero-
geneity of grid environments, it is not impossible that jobs
may return erroneous output (eg, due to corruption in file
operations, network flooding, or to bugs in one of the soft-
ware environments involved in the execution). Given a large
number of jobs, it is extremely difficult to deal with those
incidents case by case, which quite often requires resubmit-
ting the corrupted jobs.

Unfortunately, local resource schedulers in grid en-
vironments, like Condor [10] and SGE [3], do not sup-
port automatic resubmission of corrupted tasks, leav-
ing this task to the user. Available application managers,
such as Chimera [6] and the Condor DAGMan, focus on
solving the problem of automatic detection of dependen-
cies between jobs. Towards building an integrated software
to control and monitoring applications with large num-
bers of jobs, Dutra [2] et al. built a prototype which could
prepare inputs for jobs automatically, and which fur-
ther included a daemon to detect corrupted jobs. The pro-
totype showed a need for user control: users should be
able to easily check whether some runs are having prob-
lems. It was also found that in some applications a few
tasks might be “problematic” and actually require user in-
tervention. Ideally, we would like to do as much as possi-
ble automatically, and require actual user intervention only
when it is clearly needed.

ReGS (Reliable Grid Submission) addresses theses is-
sues by providing an interactive framework for job moni-
toring. First, ReGS relies on a user-friendly web interface,
by which the user can enter parameters for his/her exper-
iments, and interactively assess application execution and
results. Second, ReGS includes an advanced job depen-
dency framework, which allows for application control be-
ing transparent. ReGS automatically receives and prepares

the input data, converts the tasks to a task management lan-
guage, GRID-ADL, calls the GRID-ADL parser, and makes
the interface between the graph generated by the parser and
the local resource manager residing on a grid node.

Following the Grid philosophy, we try to take best ad-
vantage of currently existing tools. Therefore, in our exper-
iments we rely on a grid environment that uses Condor as
resource manager, and convert our application graph to the
DAGMan language. We use an application in the context of
machine learning, which is detailed further in Section 3.

Our text is structured as follows. Section 2 gives the fun-
damentals we rely for our work. In Section 3, the purpose
and implementation of our software are presented and de-
tailed. In Section 4, we describe our experiments, and dis-
cuss results. Lastly, we present our main conclusions and
discuss future work.

2. Background

In brief, a grid provides heterogeneous computational re-
sources in a large-scale way. Grid applications range from
distribute computing to collaborative computing [4]. Our in-
terest focus on high-throughput computing, a particularly
important set of applications where a grid may be called
to process thousands of related jobs (or processes). To-
tal execution time may span several days. In this section,
we briefly discuss state-of-the art tools available for high-
throughput computing in grid environments.

Job Schedulers match users’ jobs to the available re-
sources. It is unsurprising that many of the grid’s job
schedulers were initially developed for local distributed
platforms. Some of the best known job schedulers are: Con-
dor [10], PBS [8], SGE [3] and LSF [1]. We shall focus
on Condor, as Condor is openly available, well supported,
widely used in grid environments, and benefits from op-
portunistic scheduling - that is, it can exploit idle CPU
cycles.

The Condor High Throughput Computing System [10]
is a system for large-scale job and resource scheduling.
Condor is designed to perform well in two areas: high-
throughput computing and opportunistic computing. These
areas are tightly related; one can obtain great utilizable com-
puting power, if there are ways to make use of idle CPU
cycles in computers. Some of the special mechanisms in-
cluded in Condor are the following:

� ClassAds - ClassAds are similar to newspaper ads;
each machine in a Condor pool informs about its at-
tributes (such as RAM memory, CPU type, operating
system, etc), through a ClassAd. Similarly, when a job
is submitted, a user specifies the requirements needed
for the job’s execution by means of a ClassAd.

� Checkpointing and migration - If a machine in a pool
is suddenly unavailable, the job may be checkpointed -
that is, to record the point where the job stopped - and
migrate to other available machine.

� Remote System Calls - Although Condor migrate jobs
to remote machines, it can keep the local execution en-
vironment, thanks to remote system calls.

Automatic Job Management One important issue is re-
specting dependencies between jobs. If the number of jobs
is large, it becomes difficult to control manually what jobs
to start when a job finishes. Recent work in this direction in-
cludes:

� Chimera [6] is a system to manage data which is de-
rived from other data (so-called virtual data), using
the VDL language. Among other functions, this lan-
guage can track dependencies between jobs by analyz-
ing their input and output files. Chimera is able to gen-
erate a directed acyclic graph (DAG) from the depen-
dencies, with the help of the Pegasus planner [7].

� Condor DAGMan is a meta-scheduler for Condor. As
Condor does not schedule jobs based on dependencies,
the Condor DAGMan can do it in an order represented
by a DAG.

Because the DAGMan’s language is directly understood by
a Condor environment, we decided to use it in our work and
discuss it next.

The Condor DAGMan allows the user to control possible
dependencies among the jobs by means of a special script
language. The tool does allow new attempts of resubmis-
sion through a special RETRY command (only if the error
was something like a unmounted filesystem – events like
network errors are not covered by DAGMan). However, if
the number of the user’s jobs is high, say hundreds, it will
be impracticable to identify each job and to settle each de-
pendency by writing a script in DAGMan’s language. If
a job produces an error as a missing or corrupted output
file, DAGMan will not recognize it unless the user explic-
itly provides a POST program in the script, which will ac-
tivate a new job written by the user to check the job’s out-
puts. Finally, there is no time limit for a job to stay in Con-
dor’s job queue; a time limit could be useful if a deadlock
occurs.

3. The ReGS Tool

The name ReGS stands for Reliable Grid Submission.
ReGS is designed to reliably run experiments that spread a
large amount of jobs, and is represented in Figure 1. ReGS
consists of three modules, which communicate through a
data file (submission) and through a status database:

2

Figure 1. ReGS main components

� Web Interface - It provides the user with easier access
to the grid environment and with information about the
jobs’ executions, via HTML pages. In Figure 1 this
corresponds to the set of Java servlets, represented as
gray boxes. Each servlet is concerned with a specific
task.

� Job Submission - the submitter prepares input data for
jobs, and submits the jobs to the grid environment.

� Job Monitoring - the verifier collects and organizes in-
formation about the jobs, and verifies how their execu-
tion is proceeding - the tool will resubmit the jobs if it
becomes necessary.

In the following sections, we characterize the main steps
of the ReGS execution.

3.1. Parameter Entry

Users submit jobs on an HTML page, that we call the En-
try Page. The Entry Page is seen in Figure 2. Among the pa-
rameters shown, some are application parameters (for ma-
chine learning), while others are system-required.

After entering the parameters, the user will click a but-
ton on the lower part of the page. The request is sent to
a machine in a Condor pool, which we call the entry ma-
chine. This machine contains Java servlets (gray boxes in
Figure 1). One of them, the Treatment Servlet:

1. receives the parameters from the Entry Page and writes
them into the data file;

2. calls the Submitter;

3. sends a message from the manager, Condor, back to
the user, via another HTML page that we call the Sta-

Figure 2. The Entry Page

tus Interface. When the Submitter finishes, it passes
the Condor message to the servlet.

The entry machine contains the whole structure of our tool,
as described in Figure 1.

3.2. Directory structure creation and Job submis-
sion

Once it is called by the servlet, the Submitter begins its
work. First, the Directory structure is created, using some of
the input parameters. Within this Directory structure, data
is automatically prepared for the experiments, which will
spread a certain number of jobs. The data is internally rep-
resented using GRID-ADL, a script-like language that is
parsed and converted into a graph of tasks. These tasks are
clustered and submitted to the grid nodes. GRID-ADL is
discussed into more detail in Section 3.4.

The Submitter creates the condor input source files for
each job. In the machine learning experiment, these files
contain Prolog queries [9]. It also creates the condor sub-
mission source file. Notice that the language used for the
submission file can be any according to the resource man-
ager that runs on the grid node.

Lastly, the Submitter submits the settled number of jobs
to the Condor pool, with several machines. After this sub-
mission, the Submitter creates a MySQL database
named jobscondor, with two tables: pending and
complete. Each tuple in pending contains infor-
mation about a job that has been submitted, but not yet
finished. On the other hand, a tuple in complete con-
tains information about a job that has already finished.
From this information, we may retrieve the condor job ID
(jobid), the date (date) and the time (time) of the job sub-

3

mission. For the pending table, there are two relevant
fields: the path of the job’s output file (outfile) and the num-
ber of the job’s resubmissions until (times-sub).

When the Submitter finishes, it returns a Condor message
to the Treatment Servlet, which by its turn repasses the mes-
sage via the Status Interface. This interface (also a HTML
page) has two buttons for the user to click and thus know
which jobs are still pending, and which are already com-
plete, as shown in Figure 3.

Figure 3. The Status Interface

3.3. Job monitoring

In order to monitor the newly-submitted jobs, a daemon,
called the Verifier, is started. Its life cycle consists of:

� extract information from each tuple corresponding to a
job in the pending table;

� verify if a job has finished and the integrity of its out-
puts;

� resubmit them or, in case of a successful finish, include
a new tuple with information in table complete.

A job can be resubmitted in three cases:

1. If a job finishes without producing the expected output
file;

2. If a job finishes, producing the expected output file, but
this file is corrupted;

3. If a job exceeds the time limit in the Condor’s job
queue without producing the right output files.

We verify integrity of the output files by parsing them. If
a syntax error occurs, the output is corrupted, and therefore,

the job needs to be resubmitted. In the example application
output files are Prolog files, and integrity is easily detected
by loading the files to our Prolog system. Notice that ReGS
must be informed on what is the output file format.

If a job needs to be resubmitted, a new tuple is created
and included in the pending table, deleting the old one.
Thus, the resubmitted job will have a new jobid and new
date and time of submission. However, this new tuple uses
values as outfile and times-sub, from the deleted tuple. Be-
fore being included into the new tuple, times-sub is incre-
mented. We established times-sub to reach a maximum of
three resubmissions, but this can be set by the user.

If the job finishes successfully and its output file is cor-
rect, a new tuple is created in complete, and its tuple in
pending is deleted.

The Verifier daemon checks the jobs, resubmits them
when necessary and updates the tables in jobscondor.
Meanwhile, the Status Interface keeps the user updated with
how jobs are being executed. Figure 3 presents an snapshot
example.

A Java servlet, the Pending jobs tracker, is activated if a
button on the Status Interface is pressed. This servlet will
read each tuple in the pending table, and return its infor-
mation (as jobid, date and time) to the user. The other but-
ton on the Status Interface will start a similar servlet, the
Complete jobs tracker, which will read every tuple in the
complete table, and return its information.

3.4. Description Language: GRID-ADL

ReGS uses GRID-ADL, a script-like language developed
in the context of the GRAND middleware [11], to inter-
nally represent the user input data. GRID-ADL has a parser
that converts the internal representation to a directed acyclic
graph that can be conveniently partitioned to take advan-
tage of the available grid nodes and their characteristics
(such as bandwidth or data locality). The main advantage
of GRID-ADL is that the user does not need to define the
whole graph as the language provides iteration commands
to the user. This becomes even more important during exe-
cution of the graph, because GRID-ADL does not need to
represent all nodes in memory. Instead, graph creation is
performed lazily.

Our language syntax is represented in Backus-Naur-
Form (BNF) in Figure 4. Since it is self explanatory, we will
not explain all details. We will only highlight the main as-
pects using the three DAG examples presented in Figure 5.

GRID-ADL can be considered as an extension of the
DAGMan description language. Some main differences are
the following:

� the user can give a hint on how the task graph can
be classified (“independent”, “loosely-coupled”, or

4

<input_file> ::= [<comments>] [<graph_definition>]
<set_of_task_definition>
[<comments>]
[<transient_file_definition>]

<graph_definition> ::= "graph" <graph_type>

<graph_type> ::= "independent"
| "loosely-coupled"
| "high-coupled"

<set_of_task_definition> ::= <task_definition>
| <loop>
| <assignment>
| <task_definition> <set_of_task_definition>
| <loop> <set_of_task_definition>
| <assignment> <set_of_task_definition>
| <comments>

<task_definition> ::= "task" <task_name>
"-i" <filenames> "-o" <filenames>
["-c" <number>] ["done"]

<task_name> ::= <string> | <var>

<loop> ::= "foreach" <var> "in" <range> "{"
<set_of_task_definition> "}"

<range> ::= <number> .. <number>
| "{" <symbols> "}"

<symbols> ::= <string>
| <string> ";" <symbols>

<assignment> ::= <string> "=" <assignment’>
<assignment’> ::= <operator>

| <operator> <operation> <operator>
| (<var>|<number>) <math_operation>
(<var>|<number>)

<operator> ::= <var> | <string> | <number>
<operation> ::= "+" | "-"
<math_operation> ::= "*" | "/" | "ˆ"

<transient_file_definition> ::=
"transient" <filenames>

<filenames> ::= <filename_unix>
| <filename_windows>
| <filename_unix> ";" <filenames>
| <filename_windows> ";" <filenames>

<filename_unix> ::= <string>
| <string> <filename_unix>
| <string> "." <string>
| "/" <string> <filename_unix>

<filename_windows> ::= <char> ":" <filename_windows2>
| "\\" <string> "\" <filename_windows2>

<filename_windows2> ::= <string>
| <string> "." <string>
| "\" <string> <filename_windows2>

<var> ::= "${" <string> "}" <string> ::= <char>
| <char> <any_char>

<any_char> ::= <char>
| <special_char>
| <digit>
| <char> <any_char>
| <special_char> <any_char>
| <digit> <any_char>

<char> ::= a..z | A..Z

<special_char> ::= "_" | "-"

<number> ::= <digit>
| <number> <digit>

<digit> ::= 0..9

<comments> ::= "#" <any_char> "\n"

Figure 4. Description Language Syntax in
BNF

(a) (b) (c)

Figure 5. DAG used in input file examples

“highly-coupled”). This is useful to speedup the par-
titioning phase, since we use different algorithms for
each type of graph;

� the task description presents, besides a name and a sub-
mission file, input and output file names;

� some shell script like constructions are available to fa-
cilitate the description of tasks.

The first two differences can be seen in Figure 6, which
describes the DAG of Figure 5(a). It presents an example
where the user first indicates that his/her application has
a loosely-coupled graph (first statement). The graph key-
word is a hint the user gives to our system. It is an optional
directive that should be used to get a better performance
when trying to infer the DAG. For instance, if the user de-
fines that the DAG represents independent tasks, it is not
necessary to run the algorithm to infer the DAG since there
is no precedence order between tasks.

The next four subsequent lines describe four tasks using
the statement task. For each one the user needs to define
a name, a submission file, one or more input files, and one
or more output files. In ReGS, all this information is taken
from the Entry Page.

graph loosely-coupled
task A A.sub -i data.in -o a.out
task B B.sub -i a.out -o b.out
task C C.sub -i a.out -o c.out
task D D.sub -i b.out c.out -o data.out

Figure 6. Input file for the DAG example 5(a)

This example is simpler than the transformations and
derivations used by the Chimera description language while
being more powerful than the DAGMan specification lan-
guage.

Besides these direct and simple statements, we added to
our language some shell script like constructions as illus-
trated in Figure 7, which is related to Figure 5(b). The sec-
ond statement presents a string variable assignment. Next,
an iteration command (foreach) is used to declare five
tasks as well as to store in the string variable (OUTPUT) the
output file names. Then, the string variable is used to indi-
cate the input file of task 6. The final command defines that

5

the files stored in the string variable would not be copied
back to the user workspace, i.e, they are transient or tempo-
rary files.

graph loosely-coupled
OUTPUT = ""
foreach ${TASK} in 1..5 {
task ${TASK} ${TASK}.sub -i ${TASK}.in

-o ${TASK}.out
OUTPUT = ${OUTPUT} + ${TASK}.out + " "
}
task 6 6.sub -i ${OUTPUT} -o data.out
transient ${OUTPUT}

Figure 7. Input file for DAG example 5(b)

The third example, in Figure 8, related to the DAG of
Figure 5(c), illustrates with only three lines how to de-
fine an arbitrary number of tasks. In this case, we define
an independent graph (a bag-of-tasks application) with six
tasks. This example shows a nice feature of our language
not present in the specification languages of systems like
Chimera or DAGMan.

graph independent
foreach ${TASK} in 1..6 {
task ${TASK} ${TASK}.sub -i ${TASK}.in

-o ${TASK}.out
}

Figure 8. Input file for DAG example 5(c)

We wrote a parser using the Java Compiler Compiler
(JavaCC) for our language. JavaCC is a parser generator for
the Java language.

Our prototype has the following functionalities:
� the input file is parsed and lexical and syntactic errors

are detected. This is the most basic functionality re-
quired;

� during the parsing, application information is stored as
a set of objects. This set of objects stores all informa-
tion related to the tasks that allows the application to
be further executed;

� any occurrence of the foreach statement is “executed”
during the parsing phase. For instance, this allows task
creation inside the loop to be properly expanded.

After the graph is built, we use different algorithms to
group the tasks into clusters (according to the graph type)
in order to maximise the computation/communication ra-
tio. In the experiments presented in this paper, the applica-
tion has only two phases, so the partitioning is straightfor-
ward.

ReGS takes the user input data and converts them to this
intermediate language. It is straightforward to transform

this language in DAGMan statements. Therefore, we use
Condor DAGMan so that job dependencies can be tracked
automatically, without any user intervention. A version of
our tool containing DAGMan was created, and a simple ex-
ample is described in Section 4.

4. Results

This section presents a first study of the performance of
our tool, and how it depends on Condor when allocating
jobs to machines. We experiment with a particularly mem-
ory and CPU intensive application, which can be difficult
to manage even in a small pool. The target application is
Machine Learning (ML). A complete analysis of a learn-
ing can demand the execution of a massive number of ex-
periments, and spread a large number of jobs. Our ML runs
are particulary interesting because each run can have very
different memory and CPU requirements. We can estimate
lower-bound at submission time, but tasks can take signifi-
cantly longer, and can use up a system’s memory.

In order to perform a detailed analysis, we used a rela-
tively small configuration: a cluster with 8 Intel Pentium V
machines, with 512 MBytes of memory, and 1 GHz clock,
where a Condor pool was installed and configured. The ver-
sion of Condor we used was 6.4.7. The operating system
used was Red Hat 7.2. Jobs that fail over 3 times are dis-
missed.

4.1. Performance Measurements

We ran several variations of an ML application on our
pool. The application was on learning of carcinogenic com-
ponents’ characteristics in rodents . Performance strongly
depends on a parameter � referring to clause length, that is,
the maximal number of features that are expected to affect
rodents carcinogenesis. We measured the number of failed
jobs, the average job allocation time, and the average job
completion time (both in seconds). By allocation time of a
job, we mean the elapsed time between its submission to
Condor environment and the allocation of a machine to the
job; by completion time of a job we mean the time elapsed
between its submission and its completion.

The first series of experiments spread 108 jobs, the sec-
ond spread 216 jobs and the third spread 252 jobs - all of
them with a clause length of 4. Note that a job’s execu-
tion time in our experiments increases exponentially with
the clause length, as it is clearly seen in the fourth series,
which uses a clause length of 5. This seried spread 126 jobs,
but their average job allocation and job completion times
were very high.

Notice that even the first three series of experiments with
low execution times presented failed jobs. Those jobs were
detected and resubmitted, without user intervention. There

6

l=4 l=5
Total of jobs 108 216 252 126
Finished jobs 108 216 252 123

0 resubmissions 106 212 251 97
1 resubmission 2 4 1 20
2 resubmissions 0 0 0 5
3 resubmissions 0 0 0 1

Dismissed jobs 0 0 0 3

Avg. job allocation time (s) 3075 5218 6538 19814
Avg. job completion time (s) 3249 5531 6755 22650

Table 1. Initial Experiments

was no need to look over hundreds of results in order to
know if any output was corrupted or non-existent. None of
those failed jobs was resubmitted either because the queue’s
time limit was exceeded (which was set as 1 day, but can
be given by the user) or because the resubmission thresh-
old limit was reached.

The fourth series (clause length=5) shows a harder prob-
lem. A percentage of 20,6% of the jobs failed - and in most
cases this could only be detected by checking their output.
Full automation is not sufficient: 3 jobs (2,4%) exceed our
resubmission threshold (3). In this case this indicates some
of the tasks may be exceeding total system memory, and
may require user intervention.

4.2. Condor DAGMan and scheduler evaluation

We rely on Condor DAGMan to detect dependencies
among jobs. As the machine learning jobs tested are loosely
coupled, we associated a ”dummy job” (which produces a
”Hello World” message) to each machine learning job. In
other words, each ”dummy job” is directly dependent on
a machine learning job, in a 1:1 relation. A version of our
tool constructs these dependencies automatically, by creat-
ing a DAGMan-syntax file and calling DAGMan after this.
The user has only to inform about the executable program
from which the dependent jobs will be created. During the
tests, it was proved that all the “dummy jobs” only started
after their parents finished.

We believe it would be interesting to evaluate the job
scheduler system used in the series of experiments, so that
we might be aware of limitations when scheduling jobs to
the pool. To do so we use the third series of experiments,
with 252 jobs. Figure 9 shows start and finish times for the
sequence of tasks. .

The horizontal axis (�) in the graphic corresponds to the
total execution time, in seconds, for the collection of 252
jobs. This time is elapsed from zero (the moment they were
spread) to 12.327 (when the last job finishes), or 3 hours, 29
minutes and 50 seconds. The vertical axis () corresponds

Figure 9. Graphic representation of all the
jobs’ executions in a series of experiments.
A horizontal line is a job execution time (in
seconds)

to the identification of the jobs, identified by numbers rang-
ing from 0 to 252. The execution time of a job is an hori-
zontal line, which for each job binds its allocation time to
its completion time.

When a job is checkpointed and transferred to run in an-
other machine, the execution time divides into two straight
lines. The first one binds the point where the job is allo-
cated and the point where it was checkpointed. The second
one goes from the point where the job is allocated for the
second time to the point where it completes. Of course, a
job can be checkpointed more than once, but it didn’t hap-
pen during this execution.

Taking these considerations into account, we present
next a description of the relevant events that could be ob-
served in Figure 9.

Interval Allocation rate (job/no.seconds)
(1) 24,67
(2) 115,07
(3) 40,22
(4) —
(5) 36,87

Table 2. Job allocation rates per interval

On the first 1.382 seconds, represented by interval (1),
Condor could allocate one job each 24,67 seconds. Regard-
ing to interval (2), there was a significant fall in this rate

7

(one job each 115,07 seconds), with an increase of jobs’ ex-
ecution times. In interval (3), the rate increases again, reach-
ing a value of one job allocation each 40,22 seconds.

A curious phenomenon is noticed in interval (4). Within
this interval, no job allocation was done, and the jobs al-
ready allocated had a excessively long execution time. It
was noticed that each of those jobs left the machine where it
was, and Condor allocated it to another machine, in ”jumps”
without any sign of a checkpoint. The ”jumps” are not re-
ported inside the Condor log file, a file it creates for report-
ing several events from the jobs’ executions.

On the last interval (5), the job allocation rate stabilized
again, reaching a value similar to that from (1) - one allo-
cated job each 36,87 seconds.

From this study, we conclude that the Condor scheduler
can exhibit irregularities in making sure that a job, once al-
located, executes without any interruption; it is known that,
if a machine becomes suddenly busy (p.ex, a user open-
ing a terminal), this can delay the job’s execution - the job
could be checkpointed or could stop and resume its execu-
tion in the same machine later. However, the irregularities
were present even in the idle machines - and, during the in-
terval (4), even the entry machine was not busy.

Incidents like those may be harmful to the experiments
performance. A job similar to the ones we submitted, with
a clause length of 4, can take about 3 minutes to complete.
If we execute the 252 jobs within an uniprocessor environ-
ment, we shall obtain the total time of: 252*180 = 45.360
seconds.

On the other hand, the total time for executing the 252
jobs, with a peak of 7 machines, was 12.327 seconds. There-
fore, the speedup obtained by the Condor is: 45.360/12.327
= 3,67. This result shows that the benefits of a multiproces-
sor environment might not be well used, which may justify a
choice of the job scheduler by the user, depending on the sit-
uation. In our case, we were more concerned with through-
put than with speedup, but in many cases speedup may be
more important.

5. Conclusions and Future Work

We presented ReGS, a tool to enable the execution of a
large quantity of experiments in a grid environment. ReGS
is based on the ideas originally proposed by Dutra et al
[2], and includes the following contributions: integration of
all system components in a flexible tool, and automatic job
management, including automatic error recovery. Our re-
sults show a real occurrence of errors, even for applications
with a moderate number of jobs. We also observed that the
number of errors tends to increase as we increase the num-
ber of jobs. We believe that ReGS can deal with this prob-
lem effectively.

Our first implementation of ReGS is geared towards ma-
chine learning applications. We are working on using ReGS
to support other applications, namely in areas such as bioin-
formatics and physics.

So far, ReGS has relied on pure syntactic analysis to
verify output file integrity. We are working on an interface
that would allow users to introduce other rules, such as, file
length, CRCs, or semantic-based rules.

We plan to allow ReGS to interface with different sched-
ulers. Our experience has shown that the best job scheduler
may vary with the application requirements. We believe that
ReGS can be an effective tool to collect statistics that will
help us in figuring out how efficient a job scheduler can be
to run a given application.

It is also important to improve the interface with tools
such as Condor DAGMan. Ideally, we would like to inter-
face ReGS with GRAND [11], a middleware that employs
a hierarchical archiecture to manage and control individual
job submissions in grid environments.

References

[1] Platform Computing. http://www.platform.com/
products/overview.html.

[2] I. Dutra, D. Page, V. Santos Costa, J. Shavlik, and M. Wad-
dell. Toward automatic management of embarrassingly par-
allel applications. Proceedings of International Conference
on Parallel and Distributed Computing (Euro-Par), 2003.

[3] Sun Grid Engine. http://www.sun.com/software/
gridware/.

[4] I. Foster and C. Kesselman. The Grid: Blueprint for
a New Computing Infrastructure, chapter Computational
Grids, pages 15–51. Morgan Kaufmann Pub., Inc., 1999.

[5] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid. International Journal of Supercomputer Applications,
15(3):472–602, 2001.

[6] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A vir-
tual data system for representing, querying, and automating
data derivation. 14th Conference on Scientific and Statisti-
cal Database Management, 2002.

[7] Y. Gil, E. Deelman, C. Kesselman, and H. Tangmurarunkit.
Artificial intelligence and grids workflow planning and be-
yond. IEEE Intelligent Systems, January 2004.

[8] Portable Batch System. http://www.openpbs.org.
[9] The Yap Prolog System. http://www.ncc.up.pt/

˜vsc/Yap/.
[10] D. Thain, T. Tannenbaum, and M. Livny. Condor and the

grid. In F. Berman, G. Fox, and T. Hey, editors, Grid Com-
puting: Making The Global Infrastructure a Reality. John
Wiley, 2003.

[11] P. K. Vargas, I. C. Dutra, and C. F.R. Geyer. Application par-
titioning and hierarchical management in grid environments.
In 1st International Middleware Doctoral Symposium 2004,
pages 314–318, Toronto - Canadá, October 19th 2004.

8

