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ABSTRACT
Several works on grid computing have been proposed in the
last years. However, most of them, including available soft-
ware, can not deal properly with some issues related to con-
trol of applications that spread a very large number of tasks
across the grid network. This work presents a step toward
solving the problem of controlling such applications. We
propose and discuss an architectural model called GRAND
(Grid Robust ApplicatioN Deployment) based on partition-
ing and hierarchical submission and control of such applica-
tions. The main contribution of our model is to be able to
control the execution of a huge number of distributed tasks
while preserving data locality and reducing the load of the
submit machines. We propose a taxonomy to classify appli-
cation models to run in grid environments and partitioning
methods. We also present our application description lan-
guage GRID-ADL.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.2.11 [Software Engineering]: Software Ar-
chitectures; D.3.2 [Programming Languages]: Language
Classifications

General Terms
Design, Management

Keywords
grid computing, application management, scheduling

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
1st International Middleware Doctoral Symposium Toronto, Canada
Copyright 2004 ACM 1-58113-948-9 ...$5.00.

A grid computing environment [4] is a distributed comput-
ing infrastructure that supports sharing and coordinated use
of heterogeneous and geographically distributed resources.
Resources can be CPUs, storage systems, or network inter-
connection as well as a special hardware, such as meteoro-
logical sensors or a specific software such as a database.

Several works on grid computing have been proposed in
the last years. However, most work presented in the litera-
ture can not deal properly with some issues related to appli-
cation management. Many applications have a high demand
for computational resources such as CPU cycles and/or data
storage. For instance, research in high energy physics (HEP)
[2] and bioinformatics [8] usually requires processing of large
amounts of data using processing intensive algorithms. Usu-
ally, these applications are composed of tasks and most sys-
tems deal with each individual task as if they are stand-alone
applications. Very often, they are composed of hierarchical
tasks that need to be dealt with altogether. These applica-
tions can also present a large-scale nature and spread a very
large number of tasks requiring the execution of thousands
or hundreds of thousands of experiments. Most current soft-
ware systems fail to deal with two problems: (1) manage and
control large numbers of tasks; and (2) regulate the submit
machine load and network traffic. Dutra et al. [3] worked
on item (1) and reported experiments of inductive logic pro-
gramming that generated over 40 thousand jobs. However,
this work was concentrated on providing an user level tool
to control and monitor that specific application execution,
including automatic resubmission of failed tasks.

Since applications that spread a large number of tasks
must receive a special treatment for submission and exe-
cution control, we advocate that a hierarchy of managers
that can dynamically distribute data and tasks can aid the
application management. Our work provides a tool that
can manage and control the two problems mentioned. It
has a simple application description language as input. We
consider that dependencies between tasks are programmed
using data files. User describes only the task characteristics
and the dependencies between tasks are inferred automati-
cally through a data flow dependency analysis. Our architec-
tural model handles two important issues in the context of
applications that spread a huge number of tasks: (1) parti-
tioning applications such that dependent tasks will be placed
in the same grid node to avoid unnecessary migration of in-



termediate and/or transient data files, and (2) distributing
the submission process such that the submit machine do not
get overloaded. This text outlines our main contributions to
these issues.

The remaining of this text is organized as follows. Sec-
tion 2 presents some related works on grid computing. In
Section 3 we present our application taxonomy. We present
and discuss our architectural model in Section 4. Finally,
Section 5 concludes this text.

2. GRID COMPUTING SYSTEMS
Using a timeline classification, Roure et al [13] identifies

three generations in the evolution of grid systems. The first
one includes the forerunners of grid computing. The sec-
ond one have a focus on middleware to support large scale
data and computation. The third one has an emphasis on
distributed global collaboration, using a service oriented ap-
proach, and information layer issues.

Another very popular classification is based on the grid
functionality. In that category we have two classes: com-
putational or data grid. Computational grid focuses on re-
ducing execution time of applications that require a great
number of computer processing cycles. Data grid provides
the way to solve large scale data management problems.

The two most popular grid-aware systems are Condor [15]
and Globus [5]. Condor is a specialized workload manage-
ment system for compute-intensive jobs. Like other full-
featured batch systems, Condor provides a job queueing
mechanism, scheduling policy, priority scheme, resource mon-
itoring, and resource management. Among other things,
Condor allows transparent migration of jobs from overloaded
machines to idle machines and checkpointing, which permits
that jobs can restart in another machine without the need
to start from the beginning. Globus, by its turn, is a whole
framework that includes a set of services used, for exam-
ple, to securely transfer files from one grid node to another
(GridFTP), to manage meta data (MDS), and to allocate
remote resources (GRAM). Condor-G [7] puts together Con-
dor facilities to manage jobs with the Globus grid facilities
such as secure authentication (GSI) and data transfer. Con-
dor applies an opportunistic scheduling policy that concen-
trates on allocating idle resources to take advantage of idle
CPU cycles. Globus focuses on providing several different
services to execute secure code on authorized machines. Ap-
plication management and control, load balancing and data
locality are not their main focus.

Our work differs from those in the literature in two as-
pects. First, we handle three problems not approached by
previous works: automatic application partitioning (taking
into account data locality), automatic application manage-
ment (when the application launches thousands of tasks that
are not easily monitored by hand), and automatic control of
the load in the submit machine. To the best of our knowl-
edge, no other work in the literature solves these problems.
Second, we do not propose a full grid solution (as the Globus
project does, for example): we assume that issues like au-
thorization and certification are provided to grant access to
the grid nodes, as well as we assume each grid node has its
own local resource manager.

3. APPLICATION TAXONOMY
As mentioned in section 1, we consider applications com-

posed by many tasks that can have dependencies only through
file sharing. Applications can be modeled as a dependency
graph of tasks due to file sharing. For example, if a task
a produces an output file fa that task b uses as its input
file, then b must wait until task a finishes. In this exam-
ple, a and b are nodes and there is an edge from a to b.
We consider that the application graph is a directed acyclic
graph ((DAG). This is a common assumption as presented
in Condor’s DAGMan [15] and Globus’ Chimera [6].

We classify those applications in three types:

Independent tasks: is the simplest kind of application, usu-
ally called “bag-of-tasks”. In these applications all
tasks are independent. Normally, data generated by
each task are considered part of the final result but
they do not need to be processed by any specific pro-
cess. One example that falls in this category are Monte
Carlo simulations typically used in HEP and engineer-
ing experiments [18]. MyGrid [10] is a grid system that
deals properly with this kind of application.

Loosely-coupled tasks: has very few dependencies and thus
has a graph with few sharing points. It is typically
characterized by an application divided in phases. For
example, the application distributes data in the be-
ginning of the computation to several processes and
collects them after every process finishes to submit to
an analysis task to generate the final result. One ex-
ample is the experiment mentioned in Dutra et al. [3].

Tightly-coupled tasks: has highly complex graphs. This
kind of application is not so common and is more dif-
ficult to be partitioned. One example that falls in this
category is Finite Constraint Satisfaction Problems,
where each task is responsible for solving one opti-
mization sub-problem that shares variables with other
sub-problems.

4. TOWARD A HIERARCHICAL APPLICA-
TION MANAGEMENT SYSTEM

We designed an architectural model to be implemented at
a middleware level. In order to design our architecture, we
consider that the resources and tasks are modeled as graphs.
At the resource side, each node corresponds to a grid site,
and therefore has information about individual resources in
the site, including access restrictions, computational power,
costs etc. The edges of the resources graph correspond to
the connections available between the grid nodes. At the
application side, each node corresponds to an application
task, and each edge represents a task dependence that indi-
cates a precedence order. This architectural model relies on
already available software components to solve issues such
as allocation of tasks within a grid node, or authorization
control.

The main premises assumed to the conception of our model
are the following:

• A huge number of tasks can be submitted.

• In our applications, tasks do not communicate by mes-
sage passing.

• Tasks can have dependencies with other tasks due to
file sharing.



• Huge number of files can be manipulated.

• Underlying grid environment is secure.

• Each grid node has its local Resource Management
System (RMS).

We also assume that once a task is allocated it will not be
scheduled again or at least this will be transparent to the
higher level resource managers.

4.1 Describing the application
Generally, users run their jobs using some kind of descrip-

tion file that contains characteristics such as the task to
be executed, the computational power required or the full
path to the executable. As most users are acquainted with
this kind of routine, we opted to maintain this classical ap-
proach, and provide to the user a description language that
can quickly represent the user applications and needs. Our
description language is called GRID-ADL (Grid Application
Description Language) and has the legibility and simplicity
of shell scripts and DAGMan [15] language while presents
data relations that allow to automatically infer the DAG in
the same way Chimera [6] does. The user submits a file de-
scribing only the kind of application (independent, loosely-
coupled, or tightly-coupled tasks) and its tasks indicating
input and output files.

Figure 1 shows one example of DAG and Figure 2 presents
its corresponding input description file. This example de-
scribes a loosely-coupled graph as the first line indicates
with the graph keyword. This keyword is a hint the user
gives. It is a directive that should be used to get a better
performance when trying to infer the DAG. For instance, if
the user defines that the DAG represents independent tasks,
it is not necessary to run the algorithm to infer the DAG
since there is no precedence order between tasks.

Figure 1: DAG example

1 graph loosely -coupled

2 OUTPUT = ""
3 foreach ${TASK} in 1..5 {
4 task ${TASK} ${TASK}.sub -i ${TASK}.in -o ${TASK}.out

5 OUTPUT = ${OUTPUT } + ${TASK}.out + " "
6 }

7 task 6 6.sub -i ${OUTPUT} -o data.out
8 transient ${OUTPUT}

Figure 2: Input description file example

The example represents an application composed of 6 tasks,
where five of them can proceed in parallel and one of them
(called 6) waits for the results of the five preceding com-
putations to accomplish its final result. In this case, each
task is defined using the keyword task followed by its logical
name, the associated executable, and its input and output
files (respectively -i and -o) as we can see in lines 4 and 7.

Notice that this example presents some important features
of our description language: the use of a well know syntax
and common commands that simplify coding and reading.
In this example, a string variable OUTPUT is created initially

empty in line 2, then the output file names of the first five
tasks are concatenated in line 5. This simplifies the input
file description of task 6 (line 7) and the description of the
transient files (line 8). The keyword transient is used to
say that the specified files do not need to be transferred
back to the user local file system. Notice that the example
files only can be removed after task 6 finishes its execution.
Finally, our language has an iterator command foreach to
make easier the description of a large number of tasks.

Once the system generates the graph, partitioning is per-
formed using different algorithms depending on the kind of
graph. If the application is of the kind independent tasks,
each task can be assigned to any grid node or run locally sub-
ject to scheduling constraints (e.g., task requirements, link
capacity and associated grid node cost). If the task is of the
kind loosely-coupled, a depth-first search algorithm can
be used to partition the graph in subtrees. If the task is
of the kind tightly-coupled a more complex partitioning
algorithm is required. We have been working on algorithms
based on the Scheduling by Edge Reversal technique [1, 11].

4.2 Submitting the Application
Our proposal for application submission is a management

mechanism called GRAND (Grid Robust ApplicatioN De-
ployment) [16, 17]. The GRAND model can be classified
as a high-level scheduler [14] since it queries other sched-
ulers for possible allocations. It can also be considered as a
Metascheduler [12] because it allows to request resources of
more than one machine for a single job.

The application submission and control is done through
the following hierarchy of managers: (level 0) the user sub-
mits an application in a submit machine through the Appli-

cation Manager; (level 1) the Application Manager partition
the application in subgraphs and send to some Submission

Managers the task descriptions; (level 2) an Submission Man-

ager instantiates on demand the Task Managers that will con-
trol the task submission to the local RMSs on the grid nodes;
(level 3) RMSs on grid nodes receive requests from our Task

Managers and schedule the tasks to be executed locally.
The higher level of the application control must infer the

DAG and make the partitioning. The Application Manager

is in charge of: (1) processing the user submit file describing
the tasks to be executed; (2) partitioning the tasks into sub-
graphs; and (3) showing, in a user friendly way, the status
and monitoring information about the application.

Subgraphs defined by the partitioning algorithm are as-
signed to the second level controllers, called Submission Man-

agers, which will instantiate the Task Manager processes to
deal with the actual submission of the tasks to the nodes of
the grid. This third level is necessary to isolate implementa-
tion details related to specific local resource managers. The
Submission Manager main functions are :

• to create Task Manager to control actual task execution.
Each daemon keeps control of a subgraph of tasks de-
fined by the partitioning;

• to keep information about computational resources;

• to supply monitoring and status information useful to
the user. It stores in log files the information in a
synthetic way. This information is sent to the Applica-

tion Manager that presents it to the user. This periodic
information flow is also used to detect failures.



The Task Manager is responsible for communicating with
remote machines and launching tasks to remote nodes. It
works similarly to a wrapper being able to communicate
with a specific local resource manager. For example, a Task

Manager is instantiated to communicate with a grid node that
uses PBS while another Task Manager can be instantiated to
communicate with another grid node that uses SGE.

Figure 3 illustrates the three main components of our
model and their relationship. We assume that our hierarchy
of managers is running in the local network to (1) avoid forc-
ing that other sites run our daemons, and (2) to minimize
communication time between managers.

Figure 3: Hierarchical task management main components

When the user submits his/her application in the submit
machine, the Application Manager can already be active or
can be started due to the current request. When an Ap-

plication Manager becomes active, it broadcasts a message
to its local network. All Submission Managers reply to this
message to inform their location and status. When an appli-
cation submission request arrives to the active Application

Manager, the application is partitioned in subgraphs. The
Application Manager uses its local information and choose
one or more Submission Managers to accomplish the tasks.
The choice is made using the following criteria based on
heuristics:

• the Submission Managers that have recently communi-
cated with the Application Manager and reported that
are not overloaded have preference to receive subgraphs.
The periodical communication can detect when a Sub-

mission Manager is faulty or overloaded;

• the computational power of the machine, considering
CPU and memory, determines the upper bound on the
number of subgraphs a Submission Manager can receive.
The more memory and CPU power a machine has,
the more subgraphs its Submission Manager can handle.
This aims at avoiding to overload the submit machine;

• the Application Manager keeps a weight for each Sub-

mission Manager. Greater values indicate powerful Sub-
mission Managers. This value is based on previous ex-
ecutions data and indicates how well the Submission

Manager accomplished the tasks it received.

The chosen Submission Managers will receive subgraphs in
an internal representation. At this moment, there is no
transfer of executables or input files. Then, periodically
the Submission Managers will communicate to the Applica-

tion Manager the execution progress. This communication
allows monitoring information to the user and also fault
detection. Communication between the Submission Manag-

ers can happen, since some tasks in different subgraphs can
have dependencies. Therefore some synchronization points
must be established. The Application Manager must send,
included in the subgraph description, the identification of
each manager that is related to this subgraph. For exam-
ple, suppose a Submission Manager sm2 has a task B which
must be executed after task A assigned to Submission Man-

ager sm1. In this case, sm1 must send a message to sm2

when task A finishes.
Each Submission Manager must find the most suitable re-

sources to run its subgraphs. A Submission Manager chooses
a grid node using the following criteria:

• the Submission Managers keep a list of available grid
nodes. Some subgraphs will have requirements that
just some grid nodes can match. Thus, grid nodes
must match tasks requirements to be selected;

• for each grid node, an upper bound on the number of
subgraphs it can receive will be estimated. Besides,
the ongoing submissions are taken into consideration;

• the Submission Manager keeps information about pre-
vious executions. It uses this information to calcu-
late a weight based on the application characteristics.
Greater values for the weight indicate “better” grid
node candidates.

It is required a Task Manager, in the same machine of the
Submission Manager, for each grid node a Submission Manager

can access. Task Managers can be dynamically activated and
deactivated according to the Submission Manager demands.
The Submission Manager sends the subgraph to a Task Man-

ager according to the grid node chosen. The Task Manager is
responsible for translating the internal subgraph description
to the appropriate format for tasks submission. For exam-
ple, if it communicates with a Condor pool, it must prepare
a Condor submit file and send the command to start tasks.

4.3 Implementation Issues
In a first approach, we decided for model simulation. Sim-

ulation has several advantages, the most important being
that we can isolate the model from operational issues such
as the presence of firewalls or access restrictions. Other ad-
vantages are that we can control several parameters, for ex-
ample, number of nodes in a cluster, bandwidth, latency,
and mean time between failures, and can reproduce experi-
ments. From the simulation experiments we can extract im-
portant implementation decisions. We are using the Monarc
2 Simulator [9]. Monarc is a java discrete-event simulator
which allows to model the main grid abstractions such as
resources and tasks. We are also implementing a GRAND
prototype using JavaCC and ISAM/EXEHDA system.

5. FINAL REMARKS
This paper presented a general framework for application

management in grid environments, whose central idea is to



have a hierarchical organization of controllers, where load
of the user machine (submit) is shared with other machines.
Our proposal wants to take advantage of hierarchical struc-
tures, because this seems to be the most appropriate or-
ganization for grid environments. Our architectural model
handles two important issues in the context of applications
that spread a huge number of tasks: (1) partitioning ap-
plications such that dependent tasks will be placed in the
same grid node to avoid unnecessary migration of interme-
diate and/or transient data files, and (2) distributing the
submission process such that the submit machine do not
get overloaded. As far as the authors know, this is the first
proposal of a hierarchical application management system
for grid environments and is the first work that focuses on
data locality to make scheduling decisions [16, 17].

We are now designing our simulation model. With sim-
ulation, several parameters will be under control and we
will try to get the best options to our system implementa-
tion. As future work, we will finish the implementation of
our model and test it using applications from engineering,
through a collaboration with the Laboratório de Projeto de
Circuitos at UFRJ, from high energy physics, through the
HEPGrid collaboration, and from machine learning applied
to biological data through a collaboration with the Depart-
ment of Biostatistics and Medical Informatics at University
of Wisconsin.
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