Research Overview

- **Formal Methods**
 - Formal verification of programs
 - Investigation of a specification language
 - Formalizations in MultiMedia

- **Consistency in UML**
 - Series of workshops on MoDELS
 - Classification framework
 - Consistency Issues in Modelling

- **Didactics**
 - Educators Symposium on MoDELS
 - *Best Practices for Teaching UML Based Software: MoDELS 2004*

- **Software Development and Empirical Methods**
 - Validation of stereotypes with experiments
 - Empirical assessment of using stereotypes to improve comprehension of UML models: A set of experiments
 - Validation using survey
 - Empirical extension of a classification framework for addressing consistency in model based development

Research Overview

- **Formal Methods**
 - Formal verification of programs
 - Hiding deadlocks in Lotos
 - Formalizations in MultiMedia

- **Consistency in UML**
 - Series of workshops on MoDELS
 - Classification framework
 - Consistency Issues in Modelling

- **Didactics**
 - Educators Symposium on MoDELS
 - *Best Practices for Teaching UML Based Software: MoDELS 2004*

- **Software Development and Empirical Methods**
 - Validation of stereotypes with experiments
 - Empirical assessment of using stereotypes to improve comprehension of UML models: A set of experiments
 - Validation with survey
 - Empirical extension of a classification framework for addressing consistency in model based development
Teaching Overview

- WUT
 - OO Software Development,
 - Formal methods in SE
- BIT
 - OO Software Development – 1st y BSc level
 - Product Line Architecture – 2nd y MSc level
 - Master Thesis course – 2nd y MSc level
- Double Diploma BIT - WUT
 - Research Methodology
- NUR – National University of Rwanda
 - OO Software Development
 - Product Line Architecture
 - Master Thesis
- NU – Newcastle University
 - Introduction to UML

OMG’s MDA

Object Management Group (OMG)
 an open membership, not-for-profit consortium
 that produces and maintains computer industry specifications for interoperable enterprise applications.

- Bad news
 There will never be a single OS, Pl, Network Architecture that replaces all that have passed
- Good news
 You can still manage to build systems economically in this environment
- Remedy
 A specific approach to software development – Model Driven Architecture (MDA)
OMG’s MDA

- Provides open, vendor neutral approach to the challenge of technology change.
- Is a broad conceptual framework that describes an overall approach to software development.
- Is the OMG implementation of MDD approach to software development by standards and a set of tools that can be used within MDD.
- Based on OMG standards separates application logic from underlying platform technology.
- Does not define a particular software architecture or an architectural style.
- Raises the level of abstraction in software development.

MDA Core Standards - Technology Space

- MOF - Meta-Object Facility
 - an abstract language and a framework for specifying, constructing, and managing technology neutral metamodels => languages
- UML - Unified Modeling Language
 - a graphical language for specifying, constructing, visualizing & documenting the artifacts of distributed object oriented systems
- XMI - XML Metadata Interchange
 - technology mappings from MOF metamodels conforming to XML DTDs and XML documents.
- Others still coming

MDA: Development Process Perspective

- MDA (Model-Driven Architecture)
 is a type of
 MDD (Model-Driven Development)
- Not a Software Architecture design
 - “Architecture” refers to a framework of concepts, tools etc.
- But a Development Paradigm
 Approach to developing software
MDA: Development Process Perspective

- **MDA = approach + tools** for:
 - **Specifying**
 - platform-independent system – application platforms
 - **Choosing**
 - a platform for the system
 - **Transforming**
 - the platform-independent specification into a platform-specific one

- **Concepts**
 - Application: the functionality being developed
 - Platform: technology that provides functionality through interfaces and usage patterns (generic, standard, manufacturer)
 - System: application(s) supported by platform(s)

Categories of Models in MDA

- **Computation Independent Model - CIM**
 - Does not show details of system structure
 - Independent of how the system will be implemented
 - “domain model” or “business model”
 - Bridges the gap between domain experts and design/development experts

- **Platform Independent Model - PIM**
 - Structure, functionality and behavior of the software system built using OMG standards

- **Platform Specific Model - PSM**
 - Realization of the PIM on a given platform/technology

Models Hierarchy: Four Layers Architecture

- **Language for defining languages** - MOF
- **Modelling Language** - UML

MDA Tool:

- **Modelling components**
 - To build and maintain PIMs
- **Code generation component**
 - To perform a series of transformations that map PIM elements to elements in PSMs

MDA Benefits:

- Instead of writing PS-code, focus on developing models that are specific to application domain but independent of the platform
- A tool that implements MDA concept allows to:
 1. produce models of the application and business logic, and
 2. generate code for a target platform by means of transformations
MDA Model Transformation in General

MDA-based SD: Research Areas

T1: Model generation
- constructing UML models based on non-UML artefacts
T2: Model transformation
- constructing UML models based on UML artefacts
T3: Code generation
- construction of the software based on UML artefacts

Empirical Methods in Engineering

- **Confirmation** of (more or less accepted) hypotheses.
 For example: object-orientation is good for reuse.
- **Evaluation** of methods, models, languages and tools.
 For example: whether Java produces higher quality code than C++
- **Identification** of relationships.
 For example: find relationship between fault-prone components and design concepts.
- **Validation** of models or measures.
 For example: to validate a specific cost estimation model.
- **Understanding** of methods, techniques and models.
 For example: to understand relationship between inspections and test
- **Guidance** to help in management.
 For example: for migration from one technology to another.
Experiment

Basic characteristic
- carefully planned and fully controlled,
- should be replicable.

Experiment Model

Experiment Process

Experiment Design - Instrumentation

<table>
<thead>
<tr>
<th>Experiment schema</th>
<th>Round 1</th>
<th>Round 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Set A – S</td>
<td>Set B – N</td>
</tr>
<tr>
<td>Group 2</td>
<td>Set A – N</td>
<td>Set B – S</td>
</tr>
</tbody>
</table>

- Four set of artefacts
 - Set A-S: stereotyped model A and description of stereotypes used
 - Set B-N: non-stereotyped model B,
 - Set A-N: non-stereotyped model A,
 - Set B-S: stereotyped model B and description of stereotypes.

- Artifact set A-x describes a domain of radio transmissions.
 - A class diagram describing different types of existing objects
 (radio station, retransmission station, different types of antennas, etc)
 - A corresponding object diagram describing one of possible situations (like sending a news program across a country).

- Artifact set B-x describes a domain of GSM telephony.
 - A class diagram describing different types of existing objects
 (mobile phone, BTS station, connection to conventional telephone network, etc)
 - A corresponding object diagram describing one of possible situations of using the network (like making phone calls in a given time).

Sample Experiment Design

- Idea Behind Empirical Research
 Investigate how stereotypes influence understanding of UML encoded artefacts

- Method
 - Experiment
 - Design
 - Pair comparison on design artefacts
 - Subjects: SE students of different background
 - Input / Objects: (4 sets of) design artefacts (with 6 stereotypes)
 - Instruments (initial): questionnaires (on 4 types) of diagrams
 - Component Model & Collaboration Diagram
 - non stereotypes and stereotyped
 - Output:
 - time
 - level of understanding

Sample artefacts

<table>
<thead>
<tr>
<th>Name</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><<sender>></td>
<td></td>
<td>makes the class capable of sending messages to classes stereotyped <<receiver>> or <<transmitter>>, allows the class to send messages without receiving them first, prevents the class from receiving any message,</td>
</tr>
<tr>
<td><<receiver>></td>
<td></td>
<td>makes the class capable of receiving messages from classes stereotyped <<sender>> or <<transmitter>>, enables the class to receive a message without sending it further, prevents the class from sending any messages to other classes,</td>
</tr>
<tr>
<td><<transmitter>></td>
<td></td>
<td>makes the class capable of receiving messages from classes stereotyped <<sender>> or <<transmitter>>, and sending the received messages to classes stereotyped <<receiver>> or <<transmitter>>, any message that is sent from such a class must be preceded by receiving of the message by this class</td>
</tr>
</tbody>
</table>
• NRESP – number of correct responses

• Time spent

Best Practices

• Tailoring of Development Process
 - Defined Artefacts and Creation Procedures
 - Effective Usage of Models and Modelling – MDA conformance

• Consistency Awareness and Management

• Research elements
 - Participation - Conducting Experiments During the Course
 - Passive and Active
 - Transfer of Research Results
 - proper and effective usage of advanced UML elements – for instance where and how introduce stereotypes, how they can help, what benefits can be obtained
 - usage of capabilities included in modelling tools

• Industrial and Professional Relevance

• **Constant Feedback from Participants**

Follow Up

• Replication
• Categorization
• Teaching

Overall improvement

- NRESP improves; TSEC the same
- TSEC improves; NRESP the same
- NRESP improves; TSEC deteriorates
- TSEC improves; NRESP deteriorates
- Both deteriorate