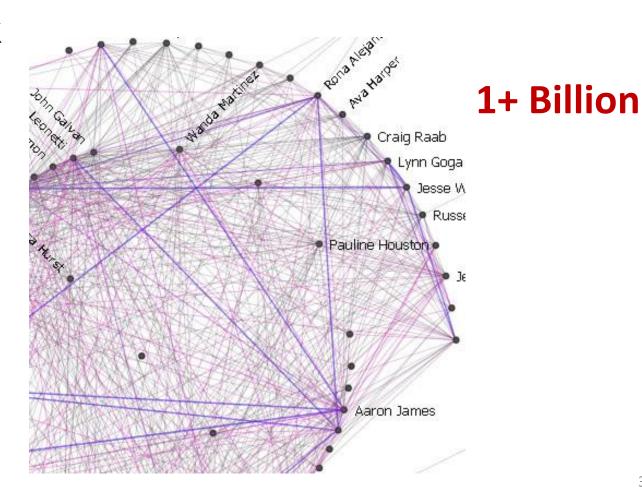
Sampling Large Graphs: Algorithms and Applications

Don Towsley
College of Information & Computer Science
Umass - Amherst

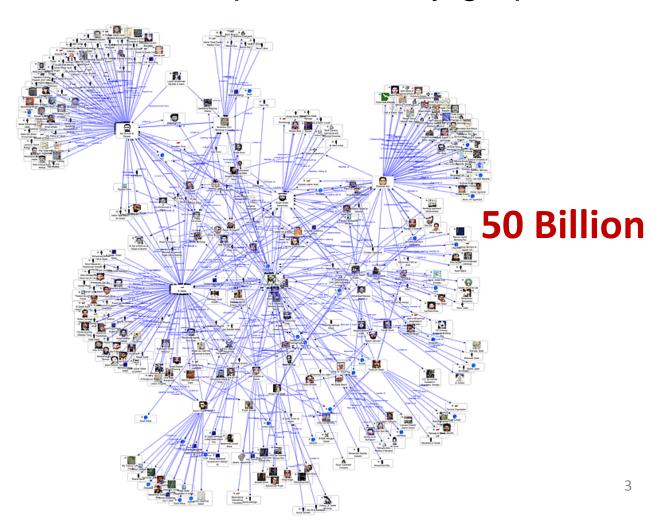
Collaborators: P.H. Wang, J.C.S. Lui, J.Z. Zhou, X. Guan

large networks can be represented by graphs

Facebook



- large networks can be represented by graphs
- Facebook
- WWW

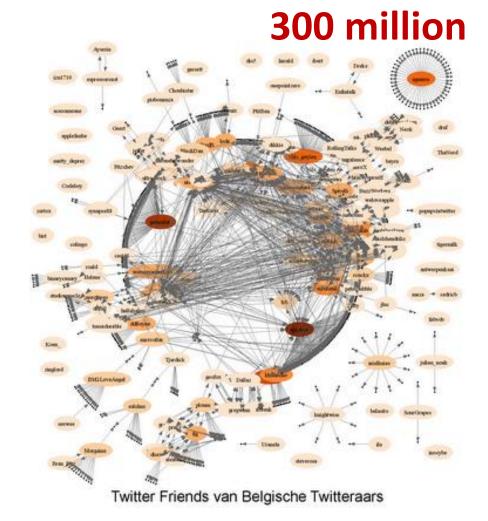


large networks can be represented by graphs

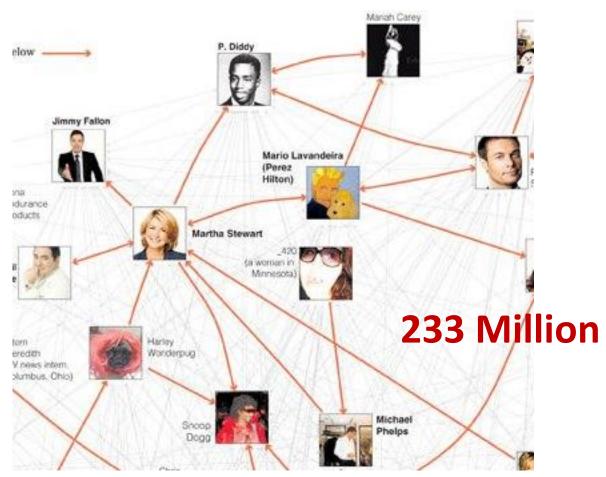
Facebook

- WWW

- Twitter



- large networks can be represented by graphs
- Facebook
- WWW
- Twitter
- Ebay



- large networks can be represented by graphs
- Facebook
- WWW
- Twitter
- Ebay

Curse of data dimensionality !!!

Challenges in measurement: Information distortion

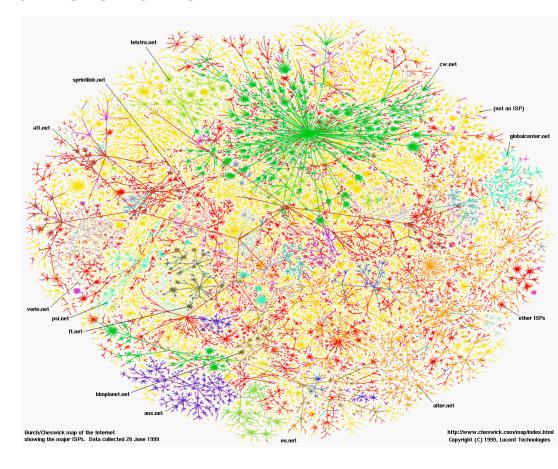
"World Map" in 1459

- □ incomplete
 (Columbus et al.
 1492)
 (Australia 17th
 century)
- wrong proportions (Africa & Asia)

Why do we want to understand these networks?

Want to understand or find out

□ how did these networks evolve?

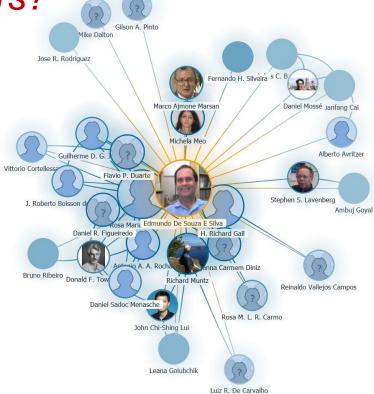


Why do we want to understand these networks?

Want to understand or find out

how did these networks evolve?

who are the influential users?

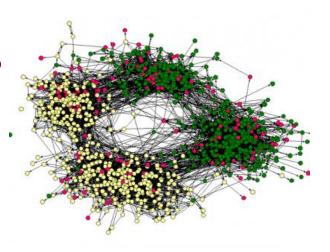


Why do we want to understand these networks?

Want to understand or find out

- how did these networks evolve?
- who are the influential users?
- how does influence propagate?
- communities in these networks?
- □etc.

High school friendship network



Goals and challenges

Goals

- generate statistically valid characterization of network structure
 - node pairs in this work

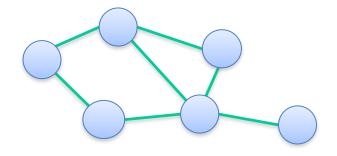
Challenges

- □ large networks
- correcting for biases

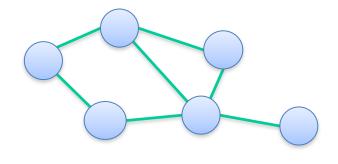
How to measure: sampling

Random sampling (uniform & independent)

Node sampling

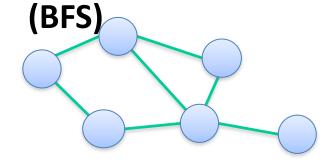


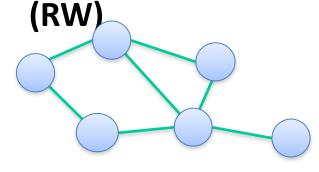
Edge sampling



Crawling

Breadth First sampling

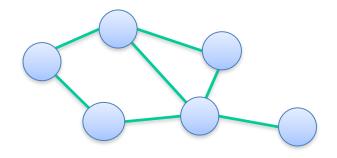




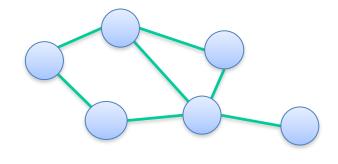
How to measure: sampling

Random sampling (uniform & independent)

Node sampling

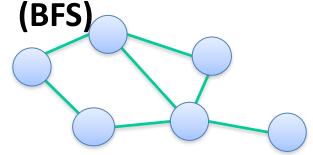


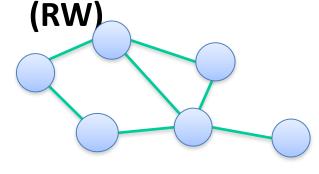
Edge sampling



Crawling

Breadth First sampling

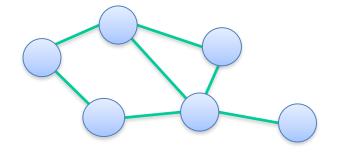




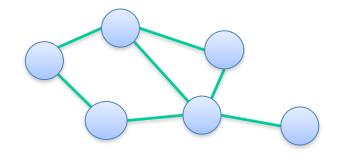
How to measure: sampling

Random sampling (uniform & independent)

Node sampling

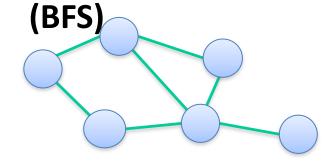


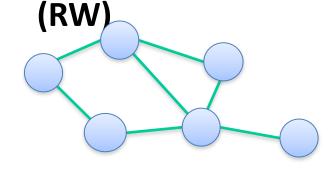
Edge sampling



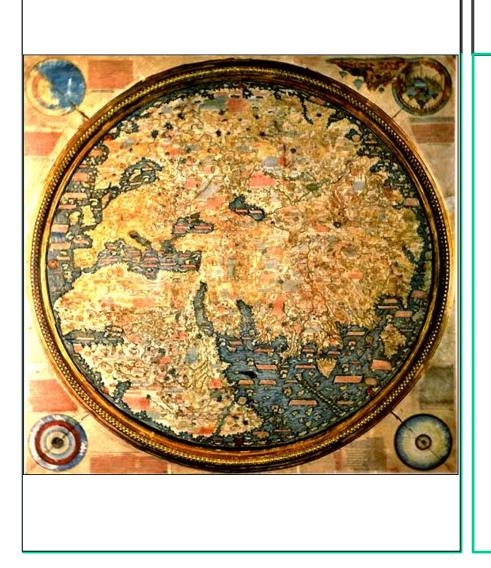
Crawling

Breadth First sampling





How to measure: sampling algorithms

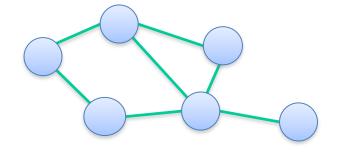


Crawling Breadth First sampling (BFS) Random walk sampling (RW)

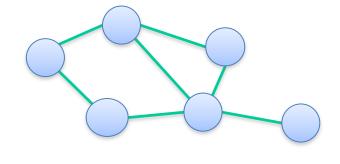
How to measure: sampling algorithms

Random sampling (uniform & independent)

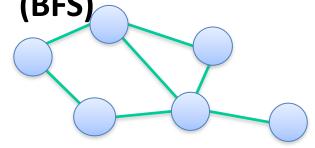
Node sampling

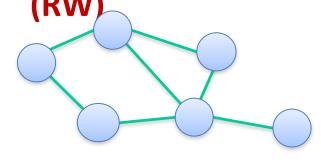


Edge sampling



Breadth First sampling (BFS)

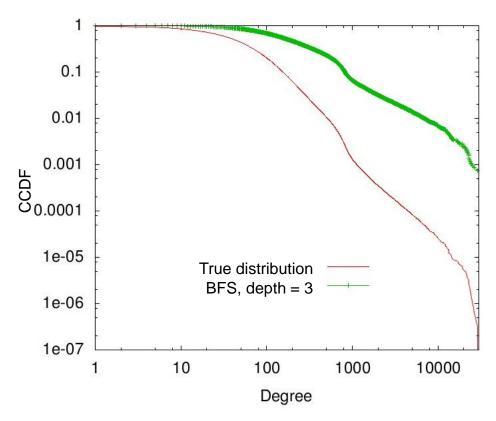




Breadth first search sampling

□ Orkut data set (Mislove 2007), 3M vertices, 200M

edges



- BFS sampling highly biased
- difficult to remove bias

Random walk sampling

Bias removal?

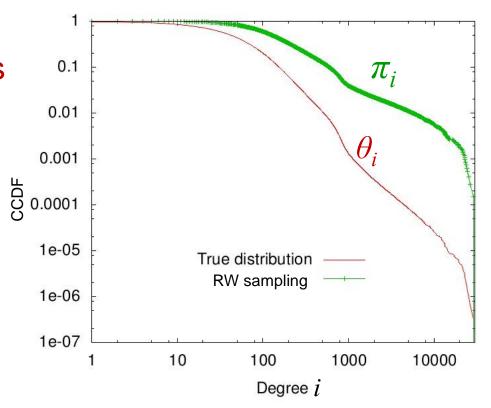
- Markov model
- at steady state visits edges uniformly at random (edge sampling)

Model:

 θ_i - P[node degree = i]

 π_i - P[visited degree = i]

$$\pi_i \propto \theta_i \times i$$



Random walk sampling

Bias removal?

- Markov model
- at steady state visits edges uniformly at random (edge sampling)

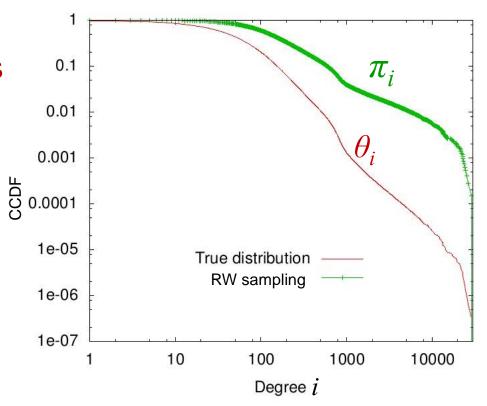
Model:

$$\theta_i$$
 - P[node degree = i]

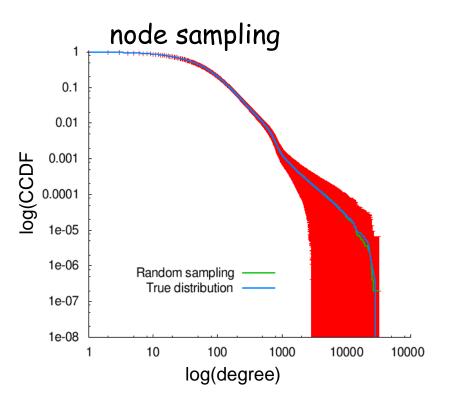
 π_i - P[visited degree = i]

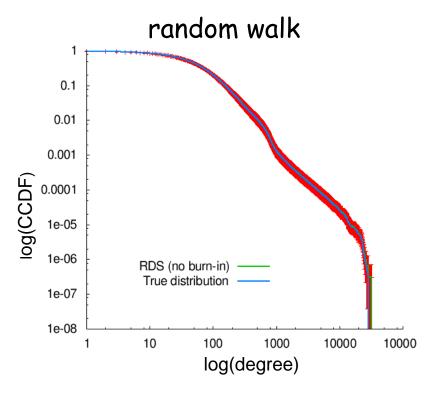
$$\pi_i = \theta_i \times i / \text{avg degree}$$

or
$$\theta_i = \text{Norm} \times \pi_i / i$$



Node sampling vs. RW: Orkut



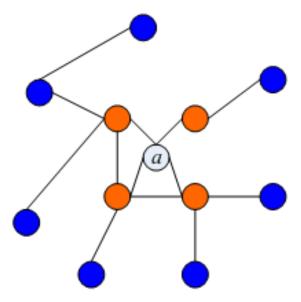


- RW estimates tail well
- node sampling estimates small degrees well

Focus of talk

Measure node pair statistics: important for many applications!

Classification of node pairs



- 1-hop neighbor of node a
- 2-hop neighbor of node *a*

```
Similarity( a , ) > Similarity( a , )
```

Classify node pair [u, v] using shortest path

- 1-hop node pair class if distance(u,v) = 1
- 2-hop node pair class if distance(u,v) = 2

• ...

Homophily

Homophily: tendency of users to connect to others with common interests.

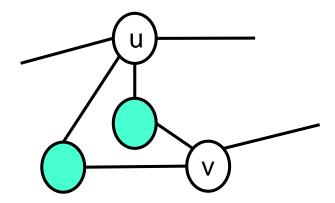
P. Singla and M. Richardson. Yes, there is a correlation: from social networks to personal behavior on the web. In WWW 2008 (MSN)

Can infer characteristics and make recommendations

Compare homophily(*u*, *v*) between different node pair classes

Pair similarity: Proximity

Proximity(*u*,*v*): number of common neighbors of *u* and *v*; closeness of *u* and *v*



- knowing proximity distribution of node pairs important for
 - friendship prediction
 - interest recommendation
 - **O** . . .

Pair similarity: distance

- Distance(u,v): length of shortest path between u and v in graph
- measure distance distribution of all node pairs to calculate
 - average distance
 - Twitter: 4.1
 - MSN: 6.6
 - effective diameter (the 90th percentile of all distances)
 - o small world

Problem formulation

- \square undirected graph G = (V, E)
- measure node pair characteristics in following sets:
 - o all pairs $S = \{[u, v]: u, v \in V, u \neq v\}$
 - one-hop pairs pairs of connected nodes $S^{(1)} = \{[u, v]: (u, v) \in E\}$
 - two-hop pairs pairs of nodes with at least one common neighbor

$$S^{(2)} = \{ [u, v] : u, v \in V, u \neq v; \exists x \in V \ st \ (x, u), (x, v) \in E \}$$

Problem formulation

- \Box F(u, v) similarity of node pair under study, e.g., # of common neighbors of u, v
- $\square \{a_1, ..., a_K\}$ range of F(u, v)
- \square distribution of F(u, v)
 - $\circ S: (\omega_1, ..., \omega_K)$
 - $\circ S^{(1)}$: $(\omega_1^{(1)}, \dots, \omega_K^{(1)})$
 - $\circ S^{(2)}$: $(\omega_1^{(2)}, ..., \omega_K^{(2)})$
 - $\omega_k, \omega_k^{(1)}, \omega_k^{(2)}$ fractions of node pairs in $S, S^{(1)}, S^{(2)}$ with property $F(u, v) = a_k$

Challenges

- OSNs large
 - \circ Facebook, Google+, Twitter, Facebook, LinkedIn, ..., |V| > 500 million users
- \square huge number of node pairs, $|V|^2 > 10^{16}$
- topology not available
 - ⇒ sampling required
 - UVS (Uniform Vertex Sampling):
 - unbiased for S
 - sampling bias for $S^{(1)}$, $S^{(2)}$.
 - sometimes UVS not allowed
 - o crawling RW: sampling bias
- need to construct unbiased estimates

Basic sampling techniques

- □ **UVS**: sample nodes from *V* uniformly
- weighted vertex sampling (WVS): sample nodes from V with desired probability distribution $(\pi_x : x \in V)$
 - independent WVS (IWVS) (if we have topology)
 - Metropolis-Hastings WVS (MHWVS) (if not): at each step, MHWVS selects a node v using UVS and then accepts the sample with probability $\min(\pi_v/\pi_u, 1)$, where u is previous sample; otherwise tries again

All pairs 5

Sampling method: select two different nodes u and v uniformly at random

Estimator: given sampled pairs $[u_i, v_i]$, i = 1, ..., n

$$\widehat{\omega}_k = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(F(u_i, v_i) = a_k), \qquad k = 1, ..., K$$

Accuracy (unbiased)

$$E[\widehat{\omega}_k] = \widehat{\omega}_k, k = 1, ..., K$$

One hop pairs $S^{(1)}$

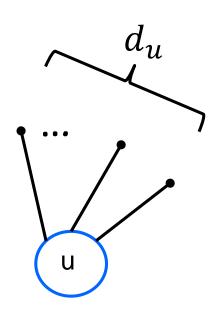
Sampling node pair [u, v]

1) sample node u according to probability distribution

$$(\pi_u^{(1)}: u \in V)$$
, where

$$\pi_u^{(1)} = \frac{d_u}{2|E|}$$

 d_u - degree of node u



One hop pairs $S^{(1)}$

Sampling node pair [u, v]

1) sample node u according to probability distribution

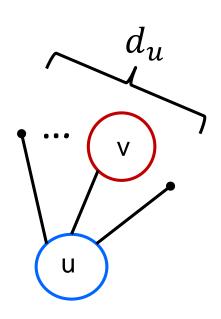
$$(\pi_u^{(1)}: u \in V)$$
, where

$$\pi_u^{(1)} = \frac{d_u}{2|E|}$$

 d_u - degree of node u

2) select neighbor v at random

Each [u, v] sampled uniformly from $S^{(1)}$



One hop pairs $S^{(1)}$

Estimator: given sampled pairs $[u_i, v_i]$, i = 1, ..., n

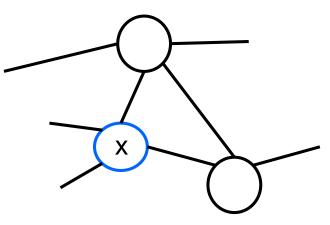
$$\widehat{\omega}_k^{(1)} = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(F(u_i, v_i) = a_k), \qquad k = 1, ..., K$$

Accuracy (unbiased)

$$E\left[\widehat{\omega}_k^{(1)}\right] = \omega_k^{(1)}, k = 1, \dots, K$$

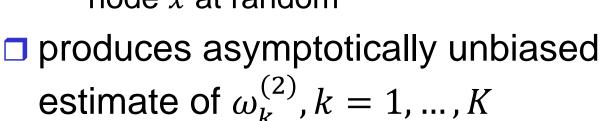
Two hop pairs $S^{(2)}$

- \square sampling node pair [u, v]
 - 1) sample node *x*
 - select two neighbors u and v of node x at random

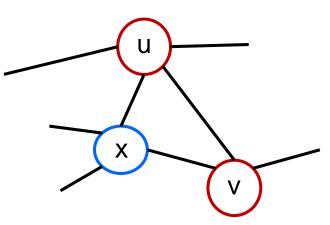


Two hop pairs $S^{(2)}$

- \square sampling node pair [u, v]
 - sample node x
 - 2) select two neighbors u and v of node x at random



tight convergence rate



Why?

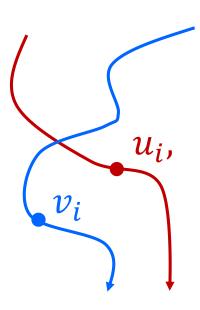
- UVS not available, too costly
 - API not provided
 - user IDs sparsely distributed
- only crawling techniques can be used
 - random walk: walker moves to random neighbor, samples its information
 - we saw for connected non-bipartite graph

$$\pi_v = \frac{d_v}{2|E|}, \qquad v \in V$$

All pairs 5

- □ sample node pair $[u_i, v_i]$ by two independent RWs, where u_i, v_i are nodes sampled by two RWs at step i
- □ node pair [u,v] sampled according to stationary distribution

$$\pi_{[u,v]} = \frac{d_u d_v}{4|E|^2}, \qquad u,v \in V$$



All pairs 5

Estimator: given sampled node pairs $[u_i, v_i]$, i = 1, ..., n

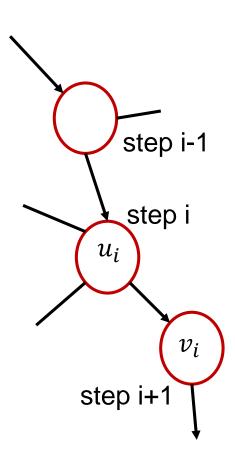
$$\widehat{\omega}_{k}^{*} = \frac{1}{J} \sum_{i=1}^{n} \frac{\mathbf{1}(F(u_{i}, v_{i}) = a_{k}) \mathbf{1}(u_{i} \neq v_{i})}{d_{u_{i}} d_{v_{i}}}, k = 1, \dots, K$$

J – normalization constant

Accuracy: $\widehat{\omega}_k^*$ - asymptotically unbiased estimate of ω_k , $k=1,\ldots,K$

One hop pairs $S^{(1)}$ Sampling method:

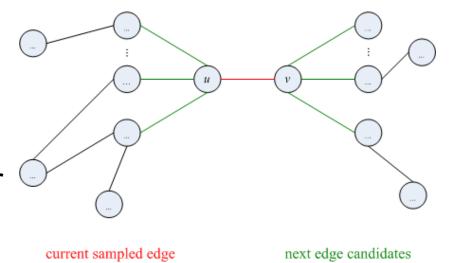
- \square random node pair $[u_i, v_i]$ sampled by RW
- $\square u_i, v_i$ nodes sampled at steps i and i+1
- \square produces asymptotically unbiased estimate of $\omega_k^{(1)}$, $k=1,\ldots,K$



Two hop pairs $S^{(2)}$

Neighborhood RW (NRW)

- \square current edge (u, v)
- next edge: select randomly from edges connected to u or v, except edge (u, v)



RW on graph with edges as nodes

Two hop pairs $S^{(2)}$

Probability NRW samples node pair [u,v] in $S^{(2)}$ converges to

$$\pi_{[u,v]}^{(2)} = m(u,v)/M$$

m(u, v) - number neighbors common to u, v

Two hop pairs $S^{(2)}$

Estimator: given sampled node pairs $[u_i, v_i]$, i = 1, ..., n

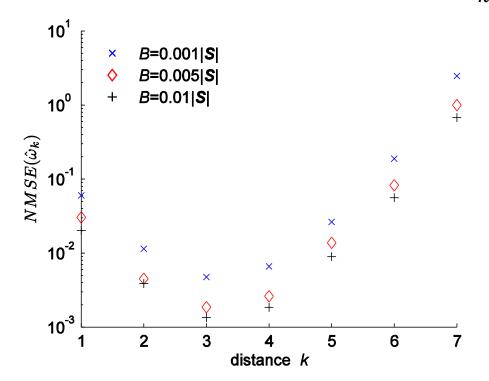
$$\widehat{\omega}_k^{(2^*)} = \frac{1}{H} \sum_{i=1}^n \frac{\mathbf{1}(F(u_i, v_i) = a_k)}{m(u_i, v_i)}$$

H – normalization constant

Accuracy: asymptotically unbiased estimate of $\omega_k^{(2)}$, $1 \le k \le K$

Simulations: Distance distribution estimation

- □ B number of sampled node pairs
- □ |S| total number of node pairs
- \square error metric $NMSE(\widehat{\omega}_k) = \frac{\sqrt{E[(\widehat{\omega}_k \omega_k)^2]}}{\omega_k}, \ k = 1, ..., K$

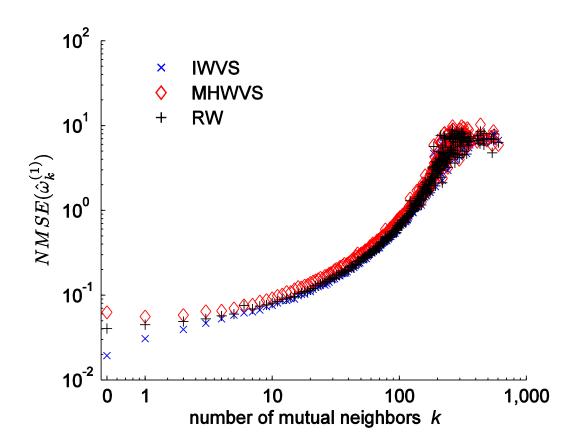


Gnutella - $|V| \approx 6300$

• B >.005|S|, NMSE < 1

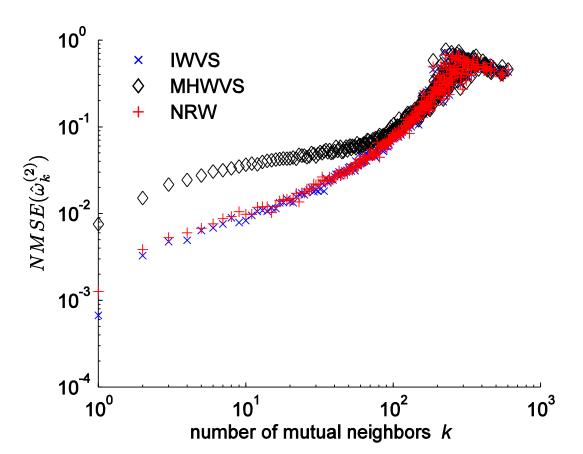
Simulations: Mutual neighbor count distribution in S⁽¹⁾

 $B = 0.01|S^{(1)}|$ node pairs sampled from $S^{(1)}$ of soc-Epinions (76,000 nodes)



Simulations: Mutual neighbor count distribution in S⁽²⁾

 $B = 0.01|S^{(2)}|$ node pairs sampled from $S^{(2)}$ of soc-Epinions



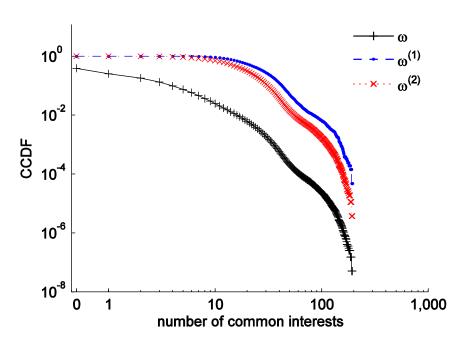
Simulations: Interest distribution scheme

Distribute interests over graph:

- 10⁵ distinct interests: number nodes per interest ~ truncated Pareto distribution over {1, ..., 10³}
- ☐ to distribute interest possessed by k different nodes
 - select random node v that reaches at least k-1 different nodes
 - distribute interest to node v and closest k-1 nodes connected to v

Simulations: Common interest count distribution for generated content

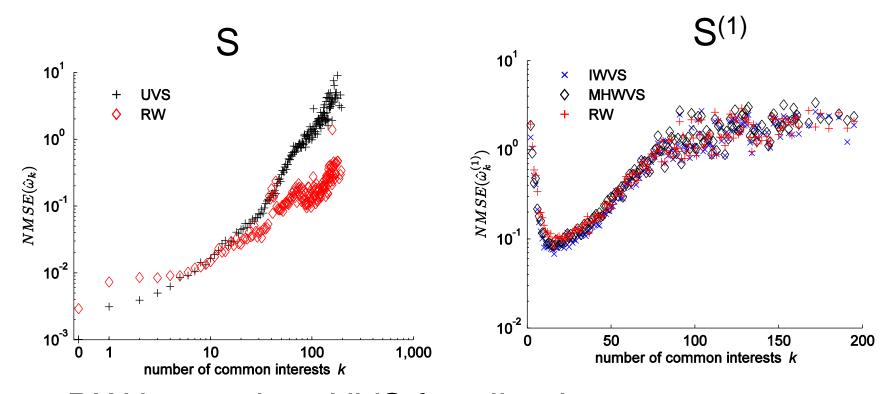
- □ CCDF of common interest count distribution for S, S⁽¹⁾, and S⁽²⁾
- # common interests smallest for S, largest for S⁽¹⁾
- consequence of construction



P2P-Gnutella

Simulations: Common interest count distribution in S, S⁽¹⁾ (Gnutella)

B = 0.01|S| node pairs sampled from $S, S^{(1)}$

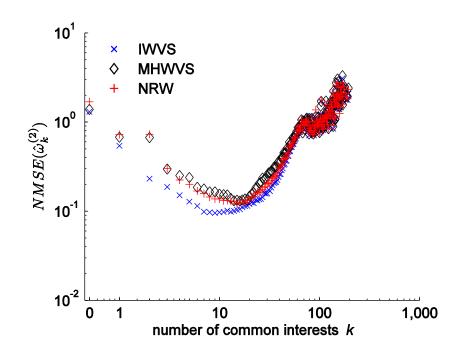


- RW better than UVS for all pairs
- □ little difference for neighbors

Simulations: Common interest count distribution in S⁽²⁾ (Gnutella)

 $B = 0.01|S^{(2)}|$ node pairs sampled from $S^{(2)}$

- IWVS better for small numbers of interests
 - requires knowledge of topology



Conclusions

- □ use sampling to estimate pair characteristics in sets S, S⁽¹⁾, and S⁽²⁾.
- sampling methods based on independent vertex sampling and random walk
 - produce asymptotically unbiased estimates
- good illustration of power of random walk
- validated approaches on wide range of graphs

Conclusions

- Markov Chain Mixing Times
- other more "powerful" & "elegant" sampling methods: Frontier Sampling (Ribeiro)
- Efficiently Estimating Motif Statistics of Large Networks in the Dark. TKDD 2014
- Design of Efficient Sampling Methods on Hybrid Social-Affiliation Networks. <u>IEEE ICDE'15</u>
- measuring, maximizing group closeness centrality over diskresident graphs. <u>WWW'14</u>

Thanks!

Slides (will be) at

http://wwwnet.cs.umass.edu/networks/towsley/UF
RJ-sampling.pdf