Dealing with Discriminatory Data Mining

Chris Clifton
7 November 2016

With my (former) NSF Hat on:

• Secure and Trustworthy Cyberspace: Enabling US-Brazil Collaboration on Cybersecurity Research
 – jems.sbc.org.br/br_us_cybersec2016
 – Two-page white papers due 12/16/16
 – See also: www.usbrazilsec.org

• Nothing else today is from NSF…
What’s all the fuss?

(Angwin, Larson, Mattu, Kirchner ‘16)

Machine Bias

There’s software used across the country to predict future criminals. And it’s biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica

May 23, 2016

ON A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-sister from school when she spotted an unlocked kid’s blue Huffy bicycle and a silver Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them down the street in the Fort Lauderdale suburb of Coral Springs.

• Similar cases lead to different outcomes
 – Minor theft (shoplifting, stealing a bike)
 – Black offender predicted as more likely to commit future crime than white
 – Despite white offender having criminal record!
• Statistical analysis suggests this is common
What’s all the fuss? (Sanburn ‘15)

- Ms. Lone Elk (and others) required to provide identification to use Facebook
 - Viewed as potential violation of “real name” policy
- No such barriers for “dominant majority”

What’s all the fuss? (Sweeney ‘13)

- Blacks and whites see different ads on the internet
 - Even if race not part of the profile
- Sweeney found that first names typically associated with blacks and whites lead to different ads
 - Otherwise identical profiles and histories

[Image of a Facebook icon with text saying, “Some Native Americans say Facebook won’t allow them to log in because their names are ‘fake.’”]

[Image of a computer screen with text, “Discrimination in Online Ad Delivery”]

[Image of Latanya Sweeney’s name and affiliation with Harvard University]
What’s all the fuss?
(Datta, Tschantz, and Datta ’15)

- Study of impact of different ad privacy settings
- Disclosing Gender resulted in fewer ads for high-paying jobs

What are the reasons?

- Discrimination programmed into the system?
 - Let’s hope not
- Historical bias in the training data?
 - May explain some, but not all
- Insensitivity on the part of developers?
 - Maybe
- Or perhaps we don’t know (yet)?
Potential sources

- Historical bias in training data
 - Can we detect this?
- Feedback bias
 - Complexo da Maré has high crime
 - Increase police presence
 - Even more crime discovered in Complexo da Maré
 - Has even worse crime statistics!
- “Tyranny of the majority”
 - Small populations deemed outliers
 - Algorithms effective “on average”, but ignore rare cases
- Wrong objective function
 - Is accuracy the right measure?

What can we do?

- Detect discriminatory outcomes from machine learning
 - [Pedreschi08, Pedreschi09, Luong11, Ruggieri11]
- Relabel training samples
 - [Kamiran09, Zliobaite11, Kamiran11]
- Adjust scoring functions
 - [Calders10, Kamiran10]
- Statistical parity
 - [Dwork12, Zemel13]
Disparate Treatment vs. Disparate Impact

- Disparate treatment: Individuals from different groups treated differently
 - Otherwise identical individuals have different outcome based only on group membership
- Disparate impact: Outcomes different between different groups
 - No individuals are “the same”
 - Different outcomes for different groups, even if some other explanation
- Methods on previous slide address disparate treatment
 - But discrimination shows up even when the groups aren’t part of the input!

Why Disparate Impact?

- Mortgage Redlining
 - Racial discrimination in home loans prohibited in US
 - Banks drew lines around high risk neighborhoods!!!
 - These were often minority neighborhoods
 - Result: Discrimination (redlining outlawed)
 What about data mining that “singles out” minorities?
Dealing with Disparate Impact
(Mancuhan and Clifton, AI&Law’14)

- **Goal:** Bayesian classifier that reduces disparate impact on protected group
 - Group not known when classifying a new instance
- **Idea:** Adjust “discriminatory” network
 1. Learn network with protected group known
 2. Identify and relabel victims of disparate treatment
 3. Remove protected group from network
 4. Adjust weights to work with relabeled data

Identifying Discrimination “Victims”

- **Assume sets of attributes**
 - \(p \) (protected group membership)
 - \(r \) (high correlation with protected)
 - \(b \) (okay to use)
- \(\text{belift} = \frac{p(C|p_1, p_2, \ldots, p_l, b_1, b_2, \ldots, b_n, r_1, r_2, \ldots, r_n)}{p(C|b_1, b_2, \ldots, b_m)} \)
 - (this is a probabilistic interpretation of the \(\text{elift} \) definition of Pedreschi et al.)
- \(\text{belift} = 1 \rightarrow \) no discrimination
Challenge: Which are the “redlining” attributes

- Distinguishing between b and r
 - Assume p is given
- Build Bayesian network using all attributes
 - Parents and children of protected attributes are presumed to be in r
- Remove p and r nodes to get network to calculate denominator

Build “safe” network

- Identify instances with high belift
 - “Flip” class with lowest belift to balance distribution in protected groups with overall distribution
- Remove protected attributes from network
 - But keep redlining attributes
- Reweight by training with modified training data
 - Adjusts weight of redlining attributes to avoid use as surrogate for protected attribute
Adjusting the Network

- Monthly Premium
- Gender
- Car type
- Occupation
- Accident history

German Credit: Network

- Little evidence of discrimination
 - Personal_status showed some
 - Correlated with number of dependents
- 10 instances
 - belift values from 1.02-2.75
Census Income: Network

- Some evidence of gender discrimination
 - 688 instances
 - belift median 2, max 20

- Related to
 - Relationship
 - Occupation
 - Marital status

Reduction in Discrimination: Census

Cross-validation: 90% training, 10% test
Ideas for the Future

• Tests for Bias?
 – Or perhaps just *potential* bias?
• Fundamental changes in machine learning?
 – Objective functions other than accuracy
Ideas? Let’s talk!

- Secure and Trustworthy Cyberspace: Enabling US-Brazil Collaboration on Cybersecurity Research
 - jems.sbc.org.br/br_us_cybersec2016
 - Two-page white papers due 12/16/16
 - See also: www.usbrazilsec.org

- Topics:
 1. Security and privacy in networks
 2. The Internet of Things and cyber-physical human systems
 3. Malware detection