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Estudos Baseados em Simulação (EBS) têm se mostrado uma interessante 

abordagem de pesquisa para a Engenharia de Software (ES). Entretanto, é possível 

identificar a falta de informações relevantes nos relatos desse tipo de estudos encontra-

dos na literatura técnica, dificultando o entendimento dos procedimentos e resultados 

apresentados, bem como sua repetição. Além das limitações de espaço nas publica-

ções, algumas informações não são apresentadas, aparentemente, devido às questões 

metodológicas não abordadas na condução dos estudos. Estas e outras questões foram 

identificadas na condução de uma quasi-Revisão Sistemática da Literatura que, após a 

evolução de uma versão preliminar, resultou na proposta de um conjunto de 30 diretrizes 

para planejamento e relato de EBS no contexto da ES, cujo objetivo é prover direciona-

mentos sobre aspectos a serem tratados em diferentes estágios de um EBS, concen-

trando-se na utilização de modelos de simulação dinâmicos e na identificação e mitiga-

ção de potenciais ameaças à validade desse tipo de estudo. O conjunto proposto foi 

organizado com base em resultados de sucessivos estudos experimentais, utilizando 

diferentes estratégias de pesquisa. Os resultados das primeiras avaliações indicam que 

o conjunto de diretrizes proposto é coerente e completo em relação aos aspectos que 

um EBS deve considerar no planejamento e relato. Ainda, um estudo de observação 

permitiu caracterizar as diretrizes quanto ao apoio na elaboração e revisão de protocolos 

para EBS, indicando resultados positivos para eficácia e percepção de utilidade, mas 

com possibilidades de melhoria principalmente relacionadas à facilidade de utilização. 

Assim, foi proposta uma nova versão deste conjunto, a qual necessita de avaliações 

adicionais, sobretudo da comunidade de ES na discussão e aplicação de EBS.  
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Simulation-based studies (SBS) have become an interesting investigation ap-

proach for Software Engineering (SE) research and practice. However, the reports on 

experiments with dynamic simulation models in the technical literature lack relevant in-

formation, hampering the full understanding of the reported procedures and results, as 

well as their replicability. Apart from the limitations on conference and journal papers 

length, some of the relevant information seems to be missing due to methodological is-

sues not considered when conducting such studies. These issues were identified in a 

quasi-Systematic Literature Review and, after evolving the preliminary set, lead to a set 

of 30 planning and reporting guidelines for SBS in the context of SE. This set of guide-

lines aims at providing orientation regarding relevant aspects to be considered in differ-

ent stages of the SBS lifecycle, focusing on the use of dynamic simulation models and 

on the identification and mitigation of potential validity threats. The development of the 

guidelines is based on results from successive experimental studies, adopting different 

research strategies. Preliminary evaluation results indicate a complete and coherent set 

of guidelines as to aspects that should be considered in SBS planning and reporting. 

Furthermore, an observational study allowed characterizing the simulation guidelines 

w.r.t. the support to the elaboration and review of SBS protocols, indicating positive re-

sults regarding their effectiveness and usefulness, and improvement opportunities 

mainly related to ease of use. Therefore, we proposed a new version of this set of guide-

lines, which requires additional assessment, especially from the SE community on the 

discussion and application of SBS.  
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1 Introduction 

 

In this chapter, we present the problem and context of this thesis, as 

well as the motivation and research questions supporting the investi-

gation. Furthermore, we establish the objectives to be accomplished 

in order to answer the research questions and how they will be per-

formed through an evidence-based methodology.  

1.1 Motivation 

Computer simulation is a mature technology with wide application range. Many 

science areas have benefited from simulation1 as a supporting tool for analysis and com-

prehension of systems, processes or phenomena of interest. Engineering, Economics, 

Biology, and Social Sciences are examples of such areas (MÜLLER and PFAHL, 2008). 

Additionally, it has been used to support experimentation in both academia and industry.  

THOMKE (2003) reported the adoption of this sort of study as an alternative strat-

egy to support experimentation in the automotive industry. In this field, the prototypes 

used in crash-tests are associated to high costs and to long periods needed to build 

them. Besides, it is difficult to perform some analysis since they are completely destroyed 

after crash. In these cases, the use of simulation allows the development of models at 

lower costs and time than prototypes. Models demonstrated to be very useful to perform 

feasibility assessments and preliminary tests, even the prototypes being just closer to 

reality. Furthermore, simulation allows the easily changing of experimental conditions 

(variables) when investigating different scenarios. 

Criminology is another field where researches have taken place with the support 

of computer simulation to understand how the crime patterns rise (ECK and LIU, 2008). 

Data on crime are usually unreliable, regardless of the efforts made to improve their 

quality, since it is inherent to the phenomenon. The sources of crime information are 

unreliable due to conditions they are imposed to. Actually, simulations can support ex-

perimental manipulations that are unfeasible or unethical to conduct on real subjects. 

Besides, it is very important to describe how the phenomenon really comes about (i.e., 

                                                

 

1 In this text, both “simulation” and “computer simulation” terms are used interchangeably. 
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through which mechanism), since statistical explanations do not provide information on 

how the outputs are generated. 

As a wide-range tool, the term simulation varies in meaning from one research 

community to another. In order to clearly set up the scope under investigation, we 

adopted the following definition from BANKS (1999): 

“Simulation is the imitation of the operation of a real-world process 

or system over time. Simulation involves the generation of an artificial his-

tory of the system, and the observation of that artificial history to draw 

inferences concerning the operating characteristics of the real system that 

is represented”. 

This definition is interesting for our scope as it uses the expression over time, 

which may be replaced by dynamic, in the sense it focuses on behavioural aspects. In 

other words, it states that we are just interested on how the systems or phenomena 

perform and how the values of their variables change over time. Therefore, static ap-

proaches such as regression models or the Monte Carlo method are not going to be 

covered in this research. 

Simulation-Based Studies (SBS) often involve several activities such as the sys-

tem observation or data collection, model development (coding), model verification and 

validation (V&V), experimental design, output data analysis, and implementation of re-

sults (ALEXOPOULOS and SEILA, 1998). Generally, such activities comprehend most 

part of the SBS lifecycles presented in the technical literature (BALCI, 1990) (MARIA, 

1997) (BANKS, 1999) (SARGENT, 1999) (BIRTA and ARBEZ, 2007). The lifecycle rep-

resents an iterative process and each iteration may encompass both the model develop-

ment and its use.  

On one hand, in order to develop a simulation model, the conceptual model 

should be coded into a simulation language, which could be based on a simulation ap-

proach2 like System Dynamics (SD), Discrete-Event Simulation (DES), or Agent-Based 

Simulation (ABS). The simulation approach abstracts the essential characteristics and 

behaviors the model has to fit. On the other hand, the systematic use of simulation mod-

els is called model experimentation or simulation experiments. Besides, it requires the 

definition of research plans or protocols describing how to perform the simulations.  

Among the benefits credited to SBS, it is possible to highlight the low cost and 

risks associated with the virtual environment where simulations are being executed. This 

                                                

 

2 It is also called simulation paradigm in the technical literature. 
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is interesting for those scenarios involving real systems that are expensive, safety critical, 

time-consuming or cause irreversible effects (BIRTA and ARBEZ, 2007). On the experi-

mentation perspective, we can also point out the high degree of control in these environ-

ments, as well as the possibility of developing and testing hypotheses or theories, repli-

cating experiments, and enabling the execution of a myriad of combinations for the var-

iables of interest. Conversely, simulation studies may also involve high costs and effort 

concerned with the model development, generating a tradeoff between developing one 

single model to perform just one single simulation experiment. Moreover, assumptions 

and simplifications may not be suitable for specific research contexts or goals, increasing 

the need to provide evidence on model validity. 

Computer simulation is an alternative strategy for SE experimentation. It does not 

mean that such strategy can replace other types of study such as controlled experiments, 

case studies and so on. Actually, it is useful for supporting knowledge acquisition and 

decision-making in the cycle of SE experimentation. Simulation-Based Studies require 

knowledge from previous observations (in vivo and in vitro experiments) so that one may 

create a conceptual model representing a certain SE phenomenon or behavior 

(TRAVASSOS and BARROS, 2003). Once this knowledge is captured, large-scale ob-

servations can be performed, using the controlled environment to understand or charac-

terize the phenomena and possibly explain them through simulation traces. This way, a 

simulation modeler can design and perform SBS to understand how interventions in soft-

ware processes and projects affect costs, schedule or quality, for example. Still, it may 

be possible to characterize the team arrangement for software projects in distributed 

settings.  

Although it may be an interesting approach to evolve the SE research, there are 

limitations that SBS are imposed to consider due their inherent characteristics. Simula-

tion models require not only knowledge, but require data for calibration, validation and 

experimentation. Such data come from observations (as mentioned before, through in 

vivo or in vitro studies) and are constrained to their observational context. Therefore, 

simulation is feasible when the research goals cannot be achieved by other empirical or 

experimental strategies, however it must exist enough knowledge and data to support it. 

Furthermore, simulations are recommended for characterization studies involving the 

combination of many factors and levels, with possible interactions among factors, long-

term observations of software development and maintenance projects, and when risks 

regarding the real phenomenon are unacceptable in the field. 

The Software Engineering (SE) community has presented interesting initiatives 

on simulation models and studies. The abstractions over SE phenomena involve differ-

ent domains and perspectives. Such advances concentrate more on software process 
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and project issues, aiming at understanding or improving them in different contexts (DE 

FRANÇA and TRAVASSOS, 2013b). In addition, it is possible to observe simulation 

studies concerned with software products, e.g., software architecture decisions regard-

ing quality attributes. However, it is still possible to observe issues in the technical liter-

ature, as it will be discussed in the next section. 

1.2 Problem Definition 

A simulation-based study makes use of a simulation model as the instrument to 

observe the phenomenon under investigation. It allows understanding, and even opti-

mizing, processes and systems (in the broader sense) with certain control of input pa-

rameters, anticipating possible scenarios and configurations representing the system’s 

variants. Moreover, simulation experiments can be performed faster and less costly than 

in vivo or in vitro studies (TRAVASSOS and BARROS, 2003). 

Besides the advances already achieved by the SE community, it is still likely to 

observe lack of methodological support to conduct simulation experiments in the context 

of SE. Such problem includes issues on simulation model validity, inappropriate experi-

mental design for simulation experiments, lack of concerns regarding validity threats and 

relevant information on the simulation studies report. 

Both model validity and experimental design may impose threats to SBS validity 

when not properly performed. Lack of validation experiments, models not being capable 

of reproducing reference or empirical behaviors, and unbalanced designs not capable of 

performing fair comparisons among simulation scenarios are examples of such threats. 

Furthermore, experimenters are not aware of common threats to simulation study validity 

and lack relevant information such as research questions, experimental design or evi-

dence regarding the model validity when reporting this sort of study. Therefore, these 

issues affect the credibility and confidence of studies' results, contributing to reduce the 

use of SBS as supporting tool for SE research and development. Additionally, they ham-

per the full understanding of simulation studies, as well as the possibility of replicating 

their results. 

Mostly, methodological support on simulation in the context of SE rely on pro-

cesses for model development, and particularly on software process simulation (PFAHL 

and RUHE, 2002) (ALI and PETERSEN, 2012). However, the use of simulation models 

to perform experiments intends to be generic in such approaches, needing further orien-

tation on how to design, execute and analyze simulation experiments. 

The Empirical Software Engineering (ESE) community has already proposed, 

evaluated and applied guidelines for different research strategies, such as systematic 

literature reviews (SLR) (KITCHENHAM, 2004), controlled experiments (JEDLITSCHKA, 
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CIOLKOWSKI and PFAHL, 2008), case studies (RUNESON and HÖST, 2009), and rep-

lications (CARVER, 2010). Current significant usage of existing guidelines includes not 

only the methodological support to conduct primary and secondary studies (BORGES et 

al., 2014), but also to distinguish and assess rigor in research, referring to the precision 

or exactness of the research method use for its intended purpose, as proposed by 

(IVARSSON and GORSCHEK, 2011) and adopted in (PETERSEN, 2011), (BARNEY et 

al., 2012) and (ALI, PETERSEN and WÖHLIN, 2014).These guidelines intend to be driv-

ers to research actions, rather than mandatory recommendations. As they become ma-

ture, by identifying advantages on their use and influence on the quality of research pro-

tocols, their adoption tends to be natural. 

In this direction, we advocate the need for guidelines to conduct simulation ex-

periments, similar to other research strategies. For that, we organized our research as 

described in the following subsections. 

1.3 Research Questions 

The research questions for this thesis are derived from the problems stated in 

Section 1.2, establishing the main directions and scope to be investigated.  

Q1:  Which are the relevant aspects to be concerned with when conducting sim-

ulation-based studies in the context of Software Engineering? 

Q2: How to conduct simulation-based studies in the context of Software Engineer-

ing in order to accumulate evidence regarding the study's validity to increase its confi-

dence and credibility? 

Q3: Which information should compose research protocols (plans) and reports for 

simulation-based experiments in the context of Software Engineering in order to provide 

their full understanding and to enable their replicability? 

These three research questions are concerned with methodological support. The 

aspects under investigation regard the organization of planning and reporting issues, 

including simulation model validity, experimental design, and output analysis. We high-

light these three aspects, since they concentrate on methodological issues that usually 

lead to the occurrence of validity threats. However, other relevant aspects should also 

be addressed for a coherent study plan and we discuss later in the following chapters. 

In the next section, we describe our objectives as milestones to reach as we progress in 

our research. 

1.4 Research Objectives  

The goals for this research are derived from the problems stated in Section 1.2, 

and established to answer the research questions defined in Section 1.3. Research goals 

are structured in general and specific goal (also called objectives). The general research 
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goal consists on proposing an approach to support the planning and reporting of simula-

tion-based studies in the context of SE, focusing on their experimental validity. 

The objectives bellow are established as steps that should be accomplished to 

answer the research questions (Q1, Q2 and Q3): 

 For Q1: 

o O1: To characterize SBS in the context of SE by organizing a body 

of knowledge; 

o O2: To identify which are the relevant information composing a 

SBS report; 

 For Q2: 

o O3: To identify potential threats to simulation studies validity; 

o O4: To identify Verification and Validation (V&V) procedures for 

simulation models; 

o O5:To identify experimental designs and output analysis instru-

ments applicable for simulation experiments; 

 For Q3: 

o O6: To organize a set of guidelines to support the planning of sim-

ulation experiments in the context of SE; 

o O7: To organize a set of guidelines to support the reporting of sim-

ulation experiments in the context of SE; 

Apart from the presented objectives, we have a general goal of evaluating all 

proposed sets of guidelines, including their different versions, in an iterative process. 

These evaluation cover different aspects concerned with the guidelines validity.  

Finally, the achievement of each of the seven objectives in isolation does not 

answer the research questions. However, their joint perspective along with the evolution-

ary methodology (next section) compose the required knowledge to support the answers. 

1.5 Research Methodology 

The research methodology for this work starts with an initial investigation consist-

ing on defining the problem (Section 1.2) and research questions (Section 1.3). Figure 

1-1 presents the stages composing this research methodology. 

 

Figure 1-1. Research Methodology (DE FRANÇA and TRAVASSOS, 2015). 
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With this initial investigation, we performed an ad-hoc literature review in order to 

capture the terminology and understanding regarding simulation in SE. At this stage, 

both general purpose and SE simulation books were consulted, as well as relevant (high-

cited) simulation papers. This material was helpful to establish the review’s scope. Based 

on such information, we started the elaboration of a research protocol to undertake a 

quasi-Systematic Literature Review (qSLR) (DE FRANÇA and TRAVASSOS, 2012) (DE 

FRANÇA and TRAVASSOS, 2013b) for a broader, repeatable and systematic proce-

dure. 

The research protocol followed the guidelines proposed by BIOLCHINI et al 

(2005), adopting the PICO strategy (PAI et al., 2004). The main goal of the review is to 

characterize how different simulation approaches have been applied in SE studies. Such 

characterization involves identifying the adopted simulation approaches, SE domains, 

model validation issues, simulation procedures and experimental design, and output 

analysis. For that, three digital libraries were selected as source of information. Pre-de-

fined selection and extraction procedures were defined and executed, followed by the 

quality assessment and the analysis of findings. See Chapter 2 for details regarding the 

qSLR. 

From the qSLR, we observed common issues across different reports: lack of 

simulation model description and validation information, no description of how simulation 

experiments have been performed, no discussions regarding the output analysis and 

threats to validity. Moreover, this lack of information hampers the full understanding of 

the simulation study results and the ability to reproduce them as well. This way, we 

searched for guidelines concerning with what should be a reasonable set of information 

to be reported on simulation studies. We could not identify such information contextual-

ized for SE Research. However, we did find some related discussions regarding other 

research areas. 

Using the findings from the review and additional reporting guidelines concerning 

with other types of study (empirical studies, controlled experiments and case studies) 

and from other research areas (medicine and statistics), we organized a preliminary set 

of reporting guidelines (DE FRANÇA and TRAVASSOS, 2012). This set was evolved 

through sequential evaluation initiatives, including a checklist-based review, using the 

instruments proposed by KITCHENHAM et al (2008); a collaborative review, which was 

structured as an online survey; and, finally analyzed against technical literature reports, 

obtained from the qSLR update. 

The checklist-based review (details in Section 4.2) was originally published as a 

method inspired on the perspective-based reading using checklists to guide the review-

ers. Each checklist represents a particular perspective. The aim of this approach is to 
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evaluate the reporting guidelines using different reviewers and reaching consensus. Our 

main goal in this assessment is to align our perspectives to the existing guidelines on 

Empirical Software Engineering (KITCHENHAM et al., 2002) (JEDLITSCHKA, 

CIOLKOWSKI and PFAHL, 2008) (RUNESON and HÖST, 2009), and keep a broader 

sense of the study report. 

After the checklist-based review, we still needed external evaluation of these re-

porting guidelines, based on the opinion of knowledgeable people in both Simulation and 

Software Engineering. Thus, we structured a collaborative review (details in Section 4.3), 

very similar to conference reviews, using an online survey platform. Our intention with 

this study is to get feedback regarding the completeness and correctness of the guide-

lines set. 

Finally, after the two former assessments, we analyzed the reporting guidelines 

against the technical literature (details in Section 4.4). For that, we updated the qSLR, 

essentially using the same research protocol, to verify whether new study reports some-

how comply with the proposed guidelines. 

All these initiatives enabled us to get feedback regarding the completeness and 

correctness of the reporting guidelines. Thus, the current version (reporting only) was 

made fully available in (DE FRANÇA and TRAVASSOS, 2014a).  

Considering we have established a set of relevant information to be reported, it 

is essential to understand the stage in the SBS lifecycle and how such information should 

be produced. Additionally, we understood that, if not planned for the simulation study, 

the researchers are not likely to produce them, since most of them cannot be produced 

in retrospect.  

The next step in our research methodology concerns with evolving the set of re-

porting guidelines in order to support planning activities in simulation experiments. The 

additional guidelines do not mean to embrace the simulation model development, but 

only the simulation model use, also called model experimentation (BALCI, 1990). This is 

justified by the existence of methodological support for simulation modeling in the context 

of SE. Some examples include (PFAHL and RUHE, 2002) (ALI and PETERSEN, 2012). 

Aiming at supporting the elaboration of complete, coherent and effective simula-

tion plans, the planning guidelines were developed based on the results of a secondary 

analysis of the outcomes identified through the qSLR and additional resources. Such 

analysis followed a qualitative approach, aiming at identifying potential threats to SBS 

validity in the context of SE, as well as possible mitigation actions (DE FRANÇA and 

TRAVASSOS, 2014b).  

 By complete we mean that the plan should encompass all the aspects considered 

in EBS reports, enabling to produce the expected information.  
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 Coherent plans have a strong linkage among different aspects, for instance, the 

alignment of problems to the goals and research questions, the clear derivation 

of the experimental design from the research questions and hypotheses, the out-

put analysis reflecting the experimental design and the analysis of threads to va-

lidity concerning model validity issues.  

 By effective, we mean executable plans, with output analysis and conclusions 

including reasoning and explanations for the results, limited by known imposed 

threats to the simulation experiment validity. 

At the final stage of our methodology, we performed a qualitative evaluation of 

the planning guidelines, including a Focus Group focusing on their usefulness and ease 

of use (DE FRANÇA et al., 2015) (see Chapter 6).The aim of this first assessment is to 

show the feasibility of the proposed set of guidelines to support simulation experiments 

in SE.  

In general, the main contributions of this work include (1) the body of knowledge 

resulting from the qSLR, (2) the proposed reporting and (3) planning guidelines for sim-

ulation studies, (4) the list of identified threats to simulation studies validity, and (5) the 

performed evaluations for both sets of guidelines, as described in (DE FRANÇA and 

TRAVASSOS, 2015). Therefore, the resulting set of simulation guidelines (statements 

only) including planning and reporting perspectives is presented in Table 1-1. 

Table 1-1. Simulation Guidelines Overview. 

ID Guideline Statement 

Identification 

SG1 Proper title and keywords should objectively identify the simulation study, and a structured 
abstract should summarize its contents 

From Context to Research Questions 

SG2 The context where the simulation study is taking place should be captured in full 

SG3 Explicitly state the problem motivating the simulation study, so that research questions can 
be derived 

SG4 Clearly state the simulation study goals and scope 

SG5 Derive the research questions from the established goals 

SG6 Clearly state the null and alternatives hypotheses from the research questions 

Simulation Feasibility 

SG7 Present justifications for considering simulation studies as the ideal or feasible observation 
strategy 

Background and related work 

SG8 Present only essential background knowledge and the related works 

  Simulation Model Specification 

SG9 Have a detailed description and understanding of both conceptual and executable simulation 
models, as well as its variables, equations, input parameters and the underlying simulation 
approach 

  Simulation Model Validation 

SG10 Gather all evidence regarding the simulation model (conceptual and execution) validity 

SG11 Make use of Face Validity procedure (involving domain experts) to assess the plausibility of 
both conceptual and executable models and simulation outcomes, using proper diagrams and 
statistical charts as instruments respectively 
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ID Guideline Statement 

SG12 Support model (causal) relationships, as much as possible, with empirical evidence to rein-
force their validity and draw more reliable conclusions 

SG13 Always verify the model assumptions, so the results of simulated experiments can get more 
reliable 

Subjects 

SG14 Characterize the subjects involved in the simulation study as well as their training needs 

Experimental Design 

SG15 Describe the experimental design (design matrix), including independent and dependent var-
iables and how levels are assigned to each factor  

SG16 Use Sensitivity Analysis to select valid parameters settings when running simulation experi-
ments, rather than model “fishing”. 

SG17 Consider as factors (and levels) not only the simulation model’s input parameters when de-
signing the simulation experiment, but also internal parameters, different sample datasets and 
simulation model versions, implementing alternative strategies to be evaluated 

SG18 When adopting ad-hoc design determine the selected simulation scenarios and explain the 
criteria used to identify them as relevant 

SG19 When dealing with simulation model containing stochastic components, determine the num-
ber of runs required for each scenario, along with its rationale, in order to capture the phe-
nomenon variance. 

Supporting Data 

SG20 Assess, whenever possible, the data used to support the simulation model development or 
experimentation 

SG21 Keep track of contextual information (including qualitative data) along with quantitative data 

SG22 Make sure that both calibration and experiment datasets came from the same population 

Simulation Supporting Environment 

SG23 Set up and describe the simulation environment, including the supporting tools, associated 
costs, and decision for using a specific simulation package 

SG24 Determine which and how intermediate measures are stored among simulation trials to be 
used in the final analysis 

Output Analysis 

SG25 Determine which statistical procedures and instruments support the output analysis, as well 
as the underlying rationale, quantifying the amount of internal variation embedded in the (sto-
chastic) simulation model to augment the precision of results 

SG26 Be aware about data validity when comparing actual and simulated results: compared data 
must come from the same or similar measurement contexts 

Threats to Validity 

SG27 Consider to check for threats to the simulation study validity before running the experiment 
and analysing output data to avoid bias, as well as to report non-mitigated threats, limitations 
and non-verified assumptions 

Conclusions and Future Works 

SG28 Main results/findings should be identified and summarized, as well as the conclusions arising 
from the results. 

SG29 Applicability issues should be addressed in the report, considering organizational changes 
and associated risks. 

SG30 Point out future research directions and challenges after current results. 

 

1.6 Thesis Organization  

This chapter presented the main concepts, motivation, methodology and direc-

tions for this thesis. Next chapters are organized as follows. Chapter 2 presents the re-

sults from the technical literature review, delineating the scope and challenges for this 

thesis. Chapter 3  presents related work regarding reporting guidelines for different re-

search strategies and encompassing several research fields. Besides, this chapter pre-

sents an overview of the proposed reporting guidelines for SBS in the context of SE. 

Chapter 4 presents three successive assessments performed to evolve the reporting 
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guidelines, including discussions on how they improved the set of guidelines, as well as 

their limitations. Chapter 5 discusses threats to SBS validity, as well as an overview of 

the planning guidelines for simulation-based experiments. Chapter 6 presents the obser-

vational study performed to evaluate the planning guidelines. Chapter 7 presents the 

current full version of the guidelines for simulation-based experiments in SE. Finally, 

Chapter 8 presents our conclusions and future work. 
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2 Literature Review 

 

In this chapter, we present the conducted technical literature reviews 

aiming at characterizing simulation-based studies in the context of 

Software Engineering. The findings compose the essential knowledge 

basing all contributions of this thesis. 

2.1 Ad-hoc Review 

According to the research methodology presented in Section 1.5, we performed 

an ad-hoc technical literature review in order to capture the basic terminology concerned 

with computer simulation, as well as some initial understanding about the simulation 

studies’ lifecycle.  

Since computer simulation is a well-established and steady research field, this 

review is based initially in textbooks such as (ABDEL-HAMID and MADNICK, 1991), 

(SEVERANCE, 2001), (BIRTA and ARBEZ, 2007), (SOKOLOWSKI and BANKS, 2009) 

and (MADACHY, 2007). These textbooks generally classify the simulation approaches 

as continuous and discrete-time ones, where discrete-event simulation is an example of 

discrete-time simulation, and System Dynamics (SD) is a relevant approach for continu-

ous-time simulation.  

Several characteristics concerned with simulation practices were explored with 

respect to systems modeling and statistical output analysis, as well as the associated 

advantages and disadvantages, some of them already mentioned in Section 1.1. 

Apart from the textbooks, simulation papers were also consulted, including tuto-

rials from the Winter Simulation Conference (WSC, wintersim.org), where general mod-

eling and simulation issues such as model verification and validation are discussed un-

der both theoretical and practical perspectives. Seminal research papers regarding sim-

ulation studies in SE were also considered (LUCKHAM et al., 1995) (MADACHY, 1996) 

(DRAPPA and LUDEWIG, 2000). Some of these works were used as control papers (see 

next section) for the qSLR. 

2.2 quasi-Systematic Literature Review 

Systematic Literature Reviews (SLR) started to be used in SE in the early 2000s, 

as a building block of the Evidence-Based paradigm (KITCHENHAM, DYBA and 
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JORGENSEN, 2004). SLR are also mentioned as “a means of evaluating and interpret-

ing the available research relevant to a particular research question, topic area, or phe-

nomenon of interest” (DYBÅ, DINGSøYR and HANSSEN, 2007). Earlier works on this 

topic used to name all reviews performed with some systematic process as SLR. How-

ever, many of them did not follow specific and fundamental aspects or characteristics 

usually expected in systematic reviews, such as comparison among the outcomes w.r.t. 

their quality and possibilities of synthesis or aggregation. In this context, the term quasi-

systematic literature review (TRAVASSOS et al., 2008) appeared as a definition for re-

views following SLR guidelines, but not covering at least one aspect (i.e., no compari-

son), which is the case of the literature review presented in this chapter. Thus,  the 

“quasi” term stands for the unfeasibility of comparing outcomes due to lack of knowledge 

on the field or specific domain of investigation, also limiting the definition of quality profile 

for the available evidence, based on a hierarchy of evidence in SE. 

In the context of SE, the systematic review presented in (ZHANG, KITCHENHAM 

and PFAHL, 2008) characterizes Software Process Simulation Models (SPSM) by trac-

ing the research evolution from 1998 to 2008. The authors highlight their main results: 

the need for adjustment in categories for classifying SPSM to better capture the diversity 

of models available in the technical literature; improvements on the efficiency of SPSM 

promoted by research; and more realistic simulation models using hybrid approaches. 

Assuming broader scope and goals, we undertook a qSLR aiming at character-

izing simulation-based studies performed in the Software Engineering research area (DE 

FRANÇA and TRAVASSOS, 2013b), rather than focusing on software process simula-

tion models as in (ZHANG, KITCHENHAM and PFAHL, 2008). Next sections present an 

overview of the research protocol and main results. 

2.2.1 Research Protocol 

The research question driving the protocol elaboration is “How different simula-

tion approaches have been applied to Simulation-Based Studies in the context of Soft-

ware Engineering?” 

In order to answer this research question, we structured the search string using 

the PICO strategy (PAI et al., 2004), composed by the following dimensions: 

 Population: Simulation-based studies in Software Engineering; 
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 Intervention: Simulation models used as instruments3; 

 Comparison: None; 

 Outcome: Purpose, characteristics, SE domain, experimental design and 

other relevant aspects regarding the simulation study. 

Selected sources of information are digital libraries available via Portal CAPES4. 

Sources were selected according to criteria: (1) allowance of executing searches using 

logical expressions, (2) application of the search string to the publication title, abstract 

and keywords, and (3) include relevant conference and journal papers from the SE re-

search area. This way, Scopus, EI Compendex and Web of Science were selected. 

These libraries encompass publications from the main venues regarding computer sim-

ulations, software engineering, and related areas, such as ACM, IEEE, Elsevier, Springer 

and WILEY. This way, the following search string was adapted and submitted to the 

search engines: 

POPULATION: (("simulation modeling" OR "simulation modelling" OR "in 

silico" OR "in virtuo" OR "simulation based study" OR "simulation study" 

OR "computer simulation" OR "modeling and simulation" OR "modelling and 

simulation" OR "simulation and modeling" OR "simulation and modelling" 

OR "process simulation" OR "discrete-event simulation" OR "event based 

simulation" OR "system dynamics" OR sampling OR "monte carlo" OR "sto-

chastic modeling" OR "agent based simulation" OR "state based simula-

tion") AND ("software engineering" OR "systems engineering" OR "appli-

cation engineering" OR "software development" OR "application develop-

ment" OR "system development"))AND  

 

INTERVENTION: ("simulation model" OR "discrete event model" OR "event 

based model" OR "system dynamics model" OR "agent model" OR "state 

model")) 

For the search string, we purposely suppressed the PICO’s Outcome dimension. 

The justification consists in the fact that, usually, authors do not include terms like “char-

acteristics”, “domain”, “experimental design”, “validation” and other relevant terms in the 

publication’s abstract when reporting SBS. Therefore, we considered such information 

                                                

 

3 The instrumentation provides means for performing an experiment and to monitor it, without 

affecting the control of the experiment (WÖHLIN et al., 2012). 

4 Digital libraries containing scientific publications can be accessed from Brazilian institu-

tions through the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) por-

tal, available at: http://www.periodicos.capes.gov.br. 
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only in the information extraction stage. Secondary studies aiming at characterizing SE 

may face compatibility issues on adopting the PICO strategy, as it forces a causal struc-

ture. 

In order to calibrate the search string we tested it on the Scopus search engine, 

using the controls papers (Table 2-1) captured in the previous ad-hoc literature review 

(section 2.1). These research papers were used as control as they satisfy the inclusion 

criteria and help to answer the research question. 

Table 2-1. Control Papers 

Reference 

Martin, R.; Raffo, D. Application of a hybrid process simulation model to a software develop-
ment Project. Journal of Systems and Software, Vol. 59, Issue 3, 2001, pp. 237-246 
Khosrovian, K.; Pfahl, D.; Garousi, V. GENSIM 2.0: A customizable process simulation model 
for software process evaluation. LNCS, Vol. 5007, 2008, pp. 294-306 

Drappa, A.; Ludewig, J. Simulation in software engineering training. Proc. ICSE 2000, pp. 
199-208 

Madachy, R. System dynamics modeling of an inspection-based process. Proc. ICSE 1995, 
pp. 376-386 

Al-Emran, A.; Pfahl, D.; Ruhe, G. A method for re-planning of software releases using dis-
crete-event simulation. Software Process Improvement and Practice, Vol. 13, Issue 1, Jan 
2008, pp. 19-33 

Al-Emran, A.; Pfahl, D.; Ruhe, G. DynaReP: A discrete event simulation model for re-planning 
of software releases. LNCS, Vol. 4470, 2007, pp. 246-258 

Luckham, D. C.; Kenney, J. J.; Augustin, L. M.; Vera, J.; Bryan, D.; Mann, W. Specification 
and analysis of system architecture using rapide. IEEE TSE, Vol. 21, Issue 4, April 1995, pp. 
336-355 

Arief, L. B.; Speirs, N. A. A UML tool for an automatic generation of simulation programs. 
Proc. Second WOSP, 2000, pp. 71-76 

Choi, K.; Bae, D.H.; Kim, T. An approach to a hybrid software process simulation using the 
DEVS formalism. Software Process Improvement and Practice, Vol. 11, Issue 4, July 2006, 
pp. 373-383 

 

The basic selection procedure is based on the paper’s title and abstract. For that, 

a set of inclusion and exclusion criteria is established a priori. So, only papers available 

in the Web; written in English; discussing simulation-based studies; belonging to a Soft-

ware Engineering domain; and those mentioning one or more simulation models, should 

be included. Papers not meeting all of these criteria should be excluded. 

Three researchers (R1: the author of this thesis, R2: an external researcher ex-

perienced in SBS in the context of SE, R3: the advisor of this research) were involved in 

the selection of potential relevant papers. R1 did the searching, retrieving the papers, 

saving their references (including abstract) in the reference manager (JabRef tool), add-

ing a field to represent the paper status (I - Included, E - Excluded, D – Doubt), and 

removing possible duplicates. After that, the first selection (based on the inclusion criteria 

– reading title and abstract) was done and the status for each paper was assigned. Next, 

R2 received the Jabref file (in BibTeX format) with the references and status information, 
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and reviewed the included and excluded papers. In the case of updating any paper sta-

tus, R2 set up paper status as D2 and tried to solve queries from R1 by setting the former 

D’s as I2 or E2. Lastly, R3 went through the same R2 procedures, though tagging them 

as I3 or E3. The papers remaining in D after three reviews were included for post-analy-

sis in the information extraction stage. All papers included in the selection stage could 

be later excluded in the extraction stage, where they are integrally read to improve un-

derstanding, clearing any doubts and allowing a better decision on their inclusion or ex-

clusion according to the criteria. 

After the selection stage, information of interest was extracted according to the 

form presented in Table 2-2, also stored in the Jabref tool. These information were pro-

posed as they are meant to answer the research question for this review. 

Table 2-2. Information Extraction Form (DE FRANÇA and TRAVASSOS, 2013b) 

Field [Extracted Information] 

Paper identification [Title, authors, source, year, publication type] 

Simulation approach name 

Simulation model purpose [Objective for the model to be developed] 

Study purpose [Objective for the study to be performed] 

Software Engineering Domain [Application area] 

Tool support [Does the model used have any tool support? If so? Which ones?] 

Characteristics related to the model [Examples: discrete, continuous, deterministic, stochastic] 

Classification or taxonomy for the characteristics [Does it have any characteristic classification?] 

Simulation model advantages 

Simulation model disadvantages 

Verification and validation procedure [V&V techniques used to evaluate the simulation model] 

Analysis procedure [Output analysis methodology applied to the study] 

Study strategy [Controlled experiment, case study, among others] 

Paper main results [Applicability of the approach, accuracy of results] 

With all extracted information from the selected papers, the analysis of results 

should take into account their quality, considering the research goal of the systematic 

review. For that, we defined a set of quality criteria based on the extraction form (Table 

2-3). The scores are in a [0-10] scale in which we weighted each criterion according to 

the relevance for the characterization of the SBS. 

2.2.2 Results 

The application of the search string in the three search engines by April 2011 

resulted in 1,492 records (906 from Scopus, 85 from Web of Science and 501 from EI 

Compendex), removed 546 duplicates, resulting in 946 records for the selection proce-

dure execution. Initially, 150 research papers were included for the extraction and anal-

ysis stages. However, 28 of them were excluded after detailed reading and 14 research 



17 

 

papers were unavailable (even after soliciting them to the authors), remaining 108 re-

search papers for the analysis (APPENDIX F). 

Table 2-3. Quality assessment criteria (de FRANÇA and TRAVASSOS, 2013) 

Criteria Value 

[Approach] Does it identify the underlying simulation approach? 1 pt 

[Model Purpose] Does it explicitly mention the simulation model purpose? 1 pt 

[Study Purpose] Does it explicitly mention the study purpose? 1 pt 

[Domain] Is it possible to identify the SE domain in which the study was 

undertaken? 

1 pt 

[Tool] Does it explicitly mention any tool support? 0,5 pt 

[Characteristics] Does it mention the characteristics on the simulation model? 0,5 pt 

[Classification] Does it provide any classification or taxonomy for the 

characteristics mentioned? 

0,5 pt 

[Advantages] Does it present the advantages of the simulation model? 0,5 pt 

[Disadvantages] Does it present the disadvantages of the simulation model? 0,5 pt 

[V&V] Does it provide any verification or validation procedure for the simulation 

model? 

1 pt 

[Analysis] What are the statistical instruments used in the analysis of the 

simulation output? 

1 pt 

[Study Strategy + Exp Design] Is it possible to identify the study strategy in which 

the simulation model is used as an instrument as well as the experimental design? 

1,5 pt (0,5 for 

strategy + 1pt for 

exp. design) 

 

By analyzing these 108 papers, we identified 88 simulation models, distributed 

into 17 SE domains. In summary, we found 19 simulation approaches, 27 supporting 

tools, 28 model characteristics, 22 output analysis instruments, 9 verification and valida-

tion procedures, all of them in the SE context. 

Among the studies, the most dominant combination concerns with Software Pro-

ject Management issues using System Dynamics. Besides, it is possible to identify two 

secondary studies, 57 primary studies and 49 examples of use [assertions or informal 

studies (ZELKOWITZ, 2007)].  

Aiming at characterizing simulation studies, we concentrated more effort on their 

analysis rather than simulation model descriptions. It is possible to observe the lack of 

rigor regarding planning activities, Verification and Validation - V&V (before executing 

simulation experiments) in order to assure minimal confidence on the simulation results, 

and output analysis procedures. In general, such activities are performed ad-hoc for the 

identified SBS. However, it is also possible to observe particular studies using systematic 

procedures to perform one or another activity, but no case presents a full systematic 

process or method to conduct the simulation study.  

Specially about the planning issues, i.e., the experimental design, it is possible to 

observe that the so-called control, often claimed as an advantage of simulation studies, 

is poorly explored and inadequately used in some situations. There seems to be a mis-

understanding of the term “control” in simulation studies. The simple act of varying input 
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parameters does not mean that the object of study is under control, but only a possible 

configuration of parameters describing a specific scenario. It is quite different from the 

control in controlled experiments, for instance, where a baseline is defined (control 

group) under which it is possible to perform a fair comparison among two or more factors. 

In this characterization, we also observed some reporting issues. For instance, 

reports do not present information on how the phenomena, systems or processes are 

observed to acquire data. Still, it is not possible to identify whether any system (or pro-

cess) under observation considers its real environment or just its specifications. In the 

same way, no study protocol or plan could be identified. 

Generally, we assigned these issues to the reports rather than to the studies, 

because we have no access to additional information regarding the actual study. Thus, 

except for some studies that we can identify lack of proper methodology, they were as-

sessed only based on their report. 

2.2.3 Quality Assessment 

Based on the extracted and analyzed information, we applied the quality assess-

ment criteria from Table 2-3 to the 108 research papers focusing on the reported infor-

mation. Therefore, it is possible to observe lack of relevant information. Figure 2-1 pre-

sents the general assessment results, where each evaluation criterion is scaled in terms 

of coverage regarding the 108 research papers. 

 

Figure 2-1. Quality Assessment Results (DE FRANÇA and TRAVASSOS, 2013b) 



19 

 

Only 5.6% of the studies report some classification for the model characterization. 

These classifications are usually based on the underlying simulation approach. Besides, 

most of the studies (51.9%) do not mention any V&V procedure applied to the reported 

simulation model. Moreover, analysis instruments are mentioned in 80.6% of the reports, 

but with no concern of describing how they were selected and used. Furthermore, dark-

est bars highlight specific information regarding the simulation experiments. In this case, 

it is possible to observe that only 29% present some information (not necessarily com-

plete information) about experimental design issues. 

Concerning the assigned scores (based on values from Table 2-3), the mean 

value is 6.16 in a [0-10] scale, with standard deviation of 1.41. The minimum score is 3.0 

and maximum is 9.0. Considering each criterion concerns one kind of relevant infor-

mation, possibly not presented in the report, we can understand such values as lack of 

relevant information in the reports, since they hamper their full understanding and the 

possibilities of auditing or future repetition.  

2.2.4 Threats to Validity 

Terminology issues have been constantly reported in published systematic re-

views, and this review is not an exception for that. In order to mitigate the effects of not 

having a well-defined terminology, we previously performed an ad-hoc review to organ-

ize an initial set of keywords. Then, the research protocol including these keywords was 

submitted to the review of two experts about simulation in SE, aiming at identifying pos-

sible new terms. Besides, as we were targeting a wide-range context for SE, we choose 

not to adopt specific terms from each SE domain, such as Software Architecture or De-

sign, Inspections, Testing, and others. However, it may have hindered simulation studies 

not using general terms. 

Although the selected digital libraries (Scopus, EI Compendex and Web of Sci-

ence) encompass the main publications regarding computer simulation and software en-

gineering, it is not possible to assure 100% coverage. However, we consider to have 

used a comprehensive sample for characterization purposes.  

Furthermore, there are threats to validity concerning the extensive work on the 

studies’ selection and information extraction that, as any other human-intensive work, is 

error-prone. For that, we involved three researchers in the selection procedure in order 

to reduce the bias. Moreover, our results are exposed to publication bias, since the vast 

majority of papers published in SE reports only successful cases, rarely presenting neg-

ative aspects of the work. 
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2.2.5 Conclusions 

Based on the review’s findings, it is possible to observe that, in the SE context, 

even recognizing simulation approaches and model purpose, it seems there is no con-

cern with the matching between the approach and the study goal. In order to verify 

whether the phenomena domain has influenced the simulation approach selection, we 

performed analyses among model characteristics and the SE domain, but we could not 

identify any trend in this sense. 

There is a strong trend in developing simulation models. However, the simulation 

studies performed using such models face several threats to validity, compromising their 

results. Mainly, these threats are related to the model validity and the lack of a proper 

experimental design, as well as the presence of ad-hoc output analysis leading to un-

timely conclusions.  

The findings are encouraging for future research in simulation-based studies, in 

the context of SE, with respect to methodological support. This way, we believe that 

proposing or adapting methodological support for conducting SBS, including model va-

lidity issues and statistical output analysis are practical challenges. Currently, it is possi-

ble to identify simulation-modeling approaches for Software Process Simulation with SD, 

which is the case of IMMoS (PFAHL and RUHE, 2002). However, such methodology 

does not embrace, at least in detail, activities concerned with the planning and execution 

of simulation experiments. 

Methodological issues mentioned above are associated with many challenges 

regarding SBS, in the context of Software Engineering, according to our findings, for 

instance: 

 Definition of research protocols for SBS. For the majority of study strategies 

applied to SE, researchers adopt plans containing contextual descriptions, 

goals, interest variables, procedures and instruments, subjects’ selection and 

assignment. However, such concerns are usually overlooked when conduct-

ing SBS; 

 Proposals and use of verification and validation procedures for simulation 

models. This challenge is also mentioned in the survey conducted by AHMED 

et al (2008), with practitioners using simulation as an alternative approach to 

study software processes; 

 Mitigation actions for threat to simulation studies validity. Such challenge is 

strongly related to simulation model validity; 

 Evaluation and assessment of quality and strength of evidence obtained from 

SBS. As this sort of study is verifiable, we need established criteria for judging 
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how close the outcomes are from reality, as well as analyzing how threats to 

validity influence on the quality of observed evidence; 

 Repetition of SBS, concerning the difficulties on capturing relevant information 

from the reports, such as: full description of simulation models and environ-

ment, and raw data publication regarding the calibration and simulation data. 

Besides the methodological issues, there are also issues on quality of reports 

found in the SE technical literature. Specifically, the lack of relevant information for the 

understanding of the SBS in the context of SE. We decided to handle reporting issues 

prior to methodological ones as we judge them more feasible considering the knowledge 

acquired at that time of the research. Reporting guidelines can handle such issue re-

garding which information is essential for the reports. Contextual information, research 

goals and questions clearly defined, simulation model specification, validation proce-

dures for the simulation model, and the experimental design are examples of relevant 

information to compose the report. For that, we organized a set of reporting guidelines 

for SBS in the context of SE (Section 3.3), aiming at filling the gaps observed in the 

reports found through the qSLR. 

Finally, it is worth to mention that we could not observe any improvement in the 

quality of reports for more recent studies. Lack of information seems to be independent 

of SE knowledge on simulation studies. 
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3 Reporting Guidelines for Simulation Studies 

 

In this chapter, we discuss reporting guidelines for simulation-based 

studies in the context of Software Engineering. For that, we start with 

reporting guidelines for other research strategies in the context of 

Software Engineering. Next, we discuss existent simulation guide-

lines related to our goal from other research areas. Finally, we present 

the overview of the proposed reporting guidelines.   

3.1 Reporting guidelines for Software Engineering studies 

In the SE research community, there are initiatives concerning with the orienta-

tion on planning, execution and reporting of experimental studies. Generally, such initia-

tives present a set of aspects relevant to experimental studies and, for each aspect, they 

present an associated discussion, as well as examples showing what and how to handle 

it. For instance, these guidelines include aspects such as the determination of research 

context, the experimental design, data collection and presentation of results. 

KITCHENHAM et al (2002) proposed a preliminary set of guidelines to support 

researchers, reviewers and meta-analysts in the design, conduction and evaluation of 

SE studies. It presents general guidelines, embracing any type of primary study. Besides, 

they highlight the need for developing and evaluating specific guidelines for each type of 

study. 

Therefore, JEDLITSCHKA, CIOLKOWSKI and PFAHL (2008) proposed guide-

lines for conducting and reporting controlled experiments in SE. These guidelines dis-

cuss issues on redundant information on reports, textual elements (title, structured ab-

stract) and aspects particular to controlled experiments, such as experimental unit, in-

struments, procedure, hypotheses, dependent and independent variables, the experi-

mental design and the separation of subjects in groups for the treatments application. 

Furthermore, they discuss general aspects such as research goals, data collection and 

analysis, all under the perspective of controlled experiments. 

In the sequence, RUNESON and HÖST (2009) proposed a similar set of guide-

lines, but for case studies in SE. Besides general aspects, these guidelines present spe-

cific issues regarding case studies definition and conduction, aiming to distinguish such 

strategy from the others, considering this term is often misused in the technical literature.  
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Other initiatives can be mentioned, for instance, for reporting replicated studies 

(CARVER, 2010). However, it is important to highlight the need for such guidelines con-

sidering the heterogeneity and lack of standardization of reports negatively affect their 

aggregation or synthesis, hindering the understanding of results, among other problems. 

Recently, ALI and PETERSEN (2012) presented a consolidated process for con-

ducting Software Process Simulation in industry, in which they present some guidelines 

on how to perform the study for each activity. This way, it is possible to identify some 

overlapping between their initial planning concerns and the proposed guidelines in this 

thesis, such as using GQM for goals and questions definition, assessing the feasibility of 

using simulation, and model validation. However, the remaining guidelines focus on 

model development rather than model experimentation. 

3.2 Reporting guidelines for simulation 

Considering the results from the qSLR (Chapter 2), we searched for similar guide-

lines to the ones previously mentioned in section 3.1, but specifically for SBS in SE. 

However, we could not find any work targeting both areas. As a result, we searched for 

similar guidelines in different research areas, which are known by the success on using 

simulation studies to support their researches and professional activities.  

We identified orientations and relevant information on reporting simulation con-

cerned with Computer Simulation (KLEIJNEN, 1975) (BALCI, 1990), Statistics (ÖREN, 

1981), Medicine (BURTON et al., 2006) and Social Sciences (RAHMANDAD and 

STERMAN, 2012)(RAHMANDAD and STERMAN, 2012).  

ÖREN (1981) presents a series of concepts and criteria to evaluate credibility 

and acceptance of SBS. The mentioned concepts concern with input data, model (con-

ceptual and execution), experimental design, and the chosen methodology to conduct 

the study. BALCI (1990) presents guidelines for the success of SBS organized according 

to the SBS lifecycle and the so called “credibility assessment”, which is a set of V&V 

activities concerning each lifecycle stage. KLEIJNEN (1975) focuses on different tech-

niques for the elaboration and statistical analysis of the experimental design, w.r.t. sim-

ulation experiments. In medicine, BURTON et al (2006) present a checklist emphasizing 

relevant issues for elaborating SBS protocols. RAHMANDAD and STERMAN (2012) 

published a set of reporting guidelines for SBS in social science research. In their set, 

they concern with three main aspects: model visualization for diagrams, model descrip-

tion for equations and algorithms, and simulation experiments design, including random 

numbers and optimization heuristics. Overall, there is a concern with the model validity 

and adequate experimental design.   
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3.3 Reporting guidelines for simulation studies in Software En-

gineering 

According to RUNESON and HÖST (2009), ideally the reader should not distin-

guish the experimental study from its report. For that, the study planning and execution 

as well as the involved decisions should be made explicit in the report. In this section, 

we present an overview of the proposed reporting guidelines as in Table 3-1. The full 

description of such reporting guidelines is available at (DE FRANÇA and TRAVASSOS, 

2014a) encompassing only the reporting perspective after all the evaluations on this set 

had been made (presented in Chapter 4). 

Study reports are a way of communicating research findings. Hence, authors 

should consider the target audience, as well as theoretical foundation and terminology 

should be selected accordingly, enabling the full understanding of contributions. In addi-

tion, email or other contact data should be provided to allow the readers to possibly ask 

for further information or details regarding the study. Finally, this set of guidelines is or-

ganized in chained sections and this organization implicitly suggests a possible report 

organization structure. 

Furthermore, it is important to highlight that each guideline should not be taken 

only by the recommendation statement, but also by the associated discussion and ex-

amples. Both discussion and examples often bring the perspective of Simulation-Based 

Studies and the SE research area. The next subsections briefly discuss the main aspects 

involved in the proposed guidelines. 

The foundation for such reporting guidelines is a combination of evidence ob-

tained in the technical literature (the outcomes from the literature review presented in 

Chapter 2 and related guidelines from Sections 3.1 and 3.2) and reasoning regarding 

simulation in SE. In other words, it is not only a compilation of current state of the art, but 

also comprehends analysis of concepts and practices inside and outside SE engineering 

to consolidate common and useful knowledge to be reported in SBS.  

The sources come, in most cases (SG3-6, SG9-17, and SG19), from the qSLR 

analysis (DE FRANÇA and TRAVASSOS, 2013b). In this opportunity, we identified lack 

of information in the outcomes from the review by observing and analyzing empty fields 

in the information extraction sheet. The lack of such information hampered the under-

standing and analysis of how SBS have been conducted as well as their quality. There-

fore, recurrent unreported information affecting both understanding and quality of the 

studies derived guidelines on what should be reported. 
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Table 3-1. Simulation Reporting Guidelines Overview (DE FRANÇA and TRAVASSOS, 2015). 

ID Guideline Statement Ref 

Report Identification  

SG1 Proper title and keywords should objectively identify the simulation study report, 
as well as have a structured abstract summarizing the report contents. 

A 

From Context to Research Questions  

SG2 The context where the simulation study is taking place should be described in 
full. 

ABCD 

SG3 Explicitly state the problem that motivates the simulation study, so that re-
search questions can be derived. 

AFJ 

SG4 Clearly state the simulation study goals and scope. ACDGHJ 

SG5 Present the research questions derived from established goals. ABCD 

SG6 Clearly state the null and alternative hypotheses from research questions. AB 

Simulation Feasibility  

SG7 Present the justifications for considering simulation studies as the ideal or fea-
sible strategy. 

FGJ 

Background and related work  

SG8 Present only essential background knowledge and also the related works A 

  Simulation Model and Validation  

SG9 Have a detailed description of both conceptual and executable simulation mod-
els, as well as their variables, equations, input parameters, and the underlying 
simulation approach. 

FGJI 

SG10 Gather as much evidence as possible on simulation model (conceptual and ex-
ecution) validity. 

FGJ 

Subjects  

SG11 Characterize the subjects involved in the simulation study as well as their train-
ing needs. 

ABCD 

Experimental Design  

SG12 Experimental design (matrix), including independent and dependent variables 
and how levels are assigned to each factor should be reported. 

ABCDEF 

SG13 Describe the selected simulation scenarios and the criteria used to identify them 
as relevant. 

EHI 

SG14 The number of runs, along with the rationale to determine it should be reported. EGHI 

Intermediate Experimental Trial  

SG15 Describe which and how intermediate measures are stored between simulation 
trials to be used in the final analysis. 

H 

Supporting Data  

SG16 Assess, whenever possible, the data used to support the simulation model de-
velopment or SBS. 

EFI 

Simulation Supporting Environment  

SG17 Describe the simulation environment, including the supporting tools, associated 
costs, and decision for using a specific simulation package. 

GHI 

Output Analysis  

SG18 Procedures and instruments for output analysis should be reported, as well as 
the underlying rationale. 

ABCEHI 

Threats to Validity  

SG19 Always report the threats to study validity, limitations and non-verified assump-
tions. 

ABC 

Conclusions and Future Works  

SG20 Main results/findings should be identified and summarized, as well as the con-
clusions arising from the results. 

ACDFH 

SG21 Applicability issues should be addressed in the report, considering organiza-
tional changes and associated risks. 

A 

SG22 Point out future research directions and challenges after current results. A 

Refs: A (JEDLITSCHKA et al, 2008); B (KITCHENHAM et al, 2002); C (HÖST and RUNESON, 
2009); D (CARVER, 2010); E (KLEIJNEN, 1975); F (BALCI, 1990); G (ÖREN, 1981); H (BURTON 
et al, 2006); I (RAHMANDAD and STERMAN, 2012); J (ALI and PETERSEN, 2012) 
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The evaluation based on the approach proposed by KITCHENHAM et al (2008), 

as it will be presented in Section 4.2, encouraged the adding of general reporting guide-

lines (SG1-2, SG8, SG18 and SG20-22). The simulation feasibility guideline (SG7) was 

extended from (BALCI, 1990) however including technical aspects, since it originally dis-

cusses costs, schedule and resources for a simulation project. We also identify on Table 

3-1 examples of guidelines sharing similar concerns, but not covering specifics from both 

simulation and SE. 

3.3.1 Study Definition 

As SBS, we mean studies performed in both in virtuo and in silico environments 

(TRAVASSOS and BARROS, 2003). In virtuo studies stand for human subjects interact-

ing with a computerized (simulation) environment, while in silico studies stand for both 

subjects and environment being represented by simulation models. In both environ-

ments, the object of study always relates to the simulation model. It may relate as the 

phenomenon/system/process, which the model abstracts or as a model under validation. 

SE contextual factors may rely on supporting data used to calibrate the simulation model, 

in which the human nature of SE activities and the amount of unknown variables can 

affect the studies’ results. 

When implementing simulation results in real contexts, the assumed environment 

and pre-requisites should be guaranteed or handled in the real context. Consequently, 

some adjustments are required on target assets.  

This contextual matching is possible only if the context description is available 

(SG2). DYBÅ et al (2012) propose the use of a broad perspective approach, describing 

the context in such a way the study report allows answering research questions such as 

“What technology is most effective for whom, performing that specific activity, on that 

kind of system, under which set of circumstances?” 

The problem (SG3) should be stated and described in the same way it was ob-

served in the described context. Problems may arise from repeated situations where the 

solution has a complex implementation or requires an expensive alternative, or from a 

specific critical situation.  

Taken an adequate problem definition, goals’ clear definition (SG4) is the next 

step, leaving no doubt as to what is to be achieved, similar to other SE studies, in which 

these definitions adopt the GQM approach (BASILI, 1992). Common purposes for SBS 

consist of developing a basic understanding (characterization) of a particular phenome-

non (simulation model), finding robust or optimum decisions, or comparing the merits of 

several decisions. Besides, the simulation model should be able to answer research 
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questions through its output data, and its input parameters (variables or constants) 

should allow the desired scenario configuration.  

DAVIS, EISENHARDT and BINGHAM (2007) argue on the need for research 

questions by stating that without an intriguing research question, the simulation research 

relies on a ‘fishing expedition’, in which the researcher lacks focus and theoretical rele-

vance and risks becoming overwhelmed by computational complexity. This way, once 

following the GQM approach to drive the goal definition, and deriving research questions 

(SG5), the next step is to define metrics from which the questions should be answered, 

since SBS are naturally quantitative or semi-quantitative. The metrics definition allows 

one to ‘ask’ the research questions as hypotheses (SG6), which should be submitted to 

statistical tests. The hypotheses definition reveals the assumptions regarding the rela-

tionships among the dependent and independent variables under investigation (PERRY, 

SIM and EASTERBROOK, 2005).  

After the study definition, the feasibility of simulation as an alternative investiga-

tion approach should be evaluated (SG7). BALCI (1990) supports this kind of analysis 

suggesting some indicators like cost, time and benefits. Additionally, we decided to use 

the following issues to support this decision-making, focusing on criteria that are more 

technical: capacity of observing the system or phenomenon under investigation; availa-

ble resources for data collection; and risk analysis of the real phenomenon. 

3.3.2 Simulation Environment and Model Validity 

In order to report simulation based studies, it is important to have a detailed de-

scription of the model (SG9). It comprehends the required knowledge to understand the 

underlying simulation approach, the conceptual model, including its variables, parame-

ters and associated metrics, as well as the underlying assumptions and calibration pro-

cedures. Experimental design also benefits from such information on determining values 

for input parameters. 

Diagrams are useful for presenting the whole idea and the conceptual simulation 

model. Equations allow replicating the model in other simulation tools. Finally, a text de-

scription supplements and clears any doubt about the conceptual model. 

Model validity should also be addressed (SG10), due to SBS validity being highly 

affected by the validity of the simulation model. For that reason, guideline SG10 states 

that the experimenter should be aware of the initiatives (previous reports and research 

papers) to submit the simulation model to V&V procedures. In the case where such val-

idation evidence is absent, these procedures should be performed to ensure model va-

lidity, exposing the results as well as the decisions guiding the validation process.  
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Moreover, the opportunity to gather empirical evidence from the technical litera-

ture as one V&V procedure is important when developing simulation models for experi-

mentation, since such evidence does not rely only on experts’ opinions or ad-hoc obser-

vation of the phenomenon under study. Empirical evidence can support the existence of 

properties in the simulation model, as well as its assumptions.  

The use of performance measures such as bias, accuracy, coverage, and confi-

dence intervals is unusual in SE simulation studies. Such measures enable benchmarks 

to compare simulation models and to analyze risks assigned to SBS results. Burton et al 

present how to calculate such measures (BURTON et al., 2006). 

The study environment (SG17) should also be made clear when planning and 

reporting SBS. It comprises the simulation model itself, datasets, data analysis tools, and 

simulation tools/packages. Besides, the characterization of human subjects (SG11) is 

important as it may influence the interpretation of in virtuo results. Hence, the level of 

expertise, number of subjects per group (treatment and control, when applicable) and 

any relevant characteristic should be addressed in the subjects’ assignment process to 

the experimental units. 

Additionally, the training needs and its costs should be planned as well. With 

computerized subjects, their behavior model, configuration parameters, and process of 

assignment should also be considered when preparing the experimental design, if such 

behavior can be clearly identified in the simulation model. In addition, it is possible to 

have an implicit behavior for the subjects, embedded in the simulation model for in silico 

environments. 

3.3.3 Experimental Design and Analysis 

Experimental design issues should be considered for reporting and planning pur-

poses (SG12) as soon as having reached a state of model understanding and validity 

checks. It comprises the definition of a causal model, establishing a relationship between 

independent (or factors) and dependent variables. In the course of the experiment exe-

cution, the design factors may be held constant or allowed to vary.  

Research questions and hypotheses are the basis for the causal model definition, 

and it should reflect part or the whole simulation model. It is often represented by a de-

sign matrix, with interest factors and treatments for each factor. A design point or sce-

nario is represented by every row in this matrix, defining a combination of different levels 

for each factor (KLEIJNEN et al., 2005). Furthermore, control (baseline scenarios) and 

treatment groups should be defined for controlled experiments using simulation models 

as instruments.  
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The number of simulation runs (SG14) should be defined on the basis of selected 

scenarios and on the simulation model’s deterministic or stochastic nature. The more 

simulation scenarios involved in the study, the more simulation runs are needed. A de-

tailed discussion on how to determine the number of simulation runs, based on factorial 

designs, can be found in (HOUSTON et al., 2001) and (WAKELAND, MARTIN and 

RAFFO, 2004).   

The use of random variables should also be considered when using stochastic 

models, estimating a confidence interval from the sample size to determine the number 

of simulation runs or replications (LAW and KELTON, 2000). Replication is achieved by 

using different pseudo-random numbers (PRNs) to simulate the same scenario. In this 

case, the output is a time series with auto-correlated observations as they share common 

seeds (KLEIJNEN et al., 2005).  

Supporting data plays also an important role in these experiments (SG16). It sup-

ports model calibration for the generation of equations, parameters, and determination 

of random variables distributions. This way, procedures should be considered for data 

collection and quality assurance to also avoid measurement errors. Finally, one last im-

portant aspect relies on raw data publication when possible, since it may impose confi-

dentiality issues and enough space to fit a conference or journal paper. 

3.3.4 Output Analysis and Simulation Results  

Simulation runs often produce large volumes of data, distributed to different out-

put variables. In the context of SE, we observed output analysis concentrating on the 

use of charts, rather than statistical (hypothesis) tests or descriptive statistics (DE 

FRANÇA and TRAVASSOS, 2013b).  

Protocols for simulation studies should contain procedures and instruments to 

perform the output analysis, which should be properly selected, as statistical instruments 

and methods have many assumptions and restrictions that should be guaranteed. In 

addition, evidence supporting how these properties are reached should be given. 

Output analysis concentrates efforts on understanding and quantifying trends for 

output variables. Still, it helps to check the results’ statistical correctness. However, sim-

ulation based studies need additional analysis, such as threats to validity, including the 

model and experimental design validity (SG19).  

Common types of experimental validity relate to simulation model validity (DE 

FRANÇA and TRAVASSOS, 2014b). The SE community has discussed the threats to 

validity concerned with in vitro and in vivo experimentation (WÖHLIN et al., 2012). How-

ever, different conditions emerge for in silico experiments, in which recognized threats 
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appear in a different way, or particular threats concerning such environments affect the 

study’s validity.  

Simulation may improve construct and internal validity, by accurately specifying 

and measuring constructs and enforcing the theoretical logic through algorithms, respec-

tively (DAVIS, EISENHARDT and BINGHAM, 2007). However, it does not avoid the oc-

currence of this type of threat. Moreover, external and conclusion validity should be ac-

complished by replicating empirical observations and applying adequate statistical tests 

over the model outputs.  

At the end of the report, the findings express the main contributions in a summary 

(SG20). The conclusions should be drawn upon the findings, establishing a link from the 

goals, using methods to achieve results that allow making conclusions. Moreover, the 

final discussion should include implications on the applicability (SG21) of the solution in 

real scenarios or practical use. Finally, the future directions (SG22) should be mentioned 

in the report, pointing to research challenges, maybe including hot topics and possible 

roadmaps for future research. 

3.4 Conclusions 

Apart from the qSLR results, we also analyzed existent guidelines as inputs and 

concluded that the aspects involving SBS needed to be discussed under a SE perspec-

tive, different from the ones already presented by the other ESE and simulation guide-

lines. It is justified by the issues identified in the SE studies adopting simulation as a 

research strategy (Chapter 2).  

Some of the observed concerns from other research areas seem to be specific 

for issues identified in those fields. For instance, the guidelines from (BURTON et al., 

2006), which is actually a sort of planning guideline, have no specific concern with ex-

perimental designs, except for the number of required simulation runs and analysis with 

performance measures. Actually, we are not sure whether experimental design is not an 

issue for medicine anymore or, maybe, it has not matured enough to discuss it for now.  

Besides, the reporting guidelines for social sciences, which we consider to be the closest 

research area to SE in terms of simulation models as it often uses the SD approach for 

modeling (RAHMANDAD and STERMAN, 2012), focus on model description rather than 

its use and validity. 

As the first goal is to provide a complete report for the SBS, we are primarily 

concerned with covering all relevant aspects from the study. As it can be seen in later 

chapters, such set of guidelines will be evolved with more ambitious goals and scope, 

requiring more specific discussions.  
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Finally, the proposed reporting guidelines are not closed. They still need further 

evaluation and improvement, as well as discussion by the SE community and feedback 

from the researchers regarding their application.  
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4 Reporting Guidelines Evaluation and Analysis 

 

In this chapter, we present the set of evaluation and analyses per-

formed in order to observe different characteristics of the reporting 

guidelines. For that matter, we selected different approaches to per-

form such evaluations, and each approach has contributed with in-

sights to improve and evolve the set of guidelines.  

4.1 Introduction 

After the definition of a preliminary set of reporting guidelines for SBS in the con-

text of SE (DE FRANÇA and TRAVASSOS, 2012), we investigated its completeness and 

correctness. For that, we decided to follow three assessment strategies, combining mul-

tiple perspectives, in the sequence they appear in the next sections. 

These assessments the proposed set of reporting guidelines concern their capa-

bility to guide authors and readers on providing or identifying all the relevant information 

expected in simulation-based studies reports. This is what we call completeness. In other 

words, we are interested on assessing whether every relevant aspect is covered with at 

least one reporting guideline. Furthermore, these evaluations are also concerned with 

the reporting guidelines content in terms of theoretical background and accurately using 

concepts to discuss and exemplify each aspect. This is what we refer as correctness. 

The following sections detail the three assessments conducted to evolve the re-

porting guidelines to their actual stage, as presented in Section 3.3. The planning per-

spective was not considered for these evaluations. Such assessments were sequentially 

executed and the output of each one was used as input for the subsequent one, as 

presented in Figure 4-1.  

 

Figure 4-1.Reporting Guidelines Evolution Assessments Pipeline (DE FRANÇA and 

TRAVASSOS, 2015). 
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4.2 Perspective-Based Reading 

The first set contained 13 reporting guidelines concerned with the main issues 

observed in the results of the qSLR (Section 2.2), as presented in Table 4-1. Such ver-

sion contains only statements and short discussions and no examples were available. 

Table 4-1. Preliminary version of the reporting guidelines 

Item Description 

Goals and Scope  Goals are the primary consideration to be addressed in experimental 
studies. Study boundaries and scope along with hypotheses should also 
be reported. 

Model Description It is important for the complete study understanding. It must encompass 
the model structure and behavior. 

Model Validation It allows reducing the threats to the study validity. All procedures per-
formed to reach the model validity should be reported or indicated. 

Simulation Scenarios Suitable simulation scenarios selected for the study. 
Subjects Assignment of human (in virtuo) or computerized (in silico) subjects. 
Experimental Design Descriptions about the arrangement of dependent and independent var-

iables, cause-effect relationships and combination techniques. 
Number of simulation 
runs and criteria 

Indicate the number of simulation trials and runs, including the decision 
criteria to reach that number. 

Data support Indication about the type of used data: Real-system or artificial. It also 
should describe how data was collected and evaluated. Descriptions 
about how calibration was accomplished using these data is recom-
mended. 

Tool Support or Simu-
lation Package 

It should report the decision criteria and important considerations con-
sidered any simulation tool used in the study. 

Storage and Summary 
of Simulation Trials 

It should explain how the storage of data produced by the simulation 
trials is performed, including the measures used to summarize them. 

Performance evalua-
tion 

The bias, accuracy and confidence of the used simulation models 
should be addressed to improve the study acceptability. 

Threats to validity It should report identified limitation of the studies regarding the influence 
of simulation models. 

 

From the overview presented in Table 4-1, we performed a preliminary evaluation 

based on the approach proposed by KITCHENHAM et al (2008). The main goal of this 

evaluation is described in Table 4-2. 

Table 4-2. GQM goal definition for the review 

Purpose   

Analyze Reporting guidelines for simulation-based studies 

For the purpose of Characterize 

Perspective  

With respect to Completeness and Correctness 

From the point of view of  Software Engineering Researchers 

Environment  

In the following context The authors of the reporting guidelines will perform the review, using 
an external approach, in the Experimental Software Engineering Lab 
at COPPE-UFRJ. 

 

 



34 

 

 

This approach is organized as an inspection technique using perspective based 

reading, comprehended by several checklists, one for each perspective. The proposed 

perspectives are: 

 Researcher: those who aim at discovering whether the report presents rele-

vant information for a given research area; 

 Practitioner/Consultant: those who are interested on information for applica-

tion at Industry and concerns with the possibility of results giving earns to or-

ganizations; 

 Meta-analyst: those who extract quantitative information to be aggregated or 

synthesized with equivalent experimental results; 

 Replicator: those who aim at replicating an experiment; 

 Reviewer: those who evaluate the report for in journals or conference publica-

tions; 

 Author: those who expect to use the guidelines to report their study. 

Among the presented perspectives, KITCHENHAM et al (2008) provide check-

lists for the following perspectives: researcher, practitioner/consultant, meta-analyst, rep-

licator and reviewer. However, we consider the meta-analyst perspective useful for SBS 

as not applicable, since this sort of study enables (by definition) multiple experimental 

trials. Therefore, aggregation is not relevant to increase statistical power in this context. 

This way, we adopted the remaining checklists. 

On the original approach (KITCHENHAM et al., 2008), the checklists are used by 

a group of researchers to review the reporting guidelines. In our review, we have no 

simulation experts available to perform this review, nor reviewers familiarized with the 

approach proposed by KITCHENHAM et al (2008), so the reviewer is also the author 

who proposed the reporting guidelines. This clearly introduces the reviewer bias. How-

ever, we opted for keeping the author to perform this first evaluation using the checklists 

proposed in the followed approach, with no adaptation, attempting to reduce the associ-

ated bias, since the approach has a systematic technique to conduct the evaluation 

through the questions in the checklists. For instance, Table 4-3 present the checklist for 

the researcher perspective. 
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Table 4-3. Checklist for the Researcher perspective [from (KITCHENHAM et al., 2008)] 

Number Question Rationale 

P-1 Is the paper easy to find? Consultants need to be able to find relevant research 
results 

P-2 Is it a relevant paper? Consultants should be able to identify quickly 
whether or not an article is relevant to their require-
ments 

P-3 What does the paper claim? Consultants need to identify exactly what claims the 
paper makes about the technology of interest 

P-4 Are the conclusions/results useful? Consultants need to know whether the conclu-
sions/results have practical relevance 

P-5 Is the claim supported by believa-
ble evidence? 

Consultants need to be sure that any claims are sup-
ported by evidence 

P-6 Is it clear how the current research 
relates to existing research topics 
and trends? 

Consultants need to know how the current work re-
lates to existing research trends 

P-7 How can the results be used in 
practice? 

Consultants need guidance on how the results would 
be used in industry 

P-8 In what context is the result/claim 
useful/relevant? 

Consultants needs to know the context in which the 
results are expected to be useful 

P-9 Is the application type specified? Consultants need to know what type of applications 
the results apply to. In particular whether they are 
specific to particular types of application (e.g. fi-
nance, or command and control etc.) 

P-10 Is the availability of required sup-
port environment clear? 

Consultants need to know whether any required tool 
support is available and under what conditions 

P-11 Are any technology pre-requisites 
specified? 

Consultants need to know whether there are any 
technological prerequisites that might limit the ap-
plicability of the results 

P-12 Are the experience or training 
costs required by development 
staff defined? 

Consultants need to know the training/experience re-
quirements implicit in the approach 

P-13 Is the expense involved in adopting 
the approach defined? 

Consultants need some idea of the cost of adopting 
the approach, in order to perform return on invest-
ment (ROI) analyses 

P-14 Are any risks associated with 
adoption defined? 

Consultants need to know whether there are any 
risks associated with adoption of the technique  

P-15 Do the results scale to real life? Consultants need to be sure that the results scale to 
real life 

P-16 Is the experiment based on con-
crete examples of use/application 
or only theoretical models? 

Consultants need to be sure that the results have a 
clear practical application 

P-17 Does the paper discuss existing 
technologies, in particular the tech-
nologies it supersedes and the 
technologies it builds on? 

Consultants need to be sure that the experiment in-
volves comparisons of appropriate technologies. 
They need to know that a new approach is better than 
other equivalent approaches not a “straw man” 

P-18 Is the new approach, technique, or 
technology well described? 

Consultants must be sure that they understand the 
new approach/technique/technology well enough to 
be able to adopt it 

P-19 Does the paper make it clear who 
is funding the experiment and 
whether they have any vested in-
terests? 

Consultants need to be sure that the experiment is as 
objective as possible 

P-20 Does the paper make it clear what 
commitment is required to adopt 
the technology? 

A consultant needs to know whether adoption of an 
approach/technology requires a complete and radical 
process change or can be introduced incrementally 

P-21 Are Technology Transfer issues 
discussed? 

Consultants need to know what the objections to a 
new technology are likely to be,  and whether there 
are any clear motivators or de-motivators 

P-22 Is there any discussion of required 
further research? 

Consultants need to know whether the research is 
complete or the approach needs further development 
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For each question in the checklist, it is possible to assign one of the three follow-

ing values:  

 Attended: there is at least one guideline answering the questions; 

 Improvement Opportunity: issues related to unclear sections in the document, 

lack of details, lack of theoretical background, over standardization or organi-

zation for the report; 

 Defect: issues related to the lack of essential content or information, non-rele-

vant recommendations for particular situations, ambiguous sentences and in-

correct concepts or reasoning. 

Table 4-4 presents the results from this review, according to the number of de-

fects and improvement opportunities, for each perspective. The preliminary set had only 

13 reporting guidelines, organized in 11 sections. After this review, we proposed a new 

version containing 20 reporting guidelines organized in 14 sections (Table 4-5). Thus, it 

is possible to observe significant increase in the number of guidelines. 

Table 4-4. Perspective-Based Reading Results (DE FRANÇA and TRAVASSOS, 2015) 

Perspective Number of 
Questions 

Improvement 
Opportunities 

Defects 

Researcher 17 4 9 

Practitioner /Consultant 22 7 8 

Replicator 9 3 1 

Reviewer 7 1 3 

TOTAL 55 15 21 

 

The high number of defects occurred for two reasons: (1) the preliminary version 

did not take into account general aspects often concerned in other types of studies; and 

(2) textual elements such as title, structured abstract and conclusions were also over-

looked. However, the improvement opportunities consist in lack of details for some guide-

lines or even lacking discussions for some relevant aspects. 

As a result of this review, we also evolved the presentation style in order to im-

prove the understanding and clarity of their contents, as shown in the example: 

Preliminary Version: 
“Indication about the type of used data: Real-system or artificial. It also should de-
scribe how data was collected and evaluated. Descriptions about how calibration 

was accomplished using these data is recommended.” 
 

Reviewed Version: 
“The data used to support the simulation model development or SBS should be re-

ported, whenever possible.” 

 

It is possible to observe shorter and more objective statements for the new guide-

lines version. The details of the reporting guidelines are developed in a complementary 
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text, which existed in the previous version and that evolved together, containing discus-

sions regarding the concepts and implications associated to the reporting guidelines 

along with examples on how it has been observed in different situations in the technical 

literature. 

As this review was performed after elaborating a first and stable version of the 

guidelines, we consider it as an evaluation. However, it could also be understood as an 

integrant part of the proposed guidelines development. 

Table 4-5. Overview of the Reporting Guidelines v1 

ID Guideline Statement 

Report Identification 

SG1 Proper title and keywords should objectively identify the study report, as well as have a structured 
abstract summarizing the report contents. 

From Context to Research Questions 

SG2 The context where the research is taking place should be described in full. 

SG3 Explicitly state the problem that motivates the study, so that research questions can be derived. 

SG4 Clearly state the research goals and scope. 

SG5 Present the research questions derived from established goals. 

SG6 Clearly state the null and alternative hypotheses from research questions. 

Background and related work 

SG7 Present only essential background knowledge and also the related works. 

  Simulation Model and Validation 

SG8 Describe the simulation model used in the study through its main variables, constants and the 
underlying simulation approach. 

SG9 Present all possible evidence regarding the validity of the simulation model (conceptual and exe-
cution). 

Subjects 

SG10 Characterize the subjects involved in the simulation study and report training needs. 

Simulation Scenarios 

SG11 Describe the selected simulation scenarios and the procedure used to identify them as relevant. 

Experimental Design 

SG12 Experimental design, including independent and dependent variables and how treatments are as-
signed to each factor should be reported. 

SG13 The number of runs together with the rationale to determine it should be reported. 

Intermediate Experimental Trial 

SG14 Describe which and how intermediate measures are stored among simulation trials to be used in 
the final analysis. 

Supporting Data 

SG15 The data used to support the simulation model development or SBS should be reported, whenever 
possible. 

Simulation Supporting Environment 

SG16 Describe the simulation environment, including the supporting tools, associated costs, and decision 
for using a specific simulation package. 

Output Analysis 

SG17 Procedures and instruments for output analysis should be reported, as well as the underlying ra-
tionale. 

Threats to Validity 

SG18 Always report the threats to study validity and limitations. 

Conclusions and Future Works 

SG19 Main results/findings should be identified and summarized, as well as the conclusions arising from 
the results. 

SG20 Applicability issues should be addressed in the report, considering organizational changes and 
associated risks. 
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4.3 Survey with simulation experts 

The outcome from the review described in the previous section (overview in Table 

4-5) had been released as a technical report (DE FRANÇA and TRAVASSOS, 2013a). 

Considering it a more comprehensive and self-contained set of reporting guidelines, in-

cluding discussions and examples from the technical literature, we structured a collabo-

rative review as a survey aiming at obtaining experts’ opinion regarding completeness 

and correctness of the new set of proposed reporting guidelines as the research goal 

presented in Table 4-6. 

Table 4-6. GQM goal definition for the survey 

Purpose   

Analyze Reporting guidelines for simulation-based studies 

For the purpose of Characterize 

Perspective  

With respect to Completeness and Correctness 

From the point of view of  Researchers experienced with Simulation-Based Studies 

Environment  

In the following context External researchers from different institutions will receive the report-
ing guidelines to perform a collaborative review. 

 

In this evaluation, we extended the former goal by embracing the perspective of 

researchers and practitioners knowledgeable in SBS, both at the industry and academia, 

in order to improve the reporting guidelines. The following sections present the survey 

definition and results. 

4.3.1 Survey Definition 

The survey structure follows a conference or journal review form. In order to ac-

complish the proposed review, we invited simulation experts, not only in the context of 

SE, but also on using simulation studies in different research areas. The survey was 

released using the web LimeSurvey tool (www.limesurvey.org), and it has been com-

posed of five sections: 

 Presentation: it presents the study context, research goals, and instructions 

to join the survey, as well as the contact information. 

 Subject’s characterization: it requires filling a four-question form concerning 

subject’s experience in both SE and simulation. 

 Guidelines’ review: it presents the link to download the technical report con-

taining the reporting guidelines, followed by a six-question form regarding orig-

inality and novelty, technical soundness and contribution, presentation and 

http://www.limesurvey.org/
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readability, references to previous and related works, report strengths and 

weaknesses. This form is closely related to the guidelines correctness. 

 Feedback questions: it presents a six-question form concerning the need for 

formalized reporting guidelines for SBS, the possible recommendation of 

standard content-only or including an outline, future usage, adoption by publi-

cation venues in SE, and the possibility of either missing or extra (superfluous) 

information. 

 Acknowledgment: message recognizing the participation and registering the 

end of the study. 

We adopted two approaches for the recruitment: by convenience and systematic. 

For the convenience approach, we used Lattes (lattes.cnpq.br) database to look for re-

searchers in SE with background in computer simulation. Besides, we performed a sim-

ilar search in the ISERN (International Software Engineering Research Network) mem-

bers list. Then, we sent e-mails inviting them to participate in the study. In the systematic 

approach, we adopted the framework defined by DE MELLO et al (2014). This framework 

consists in a systematic approach to define adequate population and samples for SE 

surveys.   

For the systematic approach, we adopted the ResearchGate (RG, www.re-

searchgate.net) professional network as source of recruitment (SoR). This SoR has a 

meaningful constraint to send the invitations, allowing an account to send at most 20 

invitations per day. The selection criteria should include researchers with background on 

SE and simulation. We used three accounts to enable the execution, and it took five days 

to invite 300 members (assumed as researchers).  

We ran separate instances of the survey for each approach, using the same 

structure but using distinct timeframes. In both settings, the instances were available for 

one month long, due to the need of full technical report reading (23 pages). After each 

deadline, we resent the invitations and extended the deadlines to one month more. Dur-

ing this extra period, we received two more answers from the sample by convenience 

and 32 more from the systematic approach, including incomplete participations. 

4.3.2 Results 

The response summary (Table 4-7) for the first sample (Lattes and ISERN) com-

prises 10 responses, but only two completed the survey. For the second sample (sys-

tematic sample), we received 54 responses, with 13 complete answers. 
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Table 4-7. Response summary for Lattes and ISERN 

 Lattes and ISERN ResearchGate 

Invited 23 100% 300 100% 

Total responses 10 43.5% 54 18% 

Full responses 2 8.7% 13 4.3% 

Incomplete responses 8 34.8% 41 13.7% 

 

From a quantitative perspective, the amount of 15 completed responses for the 

analysis is not promising. The complexity and required effort of the involved task (read 

and review a technical report discussing guidelines for simulation in software engineer-

ing, containing 23 pages) may have influenced the participation rate negatively. Addi-

tionally, it is important to highlight that, except for one subject, all of them have PhD and 

experience on developing and using simulation models. 

Having responses with similar quality from both approaches, we analyzed them 

as one single source. One subject also sent the reviewed technical report (pdf file) with 

comments by e-mail. Table 4-8 presents the quantitative results (number or responses) 

from both samples, Lattes/ISERN and RG. The column Total consolidates the results 

from both samples. Questions 1 to 6 concern the reporting guidelines review and ques-

tions 7 to 12 concern the expert’s opinion regarding the guidelines usefulness and appli-

cation. Most of questions are mandatory, except from questions 5 and 6. Thus, the total 

number of responses for mandatory questions should be 15. 

Generally, the results show this version of the reporting guidelines as compre-

hensive (questions 1, 2, 4, 5 and 12), understandable (question 3), useful (questions 7, 

8, 9 and 10), but with improvements opportunities (questions 6 and 11). 

The contributions from these responses are important to reinforce the relevance 

of the proposed guidelines. In other words, subjects supported the proposed guidelines 

mentioning the need for more experience and systematization on simulation studies in 

SE, as well as expressed agreement with the guidelines for different domains (e.g., e-

commerce, physics). Specifically, they mentioned the guidelines are useful for young 

researchers, but not “out of scope” for more experienced ones, they pointed out aspects 

usually missing in reported studies (such as cost data, context information, underlying 

rationale for tool selection, and others), and they commented about the guidelines bring-

ing principles from Experimental Statistics to the SE domain. Furthermore, the reporting 

guidelines’ presentation is considered concise, well written and includes well-chosen ex-

amples. 
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Table 4-8. Quantitative results for the survey (DE FRANÇA and TRAVASSOS, 2015). 

# Question Lattes/ISERN RG Total 

1 Originality and novelty 
4: New and exciting idea  
3: Improves an existing idea in a significant way   
2: Nothing really novel  
1: Just rewrites or repeats known concepts or techniques. 

 
0 
2 
0 
0 

 
3 
9 
1 
0 

 
3 

11 
1 
0 

2 Technical soundness and contribution 
4: Excellent work and a major contribution  
3: Good solid work of some importance   
2: Marginal work but minor contribution  
1: Very questionable work and contribution  

 
0 
2 
0 
0 

 
1 

10 
2 
0 

 
1 

12 
2 
0 

3 Presentation and readability 
4: Very good  
3: Basically well written  
2: Readable  
1: Poor, needs considerable rework 

 
1 
1 
0 
0 

 
5 
8 
0 
0 

 
6 
9 
0 
0 

4 References to previous and related works 
4: Very good  
3: Good  
2: Average  
1: Poor 

 
2 
0 
0 
0 

 
4 
6 
2 
1 

 
6 
6 
2 
1 

5 Strengths 2 13 15 

6 Weakness 0 7 7 

7 Need for formalized simulation reporting guidelines 
Yes 
No 

 
2 
0 

 
9 
4 

 
11 
4 

8 Standard content or standard outline 
Only content 
Content and outline 

 
0 
2 

 
5 
8 

 
5 

10 

9 Would you follow if they exist? 
Yes 
No 

 
2 
0 

 
11 
2 

 
13 
2 

10 Empirical publication venues adoption 
Yes 
No 

 
1 
1 

 
10 
3 

 
11 
4 

11 Missing information  
Yes 
No 

 
0 
2 

 
4 
9 

 
4 

11 

12 Extra (superfluous) information 
Yes 
No 

 
0 
2 

 
0 

13 

 
0 

15 

 

Subjects mentioned improvements opportunities like the need to emphasize the 

importance of supporting data, since it is critical to ensure the "health" of data. Actually, 

the section “Supporting Data” refers to this issue, in a reporting perspective. According 

to SARGENT (1999), data validity concerns appropriateness, accuracy, the amount of 

available data, and if all data transformations are made correctly. What can be done to 

ensure data validity is to develop good procedures for (1) collecting and maintaining data, 

(2) testing the collected data using internal consistency techniques, and (3) screening 

the data for outliers and determining if they are correct. Additionally, they discuss that 

model description is mainly influenced by the underlying simulation approach, which is 
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already mentioned in the guidelines. One mentioned the existence of particular stand-

ards for reporting simulation models under specific approaches, for instance, System 

Dynamics (STERMAN, 2000) and Agent-Based Simulation (GRIMM et al., 2010).  

Moreover, one subject mentioned improvement possibilities in two areas: valida-

tion and conclusions. For the validation part and later also discussing validity, s/he sug-

gested the use of an underlying method. For instance, within the Air Traffic Management 

Community, the European Operational Concept and Validation Methodology (E-OCVM) 

could be a good departure point. The conclusion section is considered small, and terms 

such as risk and applicability offer room for multiple interpretation.  

Concerning presentation, participants suggested a more concrete table to re-

sume the guidelines and more examples would help their understanding, although this 

would unnecessarily increase the reporting guidelines’ length.  

From the negative aspects, some participants considered the list of references 

could be longer. However, the guidelines do not intend to comprehend a whole body of 

knowledge, but recommendations. The references include all the outcomes from the sys-

tematic review and many additional sources outside SE.  

Another issue regards the reporting guidelines to resemble a reformulation of 

previously stated ideas or, perhaps, whether established guidelines (or even standards) 

outside SE, which could have simply been re-used (after re-wording), do not really exist 

yet. In this sense, we are aware that the proposed guidelines share common concerns 

with other SE (Section 3.1) and simulation (Section 3.2) reporting guidelines. These 

shared concerns were mainly added after the perspective-based reading (section 4.2). 

Nevertheless, we understand the whole set of reporting guidelines as an original per-

spective, discussing simulation-related aspects and their issues faced in SE studies. 

For the feedback questions regarding the reporting guidelines usage, it is possi-

ble to observe a positive direction on their usefulness, but with some limits. Regarding 

the guidelines adoption by researchers and reviewers, subjects commented their use not 

as a standard, but as a recommendation or suggestion.  

Finally, we could not observe any theoretical or conceptual defect, or even extra-

neous information. The possible lack of information as mentioned before concerns 

mainly with the importance of valid data. It reinforces the positive research direction and 

the proposed guidelines soundness. However, one still may wonder if their content is 

obvious and, for this reason, the responses are dominantly positive. For this reason, we 

conducted an additional analysis (section 4.4), changing the perspective from the simu-

lation experts to existent SBS reports obtained in the technical literature. 
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4.3.3 Threats to Validity 

In this collaborative review, we adopted a survey strategy to release the evalua-

tion. Besides, we presented the tasks as usual activities for researchers: reviewing of 

conference or journal papers. This brings internal validity to the study as the instrument 

and involved concepts are familiar for the audience. Still on internal validity, we faced 

difficulties on performing the recruitments through the RG social network. The constraints 

imposed by this platform caused an accidental recruitment of one same unit (subject) 

from both RG and convenience samples. However, this unit answered in just one survey, 

with no harms to the analysis. 

From the conclusion validity perspective, we obtained small sample sizes, having 

no room for applying statistical tests or determining confidence intervals. Even though, 

from the qualitative perspective, the comments and contributions are worthy feedback, 

pointing out specific aspects that could be improved on the proposed guidelines. Fur-

thermore, most comments reveals interest and expertise regarding the topic, which give 

us confidence regarding the subject’s opinions. 

Regarding our constructs, we captured correctness on items 2 (technical sound-

ness) and 3 (presentation and readability), and completeness on items 4 (previous and 

related work), 11, and 12 from Table 4-8. Items 5 (strengths) and 6 (weakness) contribute 

for both constructs. The remaining items captured perception of usefulness. 

Subjects’ characterization and comments revealed different backgrounds. Some 

shared experiences of their work regarding simulation. It allowed us to identify their com-

ments regarding the application of the proposed guidelines on their research/engineering 

activities. It is relevant to embrace multiple perspectives of what we are assuming as 

SBS and as SE issues. However, we have no ambition of generalizing from these results, 

since it is based mainly on opinions and expected results and not on real application of 

the reporting guidelines. From this perspective, we have limitations on external validity. 

As we are more interested in qualitative data, we analyzed this study also for 

descriptive and interpretive validity. These types of validity concern, respectively, the 

researchers are not making up or distorting the collected data, as well as their inferences 

and conclusions. This way, we compared answers from different questions and com-

ments, to assure consistence among the review data. For instance, we crosschecked 

answers for presentation and readability with comments on paper strengths and weak-

ness. Also, we compared these last aspects to comments regarding missing or extra 

information.   
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4.4 Analysis against the technical literature 

After evolving the reporting guidelines presented in the previous sections, we up-

dated the qSLR (DE FRANÇA and TRAVASSOS, 2013b) aiming at comparing the most 

recent reports against the evolved set of reporting guidelines under the research goal 

described in Table 4-9.  

Table 4-9. GQM goal definition for the analysis 

Purpose   

Analyze Reporting guidelines for simulation-based studies 

For the purpose of Evaluate 

Perspective  

With respect to Completeness and Usefulness 

From the point of view of  Software Engineering Researchers  

Environment  

In the following context The authors of the reporting guidelines will perform the analysis 
against the recent technical literature in the Experimental Software 
Engineering Lab at COPPE-UFRJ. 

 

For the update, we concentrate on the use of a simulation model or experimen-

tation, excluding papers discussing just model development. Then, we added a new in-

clusion criterion to the research protocol, in which every paper should contain at least 

one simulation experiment, excluding papers that have only the simulation model pro-

posal. Besides, we excluded the EI Compendex database from the sources, as we could 

not apply the same string used before. It displayed unexpected behaviors and faults. 

Therefore, we included the IEEE Xplore digital library as a counterpart measure. 

In face of these changes, the period used to apply the search strings into the 

digital libraries differs. For Scopus and Web of Science, we set the period from March 

2011 (year from the first round of the review) to the date of the update (November 2013). 

On the other hand, for IEEE Xplore, we set it until November 2013, as we did not apply 

the search string in this library at the first round. 

The results for the application of the search strings and after the selection proce-

dure, based on the reading of title and abstracts, are presented in Table 4-10. 

Table 4-10. Results from the updated review (DE FRANÇA and TRAVASSOS, 2015). 

Digital Library Number of 
Records 

Duplicated En-
tries 

Included 

Scopus 261 1 10 
Web of Science 19 2 4 
IEEE Xplore 172 59 6 
Total 452 62 20 
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Twenty papers included were read in full and we excluded most of them, as we 

understood there were no experiments in those papers, just model proposals and exam-

ples of use. Thus, we remained with four papers (ANDERSSON et al., 2002), 

(PSAROUDAKIS and EBERHARDT, 2011), (ZHANG et al., 2012) and (UZZAFER, 

2013). Additionally, we searched for simulation studies in the main conference (ICSSP5) 

and journal (SPIP6 including its new title JSEP), applying the same criteria from the sys-

tematic review. We considered these venues as they publish the majority of simulation 

issues in the SE context. We found seven other simulation studies (AL-EMRAN et al., 

2010), (BIRKHÖLZER, PFAHL and SCHUSTER, 2010), (BAI et al., 2012), (HOUSTON 

and LIEU, 2010), (PAIKARI, RUHE and SOUTHEKEL, 2012), (CONCAS et al., 2013) 

and (HOUSTON and BUETTNER, 2013) in these venues.  

These eleven research papers were analyzed based on the proposed reporting 

guidelines. For each guideline, we assigned a three-value scale: Not Complied (0), Par-

tially Complied (1) and Complied (2). The analysis consisted in searching for information 

that could satisfy each guideline. In other words, we consider as complied when the 

report present the information regarding the aspects discussed in the guideline.  

It is important to note that the reporting guidelines SG6, SG11, and SG15 (from 

Table 3-1) are out of scope for this analysis. Although we understand that these guide-

lines are strongly related to simulation studies, this is not entirely applicable for the stud-

ies selected for this analysis. 

The SG6 relates to the establishment of hypotheses, which we understand as not 

being essential or necessary for characterization studies. Besides, SG11 relates to sub-

ject description, which not always applies to in silico studies. SG15 focuses on interme-

diate trials and this is not common for the simulation approaches adopted in these stud-

ies, mainly deterministic simulation. Rather, it is applied often to stochastic simulation, 

where many replications are executed for the same inputs. Particularly, when the simu-

lation environment (or simulator) does not offer this kind of support. 

The overall coverage for the reports studied as related to the reporting guidelines 

is shown in Figure 4-2.  

                                                

 

5http://www.icsp-conferences.org/ 

6http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1670 



46 

 

 

Figure 4-2. Guidelines Coverage for different research papers (DE FRANÇA and 

TRAVASSOS, 2015) 

We roughly divided the set of guidelines into four sections for analysis purposes, 

in which the first one concerns the initial planning, i.e., issues related to context, problem, 

goals and research question definition. The second section concerns the simulation 

model description, as well as its foundations and validity evidence. For the third section, 

we concentrate on experimental design issues, such as the definition of the variables of 

interest, the causal model, including the design matrix and simulation scenarios, as well 

as the number of simulation runs. The fourth and last part relates to the analysis of results 

and conclusions.  

From Figure 4-2, it is possible to observe that all guidelines seem to be reasona-

ble, as all of them are completely complied at least once (in one study), except for re-

porting guidelines SG14 and SG17 (from Table 3-1), which are respectively related to 

the number of runs and the simulation environment. For SG14, we could not identify the 

reasoning to determine the number of enough simulation runs. This aspect is important 

as establishing a loose number of runs may affect the output analysis effort and the 

confidence intervals. It is also an issue, in terms of replication, not having the complete 

supporting environment. Reports usually mention only the selected simulation tool, ra-

ther than statistical analysis tools, preparations for calibration, runtime environment and 

additional supporting technologies. 

From an individual perspective, no report has mentioned the whole set of aspects 

covered by the reporting guidelines, as presented in Figure 4-3 and Figure 4-4, where 

the sequential numbers in the radars denote the simulation guidelines (SG) from the 

Table 3-1 and each axis in the radar can assume three possible values from the previous 

mentioned scale (Not Complied – 0; Partially Complied -1; and Complied - 2). Besides, 
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there is no report presenting a homogeneous distribution of the relevant information. It 

means that every report focuses on one or two specific groups of reporting aspects.  

 

Figure 4-3. Individual profile according to reporting guidelines (DE FRANÇA and TRAVASSOS, 

2015). 

It is possible to observe a large variance on which kind of information the reports 

concentrate on, probably occurring due to the lack of a standard or recognized method-

ology guidelines. For instance, in Figure 4-4, the report by Houston and Buettner (2013) 

has a comprehensive simulation model description (SG8, SG9 and SG10) and good 

amount of information regarding the experimental design (from SG12 to SG17). The au-

thors report what seems to be a case study supported by a discrete-event model to in-

vestigate sources of variation on deliveries and how to improve delivery quality of an 

agile software project, in which both customer and contractor had become concerned 

with the lack of predictability in deliveries, in the Aerospace Corporation. 

One could suppose that this report followed an adequate simulation methodol-

ogy, considering the number of guidelines that could be applied (at least partially) and 

the obtained results, which are discussed in terms of applicability in practice. However, 

there are other reports, such as (CONCAS et al., 2013), where there is not enough in-

formation on the simulation model and its validity, as well as the experimental design, 

but it also presents an interesting analysis of the results. Indeed, for both reports, there 
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is no explicit mention to the complete adopted methodology. Thus, it is not fair to judge 

the quality of the study based on the quality of the report. 

 

Figure 4-4. Individual profile according to reporting guidelines (DE FRANÇA and 

TRAVASSOS, 2015) 

As general behavior, we can point out the perspectives regarding the model de-

velopment and model experimentation. Usually, when a report focuses on the simulation 

model description, we can observe lack of information regarding the simulation experi-

ment itself. Of course, this is a relevant aspect when considering the amount of pages 

available, mainly in conference papers. However, the model description alone cannot 

show real contributions, with no association to a simulation experiment indicating its va-

lidity and usefulness. The opposite is also possible, i.e., when the experimental design 

is emphasized, resulting on lack of data regarding model description.  

The simulation model description, which is the most available information, should 

encompass at least the conceptual model, including main factors and response varia-

bles, as well as its equations. It also concerns the full understanding of the study being 

conducted. However, five of the eleven reports do not present one of these aspects. It 

not only reduces the understandability, but also compromises the possibility of replicating 

the study. 

Regarding the model validity, V&V procedures are often mentioned, when ap-

plied, but not discussed. Authors should provide evidence regarding the execution of 
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such procedures. For instance, the improvements regarding the issues found, the level 

of confidence in case of accuracy tests, or the assumptions that could be assessed and 

those that could not. Six out of eleven papers analyzed do not provide any information 

regarding model validity. Such lack of validity information compromises the study credi-

bility and the confidence on the results. 

Considering the initial planning, the lack of precision on communicating the prob-

lem under investigation is one example of issues we can identify. Motivations and what 

is to be solved through simulation are not sufficiently described or not described at all. It 

resembles works describing a solution, but with no clear problem that fits on it. Goals 

and research questions seem to be used in an interchangeable way, e.g., the reports 

(except for one paper) present only the research goals, without presenting the research 

questions associated to the goals. It is possible to identify the general research goal and 

try to infer from the research questions, but this is not clear. Besides, the justifications 

for using simulation as an investigation approach are often neglected too. In some of the 

reports, it is possible to argue against the proper use of simulation for specific problems 

or goals, adopting other analytic methods. We generally argue that, without the infor-

mation provided by these research questions, it is not possible to assess the feasibility 

of using simulation as an adequate strategy. 

Simulation scenarios are mainly elicited ad-hoc, when the experimenters are not 

using DOE (Design of Experiments) to plan the experiment. In addition, it affects the 

determination of the required number of simulation runs to perform the study, which 

tends to be lower due to the bias in scenario selection.  

The supporting data is another relevant criterion for the credibility and validity of 

simulation studies. Besides, as in other research strategies, the reporting of raw data is 

also an issue due to disclosure agreements. However, there are several ways for report-

ing it; for instance, using a multiplier factor to mask the data or contextual information 

can be given without naming organizations and people. The way such data is used to 

develop and validate the simulation model and how it is distributed is not presented too. 

Thus, without such details on model calibration and statistics applied, it is not feasible to 

judge whether it is adequate or not.  

Another aspect overlooked is the simulation environment. We often identify indi-

cations of the selected simulation tool and rarely settings or statistical package for data 

analysis. However, it is not possible to reproduce studies without further information. 

We could also identify some issues regarding simulation results in the selected 

papers. Simple comparisons of output variables are common place, but experimenters 

have to avoid using only this procedure. No determination of effect is provided for the 

input factors involved in the experimental design, when related to the output variables. 
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This way, there is only possibility of comparing scenarios without understanding which 

factors are more relevant. Apart from the outcomes report, often plotted in charts or ta-

bles, there are several discussions missing, such as threats to validity, conclusions, and 

the applicability of the results in the real world. 

Threats to simulation studies validity are seldom discussed as such. Usually, au-

thors refer to them as limitations and unverified assumptions, without discussing their 

consequences. AL-EMRAN et al (2010) and CONCAS et al (2013) present a discussion 

according to the types of threats proposed in (COOK, CAMPBELL and DAY, 1979). 

Finally, from a contribution point-of-view, the results are interesting, but the dis-

cussions are limited in explaining why these results occur and how they can be applied 

in practice. Explanations should answer each research question and be grounded on the 

experimental design and model description. For instance, the conclusions should state 

how the input factors (and their interactions) affect the output variables, exposing the 

theoretical logic embedded in the simulation model through a chain of variables or 

events. Furthermore, such an explanation should be reasonable as its attempts to model 

validation are successful and bring some confidence to the results. However, what we 

observed is that conclusions seem to be based on one-scenario design, without evalu-

ating other possible interactions amongst the input factors. 

 

4.5 Conclusions 

The reporting guidelines for simulation-based studies in SE, proposed in this 

chapter, emerged from the analysis of the outcomes of a qSLR and evolved through 

three sequential evaluations. 

In the first two attempts, the perspective-based and the collaborative review, the 

quality focus was on the guidelines’ completeness and correctness. Therefore, the set 

of reporting guidelines evolved in this sense, by increasing the number of guidelines and 

discussion regarding each relevant information to be reported. 

The results from the collaborative review (survey) did not change the set of guide-

lines meaningfully. Major modifications regard additional examples and rewording some 

phrases for better understanding. However, the contributions rest in the positive reviews 

and the fact that not having something new to be added or corrected, we assume the 

guidelines are complete and correct. Still, one may hypothesize whether the proposed 

guidelines are complete and correct just because they are obvious. Nevertheless, we 

showed in the analysis against the technical literature that many relevant information is 

still missing in recent reports. In other words, the reporting guidelines may not be obvi-

ous, but desirable. 
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5 From Threats to Validity to Planning Guide-

lines for Simulation Experiments 

 

In this chapter, we present how the reporting guidelines were evolved 

to the planning perspective for simulation experiments in the context 

of Software Engineering. Additionally, we present threats to validity 

identified in the technical literature and how they could be mitigated 

through V&V procedures and proper experimental designs. This set 

of threats to validity drove the development of novel planning guide-

lines. 

5.1 Introduction 

Apart from the number of issues concerned with the reporting of SBS that led us 

to propose a set of reporting guidelines for such studies in SE (Section 3.3), we also 

observed issues regarding the methodological features. Such issues involve lack of (1) 

definition of research protocols for SBS, since features of the research planning are usu-

ally overlooked when performing SBS; (2) proposal and application of V&V procedures 

for assuring the validity of simulation models; (3) analysis and mitigation of threats to 

validity in SBS, which is strongly related to the validity of SE simulation models; (4) def-

inition of criteria for quality assessment of SBS and the type of evidence we can acquire 

from them; (5) replication in SBS, given the absence of relevant information in the stud-

ies’ reports. 

These methodological issues and challenges motivated us to move forward the 

SBS planning needs to research protocols by starting with the study definition, i.e., the 

research context, problem, goals and questions. However, as we advanced, some issues 

on how to deal with the model validity and potential threats to validity in simulation ex-

periments came up. Thus, with the clear needs of identifying the main and recurrent 

threats to validity in SBS and understanding how they can be mitigated, we primarily 

based our search in the previously obtained qSLR outcomes (Chapter 2). Nevertheless, 

as previously observed in (DE FRANÇA and TRAVASSOS, 2013b), there is no consen-

sual terminology and authors in this field rarely discuss threats to validity using terms 

such as “threats to validity” or related ones. This way, we applied a systematic approach 
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to handle the validity threats descriptions under the same perspective, adopting coding 

procedures, as described in the next section. 

Besides the identification and classification of validity threats, we also performed 

an analysis regarding the model validity and experimental design to support the planning 

issues. The whole procedure is presented in Figure 5-1. 

 

Figure 5-1. General procedure to achieve the planning guidelines (DE FRANÇA and 

TRAVASSOS, 2015). 

As the classified validity threats concern both the model validity and experimental 

design, we performed analyses using the set of V&V procedures for simulation models 

acquired from the qSLR, by matching threats to validity and V&V procedures, and avail-

able knowledge on Design of Experiments (DOE), simulation (KLEIJNEN et al., 2005) 

and classic (MONTGOMERY, 2008). The goal of both analyses is to identify whether 

V&V procedures and DOE can fully prevent simulation experiments from threats occur-

rences. As a result, the planning guidelines (Section 5.4) abstract DOE techniques and 

V&V procedures supporting the identification or mitigation of threats to simulation exper-

iments validity in the context of SE. From the best of our knowledge, no work had pre-

sented threats to validity concerning SBS in the context of SE before. Consequently, it 

reinforces the novelty of the planning guidelines proposed in this thesis. 

 

5.2 Qualitative Analysis 

In this section, we present the secondary analysis performed over the 57 experi-

ments captured in the qSLR by making use of the qualitative procedures borrowed from 

the Constant Comparison Method (CCM) (CORBIN and STRAUSS, 2008). These ex-

periments are distributed over 43 of the 108 research papers, i.e., one paper may present 

more than one experiment. The aim of such analysis is to identify common threats to 

validity across the previously identified studies. Additionally, we performed an ad-hoc 
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review to identify whether other science areas outside SE have already discussed this 

topic, since simulation studies in SE rarely refer to threats to validity using such termi-

nology. In this opportunity, we identified and included in our analysis two research papers 

(DAVIS, EISENHARDT and BINGHAM, 2007) (ECK and LIU, 2008) discussing threats 

to simulation studies validity in the fields of Management Science and Criminology. 

The CCM (CORBIN and STRAUSS, 2008) consists in several procedures inter-

calating both the data collection and analysis to generate an emerging theory from such 

collected data. It is important to mention we have no ambition, at this work, in generating 

theories, but to use the analysis procedures from CCM to support the identification of 

threats to simulation studies validity under the same perspective. 

Concepts stand for the primary unit of analysis in CCM. In order to identify con-

cepts, the researcher needs to break down the data and to assign labels to them. The 

researcher constantly revisits these labels to assure conceptualization consistency. 

Such analytic process is called coding, and it appears in the method in three different 

levels of abstraction and perspectives: open, axial and selective coding. 

Open coding is the analytic process by which data is broken down and concep-

tually labeled into codes. The codes may represent actions, events, properties, and so 

on. It makes the researcher to rethink about the collected data under different interpre-

tations or perspectives. In the open coding, the concepts are constantly compared with 

each other to find similarities and then grouped together to generate categories. On a 

higher level of abstraction, in axial coding, categories are associated to their subcatego-

ries and such relationships are tested against the collected data. This is also done con-

stantly as new categories emerge. Finally, the selective coding consists in the unification 

of all categories around a central core one and other categories demanding further ex-

planation are filled with descriptive details. 

For the data collection, it was necessary to extract additional information from the 

studies: the study environment, whether in virtuo or in silico (TRAVASSOS and 

BARROS, 2003), and the validity threats description (identified as limitations, assump-

tions or threats to validity). The experimental environment is important since in virtuo 

contexts are supposed to be risky, due to the involvement of human subjects. 

First, we extracted the threats to validity descriptions, grouping them by paper. 

Thirteen – out of 43 – research papers contain relevant information regarding threats to 

validity. For the two additional research papers, we intercalated the data collection with 

the analysis of the ones obtained through the qSLR. Different from the SE studies, we 

observed a shared consistency between the used terminology in these papers and the 



54 

 

current terminology as presented in (WÖHLIN et al., 2012), leading us to constantly re-

view back the adopted SE terminology and search for discussions where it is possible to 

recognize threats to validity, limitations or assumptions. 

Afterwards, we performed the initial (open) coding, assigning concepts to chunks 

of the extracted text, using comments in a Microsoft Word document. This way, for each 

new code, we compare to the other ones to understand whether it regards the same 

concept. In Figure 5-2, we present the example of two threats descriptions (A and B). 

 

Figure 5-2. Open coding example, including repeated codes. 

In the right side of Figure 5-2, the codes are assigned to chunks of text describing 

relevant threats aspects. Both descriptions share the code “Poorly defined constructs 

and metrics”. This code lead to a threat defined in the axial code (highlighted text bellow 

the text description). This part of the analysis concerns with the surrogate measures 

defined for the interested constructs, which do not really represent the concepts under 

investigation. 

Furthermore, we reviewed the codes and established relationships among them, 

through reasoning about the threat description, to generate the categories. The catego-

ries stand for the threats to validity. For instance, in Figure 5-3, we present an example 

of an emerged code from the interaction of three other codes. 

 

Figure 5-3. Example of axial coding. 

In Figure 5-3, the inconclusive results regarding software development and the 

use of the model as object of study limit the results to the model by itself, not allowing 
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extrapolating behaviors from the model to explain the real phenomena. It shows one of 

the implications of not having information regarding the model validity. 

Finally, we grouped the open codes into four major categories (axial coding), 

namely conclusion, internal, construct and external validity, based on the classification 

of threats to experimental validity presented by WÖHLIN et al (2012), but that could be 

extended in case of necessity. No selective coding was performed, since the main goal 

was to identify and categorize the threats to validity. 

This way, the main result of this secondary analysis is a list containing 28 poten-

tial threats to SBS validity, labeled using the codes and organized according the classi-

fication proposed by Cook and Campbell, as presented in (WÖHLIN et al., 2012). 

5.3 Threats to Validity 

The following subsections present the identified threats to validity according to 

the classification presented in (WÖHLIN et al., 2012). The title (in bold) for each validity 

threat reflects the codes (categories) generated in the qualitative analysis. It is important 

to mention that we did not analyzed threats to validity for each one of the selected stud-

ies, even being possible to observe other potential threats to validity in these studies. 

However, we decided not to judge them based only in the report and therefore extracted 

those reported ones. For the sake of avoiding repeating threats already discussed in 

other ESE forums, since those threats in principle can be observed in any other sort of 

SE study, we concentrate on threats concerned with in virtuo and in silico experiments 

and not discussed in the SE technical literature yet. 

It is possible to distribute the 28 identified threats to validity into the following 

subsets: conclusion validity (four), internal validity (ten), construct validity (ten) and ex-

ternal validity (four). The SE technical literature has already discussed most of the iden-

tified threats to validity regarding in virtuo studies, which strongly relates to the presence 

of uncontrolled factors of human behavior, typically addressed in internal validity issues. 

Conversely, threats to in silico experiments concentrate more on construct validity. This 

way, one may be tempted to point out this perspective as more critical. However, other 

threats can be more severe depending on the simulation goals. 

5.3.1 Conclusion Validity 

This type of experimental validity refers to the statistical confirmation (signifi-

cance) of a relationship between the treatment and the outcome, in order to draw correct 

conclusions regarding such relations. Threats to conclusion validity involve the use of 

inappropriate instruments and assumptions to perform the simulation output analysis, 

such as wrong statistical tests, number of required scenarios and runs, independence 
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between factors, among others. For instance, stochastic simulations always deal with 

pseudo-random components representing uncertainty of elements or behaviors of the 

real world. Therefore, experimenters need to verify whether the model is able to repro-

duce such behavior across and within simulation scenarios due to the actual model con-

figuration or caused by internal and natural variation. The main threats to conclusion 

validity identified in SBS are: 

 Considering only one observation when dealing with stochastic simulation, 

rather than central tendency and dispersion measures (ECK and LIU, 2008): 

we observed it into in silico context, where the whole experiment happens into 

the computer environment: the simulation model. It involves the use of a single 

run or measure to draw conclusions about a stochastic behavior. Given such na-

ture, it has some intrinsic variation that may bias the results if not properly ana-

lyzed. We present an example of this threat, where ECK and LIU (2008) say, “If 

the simulation contains a stochastic process, then the outcome of each run is a 

single realization of a distribution of outcomes for one set of parameter values. 

Consequently, a single outcome could reflect the stochastic process, rather than 

the theoretical processes under study. To be sure that the outcome observed is 

due to the process, descriptive statistics are used to show the central tendency 

and dispersion of many runs”. 

 Not using statistics when comparing simulated to empirical distributions 

(ECK and LIU, 2008): also observed into the in silico context, this threat involves 

the use of inappropriate procedures for output analysis. It should be avoided com-

paring single simulated values to empirical outcomes. It is recommended to use 

proper statistical tests or measures to compare distributions with a certain level 

of confidence. 

We also observed other threats to conclusion validity regarding in virtuo environ-

ments, for instance, small population sample hampering the application of statistical tests 

(PFAHL, KLEMM and RUHE, 2001), which is similar to the one mentioned by WÖHLIN 

et al (2012) as “Low statistical power”. Besides, we identified the uneven outcome distri-

bution (high variance) due to purely random subjects’ assignment (PFAHL, KLEMM and 

RUHE, 2001) (PFAHL et al., 2003), which is mentioned in (WÖHLIN et al., 2012) as 

“Random heterogeneity of subjects”. 
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5.3.2 Internal Validity 

This type of experimental validity refers to the assurance that the treatment 

causes the outcome, rather than any uncontrolled external factor, i.e., avoid the indica-

tion of false relationships between treatment and outcome when there is none. As the 

experimental setting in SBS often relies on different input parameters configurations, the 

uncontrolled factors may be unreliable data, human subjects manipulating the model 

when performing in virtuo experiments or bias introduction by the simulation model itself. 

Events or situations that may impose threats in these inputs are to skip data collection 

procedures or to aggregate different context data, not giving an adequate training for 

subjects or lacking knowledge regarding the simulated phenomenon, and lack of expla-

nation for the phenomenon occurrence, respectively. Thus, the main internal validity 

identified threats in SBS are: 

 Inappropriate experimental design (missing factors) (PFAHL, KLEMM and 

RUHE, 2001) (PFAHL et al., 2003) (PFAHL et al., 2004) (RODRÍGUEZ et al., 

2006): apart from disturbing factors, the experimental design plays an important 

role on the definition of which variables (both in virtuo and in silico experiments) 

are relevant to answer the research questions. We observed this threat occurring 

only into the in virtuo context, all of them from replications of the same research 

protocol, regarding to unexpected factors related to human subjects manipulating 

the simulation models, such as learning experience provided by manipulating 

simulation models and observing results. It is not common to miss factors at in 

silico environments, especially when simulation models are limited in number of 

input parameters. However, it is important to be cautious when dropping out fac-

tors to simplify the experimental design, as in fractional factorial designs. 

 Simulation model simplifications (assumptions) forcing the desired out-

comes (ABDEL-HAMID, 1988) (THELIN et al., 2004) (MELIS et al., 2006) 

(TURNU et al., 2006) (ECK and LIU, 2008) (GAROUSI, KHOSROVIAN and 

PFAHL, 2009): this is the most recurrent threat reported in the analyzed papers. 

Always identified into the in silico context, it concerns with the simulation model 

itself. In this threat, the simulation model contains assumptions implemented in a 

way that they directly influence the response variables. Either establishing (cod-

ing) the intended behavior or hypotheses as truth directly from the input to output 

variables, or giving no chance to alternative results to occur. For instance, in one 

of the six studies we observed this threat (reported as an assumption) as the 

authors (TURNU et al., 2006) say  
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“In order to introduce the Test-First Development practice into the FLOSS simu-

lation model, we make the following assumptions: (1) The average time needed to write 

a line of production code increases; (2) The number of defects injected during coding 

activities decreases; (3) The debugging time to fix a single defect decreases”.  

In this case, it is possible to observe that the hypotheses (or beliefs) that Test-

First Development productivity for coding decreases, the quality increases, and the 

maintenance time decreases are directly introduced in the model as assumptions. It goes 

in the opposite direction of SBS, where there is a theory with defined mechanism ex-

plaining a phenomenon, i.e., how the interactions among variables occur. In such case, 

there is no room for simulation, since the outcomes are predictable without running sim-

ulations. Such a black box (without mechanisms) approach is the typical configuration 

where in vitro experiments are more suitable. 

 Different datasets (context) for model calibration and experimentation 

(ALVAREZ and CRISTIAN, 1997): it is difficult to realize how external or disturb-

ing factors may influence a controlled computer environment (in silico). Never-

theless, the supporting dataset, often required by the simulation models, may 

disturb the results whether data from different contexts have been compared. 

This is the case when calibrating the simulation model with a specific dataset, 

reflecting the context of a particular project, product, or organization and using 

the same calibration to run experiments for another (different) context. For in-

stance, try to use cross-company data to simulate the behavior of a specific com-

pany. 

We also observed other seven threats to internal validity, regarding in virtuo stud-

ies (PFAHL, KLEMM and RUHE, 2001) (PFAHL et al., 2003) (PFAHL et al., 2004) 

(RODRÍGUEZ et al., 2006), similar to the ones already mentioned in (WÖHLIN et al., 

2012). It is the case of lack of SE knowledge hiding possible implications due to unknown 

disturbing factors, insufficient time to subjects’ familiarization with the simulation tool and 

premature stage of the simulation tool (instrumentation effect). Also, non-random sub-

jects’ dropout after the treatment application (mortality), different number of simulation 

scenarios (instruments) for each treatment and available time to their performing, matu-

ration effect by the application of same test both before and after treatments and different 

level of expertise required by the instruments for both control and treatments groups 

(instrumentation effect).  
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5.3.3 Construct Validity 

This type of experimental validity refers to assuring the experimental setting (sim-

ulation model variables) correctly represents the theoretical concepts (constructs), 

mostly observed into the in silico context, where the simulation model plays the main 

role. Threats to construct validity may occur due to the lack of model variables exactness 

and relationships definition (and their respective equations), representing human prop-

erties, software products or processes, so the collected measures do not actually repre-

sent the desired characteristics. DAVIS, EISENHARDT and BINGHAM (2007) claim the 

nature of simulation models tends to improve the construct validity, since it requires for-

mally defined constructs (and their measurement) and algorithmic logic representation 

for the theoretical mechanism, which explains the phenomenon under investigation. 

However, we could observe some threats to construct validity into the context of SBS, 

which are: 

 Naturally different treatments (unfair) comparison (PFAHL, KLEMM and 

RUHE, 2001) (PFAHL et al., 2003) (PFAHL et al., 2004) (RODRÍGUEZ et al., 

2006): this happens when comparing simulation models to any other kind of 

model not only in terms of their output variables, but also in nature, like analytic 

models. We observed this threat occurring only in the in virtuo context, all of them 

from replications of the same research protocol. 

 Inappropriate application of simulation (PFAHL, KLEMM and RUHE, 2001) 

(PFAHL et al., 2003) (PFAHL et al., 2004) (RODRÍGUEZ et al., 2006): in the in 

virtuo context, it is possible to identify situations where to build the model can be 

more effective than to its use, considering that SBS involves both stages. It is the 

case when the learning level is the response variable and subjects have contact 

with model development issues and understand all details regarding the abstrac-

tion of the phenomenon or behavior. We observed this threat occurring only in 

the in virtuo context, all of them on replications of the same research protocol. 

 Inappropriate cause-effect relationships definition (GAROUSI, 

KHOSROVIAN and PFAHL, 2009): this threat regards the proper implementation 

of the causal relationships between the simulation model constructs explaining 

the mechanisms under investigation. 

 Inappropriate real-world representation by the model parameters 

(GAROUSI, KHOSROVIAN and PFAHL, 2009): the choice of values for the input 

parameters should reflect real-world scenarios, assuming suitable values that 

can be observed in practice and are worthy for the analysis. 
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 Inappropriate model calibration data and procedure (GAROUSI, 

KHOSROVIAN and PFAHL, 2009): it involves, as the previous one, data used to 

perform the study, mainly to instantiate the simulation model, i.e., to calibrate the 

model using data from the corresponding real world. It may cause unrealistic dis-

tributions or equations, scaling the effects up or down. 

 Hidden underlying model assumptions (GAROUSI, KHOSROVIAN and 

PFAHL, 2009): if assumptions are not explicit in the model description, results 

may be misinterpreted or bias the conclusions, and may not be possible to judge 

at what extent they correspond to the actual phenomena.  

 Invalid assumptions regarding the model concepts (STOPFORD and 

COUNSELL, 2008): it regards the validity of the assumptions made in the model 

development. Once they are invalid, the conclusions may also be corrupted. 

Every assumption made on a simulation model should be checked later. To make 

assumptions facilitate model development by reducing the model complexity and 

scope, but may also impose not observable conditions in the real application con-

text. 

 The simulation model does not capture the corresponding real world build-

ing blocks and elements (GAROUSI, KHOSROVIAN and PFAHL, 2009): it con-

cerns with the model compliance with real world constructs and phenomenon 

representation. If there is no evidence of theoretical mechanism’s face validity, it 

is possible that the simulation model has been producing right outcomes through 

wrong explanations. 

 The lack of evidence regarding model validity reduces the findings only to 

the simulation model (HOUSTON et al., 2001): it regards to SBS where a sim-

ulation model is chosen without proper information about its validity. Therefore, 

no conclusion can be draw about the abstracted phenomenon, but only about the 

model itself. Hence, the simulation model plays the role of an object of study, 

rather than an instrument. As an example, HOUSTON et al (2001) say: “Though 

the experimentation described herein was originally undertaken with the idea that 

it might reveal something about the software production systems modeled, the 

results do not support conclusions about software development [inconclusive re-

sults]. Therefore, we refrained from making inferences about software develop-

ment and drew conclusions only about the models. Since our findings pertain 

only to the models, no particular level of model validation has been assumed [lack 

of validity evidence].” 

We can also identify inappropriate measurements for observed constructs in SBS 

(STOPFORD and COUNSELL, 2008). WÖHLIN et al (2012) has already reported it as 
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“inadequate preoperational explication of constructs”, and it was the only threat observed 

in both in virtuo and in silico contexts.  

5.3.4 External Validity 

This type of experimental validity involves the possibility of generalization of re-

sults outside the experimental settings’ scope. In simulation studies, it is particularly in-

teresting to know if different simulation studies can reproduce similar results, called sim-

ulated external validity (ECK and LIU, 2008) or whether they can predict real-world re-

sults, called empirical external validity (ECK and LIU, 2008). For instance, a software 

process simulation model not being able to reproduce the results observed in one organ-

ization or not being able to obtain consistent results across different calibration datasets. 

Thus, the five identified (all concerned with in silico studies) threats to external validity 

are: 

 Simulation results are context-dependent, since there is a need for calibra-

tion (GAROUSI, KHOSROVIAN and PFAHL, 2009): simulation modeling in-

volves the definition of both conceptual and executable models. Therefore, to run 

simulations, the model needs to be calibrated using data representing the context 

in which the experimenter will draw conclusions. Results are as general as the 

supporting data. In other words, simulation results are only applicable to the spe-

cific organization, project, or product data. 

 Simulation may not be generalizable to other same phenomena simulations 

(ECK and LIU, 2008): this threat refers to the emulation of a theoretical mecha-

nism across different simulations. Such simulations may differ in terms of calibra-

tion and input parameters, but the results are only generalizable if they appear 

similar in different settings. In other words, the mechanism has to explain the 

phenomenon under different configurations to achieve such external validity. 

 Simulation results differ from the outcomes of empirical observations (ECK 

and LIU, 2008) (GAROUSI, KHOSROVIAN and PFAHL, 2009): when simulation 

outcomes differ sufficiently from empirical outcomes, we may say that simulated 

results have no external validity. One example of such threat in (GAROUSI, 

KHOSROVIAN and PFAHL, 2009): “First, the results are only partly consistent 

with empirical evidence about the effects of performing V&V activities. While code 

quality can always be improved by adding V&V activities, it is not always true that 

adding V&V activities in earlier development is better than adding them in later 

phases”. 
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 Simulation model not based on empirical evidence (DAVIS, EISENHARDT 

and BINGHAM, 2007) (RAHMANDAD and WEISS, 2009): if the model constructs 

and propositions are all conjectural, i.e., with no ground in field studies or empir-

ical experiments, integrally or partially, it is very important to invest effort on vali-

dation procedures, since the model itself cannot show any external validity 

(DAVIS, EISENHARDT and BINGHAM, 2007). 

5.4 Planning Guidelines 

Many of the reporting guidelines (section 3.3) are also useful on the planning 

perspective. In the sense, model experimentation should also involve aspects such as 

research context (SG2), problem formulation (SG3), goals (SG4), research questions 

(SG5) and hypothesis definition (SG6), which are clearly part of a study protocol, includ-

ing simulation studies. The same can be said for the feasibility analysis of a simulation 

study (SG7), as well as the model description (SG9), reflecting the full grasp of the ob-

servation instrument. However, five guidelines (SG1, SG8, SG20, SG21, and SG22) ex-

clusively focus on reporting aspects and do not contribute to the planning issues. The 

remaining aspects covered in the reporting guidelines are also important for planning 

activities, including the definition of valid scenarios and experimental design, aiming at 

avoiding potential threats to validity. Already knowing these potential threats in advance, 

we needed to identify approaches to handle them. 

The approaches selected to handle the validity threats presented in the previous 

section include V&V procedures and DOE techniques. The main reason for selecting 

these approaches is that the identified threats concern with model validity and experi-

mental design issues. The V&V procedures concern mainly with threats to construct and 

internal validities. The explanation for this assumption is that the successful application 

of V&V procedures to simulation models allows identifying and removing defects regard-

ing model constructs, assumptions and theoretical logic, enabling the mitigation of po-

tential threats in advance and, consequently, taking more confidence to the simulation 

experiment results. Additionally, DOE techniques can support the arranging of factors, 

as well as the investigation of effects under multiple runs. 

The result of analyzing how the V&V procedures and DOE techniques could mit-

igate the validity threats presented in Section 5.3 are presented as suggestions or the 

planning guidelines for simulation experiments in SE, as summarized in Table 5-1. They 

are presented in the order we analyzed them, grouped according to their concern. 

Hence, their order has no relevant meaning. 

Mainly, the planning of a simulation experiment concerns with the setting up of 

the experiment so one is capable of making correct and reliable inferences from the 
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outcomes. For that matter, all decision-making should consider the potential validity 

threats on performing the experiment in one way or another. This is what the guideline 

SG32 states in some sense.  

Table 5-1. Planning guidelines overview (DE FRANÇA and TRAVASSOS, 2015). 

ID Guideline Statement 

Model Validity 

SG23 Make use of Face Validity procedure (involving domain experts) to assess the plausibility of both 
conceptual and executable models and simulation outcomes, using proper diagrams and statistical 
charts as instruments respectively. 

SG24 Support model (causal) relationships, as much as possible, with empirical evidence to reinforce 
their validity and draw more reliable conclusions. 

SG25 Always verify model assumptions, so that the results of simulated experiments can become more 
reliable. 

Experimental Design 

SG26 Use results from Sensitivity Analysis to select valid parameter settings when running simulation 
experiments, rather than model ‘fishing’. 

SG27 Consider to use as factors (and levels) besides the simulation model’s input parameters when 
designing the simulation experiment, as well as internal parameters, different sample datasets, and 
simulation model versions, implementing alternative strategies to be evaluated. 

SG28 When dealing with simulation models containing stochastic components, determine the number of 
runs needed for each scenario, to capture phenomenon variance. 

Data Collection and Use 

SG29 Keep track of qualitative data along with quantitative data. It is also important to record data con-
textual information. 

SG30 Make sure that both calibration and experiment datasets came from the same population. 

Output Analysis 

SG31 Make use of proper statistical tests and charts to capture outcomes from several runs and to quan-
tify the amount of internal variation embedded in the (stochastic) simulation model, increasing the 
precision of results. 

Threats to Validity 

SG32 Consider checking for threats to the simulation study validity before running the experiment and 
analysing output data to avoid bias. 

SG33 Be aware of data validity when comparing actual and simulated results: compared data should 
come from the same or similar measurement contexts. 

 

Primarily, changing the arrangement of factors and levels, the number of simula-

tion runs/trials or the output analysis instruments affect the results or how they can be 

observed. Moreover, changing these experimental properties after knowing the out-

comes introduce bias, triggering a search for the desired results due to methodological 

problems.  

Simulation results can be severely questioned if no evidence regarding the sim-

ulation model validity is given. Among several existent V&V procedures, Face Validity is 

one that can support the identification of threats to construct and internal validity. To 

expose the simulation model and its behavior to experts enables the identification of 

inappropriate constructs or relationships definition, as well as the possibility of reaching 

desired results by an unrealistic configuration of input parameters.  

Model assumptions are also risky factors if not verified and may also affect inter-

nal and construct validity. As simulation models are abstractions over a system/pro-

cess/phenomenon, the modeler assumes some constraints in the model validity. In other 
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words, the modeled behavior is valid under certain conditions and scope. Those condi-

tions need to be clear and explicit during all SBS, so they can be verified against the 

supporting data and results. 

On the other side, external validity can be achieved by supporting the model’s 

mechanism or causal relationships with empirical evidence. The existence of other ex-

perimental studies showing the pertinence of cause-effect relationships between model’s 

variables reinforces that the outcomes are generated through a sound set of interactions 

among variables. 

All these verification and validation may (and should) be performed before de-

signing the simulation experiments that will answer the research questions. However, 

the validation process also involves running experiments (also called validation experi-

ments), which should be properly designed as well. For that, the Statistics discipline 

called DOE offers several techniques that can support how to arrange factors and treat-

ments in order to accomplish the research goals.  

Techniques like Sensitivity Analysis can be useful to determine the input param-

eters, by performing small and large variations on the interest factors to understand how 

they influence the outputs. There are several designs for Sensitivity Analysis available in 

the simulation technical literature (KLEIJNEN, 2005). For some simulation models, the 

input parameters are not enough to design the simulation experiment and accomplish 

the research goals. In these cases, non-trivial factors like datasets for calibration and 

different versions of the same model may be considered.  

Still on experimental design, stochastic models require several simulation 

runs/trials for the same input configuration given the internal variation caused by pseudo-

random variables. Therefore, to determine the adequate number of runs that can reveal 

confident results requires the analysis of how close the results are from the expected 

variance. LAW and KELTON (2000) present a procedure on how to perform such anal-

ysis.  

Apart from model validity and experimental design, the experimenter should also 

take care of the supporting data. If the model needs to be calibrated, the dataset sup-

porting it and the scenario configurations defined in the experimental design need to 

represent the same context. In other words, the values should be meaningful for the 

scope under investigation.  

Data collection for simulation should not only concern with the input and calibra-

tion data. It is important to have and use qualitative data explaining or clarifying assump-

tions and system behavior. Qualitative data can also support the output analysis, when 

dealing with unexpected patterns and results.  
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For the output analysis, the selection of proper instruments needs to address their 

assumptions on how the data is distributed and organized. For instance, parametric sta-

tistical tests and methods for calculating confidence intervals assume normally distrib-

uted and homoscedastic data. Besides, comparisons involving actual against simulated 

data should be performed under similar contexts, assuring fair comparisons and using 

proper instruments to perform cross-scenario analysis, and quantifying the amount of 

variation in multiple runs.  

5.5 Conclusions 

In this chapter, we presented a secondary analysis over the outcomes of the 

qSLR under the perspective of threats to validity. The main result from this qualitative 

analysis consists on the identification of threats to SBS validity. It is possible to observe 

that some threats are applicable only to in virtuo studies, due to the presence of human 

subjects. However, we could also identify threats to construct validity in the in silico con-

text, contradicting the idea that simulation modeling improves this type of validity (DAVIS, 

EISENHARDT and BINGHAM, 2007). The main reason for that lies on the creative and 

human-intensive nature of modeling tasks, in which the researcher abstracts character-

istics and behaviors of interest from his observations for the simulation model. 

  Additionally, we understood these identified threats should be mitigated in some 

sense. For that, we analyzed their main concerns and which kind of approach could be 

used to reduce the risks. Therefore, threats concerning with simulation model validity 

were associated to V&V procedures and the ones concerning with experimental design 

were associated to DOE techniques. This matching was performed by reasoning about 

the problems and the potential solutions, which derived the planning guidelines as sug-

gestions for mitigation. However, we still need investigation on the effectiveness of these 

approaches to mitigate such validity threats. 
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6 The Evaluation of the Simulation Based Stud-

ies Planning Guidelines  

In this chapter, we present a feasibility study concerned with the plan-

ning guidelines for simulation experiments in Software Engineering. 

This study followed a qualitative approach for the observation and 

analysis of how the proposed guidelines can be applied to the plan-

ning activities of a simulation experiment, in which an organization 

scenario and a pre-defined simulation model were given as input. 

6.1 Study Protocol 

The planning guidelines are based on findings from the qSLR (Section 2.2) and 

in the consolidated technical literature on Simulation and SE experimentation, as de-

scribed in Chapter 5. They aim at guiding researchers in the earlier stages of simulation 

experiments, i.e., the study definition and planning, so that relevant information can be 

produced until the deployment of a complete report. For that, such guidelines are in-

tended to drive the elaboration of simulation experiment plans, identifying a priori and 

eventually mitigating threats to the experiment validity, besides promoting a coherent 

plan, in which the planning information is logically organized by following a pre-defined 

structure.  

As the previous evaluations (Chapter 4) covered only the reporting perspective, 

the planning perspective still needs external evaluation regarding their application to cap-

ture their effectiveness and perceived usefulness. The simulation guidelines under eval-

uation encompass both the ones sharing planning and reporting guidelines from Table 

3-1 and the planning guidelines presented in Section 5.4. 

6.1.1 Research Goals and Questions 

The research protocol has been designed to evaluate the proposed guidelines 

and its main evaluation goal is presented in Table 6-1. As it is the first effort on the 

assessment of such planning guidelines, our purpose relies on the characterization of 

their use under five perspectives (effectiveness, coverage, coherence, perceive useful-

ness and ease of use), as described in Table 6-1. 
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Table 6-1. GQM goal definition 

Purpose   

Analyze Planning guidelines for simulation experiments 

For the purpose of Characterize 

Perspective  

With respect to - Effectiveness: identification of threats to validity7 reported in the 
study plan; 
- Coverage: information contained in the plan; 
- Coherence: logical chain of plan sections; 
- Perceived usefulness: opinions whether the guidelines effectively 
support the plan elaboration; 
- Ease of use: explicitness, understanding and application. 

From the point of view of  Software Engineering graduating students 

Environment  

In the following context Grad students engaged in the Experimental Software Engineering 
course at COPPE-UFRJ optionally using the proposed guidelines to 
support the planning of a simulation experiment. 

 

The research questions, based on the goal definition from Table 6-1, are: 

RQ1: Do the planning guidelines for simulation experiments enable the capacity 

of identifying threats to validity in the planning stage? 

RQ2: Do the planning guidelines for simulation experiments promote the elabo-

ration of a study plan containing the relevant aspects? 

RQ3: Is it possible to observe logical chaining among the sections of the simula-

tion experiment plan when using the set of guidelines for simulation planning? 

RQ4: Do the planning guidelines for simulation experiments effectively support 

the elaboration of the study plan? 

RQ5: Are the planning guidelines for simulation experiments clear, ease to un-

derstand and use? 

6.1.2 Study Procedure and Instruments 

This evaluation study follows a qualitative approach, in which researchers ob-

serve subjects in the elaboration of a simulation experiment plan with previously defined 

problem and general goal. The researchers observe the accomplishment of planning 

tasks through deliverables, namely the elaborated study plan for the simulation experi-

ment, the reviews of these plans, and notes during a Focus Group (FG) session. 

We selected the qualitative approach since we have a small sample of eight grad-

uate students, hampering the use of statistical analyses, and due to the effort required 

                                                

 

7 Only threats to validity explicitly reported in the plans are considered, excluding any other. 
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to perform trials using control groups or additional treatments (for instance, other set of 

guidelines). Finally, we are interested in characterizing the planning guidelines applica-

tion without assuming any initial hypothesis. 

The execution procedure for the study is organized according to the stages se-

quentially described in Table 6-2. The execution starts with two classes on simulation in 

the context of ESE and SD approach. The first is a regular class in this course and the 

second one we added as part of training, on which all students are allowed to engage it. 

The main task in this study consists in the elaboration of a study plan for a simulation 

experiment in the domain of software project management.  

It is important to mention that during stage 4 (step 2 in Table 6-2, plan elaboration) 

the subjects are free to use or not the proposed set of guidelines, since we did not as-

sume they are all applicable and useful in the given context. Additionally, the subjects 

are free to use any other source of information.  

The FG approach was selected instead of using feedback questionnaires for the 

evaluation of perceived usefulness and ease of use, such as (DAVIS, 1989). The justifi-

cation concerns with the possibility of understanding the existing difficulties in the guide-

lines application and promoting a group discussion regarding the perceived usefulness 

and ease of use for the study context and possible improvement opportunities. Moreover, 

FG offers stimulating techniques for those feeling intimidated by interviews or feeling 

their opinion or experience are not relevant enough. 

Besides the Consent Form (APPENDIX A) and the Subject’s Characterization 

Form (APPENDIX B), we used as instruments: 

 Slides presented in both classes, making no reference for the guidelines; 

 Guidelines for simulation experiments: Technical Report containing the set of 33 

guidelines involving both planning and reporting perspectives, each of them in-

cluding discussions and examples from the technical literature. In this set, only 

28 guidelines refer to planning issues. 

 Brief specification of the simulation model proposed by (CHERNOGUZ, 2011); 

 The executable simulation model, coded for the Vensim tool; 

 The Vensim PLE tool, available at www.vensim.com;  

 Template for the study plan: a document containing fill-in-the-blanks sections for 

a general purpose study plan (APPENDIX C); 

 Discrepancies form for the reviews; 
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Table 6-2. Study execution procedure 

Stage 1 – Recruitment and Subjects’ Characterization 

In this first stage, the students engaged to the ESE course are invited to volunteer 
themselves to participate in the study. Students interested in attending the study 
should read and sign the Informed Consent Form (APPENDIX A) and fill in the Sub-
ject’s Characterization Form (APPENDIX B). This stage should happen after the Sim-
ulation Based Studies in Software Engineering classes. 

Stage 2 – Training in the Simulation Environment  

Each subject should receive the simulation model specification, proposed by 
(CHERNOGUZ, 2011), as well as one executable version of the model for the Vensim 
PLE. Furthermore, each subject receives the set of guidelines to support the planning 
of simulation experiments. Besides, each subject needs access to a computer with 
the Vensim PLE installed, along with the executable simulation model. 

Stage 3 – Preparation 

All tasks in the context of this study should be individually performed. 
The subjects need to read the following resources (available in the course’s  web 
portal): 

1. The proposed scenario for the study: it is composed by the context descrip-
tion, problem definition and general goals; 

2. Simulation model specification and the full paper (CHERNOGUZ, 2011); 
3. Set of planning guidelines for simulation experiments in the context of SE. 

Stage 4 – Execution 

1. The subject should read the proposed scenario containing the problem de-
scription and the general goal for the simulation experiment to be planned, 
and begin the study plan elaboration (according to the available template for 
study plans in APPENDIX C), using both the simulation model and the set of 
guidelines as supporting instruments. 

2. When elaborating the study plan, the subject should identify and describe 
relevant aspects for the study plan and record such information in the plan 
(MS Word template for the study plan). For each section of the plan, the sub-
ject needs to inform which guidelines were used to support the elaboration of 
that section. Thus, each subject should deliver the document containing the 
study plan and the references. 

3. After delivering all study plans, each subject will peer review one plan elab-
orated by another subject, still using the planning guidelines to support the 
identification of possible issues. For this review, it is needed that the reviewer 
fills a discrepancy form (APPENDIX D). It is extremely important that subjects 
do not discuss the reviewed plans among themselves.  

Stage 5 – Focus Group 

After the plans elaboration and review, the subjects will engage a focus group to 
discuss some topics related to the study. 

 The groups will be organized based on subjects’ characterization (level of in-
struction, both SE and simulation experience) and by their performance on 
the planning tasks. 

 Not having any drop out, two groups of four subjects will compose the focus 
group.  

 We defined two phases. In the first phase, we organized the groups in a role-
play design using lovers and haters roles, in which lovers should argue in 
favor of the guidelines and the haters against them. 

 Ten planning guidelines were selected for the discussion. 

 The second phase consisted of the identification of improvements opportuni-
ties, but playing no role at this time.  

 



70 

 

6.1.3 Proposed Scenario 

As input, we provided an organizational scenario (detailed scenario is described 

in APPENDIX D) under which the simulation experiment should be planned. In summary, 

it describes an environment of software development organization, engaged on its prod-

ucts and processes improvement, which aims at continuously investing on practices ca-

pable of returning positive results in terms of quality and cost. 

The problem concerns repeatedly delays on product deliveries, causing losses 

on company relationship with clients and reputation, as well as financial losses. Delayed 

projects are characterized by the low number of experienced developers in the project 

beginning when compared to novices. Besides, an initial investigation, by the company, 

revealed that when a project reaches about 30% of its estimated progress and the project 

is considered to be late, managers add more work force to the project. However, such 

practice has not succeed in these projects. Besides, it increases the costs regarding 

additional workforce.  

In this scenario, the subject is encouraged to give a diagnostic in a short period, 

explaining the reasons for the delays and additional costs and possibly presenting a fea-

sible solution to reduce the losses in future projects. 

The observed effect on the organization reminds the behavior described by Fred-

erick Brooks (BROOKS, 1975): “adding manpower to a late software project makes it 

later”. Such behavior is called Brooks’ Law. Furthermore, understanding that the organ-

ization required an investigation in short time and there is some historical data available 

for the analysis, a feasible alternative is to conduct simulation-based experiments to un-

derstand the behavior influencing the delivery time and to test possible solutions. 

The simulation model to be used as observation instrument for the phenomenon 

is proposed in (CHERNOGUZ, 2011). Figure 6-1 presents the causal model for the 

Brooks’ Law reference behavior. The description of input, intermediate and output vari-

ables are available in the APPENDIX D. 
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Figure 6-1. Cause-effect diagram for the Brooks’ law [adapted from (CHERNOGUZ, 2011)] 

6.1.4 Focus Group Methodology and Planning 

Our FG methodology includes specific activities, as presented in (KONTIO, 

BRAGGE and LEHTOLA, 2008). Additional activities and steps were also included, since 

we understand the FG method not only as a group dynamics, but also as a primary study. 

Thus, general aspects regarding primary studies such as object of study and goals defi-

nition, as well as planning assessment and information packaging activities (MIAN et al., 

2004) were included in the FG process, as described in Figure 6-2. 

 

Figure 6-2. Adapted FG process (DE FRANÇA et al., 2015) 
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The process consists in six major activities. During the research definition, the 

researcher identifies the research problem, questions and context, and the rationale for 

selecting the FG method, enabling to verify its suitability regarding the information needs 

and the environment for the study. After that, in planning, the researcher defines the FG 

strategy and design, i.e., participants and moderators, group settings and design of the 

participants’ interactions. All planned information needs to be double-checked, so the 

strategy and design of the study comply with the research problem and goals. If required, 

these activities should be repeated until the planning is ready for the execution. 

In the execution of the FG session, the moderator needs to ensure the involve-

ment of all participants and to take notes of contributions that may help answering the 

research questions. Finally, the last activities include the analysis, reporting and pack-

aging of all collected data, including the session context and potential treats to the study 

validity, so the researcher is able to triangulate data and make inferences about the ob-

ject of study. 

The FG participants’ selection followed the sample from the study. Based on the 

subjects’ characterization and experience in the planning tasks, we designed the FG in 

two subgroups of four subjects. Ten – out of 33 – guidelines were selected for discussion 

due to time constraints: the nine less used in the plans elaboration and review, and the 

most used one was selected as control (SG12) for analysis purpose. The control is used 

to start the discussions, since all subjects seem to be familiar with it. Later, we also used 

it to verify how the previous usage of the guideline influences the amount of discussion 

during the session. 

The planned design organizes discussions in two stages. In the first stage, the 

groups are organized in a role-play design using lovers and haters roles, in which lovers 

should argue in favor of the guidelines and the haters against them. The second stage 

consists in identifying improvement opportunities without playing roles. Moreover, we 

adopted the label generation technique (COLUCCI, 2007), which uses small pieces of 

paper (post-its in our study) in which subjects write down their individual or consensual 

arguments and post them on the board. The board is divided into four sections where 

subjects have to use post-its of different colors (Figure 6-3) for their arguments. Two 

sections for subjects playing the lovers, each of them concerning one characteristic un-

der evaluation: perceived usefulness and ease of use. Other two sections are reserved 

for subjects playing the haters. Each row concerns only one guideline under discussion. 
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Figure 6-3. FG board for the study (DE FRANÇA et al., 2015). 

Following the design, the strategy consisted in presenting to the participants how 

the FG should work through slides containing the descriptions of each planning guideline 

under discussion at a time. Next, the subgroups (lovers and haters) discuss internally 

and post their arguments on the board, according to their roles. Later, the subgroups 

were encouraged to read their arguments and discuss them one against the other. After 

discussing each guideline, in the next stage, subjects posted their opinions regarding 

improvement opportunities w.r.t. perceived usefulness and ease of use. 

In order to conduct the FG session, three researchers were involved in the ses-

sion, playing different roles. One coordinator drove the discussions to keep the focus. In 

parallel, two additional researchers were taking notes: one responsible for collecting dis-

cussions and arguments regarding the usefulness and ease of use for each guideline, 

and the other researcher was responsible for capturing subjects’ behaviors regarding the 

FG dynamics and the role-play design. Therefore, this last researcher captured behav-

iors like ironic arguments, laughs, change of mindset, consensus reaching, and other 

behaviors that could reveal how strong their arguments are in favor or not of the planning 

guidelines.  

For data analysis, we need to take the answers and discussions in the FG ac-

cording to the notes capturing the multiple perspective (post-its and notes from two ob-

servers) to analyze the accomplishment of the research goals. 

Finally, an extra researcher helped on the planning assessment by reviewing the 

plan and checking for threats to validity. 
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6.1.5 Analysis 

A systematic procedure needs to be defined to analyze the outputs, which in-

volves the simulation experiment plan, the discrepancies from the review and the focus 

group discussions. First, such procedure should support the evaluation of the quality of 

data. Second, it supports the analysis regarding the outcomes to understand the effects 

from the guidelines application. This way, the following stages compose the analysis 

procedure: 

1. General evaluation of data quality: by fully reading the simulation experiment 

plans, the researcher should be able to verify whether their content information 

are really related to the proposed scenario for the experiment and to the adopted 

simulation model (CHERNOGUZ, 2011).  

2. Effectiveness: regards section related to results validity and the analysis of their 

correctness in terms of classification and expression of actual threats to validity 

in the proposed context. 

3. Coverage: regards the subject’s indications of guidelines supporting the elabo-

ration of each section of the plan. 

4. Coherence: regards the correct reviews in which the subjects point out the lack 

of logical chaining among different sections of the plan; 

5. Perceived usefulness: regards the answers and discussions in the focus group, 

according to the notes capturing the multiple perspectives (post-its and notes 

from two observers). 

6. Ease of use: regards the answers and discussions in the focus group, according 

to the notes capturing the multiple perspectives (post-its and notes from two ob-

servers). 

6.2 Study Execution 

After defining the study protocol, we scheduled the two simulation-related classes 

and carefully removed information regarding the planning guidelines and other infor-

mation that could potentially bias the elaboration or review of the plans. 

The first class was concerned with an overview of computer simulation concepts 

and how they have been applied to SE studies as an approach to support experimenta-

tion, including simulation studies taken from the SE technical literature. In the second 

class, we presented constructs and formalisms of System Dynamics, model examples, 

and the basics to use the Vensim PLE tool.  

All eight students engaging the course volunteered to participate in the study, i.e., 

signed and filled the informed consent and the characterization form. An overview is 

given in Table 6-3. In summary, only one subject declared experience with discrete-event 
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simulation. The other seven had no experience in any simulation approach. Regarding 

their experience with software development (in Industry and Academia), two of them 

were highly-experienced (participating in more than seven projects and above 5 years of 

experience, three with some experience (three projects and three years of experience) 

and three had low-experience. Regarding software process expertise, just one subject 

had high-experience. 

Table 6-3. Subjects’ Characterization. 

Characteristic Level Number of subjects 

Experience in Software Development 

High 2 

Medium 3  

Low 3 

Experience in Software Processes 

High 1 

Medium   1 

Low 6 

Experience in Simulation 

High 0 

Medium 0 

Low 8 

 

For the elaboration stage, we sent individual e-mails containing the instructions 

and all the instruments are available in the learning web environment (Moodle) usually 

used in the ESE courses. At this stage, the subjects had two weeks to work on the sim-

ulation experiment plan. After that, they sent the plans back and we distributed them to 

reviewers. The criteria adopted for the assignment are: (1) the reviewer could not review 

his own plan; (2) evenly assign subjects that used the proposed guidelines to elaborate 

the plan; and (3) evenly assign subjects that did not use the guidelines. This way, we 

sent the instructions individually by e-mail again containing also the plans to be reviewed 

and the discrepancies form. For that, the subjects had one week to perform the reviews. 

After the reviews, we sent back the discrepancies for the authors, so they could improve 

their plans for later execution and analysis.  

Finally, we performed the FG three weeks later. The meeting took three hours 

and a half. Usually, FG are undertaken in a period of 3 to 4 hours to avoid participants 

being exhausted (KONTIO, BRAGGE and LEHTOLA, 2008). This time constraint forced 

us to reduce the scope of observations w.r.t. which planning guidelines should be dis-

cussed. Hence, as mentioned before, we estimated 10 guidelines to be discussed in the 

meeting. We firstly assumed the planning guidelines explicitly mentioned in the elabo-

rated plans and review (Section 6.3.1) as having some indication of usefulness. This 

way, we selected the guidelines not used in, at least, one of the stages. In other words, 

we selected the less used planning guidelines from Figure 6-4, which presents an ag-

gregated view of the guidelines (from SG2 to SG33, excluding the reporting ones) usage 
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from both elaboration and review steps across eight (8) plans. The main reasoning is to 

understand why they were not used.  

 

Figure 6-4. Overall usage including both elaboration and review stages 

During the execution, we faced minor problems with respect to what we have 

planned: a few late deliveries (one day late), two subjects did not use the guidelines to 

support the reviews, and one subject did not inform which guidelines were used in each 

section of the plan, hampering the analysis of coverage for this case.  

In the beginning, both subgroups had one subject not engaging the discussions. 

Therefore, the moderator asked them to contribute with their experience, whether they 

have similar experience when compared to other subjects. This sort of intervention was 

performed every time a subject was perceived to not contribute with the discussions. 

As it was the first to be discussed, the guideline selected as control (regarding 

experimental design) worked also as an attempt to motivate the subjects to join the dis-

cussions, since it was the most used one. In terms of intensity of discussions, the previ-

ous contact with each guideline does not seem to influence that, as the first guideline 

discussed was the most used one with equivalent amount of arguments when discussing 

other initial guideline. However, the last guidelines had less discussion due to subjects’ 

exhaustion to the long session. 
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6.3 Results 

With the plans and reviews for the analysis, the first analysis is concerned with 

the guidelines’ usage, i.e., which subject used the given planning guidelines and for what. 

In general, we observed and confirmed by explicitly asking the subjects that 6 out 

of 8 adopted the proposed guidelines to support the elaboration and review of the simu-

lation experiment plan. Two of them did not use the planning guidelines neither for elab-

oration nor for review, even knowing their use for reviewing was required. Besides, one 

of these six subjects did not report which guideline was used to support the elaboration 

of each section of the plan, but the subject detailed the guidelines used to support the 

review. Therefore, we can only make general assumptions for this case regarding the 

guideline application. 

The following subsections present the results under different perspectives, as in 

the goals definition (Table 6-1), using both quantitative and qualitative data collected 

during the study execution and analysis. 

6.3.1 Guidelines Coverage 

As mentioned before, we consider coverage as the amount of planning infor-

mation supported by the guidelines, according to the subject’s indication. In this sense, 

we expected that the subjects could use the guidelines (from SG2-SG33) appearing as 

“1” (applicable) in Figure 6-5 to plan and review the simulation experiment. Conversely, 

they should not concern with guidelines appearing as “0” (not applicable).   

 

Figure 6-5. Usage expectation for the planning guidelines. 
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This way, apart from the exclusively reporting guidelines (SG1, SG8, SG20, 

SG21, and SG22) that are intentionally omitted in radars (Figure 6-5, Figure 6-6, Figure 

6-7 and Figure 6-8), the subject may discard guidelines SG28 and SG30 in situations 

that no random variables are used and no calibration procedure was used for the simu-

lation model, since it intends to be general, respectively. 

For the elaboration stage, the frequency of use for each guideline (from SG2 to 

SG33) is presented in Figure 6-6. The frequency can reach up to five (5), since we have 

two subjects not using the planning guidelines for the elaboration and one not detailing 

which guideline is used in each section of the plan. The usage concentrates on the initial 

guidelines, concerned with the simulation experiment definition (context, problem, goals, 

questions, and others), simulation model description, and experimental design. 

  

 

Figure 6-6. Coverage of Planning Guidelines in the Elaboration Stage 
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guidelines. Second, by considering the unfeasibility of performing such sort of proce-

dures as a potential threat to validity for the simulation experiment, besides addressing 

it in the analysis of results. Therefore, plans not taking guidelines model (SG10) and data 

(SG16) validity into account require more attention regarding the analysis of threats to 

validity.  

At the review stage, the guidelines’ coverage is very similar to the elaboration 

stage. Figure 6-7 clearly presents a recurrent pattern on the guidelines usage: the con-

centration in the initial guidelines. Even having six subjects using the planning guidelines 

as supporting instrument for the reviews, we separate the analysis for the subject that 

did not detailed it for the elaboration, as presented in Figure 6-8, where each guidelines 

(from SG2 to SG33) can be . In general, the use follows more or less the same patterns 

from Figure 6-7. 

 

Figure 6-7. Coverage of Planning Guidelines in the Review Stage 
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Figure 6-8. Planning Guidelines’ Usage for the review Plan 5. 
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Some general observation should be mentioned regarding six plans and reviews, 

since two reviewers did not follow the guidelines to perform the review and no relevant 

content was produced in their review report. For these two cases, reported issues include 

only presentation improvements, misunderstandings and empty sections in the reviewed 

plan. 

In cases that participants followed no guideline to develop the experimental plan, 

it is possible to identify lack of coherence such as redundant or overlapping goals and 

mismatch among sections. However, we could also identify specific issues in this sense 

when authors declared to use the guidelines. 

Ideally, the research plan should contain concise context descriptions, in which 

problem and goals should be grounded. Besides, research questions should be derived 

from the research goals. All this matching allows a coherent plan and makes easier the 

simulation output analysis. In general, the plans presenting coherent sections mostly 

mentioned the use of the initial planning guidelines, from SG2 to SG6. However, one 

reviewer reported a mismatch between the problem definition and the research goals 

and questions. Interestingly, in this case, the participant mentioned the use of SG3 (prob-

lem definition guideline), but did not mention the use of SG4 and SG5, respectively goals 

and questions definition guidelines. This may be the case in which the proposed guide-

lines promoted such effect, but we still need more control to affirm that. 

We identify lack of understanding on hypotheses definition. Subjects do not sep-

arate null from alternative hypotheses. Furthermore, they rarely represent the research 

questions or the experimental design, in the sense that interest variables do not compose 

the hypotheses’ statement. 

The simulation model is usually presented in the simulation experiment plan, de-

scribing its variables and possible input parameters. However, plan 7 (elaborated without 

the guidelines’ support) does not describe the simulation model as an instrument. Be-

sides, as any other instrument, it should be characterized and assessed.  

The experimental design should ideally accomplish the design matrix, determina-

tion of number of trials and output analysis. Actually, we observed interesting experi-

mental designs, exploring a large number of input parameters and values. Two of them 

mentioned factorial designs, and others varied one factor (input parameter) at a time. 

For these cases, the reviews did not capture the most suitable type of design, w.r.t. re-

search goals and questions, for instance. They mostly identified incoherence issues re-

garding research goals or questions mentioning specific variables not used in the exper-

imental design, for example. Nevertheless, we could identify one reviewer pointing out 

an open question about reducing the number of factors for the simulation experiment. In 
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this case, it does not seem to be applicable since it is a deterministic simulation not 

requiring a large amount of runs.  

However, as the reviewers observed, not all the plans presented the design ma-

trix, even when they mentioned the use of the proposed guidelines. In addition, we could 

also observe plans with empty sections regarding execution procedures. The number of 

trials seems to be a general concern, however there is only one rationale regarding how 

such number is determined, which regards the number of combinations given the number 

of factors and levels for the experiment. Such rationale is actually mentioned in the guide-

lines. Moreover, the output analysis, which is a consequence of the adopted design, is 

only mentioned regarding possible instruments for outliers’ removal and statistical tests. 

One possible reason for the lack of planning regarding output analysis is due to clas-

ses/training being given after the elaboration of plans. 

Participants presented few and short discussions regarding limitations and 

threats to validity in the plans. We will not discuss this issue here, but in the next section. 

Finally, as the study followed a qualitative approach, we have no support to con-

firm causal relationships regarding coherence on the elaborated and reviewed plans. 

However, as mentioned before, it is possible to identify points of coherence on the elab-

orated plans and to link them to the aspects discussed in the guidelines, without statisti-

cal significance. Thus, we can interpret it as an indication of logical chaining among sec-

tions happening due to the use of planning guidelines. 

6.3.3 Guidelines Effectiveness 

We defined effectiveness in our study plan as the capacity of identifying threats 

to validity. Six plans containing threats to validity analysis: form 1 to 6. They are dis-

cussed in this section. 

The mentioned threats to validity are unclear, leading to multiple interpretations. 

Besides, all plans present misclassification regarding the types of threats to validity: con-

clusion, internal, construct and external validity. For instance, in plan 4, the participant 

mentioned “the model calibration, by the input parameters setting, may not represent the 

best scenario for the observed project”. This statement is misclassified as a threat to 

conclusion validity, which clearly does not refer to the statistical confirmation (signifi-

cance) of a relationship between the treatment and the outcome, in order to draw correct 

conclusions about such relations. Threats to conclusion validity involve the use of inap-

propriate instruments and assumptions to perform the simulation output analysis, such 

as wrong statistical tests, number of required scenarios and runs, independence be-

tween factors, among others. 
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Recurrent issues are threats to validity concerning the determination of parame-

ters, which may not reflect real conditions, and model calibration. This threat is actually 

strongly related to the planning guidelines SG26, regarding valid parameters, and SG30 

on calibration and experimentation data coming from the same population. However, just 

SG30 was mentioned in the elaboration stage and, since subjects had no information 

about calibration procedures and data collection, these aspects may actually impose 

threats to study validity and authors considered them correctly. On the other hand, the 

model specification presents the allowable range of input parameters. Subjects should 

reflect about them, adopt values close to the organization scenario, and explore addi-

tional scenarios when they realize feasible solutions for the reported problem. Valid val-

ues for input parameters are not only the observed ones, but also additional ones repre-

senting feasible alternatives to the current state of a system or process. 

The input parameters validity is a concern of most experienced participants re-

garding their involvement with SE activities in the Industry. Only experienced subjects 

reported this kind of threat. It reinforces that skills for analyzing threats to validity not only 

depend on Experimental Software Engineering knowledge, but also on domain 

knowledge. 

Seven subjects considered the model as valid. We have some indications of the 

beliefs towards the model validity is based on the existence of a published journal paper, 

which is explicitly mentioned by the author of plan 1. However, the only one highlighting 

model validity as a potential threat did not mention any mitigation action. Therefore, the 

participants ignored guidelines concerning planning activities to reduce threats to valid-

ity. 

Some information regarding the model validity is available in (CHERNOGUZ, 

2011). CHERNOGUZ (2011) presents several tests concerning with the model con-

sistency in response to stepwise changes of input. They considered the model robust 

since it continues to operate despite abnormalities in input, at least within the reasonable 

scope of input assumptions. Furthermore, he explains the model assumptions and many 

perspectives about the Brook’s Law. Such information could be explored in the threats 

to validity section.  

No plan presented the perspective regarding the model validity against the or-

ganizational context. For this case, the conceptual model may be valid, but not repre-

senting the reality of the specific organization. The only concern related to this match 

(model - organization) refers to choosing adequate input parameters. 

Maybe, the lack of instructions regarding specific techniques mentioned in the 

guidelines, such as Sensibility Analysis, Face Validity, Rationalism, as well as proce-

dures for generating the design matrix for the mentioned types of design, discouraged 
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the participants to use such guidelines accordingly. However, the proposed guidelines 

do not mean to be a tutorial on how to plan simulation experiments. Even though, we 

should cite direct resources on how to conduct each referenced procedure or technique. 

Finally, the experimental plans do not mention threats to validity related to the 

experimental design. Missing factors, number of simulation runs, and correlation among 

factors may impose threats to simulation experiments. The only threat mentioning exper-

imental design highlights the possibility of not finding an optimal solution (scenario), due 

to the use of fractional factorial design. However, the reduced number of scenarios by 

using fractional designs should not exclude robust or optimal scenarios.  

6.3.4 Focus Group 

As the FG design is organized to discuss each planning guideline at time, we 

present the results in a separate way. Besides, at the end, we present general contribu-

tions from the second stage, which apply to the whole set of guidelines. 

Overall, eight planning guidelines were considered useful and two as out of scope 

for this study. Six of them were considered useful as checklist as some types of validation 

are often overlooked. This way, we have some indication regarding their usefulness even 

with low usage on the elaboration state, eventually biased by the existence of a refereed 

publication with the proposed model, as mentioned in section 6.3.1. None was consid-

ered easy to use, mainly due to lack of orientation on how to perform specific procedures, 

or by the lack of experts to support with domain knowledge. The first five evaluated 

guidelines had a lot of discussion regarding their usefulness and ease of use, explaining 

scenarios from the simulation experiment and possible alternative ways of applying 

them. Following, we present the results for each guideline in the order they were dis-

cussed during the session. 

SG12. Experimental design (design matrix), including independent and de-

pendent variables and how levels are assigned to each factor should be reported. 

In general, the guideline is claimed to be useful to remind the identification of factors, 

levels and their description using the design matrix, i.e., use it as a checklist. However, 

participants seem to face difficulties on how to perform what the guideline states. In part, 

such difficulty concerns domain knowledge. Besides, they mentioned the use of course’s 

slides and textbooks on experimentation to overcome this. We discussed the possibility 

of such additional information to be already in the planning guideline SG27, since it dis-

cusses characteristics and relevant criteria to select a proper experimental design. The 
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subjects expressed a concern regarding the scattered information across different guide-

lines, and it influences the way the planning guidelines are used. Furthermore, an exam-

ple of how to build the design matrix can also be useful to improve the ease of use.   

SG10. Gather as much evidence as possible regarding the simulation model 

(conceptual and execution) validity. Much has been discussed on how to perform the 

model validation procedures. In this case, the discussions lose focus from what the 

guideline actually states, that is, evidence regarding the model validity. The reason 

seems to be the list of V&V procedures presented in this guideline’s description. How-

ever, such list is presented to illustrate which procedure is often performed on V&V at-

tempts of SE simulation models. This way, the reasoning is that the use of this list could 

make easier the identification of attempts to verify or validate a simulation model in the 

report of simulation studies and, then, it enables to collect the successful attempts. At 

the end of the discussions, the subjects suggested that this guideline should be used as 

a more general one to reorganize the planning guidelines related to simulation model 

validity. 

SG23. Make use of Face Validity procedure (involving domain experts) to 

assess the plausibility of both conceptual and executable models and simulation 

outcomes, using proper diagrams and statistical charts as instruments respec-

tively. This guideline is a real example of what the FG classified as useful, but difficult 

to use. Its usefulness appears on the opportunity of an expert possibly recognizing what 

is being simulated and realizing reference behaviors that can be used as comparison 

baseline, as well as to identify eventual inconsistencies in model behavior. Among the 

hindrances, it is possible to highlight the tradeoff between the effort to perform Face 

Validity and the return w.r.t. the model validity. Furthermore, the experts’ availability to 

perform such procedure can be difficult to dispose. 

SG24. Support model (causal) relationships, as much as possible, with em-

pirical evidence to reinforce their validity and draw more reliable conclusions. This 

is another guideline that is consensually claimed as useful. However, it was criticized 

regarding the ease of finding evidence for causal relationships in Software Engineering. 

However, the guideline mentions “as much as possible”. It reinforces the idea that no 

procedure can assure validity alone. 

SG25. Always verify model assumptions, so the results of simulated exper-

iments can get more reliable. In this case, the arguments in favor of the guideline are 

weak and imposed by the role played by the group, for instance, “it is useful since it 

increases model confidence” and “it is easy to use because of the existence established 

procedures for that”. It is an example of situations we used the third researcher perspec-
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tive, by observing the focus group behaviors such as irony and jokes. The guideline de-

scription mentions V&V procedures to support the verification of model assumptions, 

since they are explicit. In general, this guideline was understood as just another to assure 

model validity, and during the discussions, some concepts needed some clarification. 

The subjects mentioned they would not think on verifying assumptions without the guide-

lines. It may be an indication that guidelines related to model validation need to be reor-

ganized, making explicit which validity perspectives are discussed and that there is no 

unique procedure capable of assure general model validity. 

SG26. Use results from Sensitivity Analysis to select valid parameters’ set-

tings when running simulation experiments, rather than model “fishing”. The sub-

jects playing the “haters” role showed distinct perspectives regarding how to perform the 

Sensitivity Analysis (SA). Even recognizing that SA may be effort and time-consuming 

on its execution and output analysis, it is the main approach for understanding and char-

acterization of phenomena represented by the model. 

SG28. When dealing with simulation model containing stochastic compo-

nents, determine the number of runs needed for each scenario in order to capture 

the phenomenon variance. The subjects understand this guideline is useful, but it does 

not really gives guidance on how to determine the number of required simulation runs 

for stochastic models. We understand it hampers the application of this planning guide-

line. This way, we can include the procedure proposed by LAW and KELTON (2000) on 

the guidelines or a reference for it. 

SG29. Keep track of qualitative data along with quantitative data. It is also 

important to record data contextual information. For this study, this guideline does 

not seem to be useful, either by the lack of relevant qualitative and contextual data or by 

the unfeasibility of collecting them during the simulation study execution. 

SG30. Make sure that both calibration and experiment datasets came from 

the same population. This guideline does not apply to the study under planning, due to 

the simulation model intent to be general-purpose, using no calibration procedure. The 

project context for this model is always defined in terms of input parameters, i.e., the 

calibration data is always the same when compared to the simulation experiment input 

data. For this guideline, it is important to add model characteristics that should be satis-

fied. 

SG33. Be aware about data validity when comparing actual and simulated 

results: compared data must come from the same or similar measurement con-

texts. During the discussion of this guideline, the group was exhausted so the arguments 

presented regarding the guidelines usefulness and ease of use did not advance so far. 
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Even though, both lovers and haters presented consistent arguments regarding its use, 

mainly concerning with external validity issues. 

General contributions to facilitate the guidelines use (second stage). Two 

participants suggested making explicit whether the guidelines apply to the simulation 

model development or experimentation. Such discussion makes sense because simula-

tion-based studies’ lifecycle encompasses both stages. However, the planning guide-

lines meant to be specific for simulation experiments and not the whole lifecycle. Be-

sides, we agree that guidelines related to the study definition, like context, problem, re-

search goals and questions are applicable for both situations.  

In some cases, they mentioned that explicit definitions or concepts (something 

such as a glossary) could help on understanding what the guidelines are stating. Fur-

thermore, they claimed for examples on how to apply each guideline, due to the level of 

abstraction they are discussed. These are the cases where we explicit mention V&V 

procedures and experimental designs for simulation. 

6.3.5 Quality of Elaborated Plans 

Apart from the previous perspectives adopted in the analysis, we also analyzed 

the elaborated plans with respect to their content. This analysis considers the quality of 

each plan based on three criteria: (1) the matching between the study plan and the given 

scenario and simulation model description, (2) correctness of each plan section based 

on the defined goals, and (3) the capability of executing the plan. 

In general, all the simulation plans establish a link with both the organizational 

scenario and model description. Considering the general directions given in the scenario, 

the plans establish at least one goal concerning the number of additional team members 

when the organization perceives the project is late. This is the main problem described 

in the given scenario, but other goals are investigated in the plans. Therefore, research 

questions derived from these goals raised the impact of the team configuration on the 

project schedule.  

As discussed in Section 6.3.1, the produced plans share, in general, some issues 

regarding hypotheses definition. Null and alternative hypotheses, when defined, do not 

relate to each other, i.e., they capture distinct concerns, which clearly denotes two sep-

arate hypotheses with no null-alternative definition. Two study plans correctly present 

null and alternative hypotheses that actually match the research questions and base the 

experimental design.  

Besides other research goals presented across the plans, the variables of interest 

selected as independent variables or factors for the simulation experiment vary a lot from 
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one plan to another. In the simulation model description, we highlight eleven input pa-

rameters (independent variables). It is possible to observe one plan using only one var-

iable as a factor and another one considering all variables. In addition, we observed one 

case selecting an intermediate variable as a factor. However, it is not an input parameter 

for the simulation model and the model user should not modify it. For instance, the vari-

able Total Personnel (Figure 6-1) represents the sum of number of rookies and veterans 

in the project team. In this case, the number of rookies and veterans should be selected 

as factors instead. 

We considered all plans having relevant information to investigate scenarios or 

configurations to keep the project behind the schedule. However, some of them miss 

important factors and it can bring incomplete or incorrect answers for the research ques-

tions. Even worse, for characterization or understanding purposes, they may have no 

relevant result to present at the end of the simulation experiment. 

Another important issue is the selection of non-relevant variables as factors. 

Some variables are more distant from the research question and understanding their 

effects may not contribute to answer the research questions. In other words, the set of 

interest variables should encompass the scope of the research question in terms of sce-

narios, since it may enlarge the effort of analysis.  

For this simulation model (CHERNOGUZ, 2011), many variables have a degree 

of interdependency. It may be the case that some factors (input parameters) do have 

implicit correlations. In other words, the effects of changing two or more factors simulta-

neously can reveal positive interactions, where they complement each other, or negative 

interactions, implying factors to be partial substitutes for each other. This way, experi-

mental designs should test possible interactions among factors and analyze their sensi-

tivity. Nevertheless, except from one plan, no other plan provides an experimental design 

capable of testing such interactions, for two reasons: (1) either plans miss potential cor-

related factors, overlooking one or more relevant factors or (2) the experimental designs 

test one factor at a time.   

The lack of information and precision regarding the experimental design definition 

compromised the executability on half of the plans. Several results can be obtained by 

running the scenarios, since design matrices do not specify which values need to be 

assigned for each factor in each simulation run. The same can be observed for output 

analysis, there is no information regarding how instruments have to be applied to the 

outcomes in order to determine the effects of each factor and identify feasible solutions 

for the investigated problem. One example is the general claim (all plans mentioned that) 
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to the use of box plots in order to identify outliers. However, there is no reflection regard-

ing what could be an outlier in a simulation experiment, using a deterministic simulation 

model.  

The instrumentation for the simulation experiment is not clear in all the plans. In 

general, the authors mention the instruments (mainly, the simulation model and the Ven-

sim PLE tool), but there is no procedure defining their use. It is quite important since the 

Vensim PLE version has several limitations regarding multiple trials execution. 

As all subjects assumed the model as being valid, there is no discussion of threats 

to validity regarding model validation issues. However, the discussed experimental de-

sign issues also represent threats to validity and they were rarely discussed, except for 

the parameters validity and calibration method. Both threats discussed in half of the 

plans.  

Overall, both lack of information and correctness in the plans compromise their 

execution or make their results unreliable. The incomplete stage of some plans can hin-

der the capability of executing them, at least, not executing as planned. Additionally, 

some of these problems were captured in the reviews as mentioned in Section 6.3.1. 

Therefore, for the sections actually supported by the planning guidelines, some of these 

issues could be avoided. Such result cannot be generalized neither for all the guidelines 

nor for all the plans, since the use of planning guidelines was optional to elaborate the 

plans. Besides, the usage of one guideline may require the usage of another, but we 

could not observe this kind of dependency. 

6.4 Threats to Validity 

After the analysis of results, we understand the evaluation as successful in two 

aspects: (1) every focus presents positive aspects regarding the simulation guidelines, 

and (2) several improvement opportunities that can potentially contribute to the guide-

lines’ evolution. These results are constrained by the threats to validity discussed in the 

following subsections. 

6.4.1 Conclusion Validity 

As an observational study, we have no ambition of reaching a quantitative anal-

ysis or showing statistical significance regarding the results. Mainly, our results are ex-

pressed in terms of reasoning. Therefore, our results are limited regarding the conclusion 

validity. 
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6.4.2 Internal Validity 

Our study comprehends the observation through instruments of human subjects 

during tasks involving planning and execution of a simulation experiment. Thus, we need 

an understanding on how the use and application of the proposed guidelines could influ-

ence the quality of a simulation experiment plan, for this context. In general we perceived 

positive aspects regarding the application of the planning guidelines (see Sections 6.3.2, 

6.3.4 and 6.3.5), even with no statistical significance. However, we observed particular 

situations where the use of the proposed guidelines has no effect, which is the case of 

not presenting a design matrix even mentioning the use of guidelines related to it.  

There are possible factors contributing to such adverse cases, including the in-

struments. One of them is the adopted template for the study plan, since it intends to be 

general (no specific study strategy). In this case, the lack of specific sections to fill may 

have discouraged the subjects to add new sections to the simulation experiment plan. 

Actually, we identified no new section throughout the plans. Furthermore, training sec-

tions (classes) avoided, at most, presenting the planning guidelines. However, it was 

unfeasible to not present closely related aspects and concepts.  

Two subjects did not use/read the planning guidelines before the FG meeting, 

which was possible for the plan elaboration, but required for the review. They were the 

ones with lowest participation in the discussions, since they have no previous experience 

on the application of the guidelines. This way, they only realized how the guidelines ap-

plication would be for each case. 

Finally, the existence of a published journal paper influenced the subjects’ opinion 

regarding the simulation model validity. It limited our capacity of observing planning 

guidelines related to several threats to validity, since they assumed these threats are not 

applicable to the simulation model and study. 

6.4.3 Construct Validity  

From the construct point of view, our main threat is the possibility of surrogate 

measures not representing the interest variables, i.e., effectiveness, coverage, coher-

ence, perceived usefulness and ease of use.  

The effectiveness is the most challenging focus to evaluate. Actually, to assess 

the capability of avoiding or identifying threats to validity we need a more controlled con-

text, in which we have previously identified threats (like a thesaurus) for the specific case 

and determine the if the application of guidelines is enough to identify all of them.   
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As the perceived usefulness and the ease of use have a subjective meaning, we 

adopted the strategy of triangulate the data collected during FG (using post-its and notes 

from two observers). 

6.4.4 External Validity 

For this study, we have no expectation of generalizing results from such small 

population and context, since we intend to understand how these guidelines could be 

applied and their effects. 

The guidelines propose orientation for researchers not familiarized with simula-

tion studies on how to plan simulation experiments. The sample population share com-

mon characteristic with the expected population, since they are young researchers with 

no previous experience in simulation studies. 

6.5 Conclusions 

The qualitative nature of the evaluation strategy defined for this evaluation re-

duced the chance of hypotheses testing, but it increased the observation capacity due 

to the variety of sources of information, including the elaborated plans, the reviews, and 

the information collected in the FG dynamics. 

The details on the guidelines’ application were analyzed in micro and macro per-

spectives. In other words, we could identify general and specific issues regarding their 

applicability for the proposed scenario. The study’s results showed positive aspects re-

garding coverage, coherence and perceived usefulness. Besides, we have a limited ex-

perience on capturing their effectiveness, since the identification of threats to validity  

was hindered by the subjects’ assumption regarding the model validity. Finally, the ease 

of use was mainly evaluated based on the guidelines application. As the specifics of V&V 

procedures and DOE techniques are not included in the guidelines discussion, the sub-

jects did not follow the suggestions on their application. 

Specifically about FG, this systematic approach adopted to conduct FG indicates 

its usefulness as an alternative tool to support data collection in SE research (DE 

FRANÇA et al., 2015). Particularly, we observed advantages on exploring strategies to 

stimulate participants on performing the activities involved on the FG dynamics. The 

most significant ones are their commitment to the study and the detailed data regarding 

the participants’ perceptions about how the planning guidelines can be applied. 

We are aware of potential threats to the studies validity, including some we could 

not anticipate. However, we understand that most of these threats are applicable for 

other settings, also involving qualitative methods. 
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In the next chapter, we present the set of guidelines in a joint perspective includ-

ing both planning and reporting as a result of this evaluation. Therefore, we performed 

changes on their organization and clarified some concepts and discussions. 
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7 Guidelines for Simulation Experiments in 

Software Engineering  

In this chapter, we present the results of successive improvements as 

consequence of the performed studies aimed at evolving the guide-

lines for planning and reporting of simulation experiments in Software 

Engineering. We also provide examples from a proof of concept to 

observe the guidelines feasibility.  

7.1 Introduction 

As presented in Chapter 6, we identified many improvement opportunities in the 

proposed set of guidelines for reporting and planning SBS in SE. Possibly, the main one 

regards its organization and presentation. The former separation on reporting and plan-

ning perspectives caused some misunderstandings as to which and when to apply each 

guideline, as well as the observation of multiples guidelines covering the same aspects 

under different perspectives. 

Essentially, this section presents the current version of the proposed guidelines 

as one single set (Table 7-1). Neither theoretical knowledge nor new aspects were 

changed in the guidelines. The modifications include the reorganization of sections and 

guidelines, as well as three unifications we performed with the guidelines SG14 and 

SG28, SG18 and SG31, and SG19 and SG32, since they were closely related. Besides, 

we improved and clarified the statements and discussions, added new examples from a 

proof-of-concept and reviewed the whole text. The proof-of-concept consists on planning 

and executing a simulation experiment focused on software evolution, using the SD 

model proposed by (ARAÚJO, MONTEIRO and TRAVASSOS, 2012). All changes aim 

at improving the readability and understandability of the guidelines. 

Table 7-1. Overview of the simulation guidelines 

ID Guideline Statement 

Identification 

SG1 Proper title and keywords should objectively identify the simulation study, and a structured 
abstract should summarize its contents 

From Context to Research Questions 

SG2 The context where the simulation study is taking place should be captured in full 

SG3 Explicitly state the problem motivating the simulation study, so that research questions can 
be derived 

SG4 Clearly state the simulation study goals and scope 

SG5 Derive the research questions from the established goals 
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ID Guideline Statement 

SG6 Clearly state the null and alternatives hypotheses from the research questions 

Simulation Feasibility 

SG7 Present justifications for considering simulation studies as the ideal or feasible observation 
strategy 

Background and related work 

SG8 Present only essential background knowledge and the related works 

Simulation Model Specification 

SG9 Have a detailed description and understanding of both conceptual and executable simulation 
models, as well as its variables, equations, input parameters and the underlying simulation 
approach 

Simulation Model Validation 

SG10 Gather all evidence regarding the simulation model (conceptual and execution) validity 

SG11 Make use of Face Validity procedure (involving domain experts) to assess the plausibility of 
both conceptual and executable models and simulation outcomes, using proper diagrams and 
statistical charts as instruments respectively 

SG12 Support model (causal) relationships, as much as possible, with empirical evidence to rein-
force their validity and draw more reliable conclusions 

SG13 Always verify the model assumptions, so the results of simulated experiments can get more 
reliable 

Subjects 

SG14 Characterize the subjects involved in the simulation study as well as their training needs 

Experimental Design 

SG15 Describe the experimental design (design matrix), including independent and dependent var-
iables and how levels are assigned to each factor  

SG16 Use Sensitivity Analysis to select valid parameters settings when running simulation experi-
ments, rather than model “fishing”. 

SG17 Consider as factors (and levels) not only the simulation model’s input parameters when de-
signing the simulation experiment, but also internal parameters, different sample datasets and 
simulation model versions, implementing alternative strategies to be evaluated 

SG18 When adopting ad-hoc design determine the selected simulation scenarios and explain the 
criteria used to identify them as relevant 

SG19 When dealing with simulation model containing stochastic components, determine the num-
ber of runs required for each scenario, along with its rationale, in order to capture the phe-
nomenon variance. 

Supporting Data 

SG20 Assess, whenever possible, the data used to support the simulation model development or 
experimentation 

SG21 Keep track of contextual information (including qualitative data) along with quantitative data 

SG22 Make sure that both calibration and experiment datasets came from the same population 

Simulation Supporting Environment 

SG23 Set up and describe the simulation environment, including the supporting tools, associated 
costs, and decision for using a specific simulation package 

SG24 Determine which and how intermediate measures are stored among simulation trials to be 
used in the final analysis 

Output Analysis 

SG25 Determine which statistical procedures and instruments support the output analysis, as well 
as the underlying rationale, quantifying the amount of internal variation embedded in the (sto-
chastic) simulation model to augment the precision of results 

SG26 Be aware about data validity when comparing actual and simulated results: compared data 
must come from the same or similar measurement contexts 

Threats to Validity 

SG27 Consider to check for threats to the simulation study validity before running the experiment 
and analysing output data to avoid bias, as well as to report non-mitigated threats, limitations 
and non-verified assumptions 

Conclusions and Future Works 

SG28 Main results/findings should be identified and summarized, as well as the conclusions arising 
from the results. 

SG29 Applicability issues should be addressed in the report, considering organizational changes 
and associated risks. 

SG30 Point out future research directions and challenges after current results. 
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 The following subsections present the set of guidelines according to their new 

organization (Table 7-1), aiming at representing the logical chaining of the SBS lifecycle 

(BALCI, 1990).  In each subsection, we present at least one guideline, as well as an 

associated discussion and applicable examples from the conducted proof-of-concept re-

garding software evolution.  

7.2 Identification 

At first, a study report should be accessible. In other words, it should be easy to 

find it in (digital) libraries or through search engines. For that, the report title, abstract 

and keyword should contain all relevant words regarding the main topic and findings. 

 

SG1. Proper title and keywords should objectively identify the simulation study, 

as well as to have a structured abstract summarizing its contents. 

 

The choice of a proper title has no straightforward rule, but it should address the 

main topic of the study and also the main research contributions. Keywords generally 

depend on a glossary of terms used by the publishers. For instance, the term “Computer 

Simulation” can be identified in many libraries as a general term. 

We suggest the use of structured abstract, as this eases the identification of the 

research context, problem, goals, applied methods, main results, and conclusions. It 

helps readers to quickly identify whether the study is relevant for their research purposes. 

An example of structured abstract can be found in IST (Information and Software Tech-

nology) instructions for authors’ page8. 

 

7.3 Study Definition 

As any research initiative, the context, problem, goals and scope are extremely 

important, even when talking about SBS. This kind of study strongly depends on the 

collected data supporting the simulation model development and calibration. It is also 

true in SE, where the context of software projects, the human nature of software devel-

opment activities, and the amount of unknown variables may influence the results of the 

studies. 

 

SG2. The context where the simulation study is taking place should be captured 

in full. 

                                                

 

8http://www.elsevier.com/journals/information-and-software-technology/0950-5849/guide-for-authors#39001 
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Simulation models in SE often come from research initiatives. Both academic and 

industrial projects are potential environments for SBS taking place. In industrial contexts, 

the description should characterize the organization where the phenomenon has been 

observed and data has been collected. Information regarding involved technologies, per-

sonal profiles, types of projects performed in the organization, operational procedures, 

and non-technical issues (cultural, restrictions imposed by policies, laws, and standards, 

for instance) are relevant for correct interpretation of results. Such contextual information 

can clarify unexpected behaviours or explain why specific behaviours cannot be gener-

alized. In academic contexts, the research background and the project goals should be 

addressed.  

HÖST, WÖHLIN and THELIN (2005) propose a context classification scheme 

(Table 7-2), based on two orthogonal factors: incentives and the experiences of subjects. 

It is particularly applicable to in virtuo experiments, where human subjects affect the 

simulation progress. 

Table 7-2. Context Classification Scheme [adapted form (HÖST, WÖHLIN and THELIN, 2005)] 

Incentive Experience 

I1: Isolated artefact E1: Undergraduate student with less than 3 months of re-
cent industrial experience 

I2: Artificial project E2: Graduate student with less than 3 months of recent in-
dustrial experience 

I3: Project with short-term commit-
ment 

E3: Academic with less than 3 months of recent industrial 
experience 

I4: Project with long-term commit-
ment 

E4: Any person with industrial experience, between 3 
months and 2 years 

 E5: Any person with over 2 years of industrial experience 

 

The incentive factor is more related to the study relevance and environment set-

ting. Artefacts and projects are usually artificial in simulation, which may keep the incen-

tive low. However, the supporting data for calibration can be real. The Experience factor 

is strongly related to subject characterization, which is a concern in Section 7.8. Anyway, 

the incentive and experience scales should be revisited for the application of such 

schema of SBS characteristics.  

PETERSEN and WÖHLIN (2009) present a more general set of context infor-

mation to be considered, where they propose a context description based on six facets 

related to the object of study, according to Figure 7-1. This proposal concerns industrial 

studies. However, some of these facets can also be used to contextualize SBS. 
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Figure 7-1. Context facets [adapted from (PETERSEN and WÖHLIN, 2009)] 

In SBSs, the object of study regards the simulation model. Therefore, depending 

on the research goal and model validity, the object of study may be the simulation model 

itself or the phenomenon/system/process abstracted by the model. All the facets in Fig-

ure 7-1 interact with the object of study in some way. Moreover, these facets are repre-

sented, in SBS, by the calibration data or input parameters.  

These facets also concern the practical implementation of the simulation results 

into a real context. This way, the entire context (environment and prerequisites) assumed 

by the simulation model should be guaranteed or handled in the real context.  Conse-

quently, target processes need to be modified, techniques or tools need to be incorpo-

rated, and teams need training sessions.  

Both proposals for contextual descriptions aforementioned establish discrete var-

iables (such as incentive, experience, processes, people) to describe the context infor-

mation. However, DYBÅ, SJøBERG and CRUZES (2012) propose the use of a broad 

perspective approach for the so-called omnibus context. In summary, it describes the 

context in such a way that allows answering research questions such as “What technol-

ogy is most effective for whom, performing that specific activity, on that kind of system, 

under which set of circumstances?” For the authors, the object of study and its context 

keep a ‘mutually reflexive relationship’, i.e., with both shaping each other in the same 

intensity. Thus, the context definition depends on the ecosystem in which the object un-

der investigation takes place.  
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SG2. Example from the proof-of-concept. 

The proof-of-concept motivation converges on two aspects: (1) a feasibility assessment of the 

proposed guidelines for simulation experiments; and (2) the understanding of how a project 

manager can breakdown long-term releases of a large-scale Web-based information system 

for business processes control (in financial and administrative domains) in a research support-

ing organization into different strategies for definition of the releases periodicity. The project 

team is geographically distributed in two sites, following an iterative and incremental software 

development process, in a CMMi Level 3-like maturity level, emphasizing V&V activities. 

Twelve developers compose the geographically distributed team, using Java and JSF as the 

development platform. Also, using CASE tools such as version control repositories, bug track-

ing and effort spreadsheets. This simulation (in silico) experiment also intends to show how the 

SD model for the observation of software evolution (ARAÚJO, MONTEIRO and TRAVASSOS, 

2012) can be used as instrument to support the answering of research questions regarding 

software maintenance. 

 

Once contextual information has been gathered and understood, the problem 

should then be stated and described as to how it was identified. Problems arise from a 

critical situation or from repeated situations where the solution is complex or expensive. 

 

SG3. Explicitly state the problem motivating the simulation study, so that re-

search questions can be derived. 

 

Along with the problem statement, the reason why it happens and the impact it 

causes are important to highlight the implications of not solving such problem. For prob-

lem statement, we adopt a template proposal9 that satisfies these needs, based on the 

following structure: 

Statement 1 (Description of ideal scenario). However (or other adversative con-

junction), Statement 2 (The reality of the situation). Thus (or other conclusive 

conjunction), Statement 3 (The consequences for the involved people). 

 

 

 

 

 

 

                                                

 

9 http://www.personal.psu.edu/cvm115/proposal/formulating_problem_statements.htm 
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SG3. Example from the proof-of-concept. 

The problem investigated in our simulation experiment (proof-of-concept) regards the software 

life cycle at the time the information system changes from development to maintenance (cor-

rective, evolutionary, or perfective) stage. Usually, maintenance cycles depend on a set of im-

provement requests from project stakeholders, which clearly identifies this moment 

(KITCHENHAM et al., 1999). This way, the project manager should be able to plan new product 

releases observing the restrictions regarding the product quality, time to market, and budget. 

However, these variables can depend on unpredictable or unknown factors, which can produce 

a sub/super estimated time for the maintenance plan. Thus, the project may go over schedule, 

needing actions such as increasing the number of human resources, with higher of costs and 

possibly influencing the decay of product quality. 

 

SG4. Clearly state the simulation study goals and scope. 

 

The clear definition of research goals is the first step after establishing the prob-

lem. It is likely to find, in SE studies, the definition of the goals using the GQM approach 

(BASILI, 1992). It is completely useful for defining SBS goals, since current studies pre-

sent non-structured goal definitions, as in (MELIS et al., 2006) (CELIK et al., 2010), and 

it may be difficult getting the right point. Besides, the scope should be explicitly stated, 

establishing boundaries for the research area, domain, and type of systems or processes 

under investigation.  

Therefore, the common goals for SBS shall include developing a basic under-

standing (characterization) of a particular simulation model or phenomenon, finding ro-

bust or optimum alternatives, and comparing the merits of various alternatives. 

In software process simulation with SD, IMMoS methodology (PFAHL and RUHE, 

2002) provides a more specific template, similar to GQM goal definition, structured in five 

dimensions as presented in Table 7-3. 

Table 7-3. Goal definition dimensions from GQM and IMMoS [adapted from (DE FRANÇA and 

TRAVASSOS, 2015)]. 

Dimension in GQM Dimension in IMMoS 

Object of study Scope 

Purpose Purpose 

Quality focus Dynamic focus 

Viewpoint Role 

Environment Environment 
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SG4. Example from the proof-of-concept. 

The goal from the proof-of-concept in the GQM goal template (Table 7-4). 

Table 7-4. Goal definition using GQM template for the proof-of-concept 

Purpose   

Analyze The evolution of a large-scale information system 

For the purpose of Characterization 

Perspective  

With respect to Duration of maintenance cycles (periodicity), as well as its effects 
on product quality  

from the point of view of SE Researcher 

Environment  

In the following context Simulating (in silico environment) quality decay for a large-scale 
Web information system for business process control (in financial 
and administrative aspects), with the use of a SD model as instru-
ment. The supporting data reflects a software project running an 
iterative and incremental lifecycle, in a CMMi Level 3-like maturity 
level, including verification, validation and testing techniques. 
Twelve developers compose the geographically distributed team, 
using Java and JSF as the development platform. Also, using 
CASE tools such as version control repositories, bug tracking and 
effort spreadsheets. 

 

 

 

SG5. Derive the research questions from the established goals. 

 

The SBS goals should match the capabilities of the simulation model. This way, 

the model should be able to answer the research questions through the output data. 

Deriving research questions from the defined goals is part of the GQM approach, as well 

as defining metrics to answer such questions. Optionally, these metrics can support the 

definition of hypotheses representing assumptions under which the model has been de-

veloped, and that should be submitted to statistical tests. 

SG5. Example from the proof-of-concept. 

Based on the goal defined in Table 7-4, we derived two research questions for the simulation 

experiment: 

Q1: Which periodicity (shorter or longer cycles) performs better for the next 6 months 

after the last release?  

Q2: Which strategy (fixed or variable duration cycles) performs better regarding the 

product quality? 

 

SG6. Clearly state the null and alternatives hypotheses from the research ques-

tions. 

 

Considering the controlled environment, there is always (at least) a hidden hy-

pothesis. It is also useful to discuss how such hypotheses were raised, describing the 

rationale or theory from where they came.   
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7.4 Simulation feasibility 

It is important to assess the feasibility of simulation as a candidate approach to 

solve or investigate the problem. To the best of our knowledge, BALCI (1990) is the only 

resource available in the technical literature supporting this kind of analysis. BALCI 

(1990) suggests some questions as indicators of simulation feasibility. These questions 

are driven by context variables such as cost, time, benefits and the relationships among 

them, what naturally limit the observation field. To overcome this limitation we have 

added questions to his proposal. 

 

SG7. Present justifications for considering simulation studies as the ideal 

or feasible observation strategy. 

 

The simulation goals should be more than getting values for output variables. 

This sort of goal resembles studies using analytical or regression models. Simulation 

outputs also comprehend a rationale, i.e., an explanation or chain of changes in the sys-

tem that results in the output values, often represented by high-order effects. Thus, sim-

ulation studies for SE should explain how the phenomenon (events and variables) occurs 

and what changes on processes, products or people may give a suitable solution. In this 

sense, we recommend additional questions to support the decision-making about per-

forming or not the SBS. Therefore, it is necessary to focus in more technical constraints 

regarding the model development and experimentation. The system or phenomenon un-

der investigation should be observable, in some sense. So what are the available instru-

ments and procedures for data collection? Are the occurrence risks (including loss of 

money or time, reach an irreversible state of the system, safety) of the real phenomenon 

high? In addition, data should be available in order to accomplish statistical tests and 

calibration of variables and equations involved in common approaches such as SD and 

DES. 

SG7. Example from the proof-of-concept. 

Although we have presented some motivations to perform the simulation experiment, the use 

of simulation in this context can be justified by the long-term analysis, in which several variables 

of interest need to be timely controlled without imposing risks to the software project. Further-

more, we are interested in observing how these variables behave over time, and in their inter-

actions considering not only first-order (i.e., effects of Periodicity on both Size and Complexity), 

but also higher-order effects (i.e., successive relationships and/or causal loops such as the 

loop involving Effort, Maintainability, and Reliability). 
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7.5 Background and Related Works 

Theoretical foundations and background knowledge are essential parts of the 

study report. Without them, it could be a great barrier for a distant reader or junior re-

searchers. 

 

SG8. Present only essential background knowledge and the related works. 

 

Presenting all the theoretical foundations may miss the focus in the study results. 

Essential knowledge should be presented and some important references should be 

pointed out for detailed understanding. Besides, the same would be applied to related 

works, presenting just the SBS closely related to the performed study, i.e., investigating 

the same or related phenomenon. Any other study can be just referenced. It also includes 

previous related works from the study author. 

7.6 Simulation Model Specification 

The guidelines focus is on simulation experiments. Model development issues 

are out of their scope, except those aspects in the frontier between model development 

and use as model specification and validation. For such purpose, it is important to know 

the model in detail. No matter if the model has been developed or not by the experi-

menter. It is part of the required planning knowledge to understand the underlying simu-

lation approach, the conceptual model, including its variables, parameters and associ-

ated metrics, as well as the underlying assumptions and calibration procedures. The lack 

of knowledge about any of these aspects may impose different types of threats to validity. 

 

SG9. Have a detailed description and understanding of both conceptual and exe-

cutable simulation models, as well as its variables, equations, input parameters 

and the underlying simulation approach. 

 

The model description is useful to supplement the information regarding the ex-

perimental design and on how the values for input parameters in each simulation run are 

determined. Such description should include essential characteristics of the underlying 

simulation approach. The abstraction and execution mechanisms are understood imme-

diately by identifying the simulation approach. For instance, when describing a SD 

model, it is possible to infer how simulations are executed and the stocks and flows 

modelling abstractions, as well as description of the causal relationships and feedback 

loops. 
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Usually, model specifications are expressed as diagrams, equations, and textual 

descriptions. Diagrams capture the overview and the conceptual simulation model. 

Equations detail the model, allowing coding the model in other simulation tools. Lastly, 

textual descriptions supplement and clarify any doubt regarding the previous specifica-

tions. 

Moreover, the model boundaries should be specified. It is possible to identify in 

some reports simulation models labelled as ‘requirements engineering simulation 

model’, for example. However, such model rarely encompasses the whole requirements 

engineering process, including all possible activities and variables. Therefore, uncovered 

aspects, assumptions and limitations representing simplifications of the real system 

should also be explicitly described. 

 

SG9. Example from the proof-of-concept. 

ARAÚJO, MONTEIRO and TRAVASSOS (2012) proposed the model used as instrument in our 

simulation experiment. It presents an infrastructure based on the Laws of Software Evolution 

(LSE) to observe software quality decay throughout software development and maintenance 

processes. The main idea is to get a better understanding on how the software system may be 

affected by several changes occurring in its lifecycle. In order to support the evolving system’s 

behavior observation, an evidence-based logical model was defined and described through SD 

constructs to allow the simulation of successive maintenance cycles. The SD model for software 

evolution is shown in Figure 7-2.  

 

Figure 7-2. Software evolution model adapted from (ARAÚJO, MONTEIRO and TRAVASSOS, 

2012) 

The model was developed over six state variables, which represent the combined status 

for both project and product:  
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 Periodicity, the time interval between each release version of a produced artifact (e.g., 

software or documentation versions);  

 Size, the magnitude of artifacts produced in each life cycle stage of the proposed soft-

ware (e.g., the amount of lines of code in the source code or the number of requirements 

in the requirements specification document);  

 Complexity, the elements that can measure the structural complexity of an artifact (e.g., 

cyclomatic complexity of methods, or number of classes in a class diagram);  

 Effort, the amount of work done to produce a version of some artifact (e.g., measured 

in terms of man-hours or equivalent unit);  

 Reliability, the number of defects corrected per artifact in each software version;  

 Maintainability, the time spent in fixing defects. The only difference from the original 

model is that Periodicity is not determined by the simulation cycle, as it is a design factor.  

The model equations for each relationship was derived from the project historical data, 

using least squares regression. This way, each model variable is defined in terms of its related 

ones in a linear shape. The equations for each variable are presented below: 

𝐷𝑒𝑙𝑡𝑎 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= (0.199239 × 𝐷𝑒𝑙𝑡𝑎 𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦) + (2.23944 × 𝐷𝑒𝑙𝑡𝑎 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)

+ (0.167732 ×  𝐷𝑒𝑙𝑡𝑎 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦) − (0.92313 × 𝐷𝑒𝑙𝑡𝑎 𝑆𝑖𝑧𝑒) 

𝐷𝑒𝑙𝑡𝑎 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= (1.01131 × 𝐷𝑒𝑙𝑡𝑎 𝐸𝑓𝑓𝑜𝑟𝑡) − (11.9523 × 𝐷𝑒𝑙𝑡𝑎 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)

− (4.37683 × 𝐷𝑒𝑙𝑡𝑎 𝑆𝑖𝑧𝑒) 

𝐷𝑒𝑙𝑡𝑎 𝐸𝑓𝑓𝑜𝑟𝑡 = (0.389594 ∗  𝐷𝑒𝑙𝑡𝑎 𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦)  − (8.17702 ∗  𝐷𝑒𝑙𝑡𝑎 𝑆𝑖𝑧𝑒)  

− (75.3565 ∗  𝐷𝑒𝑙𝑡𝑎 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)  + (4.54464 ∗  𝐷𝑒𝑙𝑡𝑎 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)  

−  𝑅𝑇 

𝐷𝑒𝑙𝑡𝑎 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = (0.0706133 ∗  𝐷𝑒𝑙𝑡𝑎 𝑆𝑖𝑧𝑒)  + (0.00251206 ∗  𝐷𝑒𝑙𝑡𝑎 𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦) 

𝐷𝑒𝑙𝑡𝑎 𝑆𝑖𝑧𝑒 = 0.0256675  ∗  𝐷𝑒𝑙𝑡𝑎 𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 

 

7.7 Simulation Model Validity 

The concern about model validity should be addressed, as SBS validity is highly 

affected by the validity of the simulation model. It is a reflection of the nature of computer-

based controlled environments, where the phenomenon under investigation is essen-

tially observed through the execution of the simulation model. This way, the only possible 

changes are in the input data or the simulation model. Consequently, the validity aspects 

concentrate on both simulation model validity and data validity. Thus, if the used model 

cannot be considered valid, invalid results will be obtained regardless the mitigation ac-

tions applied to deal with other possible validity threats. In other words, the simulation 

model itself represents the main threat to the study validity. 
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SG10. Gather all evidence regarding the simulation model (conceptual and exe-

cution) validity. 

 

Evidence regarding model validity means the experimenter should be aware 

about the initiatives (previous reports and research papers) of submitting the simulation 

model to V&V procedures, understanding their results. Table 7-5 presents examples of 

V&V procedures for simulation models found through the undertaken qSLR (section 2.2).  

Table 7-5. Verification and validation procedures for simulation models 

Procedure Description 

Face Validity Consists of getting feedback from individuals knowledgeable about the phenomenon 
of interest through reviews, interviews, or surveys, to evaluate whether the (concep-
tual) simulation model and its results (input-output relationships) are reasonable.  

Comparison to 
Reference Behav-
iors  

Compares the simulation output results against trends or expected results often re-
ported in the technical literature. It is likely used when no comparable data is availa-
ble. 

Comparison to 
Other Models 

Compares the results (outputs) of the simulation model being validated to results of 
other valid (simulation or analytic) model. Controlled experiments can be used to ar-
range such comparisons. 

Event Validity Compares the “events” of occurrences of the simulation model to those of the real 
phenomenon to determine if they are similar. This technique is applicable for event-
driven models. 

Historical Data 
Validation 

If historical data exists, part of the data is used to build the model and the remaining 
data are used to compare the model behavior and the actual phenomenon. Such 
testing is conducted by driving the simulation model with either sample from distribu-
tions or traces, and it is likely used for measuring model accuracy. 

Rationalism Uses logic deductions from model assumptions to develop the correct (valid) model, 
by assuming that everyone knows whether the clearly stated underlying assumptions 
are true.  

Predictive  
Validation 

Uses the model to forecast the phenomenon’s behavior, and then compares the phe-
nomenon’s behavior to the model’s forecast to determine if they are the same. The 
phenomenon data may come from the real phenomenon observation or be obtained 
by conducting experiments, e.g., field tests for provoking its occurrence. Also, data 
from the technical literature may be used, when there is no complete data in hands. 
It is likely used for measuring model accuracy. 

Internal Validity Several runs of a stochastic model are made to determine the amount of (internal) 
stochastic variability. A large amount of variability (lack of consistency) may cause 
the model’s results to be questionable, even if typical of the problem under investiga-
tion. 

Sensitivity Analy-
sis 

Consists of changing the values of the input and internal parameters of a model to 
determine the effect upon the model’s output. The same relationships should occur 
in the model as in the real phenomenon. This technique can be used qualitatively— 
trends only — and quantitatively—both directions and (precise) magnitudes of out-
puts.  

Testing model 
structure and be-
havior 

Submits the simulation model to tests cases, evaluating its responses and traces. 
Both model structure and outputs should be reasonable for any combination of values 
of model inputs, including extreme and unlikely ones. Besides, the degeneracy of the 
model’s behavior can be tested by appropriate selection of values of parameters.  

Based on empiri-
cal evidence 

Collects evidence from the technical literature (experimental studies reports) to de-
velop the model’s causal relationships (mechanisms).  

Turing Tests Individuals knowledgeable about the phenomenon are asked if they can distinguish 
between real and model outputs. 
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This list can be used to support the identification of attempts to verify or validate 

a simulation model in existing SBS reports, enabling the experimenter to collect the suc-

cessful attempts. Moreover, having no evidence regarding the model validity, some of 

these procedures should be performed, exposing the results as well as the decisions 

that guided the validation process. 

Such procedures have been extensively discussed in the technical literature on 

computer simulation. Besides, we identified nine V&V procedures applied to simulation 

models in the context of SE (DE FRANÇA and TRAVASSOS, 2013b) and merged this 

list with the one presented by SARGENT (1999), which are fifteen V&V procedures often 

performed for DES models in several domains, excluding three useful instruments to 

perform V&V activities, rather than procedures or techniques. This way, the merge of the 

remaining twelve with the procedures identified in the qSLR are presented in Table 7-5. 

None of the V&V procedures from Table 7-5 can avoid all the potential threats to 

simulation study validity whether used alone. However, successfully applying some of 

these procedures together can help to increase the confidence on simulation’s results. 

 

SG10. Example from the proof-of-concept. 

In order to improve the model validity, ARAÚJO, MONTEIRO and TRAVASSOS (2012) col-

lected evidence for each relationship amongst model variables from the technical literature. 

For the complete set of 22 evidence, see (ARAÚJO, MONTEIRO and TRAVASSOS, 2012). 

Besides, the model was successfully assessed using the procedure of Historical Validation, in 

which a dataset is divided into two pieces and the model is calibrated using the first eleven 

releases and then simulations are run to verify if the model can predict trends for each model 

variable according to the second part of the dataset (later eight releases). Therefore, the model 

was able to predict the trends for the output variables. This is considered enough for the un-

derstanding purposes of our study.  

 

SG11. Make use of Face Validity procedure (involving domain experts) to assess 

the plausibility of both conceptual and executable models and simulation out-

comes, using proper diagrams and statistical charts as instruments respectively. 

 

A common V&V procedure is Face Validity, which is a white box approach for 

reviewing both simulation model and I/O matching. It enables the investigation of internal 

properties and behaviors of a simulation model, like model variables, equations and re-

lationships, rather than dealing with it as black box, i.e., observing just the I/O matching. 

This way, domain experts may identify threats to construct validity in advance. The 

threats involve the mechanisms explaining the phenomenon captured by the simulation 

model. For instance, experts can find out both inappropriate definition of cause-effect 
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relationships and failure on capturing the corresponding real world building blocks and 

elements. 

As it relies on experts’ opinion, it may not be the only perspective to take into 

account on the simulation model validity. However, it is a relevant indication that, in face 

of the model representation and its generated behavior, it gives the impression of being 

valid. Face validity needs to be complemented by other procedures already mentioned 

in Table 7-5, for example. 

Face validity sessions may happen on workshops, group or private interviews. 

The main idea is to present the model by following a walkthrough approach to show how 

the input values generate outcomes, exemplifying with real scenarios so that experts can 

realize the model behavior and validate the simulation results for a given set of inputs. 

SG11. Example from the proof-of-concept. 

The authors did not perform the Face Validity procedure, which we consider an important pro-

cedure to capture internal problems in the simulation model. In the model equations, it is pos-

sible to identify inconsistencies regarding variables units, unless one consider them as dimen-

sionless.  

 

SG12. Support model (causal) relationships, as much as possible, with empirical 

evidence to reinforce their validity and draw more reliable conclusions. 

 

From an external validity perspective, it is sound to have the simulation model’s 

causal relationships supported by empirical evidence (DAVIS, EISENHARDT and 

BINGHAM, 2007). Empirical evidence can support the existence of properties in the sim-

ulation model, as well as model assumptions. Besides, it reduces the modeler’s bias, 

since such evidence does not rely only on experts’ opinions or ad-hoc observations of 

the phenomenon under study. This way, secondary studies may be performed to search 

for evidence, if it is not known. The search may include at least the core causal relation-

ships, since bigger models may impose a great effort on performing secondary studies, 

such as a systematic literature review. 

SG12. Example from the proof-of-concept. 

As mentioned before, ARAÚJO, MONTEIRO and TRAVASSOS (2012)  undertook a qSLR 

review encompassing 15 research questions, being one for each pair of possible relationship 

among the model variables. Each question regarded the existence of such relationship, as well 

as its direction and intensity. A set of quality assessment criteria was defined to prioritize evi-

dence to be considered in the model. As a result, only relationships referred by some evidence 

were kept in the SD model. 
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SG13. Always verify the model assumptions, so the results of simulated experi-

ments can get more reliable. 

 

Face Validity can also be combined with procedures to compare empirical 

data/behavior (SARGENT, 1999) to assess model’s assumptions regarding the underly-

ing concepts. For instance, using Comparison to Reference Behaviors, Historical Vali-

dation or Predictive Validation to understand if the model (including its assumptions) is 

capable of reproducing an empirical behavior in terms of internal variables and out-

comes. However, when the model assumptions are hidden or unclearly stated, Face 

Validity is not applicable. In these cases, using other procedures is more suitable. The 

expected behaviors can give insights about how the hidden model assumptions are af-

fecting the results. 

The verification of model assumptions also appies to simplifications imposing the 

expected behavior (ECK and LIU, 2008). When the simulation model is to be developed, 

the modeler makes, even implicitly, some assumptions regarding the phenomenon. For 

instance, the increasing of a response variable directly caused by the presence of a given 

treatment. If these assumptions are embedded in the model, it may represent a threat to 

internal validity, since it should not be coded directly in the model, rather it should be 

treated as an effect of a chain of actions, events and conditions generating such behavior 

in the response variable. 

SG13. Example from the proof-of-concept. 

ARAÚJO, MONTEIRO and TRAVASSOS (2012) clearly establish their assumptions as logical 

formulations representing the expected behaviors (trends) for each software characteristic in 

the presence of a particular item of the LSE. These software characteristics' trends (increasing 

- ↑, decreasing - ↓ or no changing - ↔) are tested as hypotheses when some LSE can be 

observed or not in the software project. It is important to highlight that such trends are not 

directly implemented in the SD model. Rather, the simulation results may present or not the 

expected behavior regarding the LSE depending on the project dataset and input parameters. 

On conducting the model assessment, they present which reference behavior (from historical 

dataset) could be reproduced, as well as the laws influencing the observations. The assess-

ment results are sufficiently positive to assume the model as valid for our purposes. 

 

From many simulation studies found in SE, just a few of them report performance 

measures. Measures such as bias, accuracy, coverage, and confidence intervals fre-

quently go unreported. The importance of such measures relies in the possibility of using 

them as benchmark criteria to compare and choose more accurate simulation models. 

In addition, this will directly affect the risks assigned to SBS conclusions. For instance, 

outcomes are obtained in a SBS, but if the simulation model has a low accuracy or its 
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results are in a wide confidence interval, these results may be far from reality. This infor-

mation also brings credibility to the simulation study. Burton et al discuss how to calculate 

such measures (BURTON et al., 2006). 

As an example of performance measures, LAUER, GERMAN and POLLMER 

(2010) use the relative error in mean values and confidence intervals to compare differ-

ent configurations from the perspective of timing problems in the context of an automo-

tive embedded system. 

7.8 Subjects 

As both in virtuo or in silico studies are under the scope of the proposed guide-

lines, it is important to characterize subjects, no matter if they are human or not. Human 

subjects may influence the interpretation of in virtuo results. For this reason, character-

istics such as the level of expertise, domain knowledge and background should be cap-

tured, as well as, the number of subjects per group (treatment and control, when appli-

cable) and any other relevant characteristic affecting the results should be addressed in 

the subjects’ assignment process to the experimental units whether made randomly or 

not, for example. 

 

SG14. Characterize the subjects involved in the simulation study as well as their 

training needs. 

 

Additionally, the training sessions for human subjects and their costs should be 

planned and reported as well. With computerized subjects, their behavior, configuration 

and parameters should also be considered when designing the experiment, in case that 

such behavior can be clearly identified in the simulation model. However, it is possible 

the behavior being implicitly embedded in the simulation model when dealing with in 

silico environments. PFAHL, KLEMM and RUHE (2001) present an example of subjects’ 

description in the experiment on software project learning, involving twelve computer 

science graduate students, who were enrolled in the advanced software engineering 

class lasting one semester. Besides, they captured information about personal charac-

teristics, education, background regarding experience in software development and pro-

ject management, software project management literature background, and preferred 

learning style. 

SG14. Example from the proof-of-concept. 

As the proof-of-concept regards an in silico experiment in which the model focuses on software 

characteristics, subjects’ characteristics are not taken into account and not explicitly repre-

sented in the simulation model. This way, the effects of the subjects from the real project are 
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abstracted through the supporting data used to calibrate the model, which contemplate char-

acteristics such as productivity and team expertise. 

 

7.9 Experimental Design 

Experimental design issues involve the definition of a causal model establishing 

a relationship between independent (or factors) and dependent variables, in a cause-

effect nature. Research goals and questions should drive the causal model definition, by 

taking the model part that reflects the concerns in the goal and the variables that can 

help on answering the research questions. Here, the importance of describing the model 

and its variables is clear (see section 7.6). Once they are described, the experimental 

design can be more easily understood.  

As seen in (BALCI, 1990), different parameters (input variables), behavioral rela-

tionships, and auxiliary variables may represent model variants, since they constitute the 

statistical design factors. During the experiment execution, the design factors may be 

held constant or allowed to vary. Therefore, interest factors may be: controllable, which 

are possible to measure and vary; uncontrollable, possible just to measure; and noise 

factors, the ones we cannot measure and they naturally vary. 

According to Montgomery (MONTGOMERY, 2008), levels (or treatments) corre-

spond to the range of interest over which the factors will be varied. This way, the exper-

imenter should have practical experience and theoretical understanding on the domain.  

 

SG15. Describe the experimental design (design matrix), including independent 

and dependent variables and how levels are assigned to each factor. 

 

The experimental design is often fully described by a design matrix. In this ma-

trix, every row is called a design point or a scenario, which is a combination of different 

levels of each factor. However, there are several different designs that can be generated 

for the same set of factors. In Statistics, there is a mature discipline called Design of 

Experiments (DOE). We have no ambition to contribute with DOE, but to bring such 

knowledge and apply it to SE simulation experiments, considering the particular context 

as an immature field – lack of solid knowledge, unknown disturbing factors, hard-to-con-

trol environments, and so on. The application of DOE to simulation is not a new subject, 

even in SE. Although it is an interesting technique since for real systems, which DOE 

was proposed to, it may be impractical or unfeasible to experiment with many factors 
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and levels (more than 10 factors and 5 levels), and the same cannot be said for simula-

tion experiments. Besides, KLEIJNEN et al (2005) claim that DOE for simulation experi-

ments is different since in simulation we are not limited by real world constraints. 

Factorial designs are the most recurring ones. They can be simply defined as a 

set of scenarios including all possible combinations for a set of factors, also called Full 

Factorial Designs. For instance, a full factorial design for k factors using two levels per 

factor is denoted as 2k design, meaning the number of scenarios needed to determine 

effects from k factors and their interactions.  

There are also variants proposed for large number of scenarios in which the sim-

ulation runs are time consuming, since time grows exponentially with the number of fac-

tors and levels. Therefore, it is possible to reduce the number of scenarios, but still hav-

ing an efficient estimator. In these cases, just a fraction of the scenarios is executed, and 

for this reason, they are called Fractional Factorial Designs. Fractional designs can be 

defined as 2k-p, where p is a value called power of the fraction, in which 2k-p is greater 

than k. The value of p is determined also considering the possibility of investigating in-

teractions between factors and higher-order effects.  

Some aspects are important to select an adequate design. Here, we give some 

of them, but not an exhaustive list:  

 Simulation goals, since designs for understanding or characterization are not the 

same for comparisons or optimizations;  

 Experimental frame, whether the area of interest is local or global, and it impacts 

in the range of levels;  

 Number of factors and levels, since they exponentially increase the number of 

scenarios in full factorial designs;  

 Domain of admissible scenarios, it is important since full factorial designs may 

generate inadmissible scenarios;  

 Simulation model’s deterministic and stochastic components, since they affect 

how to deal with variation in the experimental design. Stochastic simulations use 

pseudo-random numbers, which imply that each single replicate output is a time 

series with auto-correlated observations. So, the values of such observations 

cannot be aggregated;  

 Terminating conditions, if it is steady state or a terminating simulation, with an 

event to specify the end of the experiment. 

SG15. Example from the proof-of-concept. 

In the proof-of-concept, the variables of interest are Periodicity, as independent variable, and 

product quality in terms of Reliability and Maintainability, as dependent or response variables. 
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For the periodicity factor, we adopt low, medium and high values, to understand how the re-

sponse variables behave by increasing the periodicity. The level differences intend to under-

stand the effect of both small and large changes on the input parameter, i.e., whether factor 

sensibility is introducing bias. Additionally, we have a qualitative factor with two levels, from our 

research question Q1, regarding the strategy for the organization of maintenance cycles: fixed-

duration or variable-duration cycles. Fixed-duration means that every cycle has the same pe-

riodicity. Conversely, variable-duration means that each cycle may have a different periodicity. 

In the causal diagram on the right side of Figure 7-2, it is possible to identify first-order 

and other higher-order possible effects of Periodicity on both Reliability and Maintainability. 

Therefore, in this experiment we will explore full factorial designs for questions Q1 and Q2 as 

shown in the design matrix (Table 7-6). Each scenario in this matrix corresponds to a possible 

combination of factors and their levels. 

Table 7-6. Design matrix for the simulation experiment (DE FRANÇA and TRAVASSOS, 

2015) 

Scenario Strategy Periodicity 

1 Fixed-duration Low (2) 
2 Fixed-duration Medium (10) 
3 Fixed-duration High (40) 
4 Variable-duration Low mean (2) and variance (1) 
5 Variable-duration Medium mean (10) and variance(5) 
6 Variable-duration High mean (20) and variance (10) 

 

 

SG16. Use Sensitivity Analysis to select valid parameters’ settings when running 

simulation experiments, rather than model “fishing”. 

 

Techniques such as Sensitivity Analysis are useful when selecting the groups of 

interest factors and levels range. Once the more sensible factors are determined, the 

number of levels for each factor and the values they assume can be properly defined. 

Furthermore, a systematic way of defining the levels reduces the bias and avoids the 

fishing for positive results. For characterization studies, it is recommended to keep a low 

number of levels per factor, but covering a high region of interest (MONTGOMERY, 

2008). 

 

SG16. Example from the proof-of-concept. 

The experimental design presented in Table 7-6 includes the principle of Sensitivity Analysis, 

particularly for the factor Periodicity, in which we established scenarios using low and high 

values, as well as small (from 2 to 10) and large (from 10 to 40) variations, in both deterministic 

and stochastic scenarios. It enables the observation of the model behaviour in a large space 

of possibilities, and characterizing the effects of each factor on the output variables. 
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In addition, it is important to identify control and treatment groups when perform-

ing controlled experiments using simulation models as instruments. For instance, vali-

dated models under known conditions can be assumed as control and the new model 

(or new versions) to be evaluated or experimented (under the same conditions) can be 

assumed as the treatment.  

 

SG17. Consider as factors (and levels) not only the simulation model’s input pa-

rameters when designing the simulation experiment, but also internal parame-

ters, different sample datasets and simulation model versions, implementing al-

ternative strategies to be evaluated. 

 

Another possibility is to use distinct datasets as factors, with the simulation model 

remaining constant. This way, different calibrations representing the different simulation 

scenarios can be compared.  

In our simulation experiment, this guideline is not applicable since the required 

factors are mainly input parameters. However, GAROUSI, KHOSROVIAN and PFAHL 

(2009) present a simulation experiment, using a SD model for software processes, aim-

ing at comparing scenarios representing combinations (and intensity levels) of develop-

ment, verification, and validation techniques that should be applied in a given context to 

achieve defined time, quality, or cost targets. In their experiment, the authors use two 

calibrations based on data from the technical literature to derive the scenarios. These 

datasets differ on intensity of rework effort for faults detected in integration and system 

testing. 

Clearly, the use of scenarios in simulation experiments can be viewed as conse-

quence of selecting a proper experimental design. However, it can also be a cause of it, 

since it is common to make use of scenarios even when an ad-hoc experimental design 

is adopted. In this case, the experimenter plans the scenarios of interest (BARROS, 

WERNER and TRAVASSOS, 2000) and then derivate the design. By adopting the last 

strategy, the relevance and adequacy of each chosen scenario should be explained and 

tied to the study goals.  

 

SG18. When adopting ad-hoc designs determine the selected simulation scenar-

ios and explain the criteria used to identify them as relevant. 

 

Representative scenarios, including those that both check best and worst cases, 

can help foreseeing behaviours in regular and exceptional circumstances. The scenarios 
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description needs to be as precise as possible, clarifying all the relevant contextual in-

formation, as well as input parameters values for the scenarios. 

The main drawback of achieving ad-hoc the experimental design is the potential 

embedding of some bias, especially for non-experienced experimenters, and with no 

opportunity to investigate side effects such as interactions between design factors. There 

are other types of design often applied to simulation experiments providing successful 

results (KLEIJNEN et al., 2005) such as Central Composite Designs, Sequential Bifur-

cation and Latin Hypercube Sampling. 

As we adopted DOE for defining our design matrix, this guideline is not applica-

ble. However, AMBROSIO, BRAGA and RESENDE-FILHO (2011) use three scenarios 

(optimistic, baseline, and pessimistic) in two sets of simulations by changing the value of 

model components related to risk factors in a model concerned with requirements activ-

ities: requirements errors and volatility, and workforce turnover. These scenarios are de-

scribed as three different model input parameters settings. 

The number of simulation runs depends on the selected simulation scenarios and 

on the simulation model’s deterministic or stochastic nature. Each selected scenario con-

sists of an arrangement of experimental conditions where possible levels are assigned 

to specific factors. The more simulation scenarios involved in the study, the more simu-

lation runs are needed. For instance, factorial designs usually require one simulation run 

for each combination of factors and treatments, in case of dealing with deterministic sim-

ulation models. So, if three factors and two treatments are considered, we have a design 

23 with 8 simulation runs required. A detailed discussion on how to determine the number 

of simulation runs, based on factorial designs for deterministic models, can be found in 

(HOUSTON et al., 2001) and (WAKELAND, MARTIN and RAFFO, 2004).   

 

SG19. When dealing with simulation model containing stochastic components, 

determine the number of runs required for each scenario, along with its ra-

tionale, in order to capture the phenomenon variance. 

 

Simulation models containing stochastic components naturally produce an intrin-

sic noise in the output, due to the pseudo-random number generators. Thus, one single 

run of each scenario using those stochastic components cannot reveal the amount of 

variance in this noise. On the other extreme, the greater the number of runs (replica-

tions), the greater the approximation of a desired accuracy level. Replication is achieved 

by using different pseudo-random numbers (PRNs) to simulate the same scenario. In 

this case, the output is a time series, which has auto-correlated observations (KLEIJNEN 

et al., 2005). Thus, given the required accuracy level and a sample estimate from few 
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model runs, it is possible to determine the number of required runs and avoid this threat 

to conclusion validity. Such procedure for calculation can be found in (LAW and 

KELTON, 2000).  

SG19. Example from the proof-of-concept. 

For the scenarios concerning with fixed-duration strategies, the model behaves deterministi-

cally, and therefore we need just three runs, one for each periodicity level. Conversely, the 

experimental design involves the use of a stochastic variable for periodicity, using the strategy 

of variable-duration. This variable is assigned to a normal distribution, with different mean and 

variance for each scenario. The choice for a normal distribution was based on the Kolmogorov-

Smirnov test, done on the collected data that presents a normal distribution for periodicity. In 

these scenarios, we use 100 runs for each one of the 3 scenarios, being a total of 300 runs for 

the variable-duration scenarios. For each simulation scenario, we defined an output dataset, 

resulting in six datasets. The simulation runs were executed in the Vensim PLE environment, 

by explicitly setting the input parameters for each scenario. 

 

7.10 Supporting data 

When conducting SBS it is important to check the availability of supporting data. 

Simulation models need to be calibrated, requiring data for the generation of equations 

and parameters, and to determine the distribution of random variables. Therefore, it is 

important to determine the type of data: real or synthetic ones (ÖREN, 1981). If synthetic 

data has been used, some evidence should be presented to guarantee data’s validity, 

i.e., the report should answer questions such as ‘How far the simulated data is from real-

system data?’ and show indicators of this gap. Here, statistical tests can be applied to 

verify how close both real and synthetic samples could be. 

 

SG20. Assess, whenever possible, the data used to support the simulation model 

development or experimentation. 

 

SG20. Example from the proof-of-concept. 

In the performed simulation experiment, the data and procedure used for model calibration 

came from (ARAÚJO, MONTEIRO and TRAVASSOS, 2012). This historical dataset encom-

passes 13 different system releases. The data was collected from three different sources: ver-

sion control system logs, bug tracking services, and effort registration spreadsheets. Such 

measurements are relevant for the observation of system evolution, and for each release, they 

comprehend measures for the six variables mentioned in section 7.6.  

 

Planning the data collection also avoids measurement mistakes, promoting the 

collection of data as soon as they are made available for the target model variables and 
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to capture the contextual information associated to the quantitative data are relevant for 

SBS.  

 

SG21. Keep track of contextual information (including qualitative data) along 

with quantitative data. 

 

The contextual data is important to provide better and accurate reasoning when 

performing output analysis and interpretation, supporting the explanations based on it.  

 

SG21. Example from the proof-of-concept. 

For instance, in the performed experiment, it is important to mention some contextual infor-

mation since they explain trends in the simulation results. The system releases resulted from 

corrective, adaptive and perfective maintenance activities. The perfective maintenance mainly 

regards, in this dataset, the enhancements concerning security, performance, maintainability, 

and graphical user interface. No new functionality was considered during these releases. 

Therefore, our simulation results are limited to these types of maintenance. Furthermore, the 

system’s users reported the corrected defects for each release, during the system’s operating 

lifecycle. This way, data regarding defects does not consider remaining defects. 

 

SG22. Make sure that both calibration and experiment datasets came from the 

same population. 

 

The data used to calibrate the simulation model and to set model parameters in 

the experiment need to share the same context, in the sense that they are comparable. 

The values used for model experimentation have to be consistent, avoiding attempts to 

generalize behaviors to different contexts inappropriately. The use of cross-company 

data is an example of how it can impose a threat to internal validity on the simulation 

results. 

After the collection, quality assurance procedures ought to take place in order to 

verify their consistence and accuracy, avoiding the inclusion of outliers or incomplete 

data. If the simulation model needs to be calibrated, it is important to report whether it 

has been calibrated or not, including the procedure used to accomplish the task and its 

results. 

Simulation models often require time-sensitive data. Hence, in order to avoid bi-

ased observations and an exposure to risk (i.e. undetected seasonal data); the data col-

lection time period should represent both transient and steady state behaviours.  
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SG22. Example from the proof-of-concept. 

In the performed simulation experiment, we determined the input parameters from the empirical 

data used for the model calibration. In other words, these values and distributions are in the 

same scope of the observed ones, representing feasible scenarios for the observed phenom-

enon. Besides, the data collected for the simulation of software evolution requires time-sensi-

tive and real-system data. In this model, the time when the data is collected is important since 

it is desirable to observe how the successive maintenance cycles influence the software quality. 

The study presents the observations made over a 2-year software project executed in the in-

dustry. Therefore, real data was treated and analysed accordingly. 

 

Another important aspect related to the collected data (or used datasets) relies 

on the raw data publication. However, it is rarely reported, for two reasons: (1) most 

papers report that it was not possible to present the raw data as it is confidential and (2) 

since simulation studies usually involve a large amount of data and it may not fit in con-

ference or journal papers. Even so, the raw data should be reported when possible or 

make available by consulting the authors or publishing it at a downloadable source. 

7.11 Simulation supporting environment 

The simulation environment consists of all instruments needed to perform the 

study. It encompasses the simulation model itself, datasets, data analysis tools (includ-

ing statistical packages), and simulation tools/packages. As the simulation model and 

datasets have already been discussed, here the supporting tools are the focus as an 

important feature to be considered.  

 

SG23. Set up and describe the simulation environment, including the supporting 

tools, associated costs, and decision for using a specific simulation package. 

 

Ideally, the simulation package should support not only the underlying simulation 

approach, but also the experimental design and output data analysis. Simulation pack-

ages often differ on how they implement the simulation engine mechanism. Therefore, it 

is possible to get different results depending on the engine’s implementation. Moreover, 

the process used to translate the conceptual simulation model description to the simula-

tion language offered by the package should be considered. Information should also be 

provided on how such translation was performed and if any model characteristic could 

not be implemented due to technological constraints. In stochastic models, the use of 

random number generators and on how the starting seeds were selected is fundamental. 

The choice of a simulation package should depend on the fit of the research 

questions, assumptions, and the theoretical logic of the conceptual model with those of 
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the simulation approach (HOUSTON et al., 2001). It is an important decision as the sim-

ulation approach may impose a theoretical logic, type of research questions, or related 

assumptions. 

Raw input data always requires an extra effort to understand its properties (such 

as data distribution and shape, trends, and descriptive stats) and perform the transfor-

mations (such as scale transformations and derived metrics) needed to fit the model 

parameters and variables. Similarly, the simulation output data needs specific analysis 

techniques such as statistical tests and accuracy analysis. For both input and output data 

there is a need for other supporting tools like statistical packages or even specific ones. 

These tools compose the whole simulation environment in case. 

Another important perspective is related to the computational infrastructure. The 

settings to run the simulations need to be settled up and reported so that one can under-

stand the requirements for replicating the study. Processor capacity, operating system, 

amount of data, and execution time interval are relevant characteristics to estimate 

schedule and costs for the study. 

Finally, SBS involving multiple trials and runs often needs to summarize infor-

mation from each intermediate trial for the final output analysis. Mean and standard de-

viation are common measures for this purpose and determine confidence intervals, for 

instance. This way, the individual information (measures) is stored in a database or ex-

ternal files. In addition, the experimenter has to concern with how such data can support 

the analysis, whether on charts or used as threshold values to support decision-making, 

for instance.  

 

SG23. Example from the proof-of-concept. 

The simulations in the proof-of-concept are executed in the Vensim environment (www.ven-

sim.com), which supports the simulation of SD models and has an academic version (PLE) 

with limited support for experimentation, but free of charge. Additionally, it offers interesting 

analysis tools, such as causal tree, output plotting on sequence charts and simulation traces. 

We also adopted spreadsheets to support output analysis.  

 

SG24. Determine which and how intermediate measures are stored among simu-

lation trials to be used in the final analysis. 

 

Specific or customized simulation environments should be concerned with these 

capabilities, since commercial tools already support it. For instance, the Vensim PLE 

version does not support multiple runs automatically. Therefore, we needed to store the 
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results from each simulation run as an output file and then imported altogether in a 

spreadsheet to consolidate the analysis. 

7.12 Output Analysis 

As simulation runs generate a considerable amount of data, involve complex re-

lationships among variables and possibly spread over different output variables, it is pos-

sible to identify prior to the execution what are the statistical procedures and instruments 

to support the output analysis, as it regards the understanding and quantification of sim-

ulation results.  

 

SG25. Determine which statistical procedures and instruments support the out-

put analysis, as well as the underlying rationale, quantifying the amount of inter-

nal variation embedded in the (stochastic) simulation model to augment the pre-

cision of results. 

 

The simulation study protocol includes definitions concerning with the procedures 

and instruments to be used in the analysis of simulation results. Common output anal-

yses for simulation experiments include main and interaction effects among factors, sim-

ulation confidence and accuracy, quantifications of variance (in case of stochastic simu-

lation) and comparisons with reference behaviors or alternative system configurations. 

For that, statistical charts and tests, along with descriptive stats can help, but for every 

instrument, there are assumptions and restrictions that have to be assessed in the output 

data like normally distributed data, independent samples, and homogeneous variance. 

Moreover, simulation experiments use such statistical measures for accuracy indicators, 

for instance. Mean Magnitude of Relative Error and Balanced Relative Error are exam-

ples of such measures (FOSS et al., 2003). Charts often assume the data is organized 

in a particular way; for example, Sequential Run Charts (FLORAC and CARLETON, 

1999) assume the data is chronologically ordered. Specific hypothesis tests assume nor-

mally distributed data or homoscedastic distributions. Additionally, evidence supporting 

these properties should be given. 

It is also important to take care of the perspective of the analysis, whether it is 

across different simulation runs (or replications) or within a single replication. Simulations 

from different replications are usually independent from each other, so it is possible to 

use measures such as mean, standard deviation, and confidence intervals across repli-

cations, but not within a replication. 
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SG25. Example from the proof-of-concept. 

For output analysis, statistical charts are used, namely histograms and sequence run charts, 

to characterize response variables behaviors. Histograms are needed to check their distribu-

tion, while the sequence run is useful to understand how the values for these variables behave 

over time. Additionally, we use the sequence run to compare different scenarios by plotting 

their series on the same chart. For instance, to analyze the Strategy factor corresponding to 

research question Q1, scenarios 1, 2 and 3 are compared against scenarios 4, 5 and 6, respec-

tively. These comparisons keep the Periodicity factor constant in the base value, as it is not a 

variable of interest for this research question. Similar analyses are done with other factors or 

interactions concerning with each research question. Question Q2 involves the use of a random 

variable, requiring the analysis of several runs. It implies the use of statistical measures of 

central tendency and dispersion when comparing the scenarios. 

 

SG26. Be aware about data validity when comparing actual and simulated re-

sults: compared data must come from the same or similar measurement con-

texts. 

 

In simulation studies, it is particularly interesting to know whether the results can 

be also observed in different simulation studies of the same phenomena [simulated ex-

ternal validity] or it can predict real-world results [empirical external validity] (ECK and 

LIU, 2008). Threats to external validity can also appear as context-dependent results, 

since there is a need for calibration and simulation model not based on empirical evi-

dence. 

7.13 Threats to Validity 

SBS protocols need, as any other empirical studies, to mitigate and discuss pos-

sible threats to the study validity. Common types of experimental validities are closely 

related to the simulation model validity (DE FRANÇA and TRAVASSOS, 2014b). There-

fore, such model should be valid to assure the study can represent the actual phenom-

ena. The SE community has discussed threats to validity, and most of the reported 

threats concerned with in vitro or in vivo experimentation have already been described 

by WÖHLIN et al (2012). Most of them have to be considered when conducting simula-

tion studies, especially considering in vitro experiments, in which the human nature may 

impose risks to the study. Still, new situations emerge from in silico experiments. Either 

recognized threats appear in a different outlook, or specific threats of such environment 

affect the results validity. Here, we concentrate our perspective on these new situations. 

RAFFO (2005) and GAROUSI, KHOSROVIAN and PFAHL (2009) consider 

model validity in a similar way. They contemplate several perspectives, such as model 
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structure, supporting data, input parameters and scenarios, and simulation output. We 

understand that these aspects are extremely relevant, but are not the only ones (DE 

FRANÇA and TRAVASSOS, 2014b). It is also important to consider the simulation ex-

periment design, for example. 

For the discussion about threats to validity, we categorize them as in (WÖHLIN 

et al., 2012): conclusion, internal, construct and external validity. Several potential 

threats that need to be verified before the simulation experiment can be found in section 

5.3. 

 

SG27. Consider to check for threats to the simulation study validity before run-

ning the experiment and analysing output data to avoid bias, as well as to report 

non-mitigated threats, limitations and non-verified assumptions. 

 

According to DAVIS, EISENHARDT and BINGHAM (2007), simulation tends to 

improve both the construct and internal validity, by accurately specifying and measuring 

constructs (and the relationship among them) and the theoretical logic that is enforced 

through the discipline of algorithmic representation in software, respectively. However, it 

is possible to observe threats to construct validity into the context of SBS, such as inap-

propriate cause-effect relationships definition, real-world representation by model pa-

rameters and model calibration data and procedure, hidden or invalid underlying model 

assumptions regarding model concepts, and the simulation model not capturing the cor-

responding real world building blocks and elements. 

Regarding external and conclusion validity, they can be accomplished by repro-

ducing empirical behaviour, and applying adequate statistical tests over the model out-

puts, respectively. However, the conclusion validity also relates to design issues like 

sample size, number of simulation runs, model coverage, and the degree of representa-

tion of scenarios for all possible situations. 

 

SG27. Example from the proof-of-concept. 

As a general limitation, the model adopted in the proof-of-concept has a perspective abstracting 

the process-level details and presents only the behavior of continuous variables involved in its 

causal model. Hence, it is limited to how much explanation the experimenter can get from the 

model itself. Conversely, considering the scenarios investigated, it is possible to find some 

explanation in the contextual data. 

In terms of construct validity, the choice of hours for corrections as a surrogate for 

Maintainability is troublesome as it does not take the effort for perfective maintenance into 
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account, such as in refactoring, which also improves maintainability and is usually related to 

longer cycles.  

The results focus on output variables trends, namely Reliability and Maintainability, 

explaining the general behavior. However, we can also see both short enhancement cycles 

and long correction cycles in the initial dataset. This kind of behavior is suppressed by the 

trends, which are obtained by linear regression to generate the model equations, and not gen-

erated by the model. Thus, it represents an external validity threat. 

 

7.14 Conclusions and future work 

In order to draw solid conclusions, the experimenter should be aware about the 

model and data validity, as well as non-mitigated threats to validity, to limit the findings. 

The reasoning should establish a link from the goals, using the output analysis proce-

dures, to the findings. In other words, the results need to be explained through a chain 

of decisions and performed steps that generate the outcomes, including the reason for 

these results reflecting the simulated phenomenon.  

 

SG28. Main results/findings should be identified and summarized, as well as the 

conclusions arising from results. 

 

Furthermore, it is important to discuss the implications about the applicability of 

the solution in real scenarios, e.g., use in practice. The experimenter should realize how 

to implement the solution, as well as the required knowledge, capabilities and training 

needed. In addition, the associated risks in adopting the solution should be explicitly 

stated. The risks relate to contextual description (facets in SG2), so it means that 

changes do occur not only in processes and methods, but also with personnel, IT infra-

structure, financial costs, need for consultancy, and so on.  

 

SG29. Applicability issues should be addressed in the report, considering organ-

izational changes and associated risks. 

 

Finally, the way ahead should be mentioned in the report, pointing out further 

work and research challenges. It may also include hot topics and possible roadmaps for 

future research. 

 

SG30. Point out future research directions and challenges after current results. 
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Mainly, future directions consist in new or refined goals, detailing a specific phe-

nomenon by including new variables and relationships. The investigation of particular 

cases or multiple cases can be addressed too. Additional validation can be required as 

well, concerning with different types of validity not covered before.  

 

SG28 and SG29. Example from the proof-of-concept. 

As mentioned in Section 7.9, the experiment requires 303 simulation runs to evaluate 

all the planned scenarios. After running these simulations, we could observe exclusively at the 

context of this project dataset, that: 

Shorter maintenance cycles lead to greater reliability. As Figure 7-3 shows, the shorter 

periodicity scenario (1) has a higher number of corrected defects over six months. This result 

is explained by two main reasons: shorter cycles are mostly related to corrective and adaptive 

maintenance, and as there was no new functionality added, these maintenance cycles are 

always meant to correct defects, which is likely to improve system reliability. Moreover, shorter 

cycles are associated to critical defects. As the system was operational when the defects were 

reported, the most critical ones received the highest priority to be fixed, aiming at quickly deliv-

ering the releases that contained critical corrections. 

 

Figure 7-3. Reliability output for Fixed-Durations 

Fixed-duration maintenance cycles are more reliable for shorter and medium cycles. 

Based on previous results, the use of variable-duration cycles with a short mean and variance 

in their periodicity approximates the maintenance cycles from fixed-duration shorter ones, 

which we saw promotes more corrections. On the other hand, when adopting a high mean and 

variance for the periodicity, the variable-duration strategy does better than fixed, long cycles. 

It happens as it can also accommodate short cycles within the longer ones. Thus, in the case 

of some new project constraint or requests for new requirements, where the project manager 

needs longer releases, it would be better to intercalate them with shorter cycles. 
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Short cycles tend to decrease maintainability. Releases in short cycles are usually as-

sociated with quick corrections, as mentioned before. In this case, successive short cycles 

accumulate more hours for corrections than longer cycles, in which the enhancements (not 

accounted for as corrections) are most likely to be performed. An increase in the effort to correct 

suggests a decrease in maintainability. However, we also can observe increasing trends for 

Size and Complexity over successive releases, which also explains the increasing trend in the 

correction effort. Thus, again, if there were an opportunity to perform improvements regarding 

any quality goal, it would be better to include such enhancements in the same release, amongst 

the corrections, rather than building a release only with quality improvements. Instead, it should 

be clear that, for short cycles where critical corrections have to be done, longer cycles need to 

be avoided; so, perfective maintenance waits for the next releases. 

Stabilization of reliability and maintainability. It is possible to observe that corrected 

defects and the effort to correct become stable (on average) in the long term when a fixed-

duration is selected. However, we could not see the same behavior for the variable-duration 

strategy. This behavior suggests that fixed-duration cycles are more suitable for quality control. 

This way, the alternation between enhancement and correction releases should be done with 

caution, as some enhancements may generate new defects, penalizing conflicting quality at-

tributes. 

 

7.15 Conclusions of this Chapter 

The proposed set of simulation guidelines presented in this chapter embraces 

different stages of the SBS lifecycle. Intentionally, the scope share common aspects with 

other research strategies, such as controlled experiments, case studies or action re-

search. However, in these guidelines we discuss and present examples for these as-

pects under the simulation and SE perspectives. Additionally, it is possible to identify 

similar concerns in other simulation-related works already mentioned in this Thesis (Sec-

tion 3.2). Nevertheless, the simulation guidelines originated in the former planning per-

spective (presented in Chapter 5) add a new perspective on the mitigation of validity 

threats that has not been presented in the technical literature before. 

We recognize the need for more evaluation on this set, including both experi-

mental studies and application on simulation experiments. Furthermore, our expectation 

is to spread this set of simulation guidelines over the SE community and to get feedback 

from its application on actual SBS as well as discuss possible improvements to evolve 

the knowledge and benefit more from the experimentation with dynamic simulation mod-

els in SE, as it has been started with (DE FRANÇA and TRAVASSOS, 2015). 
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8 Conclusions and Future Work 

 

In this chapter, we present the conclusions, emphasizing the main 

contributions of this research. Additionally, we present some limita-

tions and open questions not addressed in this thesis. Finally, the way 

ahead is outlined in order to show possible future work to come as 

result of the current achievements.  

8.1 Final remarks 

In this Thesis, we presented the organization, evaluation and evolution of a set 

of guidelines concerned with the reporting and planning of simulation experiments in 

Software Engineering. Such guidelines were organized based on evidence acquired 

through a secondary study (quasi-Systematic Literature review), evolved with the results 

of the conducted primary studies and information from other research areas. These 

guidelines concentrate on how conventional aspects of empirical studies should be con-

sidered when conducting simulation experiments in SE. Moreover, the concerns regard-

ing the simulation model and study validity are justified by the importance that such 

model assumes (main observational instrument) and the bias promoted by the experi-

mental design over the interpretation of results. 

The motivation for simulation guidelines emerged from the opportunity to promote 

the quality on reported simulation studies in SE, since it is one of the issues identified in 

the qSLR (Chapter 2). Additionally, we reinforce that the issues revealed in the previous 

characterization of SBS in the context of SE are still present in the studies so far reported 

in the technical literature (Section 4.4). These simulation guidelines can help authors, 

researchers interested in simulation results, practitioners, and reviewers, on which infor-

mation should be presented when reporting SBS in the context of SE. As far as we are 

aware, this is the first set of simulation experiments guidelines in the context of SE. 

The contextual and planning information suggested by the guidelines motivate 

the software engineers to observe specific features when planning simulation studies in 

SE. Researchers and practitioners can recognize core information concerning the SBS 

results that may be applicable to their interests. Reviewers, members of conference pro-

grams and editorial boards of journals need to identify the relevant contributions, as well 

as the evidence confirming the contributions and the possible limitations of the SBS. 
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Besides the possible overlap to some extent with other disciplines and research 

strategies, the guidelines suggest how they should appear in SE studies. Some particu-

larities can be observed since SE, at least as a science field, is not mature yet. Examples 

of these particularities include lack of knowledge about relevant factors and variables for 

a given phenomenon, both quantitative and qualitative nature of SE phenomena, and 

the relevance of social and technical aspects involved. 

In general, the current set of guidelines organization intends to provide a logical 

sequence, by specifying the next step in a straightforward way, which supports the or-

ganization of research protocols and reports for SBS in the context of SE. Such se-

quence allows a reasonable reasoning flow from goals to output analysis, through dis-

cussions involving experimental validity, which can help according to the experience in 

the decision-making. The different evaluations performed and evidence used to evolve 

the set of simulation guidelines enhanced its quality under different perspectives and 

enabled its application on situations that indicate the feasibility.  

8.2 Contributions of this research 

The contributions of this research include aspects regarding computer simulation 

and experimental software engineering. Mainly, these contributions are listed below: 

 Organization of a body of knowledge regarding SBS in the context of SE: the 

characterization using the SLR methodology enabled the identification of as-

pects hampering the understanding of SBS in the context of SE (DE FRANÇA 

and TRAVASSOS, 2012) (DE FRANÇA and TRAVASSOS, 2013b); 

o Identification of methodological issues and challenges that need to be 

addressed in future SE simulation research regarding experimental 

design and simulation output analysis; 

o Identification of V&V procedures applied to SE simulation models: it 

allowed us to understand which initiatives support the verification and 

validation of SE simulation models, and how much these attempts 

contribute for the validity of studies results. 

o Identification and synthesis of potential threats to simulation studies 

validity, which are somewhat described in simulation reports, however 

as general limitations, and not discussing their consequences for the 

study (DE FRANÇA and TRAVASSOS, 2014b) (DE FRANÇA and 

TRAVASSOS, 2015);  

 Organization of a set of guidelines to support reporting and planning of simu-

lation experiments in the context of SE (DE FRANÇA and TRAVASSOS, 

2015), involving: 
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o Identification of relevant information to compose a SBS report in the 

context of SE (DE FRANÇA and TRAVASSOS, 2012) (DE FRANÇA 

and TRAVASSOS, 2014a); 

o Consolidation of the list of V&V procedures by extending the ones pre-

sented in (SARGENT, 1999) with the procedures identified through 

the qSLR (Table 7-5);b 

o Extension of the indicators of simulation feasibility presented in 

(BALCI, 1990); 

o Analysis on how existent DOE techniques and V&V procedures can 

support the mitigation of potential threats to simulation experiments 

validity (DE FRANÇA and TRAVASSOS, 2014b) (DE FRANÇA and 

TRAVASSOS, 2015). 

 All versions of the simulation guidelines include evaluations to enhance them 

and to support its validity (DE FRANÇA and TRAVASSOS, 2015), from which 

we highlight: 

o The survey (Section 4.3) involving simulation and software engineer-

ing researchers regarding guidelines completeness and correctness. 

The assessment performed by experts with heterogeneous back-

ground reinforced the relevant aspects for SBS; 

o The observational study (Chapter 6) as a different approach to evalu-

ate this sort of technology, as the ones previously presented in the 

technical literature are mostly based on expert opinion 

(KITCHENHAM et al., 2008) and application (RUNESON and HÖST, 

2009). Such evaluation indicates the usefulness of the proposed set 

of simulation guidelines (DE FRANÇA et al., 2015).  

o The proof of concept (presented as examples in Chapter 7), which 

allowed us to think over the proposed guidelines application and rep-

resented an actual simulation experiment concerning the planning of 

software maintenance cycles. 

8.3 Limitations 

In spite of the contributions and interesting results, there are still some limitations 

that are important to be mentioned: 

 By design, the scope for the simulation guidelines does not cover model-

ing issues, as we understand there are enough contributions in this direc-
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tion, even for the SE context. However, we understand that existing ori-

entation may not be easy to apply for large and complex models, requiring 

more investigations. 

 The simulation guidelines did not discuss details on how to apply or exe-

cute established procedures such as Sensitivity Analysis, generation of 

specific design matrices and calculation for number of required runs. For 

that, their original references describe how to perform them. The interest-

ing point is how they contribute for the quality of SBS protocols and when 

they should be applied. 

 The first evaluation (Section 4.2) performed for the preliminary version of 

the reporting guidelines has a threat to validity that regards to the review-

ers being the authors of the guidelines. It occurred due to the unavailability 

of human resources in position to perform the review with the required 

expertise. However, the aspects were evaluated according to the original 

checklists delivered by the evaluation approach proposed by 

(KITCHENHAM et al., 2008), which established the perspective with un-

biased questions. Moreover, we evaluated the same aspects in the sur-

vey, in which experts reviewed the improved version; 

  The survey’s scope encompassed only reporting guidelines and part of 

the planning ones (Section 4.3), since the rest of the planning guidelines 

did not exist at that time; 

 The existence of a journal publication (CHERNOGUZ, 2011) for the 

adopted simulation model in the observational study clearly influenced the 

perception of validity by the subjects. Therefore, the study protocol needs 

adjustments for future trials in order to mitigate such bias. 

8.4 Open Questions and Future Work 

In the context of this research, some questions remain open and, consequently, 

they are candidates for future research. Some regard our initial research questions, 

which rely on the need for more evaluation studies, and others arise as consequences 

of the knowledge evolution. Thus, it is important to present them clearly. 

How general or specific are the proposed guidelines? All the effort regarding 

investigation and analysis was concentrated on issues identified in the context of SE. It 

is possible that other science areas share common concerns as we adapted some 

knowledge outside SE. However, this work has no ambition to propose general guide-

lines for simulation regarding phenomena from other areas. Additionally, we understand 

that most of the issues discussed in the guidelines are related to the immature stage of 
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SE research regarding experimental aspects and that affects the way studies are con-

ducted. Therefore, the proposed guidelines are meant to give a broad orientation on 

relevant aspects to concern with regarding experimentation with simulation models with-

out getting into the specifics of each technique, method or procedure that may be 

adopted. 

How can we evaluate the quality of evidence from simulation studies? Re-

garding our research questions Q2, concerned with study validity, we identified potential 

threats to SBS validity, as well as analyzed how V&V procedures for simulation models, 

experimental designs techniques and output analysis instruments applicable for simula-

tion experiments can mitigate these threats. However, we have no criteria to evaluate 

the quality of the evidence resulting from SBS. Initially, the proposed guidelines could be 

used as input to propose a small set of criteria, but it certainly requires more investiga-

tion; 

Which process to follow when conducting simulation-based studies? The 

proposed set of guidelines for simulation does not meant to be a process or methodology 

to perform SBS. The idea is to cover specific topics not covered by existing approaches, 

focusing on model experimentation and validity. In fact, there are some lifecycles already 

presented on the technical literature (Section 1.1) concerning the whole process in an 

abstract way. Besides, methodologies for software process simulation and modeling are 

also available in the technical literature (PFAHL and RUHE, 2002) (ALI and PETERSEN, 

2012), although they focus on model development.  

How to deal with specific steps on the simulation lifecycle? Processes for 

selecting the suitable simulation approach, V&V procedure, experimental designs or 

analysis instruments are beyond the purpose of the guidelines. However, they configure 

areas of interest for many research areas and have been investigated over the years. 

The specificities of SE domains (such as software process) or simulation approaches 

(such as System Dynamics) are not covered either, as this work has a general purpose 

in this sense. 

How could simulation support software engineering research? A part from 

performing regular in virtuo and in silico experiments, simulation have been used to sup-

port experimentation in other forms. It is the case of theory development, as discussed 

in (DAVIS, EISENHARDT and BINGHAM, 2007), in which simple theories are initially 

described as simulation models. Later, such theory evolves based on the results of ex-

periments encompassing simulation scenarios to test hypotheses regarding the theory 

under development or establishing scenarios to falsify the proposed theory. Additionally, 

simulation can support feasibility studies for SE technologies and attempts to observe 

phenomena under large-scale perspective. For instance, the investigation of how many 
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events should occur before a certain behavior become observable, or the limits for the 

application of SE technologies in terms of scale (organization size, project duration, num-

ber of development sites, functional size or complexity, among other scale variables). In 

order to analyze these phenomena, there are several limitations regarding observation 

capacity, which is unfeasible in many in vivo or in virtuo settings. 

Finally, simulation in the SE context is not restricted to software process simula-

tion. Product simulation is also interesting but scarce. For instance, simulation of archi-

tectural issues regarding security attacks and performance limits are required for large 

and complex systems that demand time to be ready for testing such attributes. In addi-

tion, peopleware behavior in the software development is also interesting and relevant. 

The possibilities of simulating the impact of motivational and exhaustion factors, devel-

opment team dynamics and human resource allocation policies illustrate this point. 
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APPENDIX A 

Consent Form for the Simulation Guidelines Evaluation 

Informed Consent Form for Participation in Research 

Study regarding Guidelines for Conducting Simulation-Based Experiments in Software Engineering 

I declare to be over 18 years old and agree to participate in the studies conducted by the researchers Breno 

Bernard Nicolau de França and Prof. Guilherme Horta Travassos, as part of the activities of the Experi-

mental Software Engineering course at COPPE/UFRJ.  

This study aims at improving the understanding of which aspects are relevant for planning simulation-based 

experiments, in the context of a Software Engineering research. For that, we intend to observe the use of 

the proposed guidelines for this sort of study. 

PROCEDURE 

The proposed activities for this study should be performed individually and voluntarily. Each subject will 

receive the proposed scenario for the simulation study, the simulation model specification proposed by 

Chernoguz, as well as the required training for the Vensim tool and the executable simulation model. Fur-

thermore, each subject will receive a set of planning guidelines for simulation-based experiments. 

Each subject will need a computer with the Vensim tool installed and the simulation model file. Having the 

mentioned instruments in hands, the subject should: 

1. Read the problem description and the general goal for the simulation-based experiment to be planned 

based on the proposed scenario and, then, start to elaborate the study plan (according to the Study Plan 

Template presented in class), using the simulation model as support and, in considering it relevant, the 

planning guidelines for simulation-based experiments. In the case the subject decides for using the guide-

lines, s/he will inform which guidelines were used to support the Study Plan elaboration in one section or 

another. 2. After all subjects deliver the plans, each subject should review the study plan from another 

subject supported by the planning guidelines. 3. After the review, the subject will join a group dynamics, 

in which subjective issues regarding their experience will be discussed. 

It is extremely important that subjects do not discuss their tasks among themselves. 

CONFIDENTIALITY 

All information collected in this study is classified, and my name will not be identified at any moment. 

Similarly, I commit not to communicate my results before the study ends, as well as to keep confidentiality 

regarding the presented techniques and documents under the scope of this study. 

BENEFITS AND FREEDOM TO WITHDRAW 

I understand the benefits I will receive in this study are limited to the learning regarding the available 

material, regardless my participation on this study, but the researchers expect to comprehend better topics 

about simulation-based studies, and the benefits from this study for the context of Software Engineering. 

I understand that I am free to ask questions at any moment and to request my information not to be included 

in the study. Still, I understand that I am participating in this study by freewill, only intending to contribute 

for the progress and development of Software Engineering research. 

I understand that I am not obligated to contribute with information regarding my performance on these 

tasks, and that I may withdraw my results at any moment with no penalty or losses for me. I understand 

there will be no extra advantage or benefit in case of join the study. 

RESPOSIBLE PROFESSOR 

Prof. Guilherme Horta Travassos  

Systems Engineering and Computer Science - COPPE/UFRJ 

 

 

 

Subject Name  Subject Signature 
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APPENDIX B 

Subject Characterization Form for the Simulation 

Guidelines Evaluation 

 

Subject name: 

E-mail: 

Instruction level: ( ) Master Student     ( ) Doctorate Student 

1. How many software development projects do you participate in? 

(  ) None (  ) From 3 to 5 projects 

(  ) Until 1 project (  ) From 5 to 7  projects 

(  ) From 1 to 3 projects (  ) More than 7 projects 

2. How much academic experience time do you have in the Software Engineering research area? 

(  ) None (  ) From 3 to 5 years 

(  ) Until 1 year (  ) From 5 to 7  years 

(  ) From 1 to 3 years (  ) More than 7 years 

3. How much industry experience time do you have in the Software Engineering area? 

(  ) None (  ) From 3 to 5 years 

(  ) Until 1 year (  ) From 5 to 7  years 

(  ) From 1 to 3 years (  ) More than 7 years 

4. How much academic experience time do you have in the Software Development Processes research 

area? 

(  ) None (  ) From 3 to 5 years 

(  ) Until 1 year (  ) From 5 to 7  years 

(  ) From 1 to 3 years (  ) More than 7 years 

5. How much industry experience time do you have in the Software Development Processes area? 

(  ) None (  ) From 3 to 5 years 

(  ) Until 1 year (  ) From 5 to 7  years 

(  ) From 1 to 3 years (  ) More than 7 years 

6. Have you worked (developed or used) with any simulation model? How many? 

(  ) None (  ) 3 simulation models 

(  ) 1 simulation model (  ) 4 or more simulation models 

(  ) 2 simulation models  

7. Choose on the alternatives below the simulation approaches that you have some experience with: 

(  ) System Dynamics (  ) State-Based Simulation 

(  ) Discrete-Event Simulation ( ) Hybrid Simulation (Combinations) 

(  ) Agent-Based Simulation ( ) Other: __________________________ 
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APPENDIX C 

Template for Study Plans 

 
1. IDENTIFICATION  
Title, Topic, Technical area, Author, Affiliation, Local, Date.  

Used guidelines or complementary material in this section:___________________ 

2. CHARACTERIZATION  
Type of study, Domain, Language, Partners (Institution, Address, Phone Number, E-mail and Internet 

Address), Links, Estimated Number of Trials, Glossary of Terms. 

Used guidelines or complementary material in this section:___________________ 

3. INTRODUCTION  
Background, Problem Definition, Document Organization.  

Used guidelines or complementary material in this section:___________________ 

4. STUDY DEFINITION  

 Object of Study  

Used guidelines or complementary material in this section:___________________ 

 Main Goal 

Used guidelines or complementary material in this section:___________________ 

 Specific Goals  

o Analyze  

o For the purpose of  

o With respect to  

o From the point of view  

o In the following context  

Used guidelines or complementary material in this section:___________________ 

 Quality Focus  

Used guidelines or complementary material in this section:___________________ 

 Context  

Used guidelines or complementary material in this section:___________________ 

 Questions and Metrics 

Used guidelines or complementary material in this section:___________________ 

 Open questions  
Used guidelines or complementary material in this section:___________________ 

 

5. PLANNING  

 Hypotheses Formulation 

Used guidelines or complementary material in this section:___________________ 

 Variables Selection 

o Dependents  

o Independents  

Used guidelines or complementary material in this section:___________________ 

 Subjects’ Selection  
o Selection Criteria 

o Required Experience 

o Criteria for Groups’ Selection  

o Probabilistic Sampling Techniques  

o Non-Probabilistic Sampling Techniques 

Used guidelines or complementary material in this section:___________________ 

 Resources  
o Software  

o Hardware  

o Questionnaires  

Used guidelines or complementary material in this section:___________________ 

 Experimental Design 



144 

 

o Objetcs  

o Measurements  

o Guidelines 

o Techniques 

o Factors 

o Treatments 

Used guidelines or complementary material in this section:___________________ 

 Instruments  
o Description  

o Justification 

o Advantages and Disadvantages  

o Limitations  

o Support to Quantitative Analysis  

o Support to Qualitative Analysis  

o Observation Criteria  

o Artifacts (Questionnaires, Procedures, etc)  

Used guidelines or complementary material in this section:___________________ 

 Analysis Mechanisms  
o Statistical Tests  

o Outliers’ Removal Criteria 

Used guidelines or complementary material in this section:___________________ 

 Results Validity  
o Internal Validity  

o External Validity 

o Conclusion Validity  

o Construct Validity 

Used guidelines or complementary material in this section:___________________ 

 

6. TRAINING  

 Training Definition and Procedures 

o Mentors  

o Participants  

 Artifacts  

Used guidelines or complementary material in this section:___________________ 

7. EXECUTION PROCEDURE  

 Execution Procedure for the Experimental Study  

 Artifacts (Instructions, Documents, etc)  

Used guidelines or complementary material in this section:___________________ 

 

8. PLAN’S ASSESSMENT  

 Goals 

 Participants  

 Execution Procedure  

 Input Artifacts  

 Output Artifacts (Lessons Learned, Change Suggestions for the Plan)  

Used guidelines or complementary material in this section:___________________ 

9. COSTS PLANNING  

 Experimental Study Costs 

o Planning Costs 

 The plan 

 Instruments 

 Training material 

 Plan Assessment  

o Execution Costs 

 Deslocamentos  

 Training  

 Human Resources 
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 Material Resources  

o Analysis Costs  

o Packaging Costs  

Used guidelines or complementary material in this section:___________________ 

 

10. BIBLIOGRAPHY 

Used guidelines or complementary material in this section:___________________ 

 

11. ANNEXES 

Used guidelines or complementary material in this section:___________________ 
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APPENDIX D 

Organizational Scenario for the Evaluation of Simula-

tion Guidelines 

Organizational Scenario 

An embedded software development organization, committed to their products and processes improve-

ment, continually invests in practices capable of returning positive results regarding both quality and fi-

nancial perspectives. However, the organization identified recent projects having schedule overruns on 

product deliveries. Therefore, its relation with clients and reputation have been negatively affected, re-

sulting also on financial losses. 

The projects identified characterized as significantly behind the schedule, usually, starts with a small num-

ber of veterans (more or less four senior professionals) when compared to the number of rookies (about 

30 novice professionals). Moreover, it is possible to add manpower, when requirements and early archi-

tecture design are almost complete. In general, rookies allocated during the project take about 30 days 

to become as productive as veterans. 

In general, the QA manager perceived that when the project progress reach about 30% of the estimated 

schedule and the project is already late, the project managers often react by adding more developers. 

However, he also notice that such approach has not solved the problem yet. Besides, it increases the 

project budget by allocating additional manpower. Thus, the organization hired you, as a software engi-

neering consultant, and requested you to give a short-time diagnostic for the current situation, explaining 

the reasons for the raised issues and proposing a feasible solution for the problem, i.e., which strategy 

can be adopted in future similar projects to reduce the losses. 

The observed effect by adding more developers reminds the behavior described by Frederick Brooks, in 

1975: “Adding manpower to a late software project makes it later”. This behavior is the so-called Brooks’ 

Law (see next section). 

Understanding the problem should be investigation in a short period and there is projects’ historical data 

available, a feasible alternative is to conduct (plan, execute, and analyze) simulation-based experiments 

in order to understand the problem affecting the deliveries and testing possible alternative solutions. 

Regarding the historical dataset from the organization, it is possible to identify information for the follow-

ing metrics, by project: 

 Project Schedule (chronogram, in days); 

 Functional size (in function points); 

 Tem productivity, total and stratified in rookies and veterans (in function points / person-

month); 

 Team size, total and stratified in rookies and veterans; 

 Training effort (in person-day); 

 Mean time for individual learning (in days); 

 Communication overhead, percent of communication needs and tasks coordination effort (in 

person-day); 
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Brooks’ Law 

In the project beginning, project managers estimate the required effort, negotiate schedule and budget 

and, in the case things deviate from the planned, plan corrective action to put the project back on track. 

In these actions, project managers should be aware of what to change. Some actions may have negative 

impact, as when professionals become overloaded or more manpower is added to a late project. When 

working overloaded, it triggers a vicious cycle, in which professionals become exhausted and conse-

quently, it increases the number of defects, rework and productivity decay. For the other case, the para-

dox effect of adding more manpower, or the Brooks’ Law, refers to the behavior observed by Frederick 

Brooks and described in his book titled, The Mythical Man-Month, where the author alerts project man-

agers regarding attempts of bringing the project back on track,  

“When schedule slippage is recognized, the natural (and traditional) response is to add man-

power . . .Like dousing a fire with gasoline, this makes matters worse, much worse. Oversimpli-

fying outrageously, we state Brooks’ Law: Adding manpower to a late software project makes 

it later”. 

Brooks explains his law by the very nature of programming work, which is “more like having a baby than 

picking cotton”:  

“Ten people can pick cotton ten times as fast as one person because the work is almost per-

fectly partitionable, requiring little communication or coordination. But nine women can’t have 

a baby any faster than one woman can because the work is not partitionable”. Unlike manufac-

turing, software construction is an inherently systemic effort: it cannot be easily partitioned 

into isolated, independent tasks. The complexity of software development “... creates the tre-

mendous learning and understanding burden that makes personnel turnover a disaster”. 

When new people is added to a software development projects, it is required domain knowledge and 

project architecture information, as well as organizational policies and procedures, team responsibilities, 

and other relevant information. Usually, a veteran helps a rookie to become part of the team. Mentoring 

activities involves the veteran to deviate from his current tasks and increase the general communication 

overhead. The increase on training and in the communication and coordination overhead are contributing 

factors for the Brooks’ Law, due to the extra workload. Training affects productive work reduction for the 

veterans. In general, the Brooks’ Law states that while the project communication complexity and effort 

increase by the square of team size, the workload increases linearly. This way, the effort spent in training, 

coordination, and communication is greater than the return of waiting until the rookies become effec-

tively productive. 

Simulation Model for the Brooks’ Law 

Chernoguz (2011) proposed a model for the observation of the Brooks’ Law phenomenon, including sev-

eral improvements w.r.t. models previously published in the Software Engineering technical literature. 

Such model can be used as basis for planning simulation-based studies. Figure 1 presents a causal model 

for the Brooks’ Law. Figure 2 presents the SD’s stock and flows diagram. 
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Figure 1. Cause-effect diagram for the Brooks’ Law. 

 

Figure 2. Stocks and Flows diagram for the Brooks’ Law. 
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Model Inputs (Constants) 

Parameters Description Intervals 

Veteran productivity Mean productivity for veterans [1.0 – 5.0] 
Rookie productivity Mean productivity for novices [0.2 – 1.0] 
Nominal production Daily effort (person-day) of a developer [0.05 – 0.2] 
Entropy factor Entropy factor10 for project communication [0.03 – 0.06] 

Individual learning time Number of workdays  required for rookies’ assimi-
lation into the project without team investment in 
training 

[5 - 60] 

Mentors  Number  of experienced members allocated for 
training 

[1 – all veterans] 

Time allocated for men-
toring 

A fraction of veterans’ time reallocated away from 
production to mentor rookies 

[0.125 – 1.0] 

Staffing pulse Amount of manpower to be added during the pro-
ject. 

[4 – 20] 

Schedule threshold Project progress percent, from which the project 
is considered to be late (time step, simulation 
step). 

[22 – 45] 

Veterans (Initial value) Amount of experienced professionals in the pro-
ject beginning. 

[4-10] 

Rookies (Initial value) Amount of novice professionals in the project be-
ginning. 

[28-32] 

 

Intermediate Variables 

Variable Description 

Tasks Tasks to be performed in the software development. 
Product Amount of performed tasks, i.e., amount of work done. 
Task init Initial amount of tasks (Tasks). 
Veterans Amount of experienced professionals during the projects. 
Rookies Amount of unexperienced professionals during the projects. 
Assimilation rate Mean time for rookies become as productive as veterans. 
Personnel Allocation Amount unexperienced professionals allocated per day. 
Communication overhead Effort spent on communication between members. 
Communication paths Amount of communication channels between each pair of members. 
Total personnel Total team size. 
Investment in mentoring Percentage of daily effort spent by mentors. 
Mentoring effort Daily effort dedicated for mentoring including all rookies. 
Staffing rule Rule determining if new members should be allocated to the project. 
Milestone Simulation step in which new members are allocated to the project. 

 

 

 

                                                

 

10É uma medida do grau de desorganização que pode levar a falência de um sistema. 
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Model Outputs 

Variable Description 

Production rate Daily project team effort measured in number of tasks (i.e., function points) 
by team and by day. 

Actual productivity Actual productivity observed. 
Schedule Execution time for the project, in days. Observed by the simulation cycles (dt), 

with each cycle being ¼ of a day. 
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APPENDIX E 

Proof of concept for the Planning Guidelines 
To evaluate the guidelines proposed through a proof of concept, we planned and 

executed a simulation experiment focused on software evolution. In this section, the 

study plan and its results are described, besides the tracing between the plan’s part and 

correspondent guideline, indicated through (SGxx) marks. We opted for this approach 

rather than an exhaustive discussion of guideline application. 

The study motivation (SG2) converges on two aspects: (1) an initial feasibility 

assessment of the proposed planning guidelines for simulation experiments; and (2) the 

understanding of how a project manager can breakdown long term releases of a large-

scale information system to control business processes in a research supporting organ-

ization. The project team is geographically distributed in two sites, following an iterative 

and incremental software development process, emphasizing V&V activities. This simu-

lation experiment also intends to show how a software evolution simulation model 

(Araújo et al, 2012) can be used to support the answering of research questions regard-

ing software maintenance.  

Thus, the problem investigated (SG3) regards the software life cycle at the time 

the information system changes from a development to a maintenance (corrective, evo-

lutionary, or perfective) stage. Usually, maintenance cycles depend on a set of improve-

ment requests from project stakeholders, which clearly identifies this moment (Kitchen-

ham et al, 1999). This way, the project manager should be able to plan product releases 

observing the restrictions regarding product quality, time to market, and budget. How-

ever, these variables can depend on unpredictable or unknown factors, which can pro-

duce a sub/super estimated time for the maintenance plan. Thus, the project may go 

over schedule, needing actions such as increasing the number of human resources, with 

higher of costs and possibly on decay of product quality. 

Goal and Research Questions 

The goal (SG4) of this study based on GQM is: 

To analyze the evolution of an information system, for the purpose of charac-

terization, as regards the duration of maintenance cycles, as well as its effect on product 

quality, from the point-of-view of the SE Researcher, in the context of simulating 

quality decay for a large-scale information system, with the use of a SD model as instru-

ment. 

For the goal defined, we derived two research questions (SG5): 
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Q1: Which periodicity (shorter or longer cycles) performs better for the next 6 

months after the last release?  

Q2: Which strategy (fixed or variable duration cycles) performs better regarding 

the product quality? 

Simulation Feasibility 

Although we have presented some motivations to do this study, the use of simu-

lation in this context can be justified (SG7) by the long-term analysis, in which several 

variables of interest need to be timely controlled without imposing risks to the software 

project. Furthermore, we are interested in observing how these variables behave over 

time, and in their interactions considering not only first-order (i.e., effects of Periodicity 

on both Size and Complexity), but also higher-order effects (i.e., successive relationships 

and/or causal loops such as a loop involving Effort, Maintainability, and Reliability).  

Simulation Model 

Araújo et al (2012) present (SG9) an infrastructure based on the Laws of Software 

Evolution to observe software quality decay throughout software development and 

maintenance processes. The main idea is to get a better understanding of how the soft-

ware system may be affected by several changes occurring in its lifecycle. In order to 

support the evolving systems’ behaviour observation, an evidence based logical model 

was defined and described through SD constructs to allow the simulation of successive 

maintenance cycles. The SD model for software evolution is shown in Fig 1.  

 

Fig 1. Software Evolution Model adapted from (Araújo et al, 2012). 

The model was developed over six state variables, which represent the combined 

status for both project and product: Periodicity, the time interval between each release 
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version of a produced artefact (e.g., software or documentation versions); Size, the mag-

nitude of artefacts produced in each life cycle stage of the proposed software (e.g., the 

amount of lines of code in the source code or the number of requirements in the require-

ments specification document); Complexity, the elements that can measure the struc-

tural complexity of an artefact (e.g., cyclomatic complexity of methods, or number of 

classes in the class diagram); Effort, the amount of work done to produce a version of 

some artefact (e.g., measured in terms of man-hours or equivalent unit); Reliability, the 

number of defects corrected per artefact in each software version; and Maintainability, 

the time spent in fixing defects. The only difference from the original model is that Peri-

odicity is not determined by the simulation cycle, as it is a design factor.  

In order to improve the model validity, the authors collected evidence for each 

relationship amongst model variables from the technical literature (SG24). For the com-

plete set of evidence, see (Araújo et al, 2012). Besides, the model was successfully 

assessed using the procedure of Historical Validation (SG10), in which a dataset is di-

vided into two pieces and the model is calibrated using the first eleven releases and then 

simulations are ran to verify if the model can predict trends for each model variable ac-

cording to the second part of the dataset (later eight releases). So, the model was able 

to predict the trends for the output variables. This is considered enough for the purposes 

of understanding of our study. The simulations are executed in the Vensim environment 

(SG17), which supports the simulation of SD models and has an academic version (PLE) 

with limited support for experimentation, but free of charge. Additionally, it offers inter-

esting analysis tools, such as causal tree, output plotting on sequence charts and simu-

lation traces. 

Subjects 

This is an in silico experiment (SG11). Therefore, subjects’ characteristics are not 

taken into account and not explicitly represented in the simulation model. This way, the 

effects of the subjects from the real project are abstracted through the supporting data 

used to calibrate the model, which contemplate characteristics such as productivity and 

team expertise. 

Experimental Design 

The variables (SG12) of interest are Periodicity, as independent variable, and 

product quality in terms of Reliability and Maintainability, as dependent or response var-

iables. For the periodicity factor, we will adopt low, medium and high values, to under-

stand how the response variables behave by increasing the periodicity. The level differ-

ences are meant to understand the effect of both small and large changes on the input 

parameter, i.e., whether factor sensibility is introducing bias. Additionally, we have a 
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qualitative factor with two levels, from our research question Q1, regarding the strategy 

for the organization of maintenance cycles: fixed-duration or variable-duration cycles. 

Fixed-duration means that every cycle has the same periodicity. On the other hand, var-

iable-duration means that each cycle may have a different periodicity. 

In the causal diagram on the right side of Fig 1, it is possible to see that there are 

first-order and other higher-order possible effects of Periodicity on both Reliability and 

Maintainability. Therefore, in this experiment we will explore full factorial designs for 

questions Q1 and Q2 as shown in the design matrix (Table 1). 

Table 1. Design Matrix for the Simulation Experiment 

Scenario Strategy Periodicity 

1 Fixed-duration 2 
2 Fixed-duration 10 
3 Fixed-duration 40 
4 Variable-duration Low mean (2) and variation (1) 
5 Variable-duration Medium mean (10) and variation (5) 
6 Variable-duration High mean (20) and variation (10) 

For the scenarios (SG13) concerning with fixed-duration strategies, the model 

behaves deterministically, and therefore we need just 3 runs (SG14), one for each peri-

odicity level. On the other hand, the experimental design involves the use of a stochastic 

variable for periodicity, using the strategy of variable-duration. This variable is assigned 

to a normal distribution, with different mean and variance for each scenario. The choice 

for a normal distribution was based on the Kolmogorov-Smirnov test, done on the col-

lected data that presents a normal distribution for periodicity. In these scenarios (SG28), 

we use 100 runs for each one of the 3 scenarios, being a total of 300 runs for the variable-

duration scenarios. 

In order to determine the number of required trials, we adopted the method by 

Law and Kelton (2008). Basically, it consists in choosing an initial number of runs (sam-

ple size), from which a confidence interval will be estimated. Such number of run should 

be increased until the confidence interval present an estimated error less or equal than 

the allowable percentage error between the simulated and real means (0.01 in our ex-

periment). This procedure should be performed for each output variables. In our case, 

Maintainability and Reliability. The estimated mean and confidence intervals for each 

variable are presented in Fig 2 and Fig 3. 
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Fig 2. Determination of number of runs for Maintenance. 

Actually, the confidence interval for Maintenance converges with the mean in 99 

runs, while Reliability converges in 100 runs. Both numbers were considered for the 

worst case (high variance). However, the number of runs should be the same for each 

scenario. This way, we selected 100 runs for each stochastic scenario in the experi-

mental design. 

 

 

Fig 3. Determination of number of runs for Reliability. 

For each simulation scenario, we defined an output dataset, resulting in six da-

tasets. These simulation runs were executed in the Vensim PLE environment, by explic-

itly setting the input parameters for each scenario. 
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Supporting Data 

The data and procedure used for model calibration came from (Araújo et al, 

2012). It was collected from a large-scale software project, in which the software under 

development is a Web-based information system for automation of business processes 

of an organization responsible for supporting both in financial and administrative aspects 

of research projects. For this project, the development team adopted an iterative and 

incremental software development lifecycle, with strong emphasis on verification, valida-

tion, and testing techniques throughout the software development. Besides, geograph-

ically distributed teams took part in the development, using Java and Java Server Faces 

platforms. The development team is stable, with about 12 developers. 

To support observation, 13 different system releases were considered (SG16). 

This historical dataset was available in version control system logs, bug tracking ser-

vices, and effort registration spreadsheets, whose measurements are relevant to the ob-

servation of system evolution, and for each release it collected measures for the six var-

iables mentioned in section 1.3.  

The system releases resulted from corrective, adaptive and perfective mainte-

nance activities (SG29). The perfective maintenance mainly regards, in this dataset, the 

enhancements regarding security, performance, maintainability, and graphical user in-

terface. No new functionality was considered during these releases. So, our simulation 

results are limited to these types of maintenance. Additionally, users reported the cor-

rected defects for each release, during the system’s operating lifecycle. 

Output Analysis 

For output analysis (SG31), statistical charts are used, namely histograms and 

sequence run charts, to characterize response variable behavior. Histograms are 

needed to check their distribution, while the sequence run is useful to understand how 

the values for these variables behave over time. Additionally, we use the sequence run 

to compare different scenarios by plotting their series on the same chart. For instance, 

to analyze the Strategy factor corresponding to research question Q1, scenarios 1, 2 and 

3 are compared against scenarios 4, 5 and 6, respectively. These comparisons keep the 

Effort factor constant on the base value, as it is not a variable of interest for this research 

question. Similar analyses are done with the other factors or interactions concerning 

each research question. Question Q2 involves the use of a random variable, requiring the 

analysis of several runs. It implies the use of statistical measures of central tendency 

and dispersion when comparing the scenarios. 
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Simulation Results 

As mentioned in Section 1.5, a total of 303 simulation runs are needed to evaluate 

all the planned scenarios. After running these simulations, we could observe exclusively 

the context of this project dataset, that (SG20): 

Shorter maintenance cycles lead to greater reliability. As Fig 4 shows, the 

shorter periodicity scenario (1) has a higher number of corrected defects over six months. 

This result is explained by two main reasons: shorter cycles are mostly related to correc-

tive and adaptive maintenance, and as there was no new functionality added, these 

maintenance cycles are always meant to correct defects, which is likely to improve sys-

tem reliability. Moreover, shorter cycles are associated to critical defects. As the system 

was operational when the defects were reported, the most critical ones received the 

highest priority to be fixed, aiming at quickly delivering the releases that contained critical 

corrections. 

 

Fig 4. Reliability Output for Fixed-Durations. 

Fixed-duration maintenance cycles are more reliable for shorter and me-

dium cycles. Based on previous results, the use of variable-duration cycles with a short 

mean and variance in their periodicity approximates the maintenance cycles from fixed-

duration shorter ones, which we saw promotes more corrections. On the other hand, 

when adopting a high mean and variance for the periodicity, the variable-duration strat-

egy does better than fixed, long cycles. It happens as it can also accommodate short 

cycles within the longer ones. Thus, in the case of some new project constraint or re-

quests for new requirements, where the project manager needs longer releases, it would 

be better to intercalate them with shorter cycles (SG21). 
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Short cycles tend to decrease maintainability. Releases in short cycles are 

usually associated with quick corrections, as mentioned before. In this case, successive 

short cycles accumulate more hours for corrections than longer cycles, in which the en-

hancements (not accounted for as corrections) are most likely to be performed. An in-

crease in the effort to correct suggests a decrease in maintainability. However, we also 

can observe increasing trends for Size and Complexity over successive releases, which 

also explains the increasing trend in the correction effort. Therefore, again, if there was 

an opportunity to perform improvements regarding any quality goal, it would be better to 

include such enhancements in the same release, amongst the corrections, rather than 

building a release only with quality improvements (SG21). Instead, it should be clear that, 

for short cycles where critical corrections have to be done, longer cycles need to be 

avoided; so, perfective maintenance waits for the next releases. 

Stabilization of reliability and maintainability. It is possible to observe that 

corrected defects and the effort to correct become stable (on average) in the long term 

when a fixed-duration is selected. However, we could not see the same behavior for the 

variable-duration strategy. This behavior suggests that fixed-duration cycles are more 

suitable for quality control. This way, the alternation between enhancement and correc-

tion releases should be done with caution, as some enhancements may generate new 

defects, penalizing conflicting quality attributes. 

Threats to Validity (SG19 and SG32) 

As a general limitation, the model adopted has a perspective abstracting the pro-

cess-level details and presents only the behavior of continuous variables involved in its 

causal model. Therefore, it is limited to how much explanation the experimenter can get 

from the model itself. Conversely, considering the scenarios investigated, it is possible 

to find some explanation in the contextual data. 

In terms of construct validity, the choice of hours for corrections as a surrogate 

for Maintainability is troublesome as it does not take the effort for perfective maintenance 

into account, such as in refactoring, which also improves maintainability and is usually 

related to longer cycles. 

The results focus on output variables trends, namely Reliability and Maintainabil-

ity, explaining the general behavior. However, we can also see both short enhancement 

cycles and long correction cycles in the initial dataset. This kind of behavior is sup-

pressed by the trends, obtained by linear regression to generate the model equations, 

and not generated by the model. Thus, it represents an external validity threat. 
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