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Abstract

During the last decade, all commercial database systems have included features for parallel

processing into their products. This development has been driven by the fact that databases

grow in size at considerable rates. According to the results of the 1998 `very large database

contest' the worldÕs largest databases, which have reached a size of over 10TB, double in size

every year. At that speed, they outgrow the increase in processor speed and memory size, so

additional measures are required to accommodate the e�ects of rapidly growing volumes of

data. Parallelism is one of those options. It helps to keep processing times constant, even if the

size of the database increases. That e�ect, which is often referred to as `scaleup' is important

for loading, index creation, all kinds of administrative operations on the database, and of

course for long batch-type applications. Parallelism is also employed to speed-up queries that

otherwise would take days or weeks to process and thus would be useless for the application.

This type of requirement: fast results of complex queries on large data sets is characteristic of

decision support applications. In this overview we will explain how parallelism in databases

can help to solve such problems. Ó 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Database systems have exploited parallelism from the very beginning (in the early
1960s), in a way similar to operating systems. An operating system allows many
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users to use the same hardware concurrently, i.e., in parallel, and a database system
allows the same database to be concurrently accessed by many application programs.
The basic idea is the same: each time an application is blocked because of a slow
operation such as disk I/O, communication with a remote node, interaction with the
user, the processor is re-dispatched to another application that is ready to execute.
There is an important di�erence, though, between the way an operating system uses
time sharing and what a multi-user database system does: whereas the operating
system gives each user its own private resources (processes, address spaces, ®les,
sessions, etc.), the database is a shared object. Di�erent applications can access the
same records or ®elds concurrently, and the problem of automatically maintaining
correctness in such a parallel execution environment was one of the great challenges
in database research in the 1970s. The problem was solved by the transaction con-
cept with its sophisticated interplay of consistency checking, locking and recovery,
and the resulting functionality proved an ideal basis for large distributed online
information systems. The fact that all technical aspects related to locking and re-
covery can be completely hidden from the application makes modern SQL-style
databases the ®rst commercially used programming environments that automatically
control parallelism ± inter-query parallelism, that is.

For a long time, this was the only use of parallelism in databases ± to the ex-
ception of a few special systems. However, in the 1980s users increasingly started
developing applications that were radically di�erent from classical online transac-
tions: they ploughed through their databases (which, as was mentioned above, keep
growing at a very high rate) in order to identify interesting patterns, trends, customer
preferences, etc. ± the kind of analysis that is called `decision support', `data mining',
`online analytic processing' or many other names. Those applications use databases
in a di�erent way than online applications do. An online transaction is short; it
typically executes some 100k instructions, touches less than 100 objects in the da-
tabase, and generates less than 10 messages. However, there are many concurrent
transactions of the same kind, each transaction wants to experience short response
time, and the system should run at high throughput rates. Parallelism in this case
means scaleup: one wants to be able to do the same on larger databases, without
a�ecting the response times of the online transactions.

Decision support applications, on the other hand, touch millions of objects, ex-
ecute 1012 instructions or more, and they typically do not execute in parallel to each
other or normal online transactions. Running such applications with reasonable
elapsed times requires the use of parallelism in all parts of the database system,
which has signi®cant impact on the overall architecture of the database engine and
its interfaces to the operating system.

2. Levels of parallelism in a database system

Parallelism can be employed in database systems at di�erent levels, with gran-
ules of di�erent sizes. The most relevant types of parallelism can be classi®ed as
follows:
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· Inter-transaction parallelism,
· Parallelism among database operations inside a transaction,
· Parallel execution of a single database operation,
· Parallel access to the stored data.

This list illustrates that besides data parallelism at the lower layers, database
systems also have a potential for function parallelism.

Let us now consider each level of parallelism in turn.

2.1. Inter-transaction parallelism

This is the concurrent execution of di�erent online transactions mentioned in
Section 1. Since they operate on the same (shared) database, concurrent read/write
access to the same data element must be mediated automatically by the database
system in order to keep all aspects of parallelism transparent to the application
program, which is a sequential program operating under the assumption of un-
restricted access to a single-user database. This transparent handling of parallel-
ism with certain formal consistency guarantees (serializability) is based on the
transaction concept [2,8], which gives all executions the so-called ACID properties
(atomicity, consistency, isolation, durability). It guarantees that the parallel exe-
cution of n transactions on a shared database will produce a result that is
identical to the result of at least one of the n! possible serial execution sequences
of those transactions. In other words: from each transactionÕs perspective the
system behaves like a single user system; the application will not experience any
anomalies caused by parallel processing. This technique was essential for the
wide-spread use of multi-user databases, but it is e�cient only if transactions are
short and small. Analytic models indicate that the probability of deadlock among
concurrent transactions increases with the 4th power of transaction size [8], so
transaction oriented parallelism in its simplest form breaks down in an environ-
ment of long computations ± such as data mining. In large online systems, the
degree of parallelism of this type, often called multi-programming level, is in the
order of 100. This implies that there are at least as many tasks or processes,
because at any point in time, an active transaction needs a process in which to
execute.

Since this type of parallelism is only marginally relevant to decision support ap-
plications, we shall not discuss it in detail.

2.2. Parallel execution of database operations inside a transaction

Each transaction is a sequence of statements written in some host language, which
can be ignored for our purposes, and of statements of some database access language
such as SQL [16]. The example in the following table assumes an order entry ap-
plication: a new order is entered from some terminal, and the transaction that
processes the input has to update all the relations in the database a�ected by that
order. Quite obviously, there are no data dependencies among these statements, so in
principle they could be executed in parallel.
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Since SQL is a non-procedural language, the detection of data dependencies (or
the lack thereof) is straightforward, so database systems could easily exploit this type
of parallelism. However, it is not supported in commercial systems, for reasons
beyond the scope of this paper.

We will not discuss this type of parallelism either, because it is not what is re-
quired in a decision support application. Decision support is characterized by the
need to execute a single SQL operator, the select statement, which has very complex
parameters, nested sub-selects etc. Fig. 1 shows a sample query, which is taken from
the so-called TPC-D benchmark [10].1

2.3. Parallel implementation of database operations

Syntactically, the query shown in Fig. 1 is a single SQL-operation, a select. SQL
being a declarative language, it requires a compiler that translates an SQL statement
into a procedural program (plan) implementing that statement by using lower-level
operators such as ®le scan, index scan, sorting, etc. The compiler creates an abstract
representation of the plan, which is the starting point for the optimizer, which turns
it into a set of speci®c plans, which the optimizer then evaluates, trying to pick the
most e�cient implementation.

In that process of compilation and optimization, data dependencies have to be
analyzed anyway, and it is a natural generalization to exploit that information in
order to derive plans describing parallel execution. Consider the following simple
statement:

We have to join three relations X,Y, and Z and have to do restrictions on each of
them. For simplicity, let us assume restrictions and joins are `elementary' operators.
The compiler will then generate something like the operator tree shown in Fig. 2.

This obviously is a data ¯ow graph, which can be processed in parallel according
to the rules in [3]. All restrict operators can be started in parallel, although the one

update customer_relation /* customer has placed order */
update inventory_relation /* reduce quantity on hand for item */
update sales_statistics /* compute totals, averages etc. */
update sales_rep_relation /* increase total sales for person */
insert back_order /* if QOH too low: back order */

select u,v,w
from X,Y,Z
where X.a� const1 and

Y.b� const2 and
Z.c� const3 and
X.k�Y.k and
Y.m�Z.m;

1 For current information on TPC benchmarks, see their web site at: www.tpc.org.

2180 A. Reuter / Parallel Computing 25 (1999) 2177±2188



on relation Z will stop soon, because the join operator for relation Z and the result
of the join between X and Y is not ready to accept input records. This will happen
only after the preceding join operator starts producing the ®rst result tuples.

So at this level, there is the potential for data ¯ow parallelism, which in reality will
be more complex than what is shown here. For example, we have assumed the join
operator to be a basic operation, which of course it is not. It will be implemented
using more primitive operations such as sorts, hash transformations etc. This will
introduce additional intermediate steps, additional dependencies ± and additional
potential for parallelism.

Depending on how complex the query is, how many joins and sub-queries there
are, the actual degree of parallelism at that level is in the order of 10±100.

2.4. Data parallel execution of primitive operators

The lowest level according to our initial classi®cation exploits data parallelism,
which is the most `natural' one for database systems. Again, SQL lends itself easily to

Fig. 2. Operator tree for the sample query.

Fig. 1. Example of a complex query: Q2 from the TPC-D benchmark.
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data parallelism, because it is a set-oriented language. The SQL operators always
have tuple sets as operands, and the operator is applied in a strictly uniform way to
all tuples in the set. So by de®nition, there are no data dependencies between the
tuples of one relation with respect to the execution of SQL-operator, which means
the operator can be applied in parallel to each tuple in the operand set. From that
perspective, the maximum degree of parallelism is limited by the number of tuples in
the database ± which usually is large in data mining applications (106±108).

In reality, parallelism will not be scheduled at tuple granularity. The relation
would rather be partitioned such that each physical or logical processor has one
partition to work on. This assumes that the individual processors can actually access
the data without interfering with each other. This in turn depends on how many disk
drives are used for the database, or how many nodes comprise the parallel system.

As a simple example consider the scan operator, which is needed for the restrict
operation. It simply reads the tuples of a relation (the records of a ®le) in some order
and passes them on to the next operator. At the tuple interface, a database system
achieves a throughput of ca. 1 MB/s for that operator. Scanning a database of 1 TB
in this way (which is a fairly typical size for decision support applications) would
take almost 12 days, which is clearly unacceptable. To get this down to less than 1 h,
one needs 1000-fold parallelism and thus the same number of data partitions, such as
disks, extents, ®les, etc.

Note that this means more than just having at least 1000 discs. I/O parallelism is
only one component of the problem. Driven at their maximum speed with sequential
I/O, a disk can deliver data at a rate on the order of 10 MB/s. If 1000 such disks work
in parallel, further processing has to happen at a rate of 10 GB/s, which means two
things: processor parallelism and e�cient reduction of data before the next steps of
processing.

A hardware-level implementation of the disk part of this scheme is what has come
to be known as RAIDs [7,15].

3. Parallel algorithms for special database operators

Let us now sketch the methods for executing two important operations in parallel.
One is the join, and the other one is the creation of an index on a relation for a group
of attributes. We assume that all relations involved are partitioned into n ®les and
that there is one processor per ®le.2 It is assumed that the reader is at least somewhat
familiar with the two operations under consideration.

3.1. Parallel join

There are various ways of joining two relations in parallel; we will discuss two that
are particularly important for commercial systems.

2 This is a simpli®cation we will give up later on.
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3.1.1. Parallel join by sorting
An obvious way of joining two relations is the following: ®rst sort both relations

by the join attribute(s) and then merge the temporary results. The joined tuples will
be produced in the order of the join attribute(s). With respect to a parallel imple-
mentation, two cases must be distinguished:
· Both relations are partitioned along the join attribute(s): This means both rela-

tions are (at the partition level) sorted by the join attribute, so producing the join
simply requires the parallel merge of all corresponding partitions.

· At least one relation is not partitioned along the join attribute(s): in that case a
sort phase must precede the merge. First, all partitions can be sorted in parallel.
The temporary result has to be re-partitioned. While sorting, one can collect sta-
tistics on the value distributions in order to get partitions of equal sizes (load lev-
eling). Repartitioning can also be done in parallel, and the last step is the parallel
merge.

3.1.2. Parallel hash join
As was discussed in the previous section, relations that are not partitioned ac-

cording to the join criterion need to be re-partitioned, and the resulting partitions
should be roughly equal in size. It turns out that hashing is a good way of doing this.

Let us assume there are n processors. The left table R is stored in r partitions, the
right table S is stored in s partitions. The join criterion is: R:k � S:f . Both k and f are
de®ned over domain K. Now let us consider a (good) hash function that is de®ned as:

h : K ! f1; . . . ; ng:
There are no assumptions with respect to the partitioning or sort order of the left

and right table. Fig. 3 illustrates the basic idea of (parallel) hash joins.
The join is performed in two phases.
Building phase: All r partitions of R are read in parallel. For each tuple, h(k) is

computed. The result is the number of the processor that is responsible for joining
the tuple, so it is sent to that processor. In the above ®gure, we assume n� 5 pro-
cessors. The hash functions de®nes a (dynamic) partitioning of the tuples of the left

Fig. 3. Hash joins: the basic idea.
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table, R. The shaded rectangles represent the processors that receive the tuples from
both tables that fall into the same hash class. When all the tuples have been re-
mapped, the building phase is complete.

Probing phase: Now the tuples of S are mapped using the same hash function. As
soon as S-tuples arrive at processor i, this processor can start ®nding the matching
tuple(s) of R. This can be done with indexes, via sorting, or by applying another,
local hash function. Of course, all n processors work on matching their assigned
tuples in parallel.

If the results of the join are the input for a subsequent join, it is easy to see that the
probing phase of the ®rst join coincides with the building phase of the second join.

Hash joins can be used for equi-joins (including outer joins) only, but those
represent the vast majority of all joins in real system ± particularly those in decision
support systems. There is a problem in cases where the joins attribute has a highly
skewed value distribution, because then some processors will receive large numbers
of tuples, while other processors will idle. For more information on that see [4,19].

3.2. Parallel index creation

Since an index must be consistent with the base relation at any point in time, the
traditional implementation of index creation operations locks the base relation
against updates while the index is being created. Now for large relations creating an
index can take many hours, so locking the relation is not acceptable.

Here is a sketch of how to do it in parallel to normal processing: at the beginning,
the start of index creation is recorded in the database log. Then the index is created
by sorting all partitions in parallel (index creation basically means sorting attribute
values). The base relation is not locked, so new tuples can be inserted, other tuples
can be modi®ed or deleted. After this ®rst step of index creation is completed, the
index and the base relation are obviously not consistent with each other. The dif-
ference is caused by all tuple modi®cations since the index creation started. Now this
set of tuples is much smaller than the total relation, so the following trick is quite
feasible: lock the relation against updates, process the log from the point marking the
start of index creation, apply all tuple modi®cations to the index. This can be done
using parallelism at the tuple level (with some extra considerations). At the end of
this pass over the log, index and base relation are consistent. Now the lock on the
relation can be removed, and the index can be used for creating query plans.

4. Parallel database architectures

Historically, the database community distinguished three types of system archi-
tecture as platforms for parallel database systems:

Shared nothing: Each processor has its own memory and its own peripherals;
communication is through messages only. Examples are: Tandem, NCR, worksta-
tion clusters, IBM SP2. This design has great fault isolation and scales well. The
problem is the communication bottleneck.
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Shared disk: Each processor has its own memory, but it shares the disk subsystem
with other processors. In addition, there is a communication network. Example are:
VAX Cluster, Oracle, IBMÕs IRLM. This design allows for an easy migration from a
single node con®guration, it o�ers fairly good fault isolation, and it goes well with
electronic disks for performance improvement.

Shared everything: This is what has come to be known as an SMP (symmetric
multiprocessor). Memory and peripherals are shared among many processors. Ex-
amples are: Convex, IBM DB2 UDB, Sequent, Sequoia, SGI, Sun. The advantages
are easy programming and load balancing. The problem is potentially low fault
isolation because of the shared memory.

Since shared disk and SMP architectures are very similar in many respects, the
comparison between shared nothing systems (mostly referred to as `massively par-
allel processing' (MPP-architecture) on one hand and SMP systems on the other
hand represent the architectural alternative for modern parallel database systems.
Let us brie¯y compare them from the perspective of handling parallel database
operators.

The properties of MPP-architectures can be characterized as follows:
· Such systems scale to hundreds and, maybe, thousands of processors.
· No data are shared among processors.
· Data living on di�erent processors must be combined using messages.
· Data in the database are partitioned statically.

The properties of SMP-architectures can be characterized as follows:
· Such systems scale to tens, maybe hundreds of processors.
· Data are shared among all processors.
· Data are combined via shared memory.
· Data can be partitioned among processors dynamically, depending on the load sit-

uation.
The main disadvantage of MPP systems for parallel databases is the necessity of

static partitioning. This means it is di�cult to vary the number of partitions, it is
hard to size the partitions such that they are approximately equal for a wide range of
operations, and there is basically no way to exercise control over di�cult value
distributions. As an example, consider hash joins in Section 3. Re-partitioning the
tuples based on the hash function in an MPP-system means that each tuple is sent via
messages to the processor that represent the respective hash class.

Dynamic partitions, which can be created in SMP-architectures, allow to assign
data to processors on demand, one can vary the number of logical processors (tasks)
at run-time, and heavily skewed value distributions have the only e�ect of not cre-
ating the same load for each task. Hash joins in such a system are performed such
that the shared memory is partitioned into n hash classes, and tuples are simply put
into the partition corresponding to their hash class.

So SMP systems are more ¯exible in terms of load balancing, the number of
options for parallel algorithms is higher because of the possibility of data sharing,
and the need for reorganization is less than with MPP systems. Manageability is also
easier for SMP systems. The big advantage of MPP systems, on the other hand, is
their scalability over wide ranges of processor numbers.
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5. A typical DB-operation for decision support

To illustrate the way parallelism is employed for typical, complex decision sup-
port operations, let us consider the so-called star join [14].

The best way to introduce the problem is a simple example. Assume chain-store
application, for which we have the following relations:

The `orders' table is called the fact stable and typically is very large, because it
contains a tuple for each sales transaction. The other tables are called the dimension
tables.

A typical decision support query tries to analyze the order from customers in a
certain industry and a speci®c region, concerning articles in a certain category, sold
via stores of speci®c size range. Translated into SQL-terms that means we have to
apply a large number of restrictions to the dimension tables and then join all of them
to the facts table. This pattern: restrictions on a number of dimension tables and
subsequent join with the large facts table, is called a `star join'. The metaphor is that
the fact stable is at the center, and the dimension tables surround it. In order to
appreciate the way of processing such queries in parallel, we have to make the fol-
lowing assumptions:
· The facts table is very large compared to the dimension tables.
· There is an index on the key attribute and each of the secondary key attributes of

the facts table.
· There is an index on the key attribute of each dimension table.

In addition, we assume an SMP system with shared memory for simplicity.
The ®rst step of the algorithm assigns t parallel tasks to the ®rst dimension table,

let us assume: `customer'. Each task processes a partition of `customer', doing the
following:
· Check the restriction condition on the tuple. If the tuple is not quali®ed, proceed

to the next tuple. If it is quali®ed:
· Use the index for custID on the fact stable. Each orderID gets encoded in a bit

®lter that is kept in main memory.
The second step is started after the ®rst one is completed. It basically does the

same as the ®rst one for the second dimension table, `article'. But for each orderID
that is retrieved during the index scan on the fact table, it is checked whether this
orderID is encoded in the bit ®lter created by step 1. If not, the orderID is dropped.
If so, it is encoded in a new bit ®lter in shared memory.

The third step is started after the second one is completed. It proceeds like the
second step, this time using the third dimension table, `store'. However, the output of
this step is not a bit ®lter, but a list of orderID values, i.e., the keys of those tuples in the
facts table for which the joins with the dimension tables have actually to be performed.

orders (orderID, custID, artID, storeID, quantity, date)
customer (custID, name, type, industry, size, region)
article (artID, name, price, weight, category)
store (storeID, name, city, region, size)
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These joins are then performed using any of the algorithms described earlier.
The important observation here is that before starting the actual parallel joins,

three preparatory steps (using moderate parallelism in each of them) are executed.
The purpose of this is to reduce the number of tuples of the large facts table for
which the expensive join operation has to be executed.

This principle will be found over and over again in all types of parallel query plans
in database systems.

6. Summary

Decision support applications push the performance limits of todayÕs database
systems. There are many queries users would like to run routinely that take a couple
of hundred hours to complete. If somebody manages to reduce the elapsed time for
these problems to a few minutes, i.e., gain two orders of magnitude, he will have a
big advantage over his competitors. Parallelism is the obvious way towards this goal.
Databases lend themselves naturally towards massive data parallelism. In principle,
one could employ a processor per tuple ± and the larger the problem, the more tuples
there are. Thus the scalability over wide ranges is feasible. The question of what
exactly the best overall architecture looks like is not yet answered. All vendors are
working on this problem, and it is possible that more than one will arrive at the right
answer at about the same time. Then none of them will have an advantage over the
competition, but the users will have a big advantage over their previous situation.

7. For further reading

[1,5,6,9,11±13,17,18].
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