
Data Mining: A Tightly-Coupled Implementation on a

Parallel Database Server

Mauro Sousa Marta Mattoso Nelson F. F. Ebecken

COPPE - Federal University of Rio de Janeiro

P.O. Box 68511, Rio de Janeiro, RJ, Brazil, 21945-970

mauros, marta@cos.ufrj.br, nelson@ntt.ufrj.br

Abstract

Due to the increasingly di�culty of discovering pat-
terns in real-world databases using only conventional
OLAP tools, an automated process such as data mining
is currently essential. As data mining over large data
sets can take a prohibitive amount of time related to
the computational complexity of the algorithms, parallel
processing has often been used as a solution. However,
when data does not �t in memory, some solutions do
not apply and a database system may be required rather
than 
at �les. Most implementations use the database
system loosely-coupled with the data mining algorithms.
In this work we address the data consuming activities
through parallel processing and data fragmentation on
the database server, providing a tight integration with
data mining techniques. Experimental results showing
the potential bene�ts of this integration were obtained,
despite the di�culties to process a complex application.

1. Introduction

Recent years have shown the need of an automated
process to discover interesting and hidden patterns in
real-world databases, due to the di�culty of analyzing
large volumes of data using only OLAP tools. Data
mining techniques have increasingly been studied [10],
especially in their application in real-world databases.
One typical problem is that databases tend to be very
large, and these techniques often repeatedly scan the
entire set. Sampling has been used for a long time, but
subtle di�erences among sets of objects in the database
become less evident.

Knowledge discovery through data mining tech-
niques requires data intensive computation. Machine
learning algorithms, such as decision trees, have to scan

the database intensively, and, depending on the char-
acteristics of the data, distribution of values, etc., these
tasks usually require a lot of disk I/O. Parallel process-
ing and database techniques are natural candidates to
address this sort of computation, although database
engines are not speci�cally optimized to handle data
mining applications.

Many data mining implementations have already
used databases. DBMiner [5], for instance, is a sys-
tem that implements data mining techniques inte-
grated to database technology. Although the idea of
using DBMSs is not new, most implementations use
databases only to issue queries that are going to be pro-
cessed by a client machine [6], thus resulting in poor
performance.

The Quest data mining system [2, 14, 8] has been ad-
dressing the development of fast, scalable algorithms.
These algorithms run against data in 
at �les as well
as DB2 family of database products, but databases are
accessed in a loosely-coupledmode using dynamic SQL.

Freitas and Lavington [7] have presented a series of
primitives for rule induction (RI) algorithms, whose
core operation of their candidate rule evaluation proce-
dure is a primitive called Count by Group. This prim-
itive often provides a potential degree of parallelism in
parallel DBMSs.

Experimental results showing the potential bene�ts
of a tightly-coupled implementation, parallel process-
ing and data fragmentation were obtained using Oracle
Parallel Server con�gured to run on a multiprocessor
IBM RS/6000 SP2 system. The case study application
was extracted from a data warehousing environment,
which is used to analyze information concerning an in-
surance company. Despite the di�culties to process
this complex application, we have extracted rules and
obtained performance improvements for all data inten-
sive activities.

The remainder of this work is organized as follows.
Section 2 presents some database issues related to a



tightly-coupled implementation of a data mining algo-
rithm in parallel databases. Section 3 describes the
case study used during performance measurements.
Section 4 presents some details of implementation and
special features of DBMSs exploited and Section 5 de-
scribes a subset of our practical experiments. Finally,
Section 6 presents our conclusions and observations.

2. Database Issues

There are a variety of data mining algorithms con-
structed to run in parallel, taking advantage of parallel
architectures using speci�c programming routines. On
the other hand, our implementation is based on parallel
database systems.

2.1. Advantages and Shortcomings

There are many advantages of using databases when
implementingdata mining techniques. Implementation
becomes simpler, it is possible to work with data sets
considerably larger than main memory, and data may
be updated or managed as a part of a larger operational
process. Furthermore, ad-hoc queries can be used to
validate discovered patterns in a painless manner.

On the other hand, as the database system itself
is responsible for parallelization, there is less control
of how parallelization occurs. Hence, the algorithm
may become dependent on some characteristics of the
parallel DBMS used.

2.2. Loosely x Tightly-Coupled Integration

Most of current data mining applications that use
databases have a loose connection with them. They
treat databases simply as containers from which data
is extracted directly to the main memory of the com-
puter responsible for running the data mining algo-
rithm. This approach limits the amount of data that
can be handled, forcing applications to �lter informa-
tion, and use only a part of it to discover patterns,
which is not the best approach to be used.

The idea of executing user-de�ned computation
within databases, thus avoiding unnecessary network
tra�c (Figure 1), has been a major concern in many
DBMSs. One example of this sort of implementation is
the stored procedure in commercial databases. For in-
stance, Oracle provides the possibility of implementing
procedural code, and storing it within the data dictio-
nary in a pre-compiled form.

Some authors have also developed a methodology
for tightly-coupled integration of data mining appli-
cations with database systems [3], selectively pushing

Figure 1. Tightly-coupled integration. Simpli-

�ed approach showing client calls and PL/SQL

functions issued within SQL statements.

parts of the application program into the database sys-
tem, instead of bringing the records into the applica-
tion program. What we experiment is a variation of
these methodologies, taking advantage of parallel fea-
tures available in many parallel database systems, in
particular the ones provided by Oracle Parallel Server.

Because of the nature of SQL o�ered by current
database systems, it is not possible to perform only
one SQL statement that returns the list of rules discov-
ered analyzing the attributes of the mine relation. The
way we have used to implement this kind of feature was
coding a series of procedures and functions, which were
logically grouped together in an Oracle object named
package. Therefore, the user can call a single proce-
dure (e.g. MakeDecisionTree), interactively informing
all available parameters. This procedure runs on the
server where the data resides, in order to avoid network
tra�c.

3. A Case Study

We have used a data set based on a life insurance sys-
tem, which controls information about customers, in-
surance contracts and components of insurance tari�s.
This database is primarily used in a data-warehousing
environment so that people in management positions
can extract information and take decisions based on
it. Our main goal is to classify customers based on all
available information.

3.1. Mine Relation

We have constructed a single mine relation with all
information to be used during the data mining algo-
rithm. Denormalization was necessary to solve perfor-
mance problems associated to join operations, which
are time consuming tasks, even when performed in par-



allel. The mine relation �ts in memory, and uses about
50Mb, 200.000 tuples and 70 attributes.

Information about customers and their dependents
includes year of birth, job, sex, marital status, and
household income data. Besides, the system holds data
about contracts, such as the year when a contract be-
gins and ends, modus of payment, name of the agent
responsible for the contract, and type of insurance. Fi-
nally, the database keeps information about price of
each tari� that is associated to an insurance contract.
This data set represents both discrete and continuous
attributes with di�erent characteristics.

3.2. Classi�cation Algorithm

Our implementation is based on decision tree al-
gorithms, because they represent well-suited classi�ers
for data mining problems, producing similar accuracy
when compared to other methods for classi�cation. Be-
sides, they represent one of the most widely used and
practical methods for inductive inference, and they can
be built considerably faster than other machine learn-
ing methods. Furthermore, decision trees can be eas-
ily constructed from and transformed into SQL state-
ments [1], which can be used to query a database sys-
tem, particularly a parallel one. There are many im-
plementations using decision tree learning algorithms,
such as CART [4], ID-3 and its successor C4.5 [13], and
SPRINT (SLIQ's parallel implementation) [14, 8].

A decision tree interactively subdivides the train-
ing set until each partition represents cases totally or
dominantly belonging to the same class. In order to
partition training data, a statistical test is used as the
splitting criteria. The test we implemented is one called
gini index [4, 8]. The recursive partitioning method im-
posed to the training examples often results in a very
complex tree that over�ts data [13]. We have also im-
plemented a pruning module, which removes parts of
the tree that do not contribute to classi�cation accu-
racy, producing less complex, and more comprehensible
trees.

Even after pruning a tree, it can still represent a
complex, incomprehensible structure at �rst glance.
Finally, there is also a rule extraction module, which
tends to solve this problem, as soon as irrelevant ex-
pressions are eliminated from the originally generated
tree. A more detailed description of implemented de-
cision tree algorithm can be found in [15].

4. A Tightly-Coupled Implementation

In this section we present typical problems and so-
lutions associated to machine learning algorithms and

parallel database servers.

4.1. Typical Queries in Rule Induction Al-
gorithms

Most of queries issued in rule induction algorithms,
particularly decision trees, deals with two kinds of op-
erations: sorts (ORDER BY) and groupings (GROUP
BY). These kinds of queries represent the time consum-
ing tasks obtained during the implemented algorithm.

Select marital status, class, count(*)
From mine relation
Group By marital status, class

Parallel database servers can easily process typical
queries, and it is possible to take advantage of the re-
sources of parallel machines.

4.2. User-de�ned Functions

We have constructed many user-de�ned functions,
which are called within SQL statements, enforcing a
tightly-coupled integration with the database and its
query language. They decrease the number of calls to
the database, avoid network tra�c, and make our code
considerably simpler.

Select min(giniSplit(salary, class, num))
From (Select salary, class, count(*) num

From mine relation
Group By salary, class)

The above query presents an example of a SQL
statement used during the growing phase of a deci-
sion tree. It is used to calculate the best splitting
point of an internal node. The inner SQL statement
groups the training set based on attribute values. The
GROUP BY clause is used instead of a simple ORDER
BY to count the number of occurrences for each pair
attribute/class, since we cannot split cases with the
same attribute value. Hence, the splitting criteria is
computed faster than before, using only one database
call per attribute in each phase.

Besides, during the pruning phase, a user-de�ned
function, which is created based on the original tree, is
used to classify test cases in parallel. Function Clas-
sify is used to compute the number of hits and misses
during classi�cation.

Select class, Classify(...)
From mine relation test

Once the classi�cation model is constructed, a set of
rules can be derived reading the tree, from top to bot-
tom, until reaching each leaf node. The n rules orig-
inally de�ned (where n represents the number of leaf



nodes) are generalized, and some of them may be sim-
pli�ed or even eliminated. Rule generalization process
issues many SQL statements, in which WHERE con-
ditions represent rules discovered in previous phases.
These statements, each one processed in parallel, re-
turn the number of false positives and false negatives
examples that are going to be used in conjunction
with a well-known method called Minimum Descrip-
tion Length (MDL), as it is done in C4.5 [13].

As in the pruning case, the resulting rule set is trans-
formed into a PL/SQL function, which can be called
from within a SQL statement, enabling the classi�ca-
tion of new cases in parallel. This function receives the
attributes used during the data mining algorithm and
returns the predicted classi�cation.

4.3. Fragmentation Techniques

One characteristic of SQL that can degrade the per-
formance of a Rule Induction algorithm, in particu-
lar a decision tree one, is that its structure requires
a separate query to construct the histogram for each
attribute. Fragmentation techniques come to play an
important role in this context, once they tend to elim-
inate irrelevant information during query execution.

Several commercial databases provide horizontal
fragmentation, most of them in a transparent manner
to the application. Some parallel DBMSs, particularly
Oracle Server, are able to use these functions (table
constraints) to eliminate some partitions when reading
data, depending on the �lter used in the correspond-
ing SQL statement. Each partition can be processed
in parallel, using di�erent execution plans when appli-
cable.

Another relevant problem is fragment allocation.
Suppose we de�ne F fragments to be distributed among
N nodes. If we simply allocate F / N fragments to each
node, there will be a load imbalance, since the decision
tree algorithm will work on only a few fragments be-
yond a certain step, of course if the partitioning func-
tions were appropriately de�ned.

Declustering (Figure 2) exploits I/O parallelism and
minimizes skew, but involves a higher startup and ter-
mination costs because a process has to be started
and terminated on each of the nodes where relation
resides [9].

A typical approach used that allows user queries to
deal with smaller relations, causing a smaller number of
page accesses, is the vertical fragmentation [11]. In the
case of decision trees, it would be necessary to create
one relation for each pair attribute/class as it is done
with 
at �les in SPRINT [14]. Remember that decision
trees work with lists of attributes, in each phase trying

Figure 2. Load balance. Data is spread among

all available disks. Grayed disks portions rep-

resent fragments being currently read.

to �nd the best splitting point among all attributes.

5. Practical Experiments

The implementation involves the use of embedded
routines written in PL/SQL (Oracle's SQL extension
that adds procedural constructs), which are called
within SQL statements, enforcing a tightly-coupled in-
tegration with the database and its query language.
We have used Oracle Parallel Server and Oracle Paral-
lel Query Option, con�gured to run on a multiprocessor
IBM RS/6000 SP2 system. As PL/SQL is not a par-
allel programming language, all parallelization should
be achieved using SQL.

5.1. Oracle Parallel Server and MPP Archi-
tecture

Oracle Parallel Server (OPS) in RS/6000 SP2 sys-
tems uses function shipping when accessed data is in
a remote node. A coordinator process subdivides the
work of scanning tables in many logical partitions. The
initial partitioning takes into account the physical lo-
cation of data and tries to minimize disk contention. It
is equivalent to a shared-everything phase. In the next
step, the coordinator uses function shipping to assign a
partition to each slave, representing a shared-nothing
step. Nodes that have �nished early their processing
can "steal" one remote partition through the layer that
simulates shared disks (VSD - IBM's Virtual Shared
Disk), thus minimizing skew. This last phase is equiv-
alent to a shared-disk approach [12].

5.2. Fragmentation and Allocation Prob-
lems

Partition views are objects that Oracle7 uses to im-
plement horizontal fragmentation. Instead of de�ning



one very large relation, we de�ne several smaller tables,
assigning a partitioning function to each one. After-
wards, a view is created using UNION ALL operator.

Ideally, one could imagine that the best partitioning
function would separate data into fragments that �t
the tree growing phase, so that we can avoid reading
more data than necessary. At �rst hand, we do not
have a clear idea of how data is going to be partitioned
during the algorithm. A good partitioning function is
one that uses attributes from top of the tree, so that the
scan of di�erent branches would be directed to di�erent
partitions.

After the de�nition of horizontal fragments, we have
to consider their allocation. There are two possibilities
that Oracle uses to distribute data among nodes. The
�rst one is creating one tablespace owning many data
�les, which would be spread throughout nodes, letting
the DBMS itself manage striping. It may represent
an advantage since disk a�nity (equivalent to function
shipping) can be used. Another possibility is letting the
operating system manage striping, which is a simpler
approach, but eliminates the function shipping feature.

Preliminary tests have shown that vertical fragmen-
tation is particularly useful during the �rst step of the
tree-growing phase of decision tree algorithms, when
there is no splitting point yet de�ned; each query is
made of a simple group by SQL statement, with no
�ltering. From the second phase on, joins would be
necessary, generating time consuming tasks, even when
solved in parallel (Oracle can perform joins in parallel
using methods called nested loops and hash joins).

Alternatively, the fragmentation idea can be im-
plemented through concatenated indexes (attribute,
class), in order to provide a better response time for
the �rst step of the tree-growing phase. Once the query
mentioned only needs these two columns, it can use
directly the indexes, without referencing the original
table. In Oracle, this is called a fast full scan, which
can be run in parallel.

5.3. Performance Results

We have performed several measurements when run-
ning the data mining algorithm. Due to lack of space,
we present only results related to the tree-growing
phase. We have focused on using SQLs as much as
possible on the algorithm logic. These SQLs are going
to be performed by the parallel database server, and
they represent the most time consuming tasks of the
algorithm, since they are responsible for handling large
volumes of data and for performing some computation,
whenever possible.

Response time associated to each SQL varies de-

pending on the number of rows that are going to be
processed and on the number of distinct values we are
going to fetch. Since a decision tree repeatedly subdi-
vides data, response time decreases as we go down the
tree. This observation is true both for sequential and
parallel executions.

Figure 3. Reponse times for serial and parallel

executions for a discrete attribute during the

tree growing phase.

Analyzing Figure 3, we observe that, after the fourth
level on, Oracle performs serial instead of parallel exe-
cution. In the case of Oracle7, it is not possible to per-
form a parallel index scan, unless all attributes used
in a query are present in the index. Since from the
fourth level on we analyze less data, a serial index scan
performs better than a parallel full table scan.

Queries are also in
uenced by the sort of attributes
we are using in the data mining algorithm. Discrete at-
tributes often result in better response times, because
less splitting points are going to be analyzed and less
data is going to be fetched by application. Continu-
ous attributes (Figure 4) usually handle many distinct
values and they represent a more time consuming task.
However, as we go down the tree, continuous attributes
are represented by fewer distinct values.

Most of parallelization occurs when handling deci-
sion nodes that are on the top of tree, so that more data
is going to be analyzed. For these phases, we notice a
signi�cant performance speedup when two nodes are
used. However, when adding more processing nodes,
response time does not decrease in the same ratio. This
situation represents the in
uence of remote tuple ac-
cess. Since tuples are highly interrelated, the addi-
tional nodes also increased communication costs.



Figure 4. Reponse time associated to continu-

ous attribute handling during the tree-growing

phase.

6. Conclusions

This work evaluates the behavior of a tightly-
coupled implementation of data mining techniques on a
parallel database server, exploiting many speci�c char-
acteristics of DBMSs to achieve performance. Instead
of striving for performance on speci�c phases, we con-
centrated on implementing all phases of the data min-
ing process, studying adverse situations such as: large
number of attributes, discrete attributes, and continu-
ous attributes with many distinct values. Experimental
results showed the potential bene�ts of this implemen-
tation, which generated a decision tree with more than
35.000 nodes.

We have concentrated our work in structuring typi-
cal queries in data mining algorithms, in such a man-
ner that they could exploit the highest degree of par-
allelism o�ered by the DBMS, using user-de�ned func-
tions whenever possible. A database native language
was used for implementation, providing high perfor-
mance and close integration to the database, avoiding
unnecessary data transfers from server to client ma-
chines. As this implementation is strongly based on
SQL, we could easily migrate it to use other relational
databases that also have a native programming lan-
guage.

It is possible that changes to current DBMSs and
SQL language would enable data mining operations to
be performed more e�ciently. Other interfaces, such
as those for integrating with indexing and optimiza-
tion mechanisms , will be available in a near future.
Currently, we are in a conversion process of our imple-
mentation to Oracle8 (an object-relational database),
constructing what Oracle calls a data cartridge - a sort

of plug in that can be attached to the database server.
We are also motivated by improvements in Oracle8 par-
allel processing, such as parallel index scans.

References

[1] R. Agrawal, S. Ghosh, T. Imelinski, B. Iyer, and
A. Swami. An interval classi�er for database mining
applications. In Proc. VLDB Conf., Vancouver, 1992.

[2] R. Agrawal, M. Metha, J. Shafer, and R. Srikant. The
quest data mining system. In Proc. of the 2nd Intl
Conf. on Knowledge Discovery in Databases and Data
Mining, Portland, 1996.

[3] R. Agrawal and K. Shim. Developing tightly-coupled
data mining applications on a relational database sys-
tem. In Proc. of the 2nd Intl Conf. on Knowledge
Discovery in Databases and Data Mining, Portland,
1996.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classi�cation and Regression Trees. Wadsworth In-
ternational Group, 1984.

[5] J. H. et al. Dbminer: A system for mining knowl-
edge in large relational databases. In Proc. Intl Conf.
on Data Mining and Knowledge Discovery (KDD'96),
Portland, 1996.

[6] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurasamy, editors. Automating the Analysis and
Cataloging of Sky Surveys. AAAI Press, 1996.

[7] A. Freitas and S. H. Lavington. Mining Very Large
Databases With Parallel Processing. Kluwer Academic
Publishers, 1998.

[8] M. Metha, R. Agrawal, and J. Rissanen. Sliq: A
fast scalable classi�er for data mining. In Proc. of
the Fifth Intl Conf. on Extending Database Technol-
ogy (EDBT), Avignon, 1996.

[9] M. Metha and D. DeWitt. Data placement in shared-
nothing parallel database systems. In VLDB Journal,
Springer-Verlag, 1997.

[10] T. M. Mitchell. Machine Learning. McGraw-Hill,
1997.

[11] S. B. Navathe and M. Ra. Vertical partitioning for
database design: A graphical algorithm. In Proc. SIG-
MOD Conference, pages 440{450, 1989.

[12] Oracle Corporation. Oracle Parallel Server Concepts
& Administration Rel. 7.3, 1997.

[13] J. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufman, 1993.

[14] J. Shafer, R. Agrawal, and M. Metha. Sprint: A scal-
able parallel classi�er for data mining. In Proc. of the
22th Intl Conf. on VLDB, Mumbi, 1996.

[15] M. Sousa, M. Mattoso, , and N. F. F. Ebecken. Data
mining on parallel database systems. In Proc. Intl.
Conf. on PDPTA: Special Session on Parallel Data
Warehousing, CSREA Press, Las Vegas, 1998.


