Staggered Quantum Walk Algorithm for Element Distinctness

Alexandre S. Abreu ${ }^{1}$
Franklin L. Marquezino ${ }^{1}$ Luis A.B. Kowada ${ }^{2}$
santiago@cos.ufrj.br
Paper 66

1 PESC/COPPE - Universidade Federal Rio de Janeiro-UFRJ
2 IC - Universidade Federal Fluminense - UFF

November 2016

Outline

1 Staggered Quantum Walk Model

2 Algorithm for Element Distinctness

Section 1

Staggered Quantum Walk Model

Staggered Quantum Walk Model

- We say that a set of disjoint cliques (polygons or clusters) $C=\left\{c_{1}, \cdots, c_{T}\right\}$ is a tessellation for a graph G, if the union of these cliques covers all vertices of G.
■ A graph is T-tessellable if T is the smallest number of tessellations such that the union of these tessellations covers all edges of the graph.
- Given a graph G with N vertices, we define two or more tessellations in G.

Programa de Engenharia
de Sistemas e Computação

Staggered Quantum Walk Model

- Polygons of different overlapping tessellations necessarily share at least 1 vertex.

Proposition 1 ((PORTUGAL, 2016))
A graph is 2-tessellable if and only if its clique graph is 2-colorable.

Programa de Engenharia

Evolution Operators

- Each polygon defines a unitary vector in the Hilbert space \mathcal{H}^{N}.

$$
\begin{equation*}
\left|\varphi_{i}\right\rangle=\sum_{j \in \varphi_{i}} \psi_{i, j}|j\rangle \tag{1}
\end{equation*}
$$

- Each tessellation defines one unitary operator as

$$
\begin{equation*}
U_{i}=2\left(\sum_{k=0}^{m_{i}-1}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|\right)-I \tag{2}
\end{equation*}
$$

where m_{i} is the number of polygons of the tessellation and I is the identity matrix.

Programa de Engenharia
de Sistemas e Computação

Relation between Staggered model and Szegedy's model

- Quantum walks in 2-tessellable graphs, where just a unique vertex is shared by polygons of different tessellations can be cast into a quantum walk in Szegedy's model (SZEGEDY, 2004).
- Every quantum walk in Szegedy's model can be cast into a quantum walk in Staggered model with overlapping polygons sharing just one vertex. Thus Szegedy's model is a particular case of Staggered model.

Programa de Engenharia
de Sistemas e Computacio

Section 2

Algorithm for Element Distinctness

Element Distinctness problem

■ Given a list $\left\langle x_{1}, \ldots, x_{n}\right\rangle$, such that the elements $x_{1}, \ldots, x_{n} \in\{1, \ldots, M\}$, we want to find if there are indices $i \neq j$, such that $x_{i}=x_{j}$;
■ Generalization: $\left\langle x_{1}, \ldots, x_{n}\right\rangle$, such that the elements $x_{1}, \ldots, x_{n} \in\{1, \ldots, M\}$, we want to find if there are k indices $i_{1} \neq \cdots \neq i_{k}$ such that $x_{i_{1}}=\cdots=x_{i_{k}}$.

Programar de Engenharias
de Sistemas e Computacic

Definitions of Variables

- Let $r=\left\lfloor N^{k /(k+1)}\right\rfloor$, where k is the number of collisions;
- S, such that $S \subseteq[N]$ and $|S|=r$, where $[N]$ is the set of indices, and;
- y, such that $y \in[N], y \notin S$.
- For each set S we have $(N-r)$ values y associated.
- Let each pair (S, y) be a vertex for a graph G.

■ $|S\rangle|y\rangle$, in the space $\mathcal{H}=\binom{N}{r}(N-r)$, represents the vertices.
■ We need $O(r \log N)$ qubits of memory to save these vertices.
programa de Engenharia
de Sistemas e Computação

Graph Construction

Definition 1

We define a graph G with $\binom{N}{r}(N-r)$ vertices. A vertex v corresponds to a pair (S, y). Will exist an edge between two vertices v and v^{\prime}, for $v=(S, y)$ and $v^{\prime}=\left(S^{\prime}, y^{\prime}\right)$, if and only if, either $(i) S^{\prime}=S$ and $y \neq y^{\prime}$, or $(i i) S^{\prime}=S \cup\{y\} \backslash\left\{y^{\prime}\right\}$.

Constructions of the Tessellations

Definition 2

We define two tessellations on graph G. The first one is defined by polygons that cover cliques, where for each pair of vertices $\left(v, v^{\prime}\right)$ in those cliques, such that $v=(S, y)$ and $v^{\prime}=\left(S^{\prime}, y^{\prime}\right)$, we have $S=S^{\prime}$ and $y \neq y^{\prime}$. The second one is defined for polygons that cover cliques, where for each pair of vertices $\left(v, v^{\prime}\right)$ in those cliques, such that $v=(S, y)$ and $v^{\prime}=\left(S^{\prime}, y^{\prime}\right)$, we have $S^{\prime}=S \cup\{y\} \backslash\left\{y^{\prime}\right\}$.

Example

Let $[N]=[0,1,2,3]$. For $k=2$, we have $r=2$.

PESC

Some Propositions

Proposition 2

Every graph constructed by Definitions 1 and 2 can be cast into a bipartite graph.

Proposition 3

A graph constructed by Definitions 1 and 2 always has at most 1 vertex in the intersection of two polygons of distinct tessellations.

Algorithm's Evolution Operators

Each tessellation generates a unity operator as

$$
U_{0}=2\left[\sum_{i=0}^{\binom{N}{r}-1}\left(\frac{1}{N-r}\left|S_{i}, y\right\rangle\left\langle S_{i}, y\right|+\sum_{\substack{y^{\prime} \neq y \\ y^{\prime} \notin S}} \frac{1}{N-r}\left|S_{i}, y^{\prime}\right\rangle\left\langle S_{i}, y^{\prime}\right|\right)\right]-I
$$

and
$U_{1}=2\left[\sum_{i=0}^{\binom{N}{r}-1}\left(\frac{1}{r+1}\left|S_{i}, y\right\rangle\left\langle S_{i}, y\right|+\sum_{\substack{y^{\prime} \neq y \\ y^{\prime} \in S}} \frac{1}{r+1}\left|S_{i}^{\prime}, y^{\prime}\right\rangle\left\langle S_{i}^{\prime}, y^{\prime}\right|\right)\right]-I$,
where $\left|S_{i}^{\prime}\right\rangle=\left|S_{i} \cup\{y\} \backslash\left\{y^{\prime}\right\}\right\rangle$.

The Staggered Quantum Algorithm

Algorithm 1: Element k-distinctness Algorithm (Singlesolution)

1. Generate the uniform superposition

$$
\frac{1}{\sqrt{\binom{N}{r}(N-r)}} \sum_{|S|=r, y \notin S}|S, y\rangle .
$$

2. $t_{1}=O\left((N / r)^{k / 2}\right)$ times repeat:
(i) Apply the conditional phase flip $(|S, y\rangle \rightarrow-|S, y\rangle)$, such that $x_{i_{1}}=\ldots=x_{i_{k}}$ for $i_{1} \neq \ldots \neq i_{k}$, and $i_{1}, \ldots, i_{k} \in S$.
(ii) Apply $U_{1} U_{0} t_{2}=O(\sqrt{r})$ times.
3. Measure the final state. Check if S contains a k-collision and answer "There is a k-collision" or "There is no k-collision" according to the result.

Execution example

For simplicity, let's ignore the superposition supposing that the walker starts at the node $|01\rangle|2\rangle$.

Execution example

We apply the operator U_{0}.

PESC

Execution example

We apply the operator U_{1}.

PESC

Execution example

We apply the operator U_{0}, again.

PESC

Execution example

44 We apply the operator U_{1}, again.

PESC

Correctness and Complexity of Algorithm

- We proved that we can cast the algorithm presented into Ambainis' algorithm for Element Distinctness (AMBAINIS, 2007);
- Ambainis' algorithm uses a quantum walk in a bipartite graph, needing $O\left(N^{k /(k+1)}\right)$ queries and $O(r(\log N+\log M))$ qubits of memory.
de Sistemas e Computaçảo

Relation with Ambainis' algorithm

Proposition 4

The initial states of Ambainis' algorithm and the algorithm presented are equivalents.

Proposition 5

The evolution operators of Ambainis' algorithm and the algorithm presented are equivalents.

Proposition 6 ((PORTUGAL et al., 2016))

Every instance of a staggered quantum walk in a 2-tessellable graph with at most one vertex in common in the intersection of two polygons of different tessellations can be cast into a Szegedy's quantum walk.

Final Considerations

- By the previously propositions we can cast the graph presented into a bipartite graph.
- As the initial states and the evolution operators of the both algorithms are equivalents, after T applications of the evolution operators on the initial state, we will reach the same final state.
- Thus, the algorithm presented needs just $O\left(N^{k / k+1}\right)$ steps of quantum walks to find a answer, however, needing $O(r \log N)$ qubits of memory.

Programa de Engenharia
de Sistemas e Computação

References

AMBAINIS, A. Quantum algorithm for element distinctness. SIAM Journal on Computing, v. 37, n. 1, p. 210-239, 2007.庫PORTUGAL, R. Staggered quantum walks on graphs. arXiv preprint arXiv:1603.02210, 2016.
PORTUGAL, R. et al. The staggered quantum walk model. Quantum Information Processing, Springer, v. 15, n. 1, p. 85-101, 2016.
ESZEGEDY, M. Quantum speed-up of markov chain based algorithms. In: IEEE. Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on. [S.I.], 2004. p. 32-41.

Thank you!

santiago@cos.ufrj.br
This presentation is available in

