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Staggered Quantum Walk Model

We say that a set of disjoint cliques (polygons or clusters)
C = {c1, · · · , cT} is a tessellation for a graph G , if the union
of these cliques covers all vertices of G .

A graph is T -tessellable if T is the smallest number of
tessellations such that the union of these tessellations covers
all edges of the graph.

Given a graph G with N vertices, we define two or more
tessellations in G .
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Staggered Quantum Walk Model

Polygons of different overlapping tessellations necessarily
share at least 1 vertex.

Proposition 1 ((PORTUGAL, 2016))

A graph is 2-tessellable if and only if its clique graph is 2-colorable.
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Evolution Operators

Each polygon defines a unitary vector in the Hilbert space
HN .

|ϕi 〉 =
∑
j∈ϕi

ψi ,j |j〉 (1)

Each tessellation defines one unitary operator as

Ui = 2

(
mi−1∑
k=0

|ϕi 〉〈ϕi |

)
− I (2)

where mi is the number of polygons of the tessellation and I
is the identity matrix.
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Relation between Staggered model and Szegedy’s model

Quantum walks in 2-tessellable graphs, where just a unique
vertex is shared by polygons of different tessellations can be
cast into a quantum walk in Szegedy’s model (SZEGEDY,
2004).

Every quantum walk in Szegedy’s model can be cast into a
quantum walk in Staggered model with overlapping polygons
sharing just one vertex. Thus Szegedy’s model is a particular
case of Staggered model.

A.S.Abreu et al. November 2016



Quantum Walk Algorithm

Section 2
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Element Distinctness problem

Given a list 〈x1, . . . , xn〉, such that the elements
x1, ..., xn ∈ {1, . . . ,M}, we want to find if there are indices
i 6= j , such that xi = xj ;

Generalization: 〈x1, . . . , xn〉, such that the elements
x1, ..., xn ∈ {1, . . . ,M}, we want to find if there are k indices
i1 6= · · · 6= ik such that xi1 = · · · = xik .
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Definitions of Variables

Let r = bNk/(k+1)c, where k is the number of collisions;

S , such that S ⊆ [N] and |S | = r , where [N] is the set of
indices, and;

y , such that y ∈ [N], y /∈ S .

For each set S we have (N − r) values y associated.

Let each pair (S , y) be a vertex for a graph G .

|S〉|y〉, in the space H =
(N
r

)
(N − r), represents the vertices.

We need O(r logN) qubits of memory to save these vertices.
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Graph Construction

Definition 1

We define a graph G with
(N
r

)
(N − r) vertices. A vertex v

corresponds to a pair (S , y). Will exist an edge between two
vertices v and v ′, for v = (S , y) and v ′ = (S ′, y ′), if and only if,
either (i) S ′ = S and y 6= y ′, or (ii) S ′ = S ∪ {y}\{y ′}.
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Constructions of the Tessellations

Definition 2

We define two tessellations on graph G . The first one is defined by
polygons that cover cliques, where for each pair of vertices (v , v ′)
in those cliques, such that v = (S , y) and v ′ = (S ′, y ′), we have
S = S ′ and y 6= y ′. The second one is defined for polygons that
cover cliques, where for each pair of vertices (v , v ′) in those
cliques, such that v = (S , y) and v ′ = (S ′, y ′), we have
S ′ = S ∪ {y}\{y ′}.
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Example

Let [N] = [0, 1, 2, 3]. For k = 2, we have r = 2.
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Some Propositions

Proposition 2

Every graph constructed by Definitions 1 and 2 can be cast into a
bipartite graph.

Proposition 3

A graph constructed by Definitions 1 and 2 always has at most 1
vertex in the intersection of two polygons of distinct tessellations.
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Algorithm’s Evolution Operators

Each tessellation generates a unity operator as

U0 = 2

[ (Nr )−1∑
i=0

(
1

N − r
|Si , y〉〈Si , y |+

∑
y ′ 6=y
y ′ /∈S

1

N − r
|Si , y ′〉〈Si , y ′|

)]
−I

and

U1 = 2

[ (Nr )−1∑
i=0

(
1

r + 1
|Si , y〉〈Si , y |+

∑
y ′ 6=y
y ′∈S

1

r + 1
|S ′i , y ′〉〈S ′i , y ′|

)]
− I ,

where |S ′i 〉 = |Si ∪ {y}\{y ′}〉.
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The Staggered Quantum Algorithm
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Execution example

For simplicity, let’s ignore the superposition supposing that the
walker starts at the node |01〉|2〉.

A.S.Abreu et al. November 2016



Quantum Walk Algorithm

Execution example

We apply the operator U0.
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Execution example

We apply the operator U1.
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Execution example

We apply the operator U0, again.
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Execution example

44 We apply the operator U1, again.
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Correctness and Complexity of Algorithm

We proved that we can cast the algorithm presented into
Ambainis’ algorithm for Element Distinctness (AMBAINIS,
2007);

Ambainis’ algorithm uses a quantum walk in a bipartite graph,
needing O(Nk/(k+1)) queries and O(r(logN + logM)) qubits
of memory.
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Relation with Ambainis’ algorithm

Proposition 4

The initial states of Ambainis’ algorithm and the algorithm
presented are equivalents.

Proposition 5

The evolution operators of Ambainis’ algorithm and the algorithm
presented are equivalents.

Proposition 6 ((PORTUGAL et al., 2016))

Every instance of a staggered quantum walk in a 2-tessellable
graph with at most one vertex in common in the intersection of
two polygons of different tessellations can be cast into a Szegedy’s
quantum walk.
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Final Considerations

By the previously propositions we can cast the graph
presented into a bipartite graph.

As the initial states and the evolution operators of the both
algorithms are equivalents, after T applications of the
evolution operators on the initial state, we will reach the same
final state.

Thus, the algorithm presented needs just O(Nk/k+1) steps of
quantum walks to find a answer, however, needing O(r logN)
qubits of memory.
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