MaxCut is hard when restricted to geometric intersection model graph classes

Celina Miraglia Herrera de Figueiredo

COPPE
 UFRJ

Based on

Maximum cut on interval graphs of interval count four is NP-complete with Alexsander A. de Melo, Fabiano S. Oliveira, Ana Silva arxiv.org/abs/2012.09804

MaxCut on Permutation Graphs is NP-complete with Alexsander A. de Melo, Fabiano S. Oliveira, Ana Silva arxiv.org/abs/2202.13955

The Guide - Computers and Intractability

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

"Despite that 23 years have passed since its publication, I consider Garey and Johnson the single most important book on my office bookshelf. Every computer scientist should have this book on their shelves as well. NP-completeness is the single most important concept to come out of theoretical computer science and no book covers it as well as Garey and Johnson."

Lance Fortnow, "Great Books: Computers and Intractability: A Guide to the Theory of NP-Completeness"

Ongoing Guide - Graph Restrictions and Their Effect

Graph Class	Member		IndSET		Clique		CLIPAR		ChrNum		ChrInd		HamCir		DomSet		MaxCut		StTree		Graiso	
Trees/Forests	P	[T]	P	[GJ]	P	[GJ]	P	[T]	P	[GJ]												
Almost Trees (k)	P		P	[24]	P	[T]	P ?		P ?		P?		P ?		P	[45]	P ?		P ?		P ?	
Partial k-Trees	P	[2]	P	[1]	P	[T]	P ?		P	[1]	O?		P	[3]	P	[3]	P ?		P ?		O?	
Bandwidth- k	P	[68]	P	[64]	P	[T]	P?		P	[64]	P?		P?		P	[64]	P	[64]	P?		P	[58]
Degree-k	P	[T]	N	[GJ]	P	[T]	N	[GJ]	N	[GJ]	N	[49]	N	[GJ]	N	[GJ]	N	[GJ]	N	[GJ]	P	[58]
Planar	P	[GJ]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	O		N	[GJ]	N	[GJ]	P	[GJ]	N	[35]	P	[GJ]
Series Parallel	P	[79]	P	[75]	P	[T]	P?		P	[74]	P	[74]	P	[74]	P	[54]	P	[GJ]	P	[82]	P	[GJ]
Outerplanar	P		P	[6]	P	[T]	P	[6]	P	[67]	P	[67]	P	[T]	P	[6]	P	[GJ]	P	[81]	P	[GJ]
Halin	P		P	[6]	P	[T]	P	[6]	P	[74]	P	[74]	P	[T]	P	[6]	P	[GJ]	P ?		P	[GJ]
k-Outerplanar	P		P	[6]	P	[T]	P	[6]	P	[6]	O?		P	[6]	P	[6]	P	[GJ]	P?		P	[GJ]
Grid	P		P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[51]	N	[55]	P	[T]	N	[35]	P	[GJ]
$K_{3,3}$-Free	P	[4]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	O?		N	[GJ]	N	[GJ]	P	[5]	N	[GJ]	O?	
Thickness-k	N	[60]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	N	[49]	N	[GJ]	N	[GJ]	N	[7]	N	[GJ]	O?	
Genus-k	P	[34]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	O?		N	[GJ]	N	[GJ]	O?		N	[GJ]	P	[61]
Perfect	O!		P	[42]	P	[42]	P	[42]	P	[42]	O?		N	[1]	N	[14]	O?		N	[GJ]	I	[GJ]
Chordal	P	[76]	P	[40]	P	[40]	P	[40]	P	[40]	O?		N	[22]	N	[14]	O?		N	[83]	I	[GJ]
Split	P	[40]	P	[40]	P	[40]	P	[40]	P	[40]	O?		N	[22]	N	[19]	O?		N	[83]	I	[15]
Strongly Chordal	P	[31]	P	[40]	P	[40]	P	[40]	P	[40]	O?		O?		P	[32]	O?		P	[83]	O?	
Comparability	P	[40]	P	[40]	P	[40]	P	[40]	P	[40]	O?		N	[1]	N	[28]	O?		N	[GJ]	I	[GJ]
Bipartite	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[1]	N	[28]	P	[T]	N	[GJ]	I	[GJ]
Permutation	P	[40]	O?		O		P	[33]	O?		P	[23]	P	[21]								
Cographs	P	[T]	P	[40]	P	[40]	P	[40]	P	[40]	O?		P	[25]	P	[33]	O?		P	[23]	P	[25]
Undirected Path	P	[39]	P	[40]	P	[40]	P	[40]	P	[40]	O?		O?		N	[16]	O?		O?		I	[GJ]
Directed Path	P	[38]	P	[40]	P	[40]	P	[40]	P	[40]	O?		O?		P	[16]	O?		P	[83]	O?	
Interval	P	[17]	P	[44]	P	[44]	P	[44]	P	[44]	O?		P	[53]	P	[16]	O?		P	[83]	P	[57]
Circular Arc	P	[78]	P	[44]	P	[50]	P	[44]	N	[36]	O?		O?		P	[13]	O?		P	[83]	O?	
Circle	P	[71]	P	[GJ]	P	[50]	O ?		N	[36]	O?		P	[12]	O?		O?		P	[70]	O?	
Proper Circ. Arc	P	[77]	P	[44]	P	[50]	P	[44]	P	[66]	O?		P	[12]	P	[13]	O?		P	[83]	O?	
Edge (or Line)	P	[47]	P	[GJ]	P	[T]	N	[GJ]	N	[49]	O?		N	[11]	N	[GJ]	O?		N	[70]	I	[15]
Claw-Free	P	[T]	P	[63]	O?		N	[GJ]	N	[49]	O?		N	[11]	N	[GJ]	O?		N	[70]	I	[15]

The updated NP-Completeness Column: An Ongoing Guide table 35 years later

Graph Class	Member		IndSet		Clique		CliPar		ChrNum		Chrind		HamCir		DomSet		MaxCut		StTree		Graphiso	
Trees/Forests	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[G]]	P	[T]	P	[GJ]	P	[GJ]	P	[T]	P	[GJ]
Almost Trees (k)	P	[OG]	P	[OG]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[5]	P	[20]	P	[76]	P	[17]
Partial k-trees	P	[OG]	P	[5]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[5]	P	[20]	P	[76]	P	[17]
Bandwidth-k	P	[OG]	P	[OG]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[5]	P	[OG]	P	[76]	P	[OG]
Degree-k	P	[T]	N	[GJ]	P	[T]	N	[29]	N	[GJ]	N	[OG]	N	[GJ]	N	[GJ]	N	[GJ]	N	[GJ]	P	[OG]
Planar	P	[GJ]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	0		N	[GJ]	N	[GJ]	P	[GJ]	N	[OG]	P	[GJ]
Series Parallel	P	[OG]	P	[OG]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[OG]	P	[GJ]	P	[OG]	P	[GJ]
Outerplanar	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[GJ]	P	[OG]	P	[GJ]
Halin	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[5]	P	[17]	P	[T]	P	[OG]	P	[GJ]	P	[118]	P	[GJ]
k-Outerplanar	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[5]	P	[17]	P	[OG]	P	[OG]	P	[GJ]	P	[76]	P	[GJ]
Grid	P	[OG]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[OG]	N	[32]	P	[T]	N	[OG]	P	[GJ]
K 3,3-Free ${ }^{*}$	P	[OG]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	O?		N	[GJ]	N	[GJ]	P	[OG]	N	[GJ]	P	[40]
Thickness-k	N	[OG]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	N	[OG]	N	[GJ]	N	[GJ]	N	[119]	N	[GJ]	1	[RJ]
Genus-k	P	[OG]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	O?		N	[GJ]	N	[GJ]	O?		N	[GJ]	P	[OG]
Perfect	P	[34]	P	[OG]	P	[OG]	P	[OG]	P	[OG]	N	[28]	N	[OG]	N	[OG]	N	[20]	N	[GJ]	1	[84]
Chordal	P	[OG]	O?		N	[93]	N	[OG]	N	[20]	N	[OG]	1	[84]								
Split	P	[OG]	O?		N	[93]	N	[OG]	N	[20]	N	[OG]	1	[108]								
Strongly Chordal	P	[OG]	O?		N	[93]	P	[OG]	N	[109]	P	[OG]	1	[111]								
Comparability	P	[OG]	N	[28]	N	[OG]	N	[94]	N	[102]	N	[GJ]	1	[22]								
Bipartite	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[OG]	N	[94]	P	[T]	N	[GJ]	1	[22]
Permutation	P	[OG]	0 ?		P	[44]	P	[OG]	N	[120]	P	[OG]	P	[OG]								
Cographs	P	[T]	P	[OG]	P	[OG]	P	[OG]	P	[OG]	O?		P	[OG]	P	[OG]	P	[20]	P	[OG]	P	[OG]
Undirected Path	P	[OG]	O?		N	[13]	N	[OG]	N	[20]	N	[RJ]	1	[22]								
Directed Path	P	[OG]	O?		N	[99]	P	[OG]	N	[1]	P	[OG]	P	[7]								
Interval	P	[OG]	0 ?		P	[OG]	P	[OG]	N	[1]	P	[OG]	P	[OG]								
Circular Arc	P	[OG]	P	[OG]	P	[OG]	P	[OG]	N	[OG]	O?		P	[106]	P	[OG]	N	[1]	P	[11]	P	[80]
Circle	P	[OG]	P	[GJ]	P	[OG]	N	[73]	N	[OG]	0 ?		N	[39]	N	[71]	N	[26]	P	[OG]	P	[68]
Proper Circ. Arc	P	[OG]	O?		P	[OG]	P	[OG]	O?		P	[11]	P	[82]								
Edge (or Line)	P	[OG]	P	[GJ]	P	[T]	N	[95]	N	[OG]	N	[28]	N	[OG]	N	[GJ]	P	[59]	N	[19]	1	[OG]
Claw-Free	P	[T]	P	[OG]	N	[103]	N	[85]	N	[OG]	N	[28]	N	[OG]	N	[GJ]	N	[20]	N	[19]	1	[OG]

www.cos.ufrj.br/~celina/ftp/j/RJ-current.pdf

The updated NP-Completeness Column: An Ongoing Guide table 35 years later

Graph Class	Member		IndSet		Clique		CliPar		ChrNum		Chrind		HamCir		DomSet		MaxCut		StTree		Graphiso	
Trees/Forests	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[G]]	P	[T]	P	[GJ]	P	[GJ]	P	[T]	P	[GJ]
Almost Trees (k)	P	[OG]	P	[OG]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[5]	P	[20]	P	[76]	P	[17]
Partial k-trees	P	[OG]	P	[5]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[5]	P	[20]	P	[76]	P	[17]
Bandwidth-k	P	[OG]	P	[OG]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[5]	P	[OG]	P	[76]	P	[OG]
Degree-k	P	[T]	N	[GJ]	P	[T]	N	[29]	N	[GJ]	N	[OG]	N	[GJ]	N	[GJ]	N	[GJ]	N	[GJ]	P	[OG]
Planar	P	[GJ]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	0		N	[GJ]	N	[GJ]	P	[GJ]	N	[OG]	P	[GJ]
Series Parallel	P	[OG]	P	[OG]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[OG]	P	[GJ]	P	[OG]	P	[GJ]
Outerplanar	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[GJ]	P	[OG]	P	[GJ]
Halin	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[5]	P	[17]	P	[T]	P	[OG]	P	[GJ]	P	[118]	P	[GJ]
k-Outerplanar	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[5]	P	[17]	P	[OG]	P	[OG]	P	[GJ]	P	[76]	P	[GJ]
Grid	P	[OG]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[OG]	N	[32]	P	[T]	N	[OG]	P	[GJ]
K 3,3-Free ${ }^{*}$	P	[OG]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	O?		N	[GJ]	N	[GJ]	P	[OG]	N	[GJ]	P	[40]
Thickness-k	N	[OG]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	N	[OG]	N	[GJ]	N	[GJ]	N	[119]	N	[GJ]	1	[RJ]
Genus-k	P	[OG]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	O?		N	[GJ]	N	[GJ]	O?		N	[GJ]	P	[OG]
Perfect	P	[34]	P	[OG]	P	[OG]	P	[OG]	P	[OG]	N	[28]	N	[OG]	N	[OG]	N	[20]	N	[GJ]	1	[84]
Chordal	P	[OG]	O?		N	[93]	N	[OG]	N	[20]	N	[OG]	1	[84]								
Split	P	[OG]	O?		N	[93]	N	[OG]	N	[20]	N	[OG]	1	[108]								
Strongly Chordal	P	[OG]	O?		N	[93]	P	[OG]	N	[109]	P	[OG]	1	[111]								
Comparability	P	[OG]	N	[28]	N	[OG]	N	[94]	N	[102]	N	[GJ]	1	[22]								
Bipartite	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[OG]	N	[94]	P	[T]	N	[GJ]	1	[22]
Permutation	P	[OG]	O?		P	[44]	P	[OG]	N	[120]	P	[OG]	P	[OG]								
Cographs	P	[T]	P	[OG]	P	[OG]	P	[OG]	P	[OG]	O?		P	[OG]	P	[OG]	P	[20]	P	[OG]	P	[OG]
Undirected Path	P	[OG]	O?		N	[13]	N	[OG]	N	[20]	N	[RJ]	I	[22]								
Directed Path	P	[OG]	O?		N	[99]	P	[OG]	N	[1]	P	[OG]	P	[7]								
Interval	P	[OG]	0 ?		P	[OG]	P	[OG]	N	[1]	P	[OG]	P	[OG]								
Circular Arc	P	[OG]	P	[OG]	P	[OG]	P	[OG]	N	[OG]	O?		P	[106]	P	[OG]	N	[1]	P	[11]	P	[80]
Circle	P	[OG]	P	[GJ]	P	[OG]	N	[73]	N	[OG]	0 ?		N	[39]	N	[71]	N	[26]	P	[OG]	P	[68]
Proper Circ. Arc	P	[OG]	O?		P	[OG]	P	[OG]	O?		P	[11]	P	[82]								
Edge (OR Line)	P	[OG]	P	[GJ]	P	[T]	N	[95]	N	[OG]	N	[28]	N	[OG]	N	[GJ]	P	[59]	N	[19]	1	[OG]
Claw-Free	P	[T]	P	[OG]	N	[103]	N	[85]	N	[OG]	N	[28]	N	[OG]	N	[GJ]	N	[20]	N	[19]	1	[OG]

www.cos.ufrj.br/~celina/ftp/j/RJ-current.pdf

Containment relations for classes

MaxCut problem

Given a graph G and $k \in \mathbb{Z}_{0}^{+}$, MaxCuT asks whether

$$
\operatorname{mc}(G)=\max _{[A, B]}\left|E_{G}(A, B)\right| \geq k
$$

Classical NP-complete problem
(Garey, Johnson, Stockmeyer, 1976).

The key gadget to the NP-completeness

An (x,y)-grained gadget is a split graph $H\langle K, S\rangle$, such that

- $S=S^{\prime} \cup S^{\prime \prime},\left|S^{\prime}\right|=\left|S^{\prime \prime}\right|=x$;
- $K=K^{\prime} \cup K^{\prime \prime},\left|K^{\prime}\right|=\left|K^{\prime \prime}\right|=y$;
- $N_{H}\left(K^{\prime}\right)=K \cup S^{\prime} ;$
- $N_{H}\left(K^{\prime \prime}\right)=K \cup S^{\prime \prime}$.

Possible intersections with a grained gadget

A graph G respects the structure of H if, $\forall u \in V(G) \backslash V(H)$, $N_{G}(v) \cap V(H)=\emptyset$ or u satisfies

Covering intersection

Weak intersection

Strong intersection

The key property of grained gadgets

Let G be a graph and $[A, B]$ be a maximum cut of G.
If G respects the structure of an (x, y)-grained gadget H, then, for suitable x and y,

- either H is A-partitioned by $[A, B]$;
- or H is B-partitioned by $[A, B]$.

Adhikary, Bose, Mukherjee, and Roy's reduction

Polynomial-time reduction from MaxCut on cubic graphs.
Let G be a cubic graph, $\pi_{V}=\left(u_{1}, \ldots, u_{n}\right)$ and $\pi_{E}=\left(e_{1}, \ldots, e_{m}\right)$.

For suitable $x, y, \quad \mathrm{mc}\left(\mathbb{G}_{\mathcal{M}}\right) \geq \phi(n, k)$ iff $\mathrm{mc}(G) \geq k$.

(Complexity of maximum cut on interval graphs. Adhikary, Bose, Mukherjee, Roy, 2021)

Our reduction: Interval count 4

$[A, B]$ is a max-cut of $\mathbb{G}_{\mathcal{M}}$

Our reduction: Permutation

$[A, B]$ is a max-cut of $\mathbb{G}_{\mathcal{M}}$

Figura 1. A hierarchy of graph classes

Main open questions

- Is MaxCut polynomial-time solvable on unit interval graphs?
- Is MaxCut polynomial-time solvable on interval permutation graphs?

