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The Guide – Computers and Intractability

“Despite that 23 years have passed
since its publication, I consider Garey
and Johnson the single most
important book on my o�ce
bookshelf. Every computer scientist
should have this book on their
shelves as well. NP-completeness is
the single most important concept to
come out of theoretical computer
science and no book covers it as well
as Garey and Johnson.”

Lance Fortnow, “Great Books: Computers
and Intractability: A Guide to the Theory of
NP-Completeness”



Ongoing Guide – Graph Restrictions and Their E↵ect



The updated NP-Completeness Column: An Ongoing Guide table 35 years later

GRAPH CLASS MEMBER INDSET CLIQUE CLIPAR CHRNUM CHRIND HAMCIR DOMSET MAXCUT STTREE GRAPHISO

TREES/FORESTS P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [GJ] P [T] P [GJ]

ALMOST TREES (k) P [OG] P [OG] P [T] P [105] P [5] P [17] P [5] P [5] P [20] P [76] P [17]

PARTIAL k-TREES P [OG] P [5] P [T] P [105] P [5] P [17] P [5] P [5] P [20] P [76] P [17]

BANDWIDTH-k P [OG] P [OG] P [T] P [105] P [5] P [17] P [5] P [5] P [OG] P [76] P [OG]

DEGREE-k P [T] N [GJ] P [T] N [29] N [GJ] N [OG] N [GJ] N [GJ] N [GJ] N [GJ] P [OG]

PLANAR P [GJ] N [GJ] P [T] N [78] N [GJ] O N [GJ] N [GJ] P [GJ] N [OG] P [GJ]

SERIES PARALLEL P [OG] P [OG] P [T] P [105] P [5] P [17] P [5] P [OG] P [GJ] P [OG] P [GJ]

OUTERPLANAR P [OG] P [OG] P [T] P [OG] P [OG] P [OG] P [T] P [OG] P [GJ] P [OG] P [GJ]

HALIN P [OG] P [OG] P [T] P [OG] P [5] P [17] P [T] P [OG] P [GJ] P [118] P [GJ]

k-OUTERPLANAR P [OG] P [OG] P [T] P [OG] P [5] P [17] P [OG] P [OG] P [GJ] P [76] P [GJ]

GRID P [OG] P [GJ] P [T] P [GJ] P [T] P [GJ] N [OG] N [32] P [T] N [OG] P [GJ]

K 3,3-FREE
* P [OG] N [GJ] P [T] N [78] N [GJ] O? N [GJ] N [GJ] P [OG] N [GJ] P [40]

THICKNESS-k N [OG] N [GJ] P [T] N [78] N [GJ] N [OG] N [GJ] N [GJ] N [119] N [GJ] I [RJ]

GENUS-k P [OG] N [GJ] P [T] N [78] N [GJ] O? N [GJ] N [GJ] O? N [GJ] P [OG]

PERFECT P [34] P [OG] P [OG] P [OG] P [OG] N [28] N [OG] N [OG] N [20] N [GJ] I [84]

CHORDAL P [OG] P [OG] P [OG] P [OG] P [OG] O? N [93] N [OG] N [20] N [OG] I [84]

SPLIT P [OG] P [OG] P [OG] P [OG] P [OG] O? N [93] N [OG] N [20] N [OG] I [108]

STRONGLY CHORDAL P [OG] P [OG] P [OG] P [OG] P [OG] O? N [93] P [OG] N [109] P [OG] I [111]

COMPARABILITY P [OG] P [OG] P [OG] P [OG] P [OG] N [28] N [OG] N [94] N [102] N [GJ] I [22]

BIPARTITE P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] N [OG] N [94] P [T] N [GJ] I [22]

PERMUTATION P [OG] P [OG] P [OG] P [OG] P [OG] O? P [44] P [OG] N [120] P [OG] P [OG]

COGRAPHS P [T] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] P [20] P [OG] P [OG]

UNDIRECTED Path P [OG] P [OG] P [OG] P [OG] P [OG] O? N [13] N [OG] N [20] N [RJ] I [22]

DIRECTED PATH P [OG] P [OG] P [OG] P [OG] P [OG] O? N [99] P [OG] N [1] P [OG] P [7]

INTERVAL P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] N [1] P [OG] P [OG]

CIRCULAR ARC P [OG] P [OG] P [OG] P [OG] N [OG] O? P [106] P [OG] N [1] P [11] P [80]

CIRCLE P [OG] P [GJ] P [OG] N [73] N [OG] O? N [39] N [71] N [26] P [OG] P [68]

PROPER CIRC. ARC P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] O? P [11] P [82]

EDGE (OR LINE) P [OG] P [GJ] P [T] N [95] N [OG] N [28] N [OG] N [GJ] P [59] N [19] I [OG]

CLAW-FREE P [T] P [OG] N [103] N [85] N [OG] N [28] N [OG] N [GJ] N [20] N [19] I [OG]
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Containment relations for classes
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Figure 2: Containment relations for classes from [OG], our target class is UNDIRECTED PATH. (Adapted
from [OG].)

line the corresponding [OG] reference in Table 1. Moreover, the entry UNDIRECTED
PATH is said to be NP-complete in [106], but again with a “private communication”
reference (we comment more on this in Section 4). Believing in the need to have ex-
plicit proofs for these important problems, we here give a proof of NP-completeness
for UNDIRECTED PATH graphs, which would provide a full dichotomy Polynomial
versus NP-complete for the STEINER TREE column. Actually, we provide a second
dichotomy for the STEINER TREE problem restricted to UNDIRECTED PATH graphs,
according to the diameter of the input graph. For the GRAPH ISOMORPHISM column
we also provide a full dichotomy Polynomial versus NP-complete by giving an explicit
proof of GI-completeness for THICKNESS-k graphs (please refer to Section 3).

Besides providing a full dichotomy Polynomial versus NP-complete for the STEINER
TREE column, in Table 1 we have thoroughly revised the summary table that 35 years
later has 54 new resolved entries depicted in bold. Additionally, there are 36 citations
for references not in bold that confirm resolved entries from [OG] or [GJ], that we up-
dated because they cited private communications, or because the cited reference is not
easily accessible, or could not be confirmed. There is one entry highlighted in italic that
corrects the entry for HAMILTONIAN CIRCUIT restricted to CIRCLE graphs originally
P but that actually is N [39].

In addition, we consider the parameterized complexity of hard problems to revise
Table 1 into a new Table 2, a proposed summary table of what it means today to study
a problem from a computational complexity point of view. This is of course just a
sample of what it means, since we could even consider other classifications (e.g., the
approximability complexity theory and the space complexity theory). We have kept
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MaxCut problem

Given a graph G and k ∈ Z+
0 , MaxCut

asks whether

mc(G ) = max
[A,B]
|EG (A,B)| ≥ k .

Classical NP-complete problem
(Garey, Johnson, Stockmeyer, 1976).



The key gadget to the NP-completeness

An (x , y)-grained gadget is a split graph H〈K ,S〉, such that

I S = S ′ ∪ S ′′, |S ′| = |S ′′| = x ;

I K = K ′ ∪ K ′′, |K ′| = |K ′′| = y ;

I NH(K ′) = K ∪ S ′;

I NH(K ′′) = K ∪ S ′′.



Possible intersections with a grained gadget

A graph G respects the structure of H if, ∀ u ∈ V (G ) \ V (H),
NG (v) ∩ V (H) = ∅ or u satisfies

Covering intersection Weak intersection

Strong intersection



The key property of grained gadgets

Let G be a graph and [A,B] be a maximum cut of G .

If G respects the structure of an (x , y)-grained gadget H, then, for
suitable x and y ,

I either H is A-partitioned by [A,B];

I or H is B-partitioned by [A,B].



Adhikary, Bose, Mukherjee, and Roy’s reduction

Polynomial-time reduction from MaxCut on cubic graphs.

Let G be a cubic graph, πV = (u1, . . . , un) and πE = (e1, . . . , em).

For suitable x , y , mc(GM) ≥ φ(n, k) iff mc(G ) ≥ k .

Clearly, the interval count of GM depends on the fixed orderings.

There are graphs and orderings for which ic(GM) = Ω( 4
√
|GM|).

(Complexity of maximum cut on interval graphs. Adhikary, Bose, Mukherjee, Roy, 2021)



Our reduction: Interval count 4

[A,B] is a max-cut of GM



Our reduction: Permutation

[A,B] is a max-cut of GM



Chordal Graphs Cocomparability Graphs Comparability Graphs

Permutation Graphs
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∩

∩

Strongly Chordal Graphs

Figura 1. A hierarchy of graph classes

search. Whenever the LexBFS algorithm removes a vertex v from the first set on its
queue, the algorithm checks that all remaining neighbors of v belong to the same set; if
not, one of the forbidden induced subgraphs can be constructed from v. If this check suc-
ceeds for every v, then the graph is trivially perfect. The algorithm can also be modified
to test whether a graph is the complement graph of a trivially perfect graph, in linear time.
See [Golumbic 2004, 2021] for references to other applications of LexBFS.

Graph sandwich. For a graph class C, the graph sandwich problem (GSP) asks whether,
given a set of vertices V , a set of mandatory edges E1, and a set of optional edges E0,
is there a graph H = (V,E) in C such that E1 ✓ E ✓ E1 [ E0? [Alvarado, Dantas,
Rautenbach 2019] have recently shown that the trivially perfect graph sandwich problem
can be solved in polynomial-time. For the other graph classes in Figure 1, in a series of
papers in the 1990s, Golumbic, Kaplan and Shamir proved that the GSP is NP-complete
for chordal, strongly chordal, permutation, comparability, and cocomparability graphs,
but is polynomial for cographs and threshold graphs.

4. Jayme Szwarcfiter
Several papers authored by Jayme Szwarcfiter and colleagues refer to trivially perfect
graphs. In [Dobson, Gutierrez, and Szwarcfiter 2004, 2006], the authors study treelike
comparability graphs, that is, comparability graphs of posets whose Hasse diagram is a
tree (not necessarily a rooted tree). They give necessary and sufficient conditions that a
prime comparability graph must satisfy for being a treelike comparability graph. They
also provide a characterization of treelike comparability graphs based on modular decom-
position.

Other early works on comparability graphs whose Hasse diagram is a tree are [Ar-
ditti 1975] and [Atkinson 1990]. [Cornelsen and Di Stefano 2004, 2009] give another
characterization of treelike comparability graphs as being distance hereditary with a spe-
cial treelike orientation of its split decomposition, and provide a linear-time recognition
algorithm. They also characterize treelike permutation graphs.

Jayme Luiz Szwarcfiter delivered the 2nd Annual Uri Natan Peled Memorial Lec-



Main open questions

I Is MaxCut polynomial-time solvable on unit interval graphs?

I Is MaxCut polynomial-time solvable on interval permutation
graphs?


