A Perfect Path from Computational Biology to Quantum Computing

Celina Miraglia Herrera de Figueiredo

COPPE UFRJ

Celina, 1991

Luerbio, 1998

Simone, 2002

Vânia, 2004

Cláudia, 2005

Rafael Bemardo, 2008

Alexandre, 2020

Luis Fellipe, 2017

Caroline, 2021

Origem e desenvolvimento da área de pesquisa

Teoria dos Grafos

The Guide - Computers and Intractability

COMPUTERS AND INTRACTABILITY
A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

"Despite that 23 years have passed since its publication, I consider Garey and Johnson the single most important book on my office bookshelf. Every computer scientist should have this book on their shelves as well. NP-completeness is the single most important concept to come out of theoretical computer science and no book covers it as well as Garey and Johnson."

Lance Fortnow, "Great Books: Computers and Intractability: A Guide to the Theory of NP-Completeness"

Ongoing Guide - Graph Restrictions and Their Effect

Graph Class	Member		IndSET		Clique		CLIPAR		ChrNum		ChrInd		HamCir		DomSet		MaxCut		StTree		Graiso	
Trees/Forests	P	[T]	P	[GJ]	P	[GJ]	P	[T]	P	[GJ]												
Almost Trees (k)	P		P	[24]	P	[T]	P ?		P ?		P?		P ?		P	[45]	P ?		P ?		P ?	
Partial k-Trees	P	[2]	P	[1]	P	[T]	P ?		P	[1]	O?		P	[3]	P	[3]	P ?		P ?		O?	
Bandwidth- k	P	[68]	P	[64]	P	[T]	P?		P	[64]	P?		P?		P	[64]	P	[64]	P?		P	[58]
Degree-k	P	[T]	N	[GJ]	P	[T]	N	[GJ]	N	[GJ]	N	[49]	N	[GJ]	N	[GJ]	N	[GJ]	N	[GJ]	P	[58]
Planar	P	[GJ]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	O		N	[GJ]	N	[GJ]	P	[GJ]	N	[35]	P	[GJ]
Series Parallel	P	[79]	P	[75]	P	[T]	P?		P	[74]	P	[74]	P	[74]	P	[54]	P	[GJ]	P	[82]	P	[GJ]
Outerplanar	P		P	[6]	P	[T]	P	[6]	P	[67]	P	[67]	P	[T]	P	[6]	P	[GJ]	P	[81]	P	[GJ]
Halin	P		P	[6]	P	[T]	P	[6]	P	[74]	P	[74]	P	[T]	P	[6]	P	[GJ]	P ?		P	[GJ]
k-Outerplanar	P		P	[6]	P	[T]	P	[6]	P	[6]	O?		P	[6]	P	[6]	P	[GJ]	P?		P	[GJ]
Grid	P		P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[51]	N	[55]	P	[T]	N	[35]	P	[GJ]
$K_{3,3}$-Free	P	[4]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	O?		N	[GJ]	N	[GJ]	P	[5]	N	[GJ]	O?	
Thickness-k	N	[60]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	N	[49]	N	[GJ]	N	[GJ]	N	[7]	N	[GJ]	O?	
Genus-k	P	[34]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	O?		N	[GJ]	N	[GJ]	O?		N	[GJ]	P	[61]
Perfect	O!		P	[42]	P	[42]	P	[42]	P	[42]	O?		N	[1]	N	[14]	O?		N	[GJ]	I	[GJ]
Chordal	P	[76]	P	[40]	P	[40]	P	[40]	P	[40]	O?		N	[22]	N	[14]	O?		N	[83]	I	[GJ]
Split	P	[40]	P	[40]	P	[40]	P	[40]	P	[40]	O?		N	[22]	N	[19]	O?		N	[83]	I	[15]
Strongly Chordal	P	[31]	P	[40]	P	[40]	P	[40]	P	[40]	O?		O?		P	[32]	O?		P	[83]	O?	
Comparability	P	[40]	P	[40]	P	[40]	P	[40]	P	[40]	O?		N	[1]	N	[28]	O?		N	[GJ]	I	[GJ]
Bipartite	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[1]	N	[28]	P	[T]	N	[GJ]	I	[GJ]
Permutation	P	[40]	O?		O		P	[33]	O?		P	[23]	P	[21]								
Cographs	P	[T]	P	[40]	P	[40]	P	[40]	P	[40]	O?		P	[25]	P	[33]	O?		P	[23]	P	[25]
Undirected Path	P	[39]	P	[40]	P	[40]	P	[40]	P	[40]	O?		O?		N	[16]	O?		O?		I	[GJ]
Directed Path	P	[38]	P	[40]	P	[40]	P	[40]	P	[40]	O?		O?		P	[16]	O?		P	[83]	O?	
Interval	P	[17]	P	[44]	P	[44]	P	[44]	P	[44]	O?		P	[53]	P	[16]	O?		P	[83]	P	[57]
Circular Arc	P	[78]	P	[44]	P	[50]	P	[44]	N	[36]	O?		O?		P	[13]	O?		P	[83]	O?	
Circle	P	[71]	P	[GJ]	P	[50]	O ?		N	[36]	O?		P	[12]	O?		O?		P	[70]	O?	
Proper Circ. Arc	P	[77]	P	[44]	P	[50]	P	[44]	P	[66]	O?		P	[12]	P	[13]	O?		P	[83]	O?	
Edge (or Line)	P	[47]	P	[GJ]	P	[T]	N	[GJ]	N	[49]	O?		N	[11]	N	[GJ]	O?		N	[70]	I	[15]
Claw-Free	P	[T]	P	[63]	O?		N	[GJ]	N	[49]	O?		N	[11]	N	[GJ]	O?		N	[70]	I	[15]

The updated NP-Completeness Column: An Ongoing Guide table 35 years later

Graph Class	Member		IndSet		Clique		CliPar		ChrNum		Chrind		HamCir		DomSet		MaxCut		StTree		Graphiso	
Trees/Forests	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[G]]	P	[T]	P	[GJ]	P	[GJ]	P	[T]	P	[GJ]
Almost Trees (k)	P	[OG]	P	[OG]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[5]	P	[20]	P	[76]	P	[17]
Partial k-trees	P	[OG]	P	[5]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[5]	P	[20]	P	[76]	P	[17]
Bandwidth-k	P	[OG]	P	[OG]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[5]	P	[OG]	P	[76]	P	[OG]
Degree-k	P	[T]	N	[GJ]	P	[T]	N	[29]	N	[GJ]	N	[OG]	N	[GJ]	N	[GJ]	N	[GJ]	N	[GJ]	P	[OG]
Planar	P	[GJ]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	0		N	[GJ]	N	[GJ]	P	[GJ]	N	[OG]	P	[GJ]
Series Parallel	P	[OG]	P	[OG]	P	[T]	P	[105]	P	[5]	P	[17]	P	[5]	P	[OG]	P	[GJ]	P	[OG]	P	[GJ]
Outerplanar	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[GJ]	P	[OG]	P	[GJ]
Halin	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[5]	P	[17]	P	[T]	P	[OG]	P	[GJ]	P	[118]	P	[GJ]
k-Outerplanar	P	[OG]	P	[OG]	P	[T]	P	[OG]	P	[5]	P	[17]	P	[OG]	P	[OG]	P	[GJ]	P	[76]	P	[GJ]
Grid	P	[OG]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[OG]	N	[32]	P	[T]	N	[OG]	P	[GJ]
K 3,3-Free ${ }^{*}$	P	[OG]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	O?		N	[GJ]	N	[GJ]	P	[OG]	N	[GJ]	P	[40]
Thickness-k	N	[OG]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	N	[OG]	N	[GJ]	N	[GJ]	N	[119]	N	[GJ]	1	[RJ]
Genus-k	P	[OG]	N	[GJ]	P	[T]	N	[78]	N	[GJ]	O?		N	[GJ]	N	[GJ]	O?		N	[GJ]	P	[OG]
Perfect	P	[34]	P	[OG]	P	[OG]	P	[OG]	P	[OG]	N	[28]	N	[OG]	N	[OG]	N	[20]	N	[GJ]	1	[84]
Chordal	P	[OG]	O?		N	[93]	N	[OG]	N	[20]	N	[OG]	1	[84]								
Split	P	[OG]	O?		N	[93]	N	[OG]	N	[20]	N	[OG]	1	[108]								
Strongly Chordal	P	[OG]	O?		N	[93]	P	[OG]	N	[109]	P	[OG]	1	[111]								
Comparability	P	[OG]	N	[28]	N	[OG]	N	[94]	N	[102]	N	[GJ]	1	[22]								
Bipartite	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[OG]	N	[94]	P	[T]	N	[GJ]	1	[22]
Permutation	P	[OG]	O?		P	[44]	P	[OG]	N	[120]	P	[OG]	P	[OG]								
Cographs	P	[T]	P	[OG]	P	[OG]	P	[OG]	P	[OG]	O?		P	[OG]	P	[OG]	P	[20]	P	[OG]	P	[OG]
Undirected Path	P	[OG]	O?		N	[13]	N	[OG]	N	[20]	N	[RJ]	I	[22]								
Directed Path	P	[OG]	O?		N	[99]	P	[OG]	N	[1]	P	[OG]	P	[7]								
Interval	P	[OG]	0 ?		P	[OG]	P	[OG]	N	[1]	P	[OG]	P	[OG]								
Circular Arc	P	[OG]	P	[OG]	P	[OG]	P	[OG]	N	[OG]	O?		P	[106]	P	[OG]	N	[1]	P	[11]	P	[80]
Circle	P	[OG]	P	[GJ]	P	[OG]	N	[73]	N	[OG]	0 ?		N	[39]	N	[71]	N	[26]	P	[OG]	P	[68]
Proper Circ. Arc	P	[OG]	O?		P	[OG]	P	[OG]	O?		P	[11]	P	[82]								
Edge (OR Line)	P	[OG]	P	[GJ]	P	[T]	N	[95]	N	[OG]	N	[28]	N	[OG]	N	[GJ]	P	[59]	N	[19]	1	[OG]
Claw-Free	P	[T]	P	[OG]	N	[103]	N	[85]	N	[OG]	N	[28]	N	[OG]	N	[GJ]	N	[20]	N	[19]	1	[OG]

www.cos.ufrj.br/~celina/ftp/j/RJ-current.pdf

The P vs. NP-complete dichotomy of some challenging problems in graph theory

Celina de Figueiredo

Universidade Federal do Rio de Janeiro
Brazil

Two long-standing problems in graph theory

Perfect graphs: Chvátal's SKEW PARTITION is polynomial

Intersection graphs: Roberts-Spencer's CLIQUE GRAPH is NP-complete

Both skew partition and clique graph proved to be in NP when their classification into P or NP-complete was proposed
V. Chvátal - J. Combin. Theory Ser. B 1985
F. Roberts, J. Spencer - J. Combin. Theory Ser. B 1971

The three nonempty part problem

Full dichotomy for the RECOGNITION PROBLEM:
stable cutset, 3-COLORING are the only NP-complete
T. Feder, P. Hell, S. Klein, R. Motwani - SIAM J. Discrete Math. 2003

Full dichotomy for the SANDWICH PROBLEM: 61 interesting problems: 19 NP-complete, 42 polynomial

HOMOGENEOUS SET SANDWICH PROBLEM is polynomial
CLIQUE CUTSET SANDWICH PROBLEM is NP-complete
Full dichotomy for the GENERALIZED SPLIT GRAPH SANDWICH PROBLEM:
(2,1)-GRAPH SANDWICH PROBLEM is NP-complete
"The polynomial dichotomy for three nonempty part sandwich problems"
Discrete Appl. Math. 2009 (with Rafael Teixeira, Simone Dantas)

Complexity-separating graph classes for vertex, edge and total coloring

Celina de Figueiredo

COPPE

Edge and total coloring complexity-separating classes

When restricted to \{square,unichord\}-free graphs, edge coloring is NP-complete whereas total coloring is polynomial

Complexity restricted to unichord-free and special subclasses

Colouring problem \backslash class	General	Unichord-free	$\{\square$, unichord $\}$-free	$\{\Delta$, unichord $\}$-free
Vertex-col.	$\mathcal{N} \mathcal{P C}[14]$	$\mathcal{P}[26]$	$\mathcal{P}[26]$	$\mathcal{P}[26]$
Edge-col.	$\mathcal{N} \mathcal{P C}[13]$	$\mathcal{N P \mathcal { P } [1 8]}$	$\mathcal{N} \mathcal{P C}[18]$	$\mathcal{N} \mathcal{P C}[18]$
Total-col.	$\mathcal{N} \mathcal{P C}[21]$	$\mathcal{N P \mathcal { P C } [1 7]}$	$\mathcal{P}[16,17]$	$\mathcal{N} \mathcal{P C}[17]$
Clique-col.	$\Sigma_{2}^{p} \mathcal{C}[20]$	\mathcal{P}	\mathcal{P}	$\mathcal{P}(\kappa=\chi)$
Biclique-col.	$\Sigma_{2}^{p} \mathcal{C}[10]$	\mathcal{P}	\mathcal{P}	$\mathcal{P}\left(\kappa_{\mathbf{B}}=\mathbf{2}\right)$

[10] M. Groshaus, F. Soulignac, P. Terlisky - J. Graph Algorithms Appl. 2014
[20] D. Marx - Theoret. Comput. Sci. 2011
"Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs"
Algorithmica 2017 (with Hélio Macedo and Raphael Machado)

Dániel Marx plenary talk at ICGT 2014

> Every graph is easy or hard: dichotomy theorems for graph problems

Dániel Marx ${ }^{1}$
${ }^{1}$ Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
Budapest, Hungary

ICGT 2014
Grenoble, France
July 3, 2014

Sandwich problems for perfect graph classes

Is the not C-free easier than the C-free sandwich problem?

A trigraph $\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ satisfies property Π if there is no sandwich graph G for $\left(G_{1}, G_{2}\right)$ which does not satisfy Π

The recognition of Berge graphs is polynomial but
the recognition of Berge trigraphs was previously open

The imperfect graph sandwich problem is polynomial
Equivalently, recognizing Berge trigraphs is polynomial

Detecting 3-path configurations

theta and pyramid: polynomial

prism and wheel: NP-complete

The not pyramid-free sandwich problem is polynomial but
the complexity of the pyramid-free sandwich problem is open
"The world of hereditary graph classes viewed through Truemper configurations" by K. Vušković, in Surveys in Combinatorics (2013)

A quantum walker spreads across a 2-tessellation cover

The chromatic upper bound: $T(G) \leqslant \min \left\{\chi^{\prime}(G), \chi(K(G))\right\}$
"The graph tessellation cover number: Chromatic bounds, efficient algorithms and hardness" Theoretical Computer Science (2020) (with Alexandre Abreu, Luis Cunha, Luis Kowada, Franklin Marquezino, Daniel Posner, Renato Portugal)

Most significant publications

- FIGUEIREDO, C. M. H. • KLEIN, S. • KOHAYAKAWA, Y. • REED, B.

Finding skew partitions efficiently
Journal of Algorithms (2000)

- FIGUEIREDO, C. M. H. . MAFFRAY, F.

Optimizing bull-free perfect graphs
SIAM Journal on Discrete Mathematics (2004)
\square FARIA, L. FIGUEIREDO, C. M. H. . SYKORA, O. . VRTO, I.
An improved upper bound on the crossing number of the hypercube Journal of Graph Theory (2008)

- ALCON, L. • FARIA, L. • FIGUEIREDO, C. M. H. . GUTIERREZ, M.

The complexity of clique graph recognition
Theoretical Computer Science (2009)
\square FIGUEIREDO, C. M. H.
The P vs. NP-complete dichotomy of some challenging problems in graph theory Discrete Applied Mathematics (2012)

Most significant publications

■ CUNHA, L. F. I. . KOWADA, L. A. B. - HAUSEN, R. A. • FIGUEIREDO, C. M. H.
A faster 1.375-approximation algorithm for sorting by transpositions Journal of Computational Biology (2015)
\square MACÊDO, H. B. . MACHADO, R. C. S. FIGUEIREDO, C. M. H.
Hierarchical complexity of 2-clique-colouring weakly chordal graphs and perfect graphs having cliques of size at least 3
Theoretical Computer Science (2016)

- CHUDNOVSKY, M. FIGUEIREDO, C. M. H. . SPIRKL, S.

The sandwich problem for decompositions and almost monotone properties Algorithmica (2018)
\square MELO, A. A. FIGUEIREDO, C. M. H. . SOUZA, U. S.
A multivariate analysis of the strict terminal connection problem Journal of Computer and System Sciences (2020)

■ ABREU, A. . CUNHA, L. FIGUEIREDO, C. • KOWADA, L. • MARQUEZINO, F. . POSNER, D. • PORTUGAL, R. The graph tessellation cover number: Chromatic bounds, efficient algorithms and hardness Theoretical Computer Science (2020)

Advances in algorithms, machine learning, and hardware can help tackle many NP-hard problems once thought impossible.

BY LANCE FORTNOW

Fifty Years

 of P vs. NP and the Possibility of the Impossible