

Centenary of Celina + Frédéric

Complexity-separating graph classes for vertex, edge and total coloring

Celina de Figueiredo

Universidade Federal do Rio de Janeiro

Grenoble, September 2010

Classification into P or NP-complete of challenging problems in graph theory

Full dichotomy: class of problems where each problem is classified into P or NP-complete

Coloring problems: vertex, edge, total

NP-completeness ongoing guide

Identification of an interesting problem, of an interesting graph class

Categorization of the problem according to its complexity status

Problems and complexity-separating graph classes

Graph classes and complexity-separating problems

Johnson's NP-completeness column 1985 Spinrad's book 2003

Complexity-separating graph classes

	VERTEXCOL	EDGECOL
perfect	Р	N
chordal	Р	0
split	Р	0
strongly chordal	Р	0
comparability	P	Ν
bipartite	Р	Р
permutation	Р	0
cographs	Р	Ο
indifference	Р	Ο
split-indifference	Р	Р

N: NP-complete P: polynomial O: open

Johnson's NP-completeness column 1985

I. Holyer - SIAM J. Comput. 1981

Complexity-separating problems

	VERTEXCOL	EDGECOL
perfect	Р	N
chordal	Р	0
split	Р	Ο
strongly chordal	Р	Ο
comparability	Р	N
bipartite	Р	P
permutation	Р	Ο
cographs	Р	0
indifference	Р	0
split-indifference	Р	Р

N: NP-complete P: polynomial O: open

L. Cai, J. Ellis – *Discrete Appl. Math.* 1991 Spinrad's book 2003

Complexity-separating problems

	VERTEXCOL	EDGECOL
perfect	Р	N
chordal	Р	0
split	Р	0
strongly chordal	Р	0
comparability	Р	Ν
bipartite	Р	Р
permutation	Р	0
cographs	Р	0
indifference	P	0
split-indifference	Р	P

N: NP-complete P: polynomial O: open

C. Ortiz Z., N. Maculan, J. Szwarcfiter – *Discrete Appl. Math.* 1998 C. Simone, C. Mello – *Theoret. Comput. Sci.* 2006

Full dichotomies

Classes of problems for which every problem is classified into P or NP-complete

Problems: EDGE COLORING, TOTAL COLORING

Graph classes: unichord-free, split-indifference, chordless

Unichord-free graphs

 $\chi\text{-bounded graph class: }\chi\leq f(\omega)$

Perfect graph: $\chi = \omega$

Line graph: $\chi \leq \omega + 1$, the Vizing bound

A. Gyárfás – Zastos. Mat. 1987

Unichord-free graphs

 χ -bounded graph class: $\chi \leq f(\omega)$

Perfect graph: $\chi = \omega$

Line graph: $\chi \leq \omega + 1$, the Vizing bound

Which choices of forbidden induced subgraphs give χ -bounded class?

Unichord-free graphs: $\chi \leq \omega + 1$

Structure theorem:

every graph in the class can be built from basic graphs

N. Trotignon, K. Vušković – J. Graph Theory 2009

Combining edge-colorings with respect to 2-cutset

Decomposition with respect to a proper 2-cutset $\{a, b\}$ G is Class 1: Δ colors suffice, but $G_X = P^*$ is Class 2: $\Delta + 1$ colors needed

Edge-coloring unichord-free graphs

Class *C* = unichord-free graphs

	$\Delta = 3$	$\Delta \geq 4$	regular
graphs of C	N	N	N
4-hole-free graphs of C	N	P	P
6-hole-free graphs of C	N	N	N
${4-hole, 6-hole}-free graphs of C$	P	P	P

"Chromatic index of graphs with no cycle with a unique chord" *Theoret. Comput. Sci.* 2010 (with Raphael Machado, Kristina Vušković)

Edge-coloring unichord-free graphs

Class *C* = unichord-free graphs

	$\Delta = 3$	$\Delta \ge 4$	regular
graphs of C	N	N	N
4-hole-free graphs of C	N	P	P
6-hole-free graphs of C	N	N	N
${4-hole, 6-hole}-free graphs of C$	Р	Р	Р

EDGECOL is N for k-partite r-regular, for each $k \ge 3$, $r \ge 3$

"Chromatic index of graphs with no cycle with a unique chord" *Theoret. Comput. Sci.* 2010 (with Raphael Machado, Kristina Vušković)

Class 2 = overfull implies EDGECOL is P

Overfull graph: $|\mathsf{E}| > \Delta \left\lfloor \frac{|\mathsf{V}|}{2} \right\rfloor$

Complete multipartite: Class 2 = overfull Graphs with a universal vertex: Class 2 = overfull Split-indifference graphs: Class 2 = subgraph overfull $\{4-hole,unichord\}$ -free graphs, with $\Delta \neq 3$: Class 2 = subgraph overfull

- D. Hoffman, C. Rodger J. Graph Theory 1992
- M. Plantholt J. Graph Theory 1981
- C. Ortiz Z., N. Maculan, J. Szwarcfiter Discrete Appl. Math. 1998

Class 2 = overfull implies EDGECOL is P

Overfull graph: $|\mathsf{E}| > \Delta \left\lfloor \frac{|\mathsf{V}|}{2} \right\rfloor$

Complete multipartite: Class 2 = overfull Graphs with a universal vertex: Class 2 = overfull Split-indifference graphs: Class 2 = subgraph overfull $\{4-hole,unichord\}$ -free graphs, with $\Delta \neq 3$: Class 2 = subgraph overfull

D. Hoffman, C. Rodger – J. Graph Theory 1992

M. Plantholt – J. Graph Theory 1981

C. Ortiz Z., N. Maculan, J. Szwarcfiter - Discrete Appl. Math. 1998

Conjecture for edge-coloring chordal graphs:

Class 2 = subgraph overfull

"On edge-colouring indifference graphs"

Theoret. Comput. Sci. 1997 (with João Meidanis, Célia Mello)

Total coloring conjecture

Vizing's edge coloring theorem: every graph is $(\Delta + 1)$ -edge colorable

Total coloring conjecture: every graph is $(\Delta + 2)$ -total colorable Type 1 = $(\Delta + 1)$ -total colorable, Type 2 = $(\Delta + 2)$ -total colorable

M. Molloy, B. Reed – *Combinatorica* 1998

Natural to consider classes of graphs for which TCC is established

TCC for bipartite: 2-color vertices, Δ -color edges

Total coloring is hard

NP-hard for k-regular bipartite

Reduction from edge-coloring

Consider classes of graphs for which edge-coloring is polynomial

Edge-coloring is polynomial for split-indifference graphs

C. McDiarmid, A. Sánchez-Arroyo – *Discrete Math.* 1994
C. Ortiz Z., N. Maculan, J. Szwarcfiter – *Discrete Appl. Math.* 1998

Type 2 = Hilton condition implies TOTALCOL is P

	Δ even	Δ odd
complete	Type 1	Type 2 (Hilton condition)
univ. vertex	Type 1	Hilton condition
split	Type 1	open
indifference	Type 1	open
split-indifference	Type 1	Hilton condition
3 max cliques	Type 1	open

A. Hilton - Discrete Math. 1989

What is the largest class of graphs for which:

G Type 2 iff Hilton condition holds for closed neighborhood of Δ vertex

Necessary condition:

 Δ even implies Type 1

"The total chromatic number of split-indifference graphs"

FCC 2010 (with Christiane Campos, Raphael Machado, Célia Mello)

Total chromatic number of unichord-free graphs

	VERTEXCOL	EDGECOL	TOTALCOL
unichord-free $\{4\text{-hole,unichord}\}\text{-free, }\Delta\geq4$ $\{4\text{-hole,unichord}\}\text{-free, }\Delta=3$	P	N	N
	P	P	P
	P	N	P

Surprising full-dichotomy wrt EDGECOL:

 $\Delta \geq 4$ is polynomial whereas $\Delta = 3$ is NP-complete

Surprising complexity-separating graph class: EDGECOL is NP-complete whereas TOTALCOL is polynomial

"Total chromatic number of {square,unichord}-free graphs"

ISCO 2010 (with Raphael Machado)

Edge coloring chordless graphs

G is chordless iff L(G) is wheel-free

Chordless, with $\Delta = 3$ is Class 1 implies {wheel, ISK₄}-free is 3 vertex colorable

B. Lévêque, F. Maffray, N. Trotignon – "On graphs with no subdivision of K₄" 2010

Chordless is a subclass of unichord-free EDGECOL is NP-complete for unichord-free graphs

Every chordless, with $\Delta > 3$ is Class 1

"Chromatic index of chordless graphs"

CTW 2010 (with Raphael Machado and Nicolas Trotignon)

Edge and total coloring complexity-separating classes

When restricted to {square,unichord}-free graphs, edge coloring is NP-complete whereas total coloring is polynomial