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Overview

Central problem in theoretical computer science: the P vs. NP problem

Are there questions whose answer can be quickly checked, but which
require an impossibly long time to solve by any direct procedure?

Classification into P or NP-complete of two challenging problems in graph
theory

Complexity-separating problems and three full dichotomies



Two long-standing problems in graph theory

Perfect graphs: Chvátal’s SKEW PARTITION is polynomial

Intersection graphs: Roberts–Spencer’s CLIQUE GRAPH is NP-complete

V. Chvátal – J. Combin. Theory Ser. B 1985

F. Roberts, J. Spencer – J. Combin. Theory Ser. B 1971
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Skew partition

SKEW PARTITION

Instance: Graph G = (V, E)

Question: Does V admit a partition into 4 nonempty parts A, B, C, D such
that each vertex in A is adjacent to each vertex in B and each vertex in C

is nonadjacent to each vertex in D ?

A

B C

D A ∪ B is a skew cutset

SKEW PARTITION generalizes
STAR CUTSET

CLIQUE CUTSET

HOMOGENEOUS SET

V. Chvátal – J. Combin. Theory Ser. B 1985



List skew partition

LIST SKEW PARTITION

Instance: Graph G = (V, E) and, for each v ∈ V , a list L(v) ⊆ {A, B, C, D}

Question: Does V admit a skew partition into 4 parts A, B, C, D such that
each vertex v is assigned to a part in L(v) ?

{B,C} {C}

{A,B}{A,D} Instance G, L admits a list skew partition

T. Feder, P. Hell, S. Klein, R. Motwani – SIAM J. Discrete Math. 2003



List skew partition

LIST SKEW PARTITION

Instance: Graph G = (V, E) and, for each v ∈ V , a list L(v) ⊆ {A, B, C, D}

Question: Does V admit a skew partition into 4 parts A, B, C, D such that
each vertex v is assigned to a part in L(v) ?

Recursive algorithm:
Number of subproblems T(n) encountered during recursive skew
partitioning satisfies nested recurrences of the form:

T(n) ≤ 4 T(9n/10)

Running time O(n100) challenges the notion:
polynomial-time solvable = efficiently solvable in practice

“Finding skew partitions efficiently”

J. Algorithms 2000 (with Sulamita Klein, Yoshiharu Kohayakawa, Bruce Reed)



Is LIST PARTITION harder than NONEMPTY PART PARTITION ?

list nonempty part

SKEW n100 n6

Lists capture additional constraints: nonempty part, cardinality of parts,
specify for each vertex a list of parts in which the vertex is allowed

W. Kennedy, B. Reed – KyotoCGGT Lecture Notes in Comput. Sci. 2007



Is LIST PARTITION harder than NONEMPTY PART PARTITION ?

list nonempty part

SKEW n100 n6

2K2 N O
STUBBORN Q P

N: NP-complete, P: polynomial, Q: quasi-polynomial, O: open

1

0 0

SKEW 2K2 STUBBORN

T. Feder, P. Hell, S. Klein, R. Motwani – SIAM J. Discrete Math. 2003

W. Kennedy, B. Reed – KyotoCGGT Lecture Notes in Comput. Sci. 2007

K. Cameron, E. Eschen, C. Hoàng, R. Sritharan – SIAM J. Discrete Math. 2007



Is LIST PARTITION harder than NONEMPTY PART PARTITION ?

list nonempty part

SKEW n100 n6

2K2 N O
STUBBORN Q P

N: NP-complete, P: polynomial, Q: quasi-polynomial, O: open

1

0 0

SKEW 2K2 STUBBORN

Is 2K2-PARTITION complexity-separating?



Two long-standing problems in graph theory

Perfect graphs: Chvátal’s SKEW PARTITION is polynomial

Intersection graphs: Roberts–Spencer’s CLIQUE GRAPH is NP-complete

Both SKEW PARTITION and CLIQUE GRAPH proved to be in NP when their
classification into P or NP-complete was proposed
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Clique graph

CLIQUE GRAPH

Instance: Graph G

Question: Is there a graph H such that graph G is the intersection graph of
the cliques of graph H ?

e

ca

b

f

e

ca

b

f

H G G is the clique graph of H

RS-family: G is a clique graph if and only if G admits an edge-cover by
complete sets satisfying the Helly property (mutually intersecting members
have nonempty total intersection)

CLIQUE GRAPH is NP: RS-family of size ≤ |E(G)| gives H such that
x |V(H)| ≤ |V(G)| + |E(G)|

F. Roberts, J. Spencer – J. Combin. Theory Ser. B 1971
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Clique graphs and clique-Helly graphs

Clique-Helly graph: clique family satisfies the Helly property

(1) (2)
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b
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(1) clique-complete
(2) clique-complete
(3) clique-complete

C. Lucchesi, C. Mello, J. Szwarcfiter – Discrete Math. 1998
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Clique graphs and clique-Helly graphs

Clique-Helly graph: clique family satisfies the Helly property
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(1) clique-complete, but non clique-Helly, non clique graph
(2) clique-complete, non clique-Helly, but clique graph
(3) clique-complete, clique-Helly, clique graph

R. Hamelink – J. Combin. Theory Ser. B 1968

J. Szwarcfiter – Ars Combin. 1997

C. Lucchesi, C. Mello, J. Szwarcfiter – Discrete Math. 1998



Clique graph gadget: a catwalk for variable ui
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RS-family of GI must contain either the false triangles in (a) or
the true triangles in (b). All bold triangles must belong to the RS-family.

“The complexity of clique graph recognition”
Theoret. Comput. Sci. 2009 (with Liliana Alcon, Luerbio Faria, Marisa Gutierrez)



NP-completeness ongoing guide

Identification of an interesting problem, of an interesting graph class

Categorization of the problem according to its complexity status

Problems and complexity-separating graph classes

Graph classes and complexity-separating problems

Johnson’s NP-completeness column 1985

Golumbic–Kaplan–Shamir’s sandwich problems 1995

Spinrad’s book 2003



Complexity-separating graph classes

VERTEXCOL EDGECOL MAXCUT

perfect P N N
chordal P O N

split P O N
strongly chordal P O O

comparability P N O
bipartite P P P

permutation P O O
cographs P O P

proper interval P O O
split-proper interval P P P

N: NP-complete P: polynomial O: open

Johnson’s NP-completeness column 1985

Spinrad’s book 2003
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Split vs. chordal

Split = chordal ∩ complement chordal = partition into stable and clique

Johnson’s NP-Completeness Column:
“Every known hardness result for chordal graphs also applies to
split graphs!”

Spinrad’s book:
“Split graphs often are at the core of algorithms and hardness results
for chordal graphs.”

Same complexity:
CLIQUE, VERTEX COLORING are linear time
DOMINATING SET, MAXCUT, HAMILTON CYCLE are NP-complete

Separated in complexity:
TRIANGLE PACKING, PATHWIDTH

Open problems: EDGE COLORING, CLIQUE GRAPH
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Complexity-separating problems

VERTEXCOL edgecol MAXCUT SANDWICH

perfect P N N O
chordal P O N N

split P O N P
strongly chordal P O O N

comparability P N O N
bipartite P P P P

permutation P O O N
cographs P O P P

proper interval P O O N
split-proper interval P P P P

N: NP-complete P: polynomial O: open

M. C. Golumbic, H. Kaplan, R. Shamir – J. Algorithms 1995



Graph sandwich problem

GRAPH SANDWICH PROBLEM FOR PROPERTY Π

Instance: Two graphs G1 = (V, E1) and G2 = (V, E2) with E1 ⊆ E2

Question: Is there a graph G = (V, E) with E1 ⊆ E ⊆ E2 that satisfies
property Π ?

�����

G is a sandwich split graph

The sandwich problem generalizes the recognition problem

M. C. Golumbic, H. Kaplan, R. Shamir – J. Algorithms 1995



Sandwich problems for perfect graph classes

chordal

strongly
chordal

comparability

bipartite permutation

cographinterval

split

perfect

—— NP-complete —— polynomial - - - - - open



Three full dichotomies

Classes for which every problem is classified into P or NP-complete:

SANDWICH PROBLEM

EDGE COLORING

GRID EMBEDDING
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The three nonempty part problem

Full dichotomy for the RECOGNITION PROBLEM:
STABLE CUTSET, 3-COLORING are the only NP-complete

T. Feder, P. Hell, S. Klein, R. Motwani – SIAM J. Discrete Math. 2003



The three nonempty part problem

Full dichotomy for the RECOGNITION PROBLEM:
STABLE CUTSET, 3-COLORING are the only NP-complete

T. Feder, P. Hell, S. Klein, R. Motwani – SIAM J. Discrete Math. 2003

Full dichotomy for the SANDWICH PROBLEM:
61 interesting problems: 19 NP-complete, 42 polynomial

HOMOGENEOUS SET SANDWICH PROBLEM is polynomial
CLIQUE CUTSET SANDWICH PROBLEM is NP-complete
Full dichotomy for the GENERALIZED SPLIT GRAPH SANDWICH PROBLEM:

(2,1)-GRAPH SANDWICH PROBLEM is NP-complete

“The polynomial dichotomy for three nonempty part sandwich problems”

Discrete Appl. Math. 2009 (with Rafael Teixeira, Simone Dantas)



Three full dichotomies

Classes for which every problem is classified into P or NP-complete:

SANDWICH PROBLEM

EDGE COLORING

GRID EMBEDDING



Graphs with no cycle with a unique chord

χ-bounded graph class: χ ≤ f(ω)

Perfect graph: χ = ω

Line graph: χ ≤ ω + 1, the Vizing bound

Which choices of forbidden induced subgraphs give χ-bounded class?

Graphs with no cycle with a unique chord: χ ≤ ω + 1

Structure theorem:
every graph in the class can be built from basic graphs

N. Trotignon, K. Vušković – J. Graph Theory 2009
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Combining edge-colorings with respect to 2-cutset

Decomposition with respect to a proper 2-cutset {a, b}
G is Class 1: ∆ colors suffice, but GX = P∗ is Class 2: ∆+1 colors needed



Edge-coloring graphs with no cycle with a unique chord

Class C = graphs with no cycle with a unique chord

∆ = 3 ∆ ≥ 4 regular

graphs of C N N N
4-hole-free graphs of C N P P
6-hole-free graphs of C N N N

{4-hole, 6-hole}-free graphs of C P P P

“Chromatic index of graphs with no cycle with a unique chord”

submitted to Theoret. Comput. Sci. (with Raphael Machado, Kristina Vušković)



Edge-coloring graphs with no cycle with a unique chord

Class C = graphs with no cycle with a unique chord

∆ = 3 ∆ ≥ 4 regular

graphs of C N N N
4-hole-free graphs of C N P P
6-hole-free graphs of C N N N

{4-hole, 6-hole}-free graphs of C P P P

EDGECOL is N for k-partite r-regular, for each k ≥ 3, r ≥ 3

k ≤ 2 k ≥ 3

k-partite graphs P N

“Chromatic index of graphs with no cycle with a unique chord”

submitted to Theoret. Comput. Sci. (with Raphael Machado, Kristina Vušković)



Class 2 = overfull implies EDGECOL is P

Overfull graph: |E| > ∆

⌊
|V |
2

⌋

Complete multipartite: Class 2 = overfull
Graphs with a universal vertex: Class 2 = overfull
Split-proper interval graphs: Class 2 = subgraph overfull
4-hole-free graphs of C, with ∆ 6= 3: Class 2 = subgraph overfull

D. Hoffman, C. Rodger – J. Graph Theory 1992

M. Plantholt – J. Graph Theory 1981

C. Ortiz Z., N. Maculan, J. Szwarcfiter – Discrete Appl. Math. 1998



Class 2 = overfull implies EDGECOL is P

Overfull graph: |E| > ∆

⌊
|V |
2

⌋

Complete multipartite: Class 2 = overfull
Graphs with a universal vertex: Class 2 = overfull
Split-proper interval graphs: Class 2 = subgraph overfull
4-hole-free graphs of C, with ∆ 6= 3: Class 2 = subgraph overfull

D. Hoffman, C. Rodger – J. Graph Theory 1992

M. Plantholt – J. Graph Theory 1981

C. Ortiz Z., N. Maculan, J. Szwarcfiter – Discrete Appl. Math. 1998

Conjecture for edge-coloring chordal graphs:
Class 2 = subgraph overfull

“On edge-colouring indifference graphs”

Theoret. Comput. Sci. 1997 (with João Meidanis, Célia Mello)



Three full dichotomies

Classes for which every problem is classified into P or NP-complete:

SANDWICH PROBLEM

EDGE COLORING

GRID EMBEDDING



Grid embedding

Graph theory: The recognition of partial grids is often stated as an open
problem.

Graph drawing: Deciding whether a graph admits a VLSI layout with unit-
length edges is NP-complete.

(a) (b)the grid G3,5 embedding for {1, 2, 4}-tree

A. Brandstädt, V.B. Le, et al. – Information system on graph class inclusions.

http://wwwteo.informatik.uni-rostock.de/isgci/, 2002

S. N. Bhatt, S. S. Cosmadakis – Inform. Process. Lett. 1987
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P vs. N dichotomy for degree-constrained partial grids

D D-graphs D-trees

{1} P P
{2} P —
{3} P —
{4} P —
{1,2} P P
{1,3} N O
{1,4} P P
{2,3} N —

D D-graphs D-trees

{2,4} N —
{3,4} P —
{1,2,3} N [G89] N [G89]
{1,2,4} N [BC87] N [BC87]
{1,3,4} N N
{2,3,4} N —
{1,2,3,4} N [BC87] N [BC87]

S. N. Bhatt, S. S. Cosmadakis – Inform. Process. Lett. 1987
A. Gregori – Inform. Process. Lett. 1989

“Complexity dichotomy on degree-constrained VLSI layouts with unit-length edges”
submitted to LATIN 2010 (with Vinı́cius Sá, Guilherme Fonseca, Raphael Machado)



Partial grid gadgets
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the windmill: {1, 3, 4}-gadget the brick wall: {1, 3}-gadget



P vs. N dichotomy for degree-constrained partial grids

D D-graphs D-trees

{1} P P
{2} P —
{3} P —
{4} P —
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D D-graphs D-trees

{2,4} N —
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{1,2,3} N [G89] N [G89]
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Is {1, 3}-partial-grid recognition a complexity-separating problem?

S. N. Bhatt, S. S. Cosmadakis – Inform. Process. Lett. 1987
A. Gregori – Inform. Process. Lett. 1989

“Complexity dichotomy on degree-constrained VLSI layouts with unit-length edges”
submitted to LATIN 2010 (with Vinı́cius Sá, Guilherme Fonseca, Raphael Machado)



Proposed complexity-separating questions

Is LIST PARTITION harder than NONEMPTY PART PARTITION?

Is CLIQUE GRAPH polynomial for split graph instances?

Is Class 2 = subgraph overfull for chordal graphs?

Is PARTIAL GRID polynomial for {1, 3}-tree instances?
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