Complexity-separating graph classes for vertex, edge and total coloring

Celina de Figueiredo

COPPE
UFRJ

Overview

Classification into P or NP-complete of challenging problems in graph theory

Full dichotomy: class of problems where each problem is classified into P or NP-complete

Coloring problems: vertex, edge, total

NP-completeness ongoing guide

Identification of an interesting problem, of an interesting graph class
Categorization of the problem according to its complexity status
Problems and complexity-separating graph classes

Graph classes and complexity-separating problems

Johnson's NP-completeness column 1985
Spinrad's book 2003

Ongoing Guide - graph restrictions and their effect

Graph Class	Member		IndSet		Clique		CliPar		ChrNum		Chrind		HamCir		DomSet		MaxCut		StTree		Graiso	
Trees/Forests	P	[T]	P	[GJ]	P	[GJ]	P	[T]	P	[GJ]												
Almost Trees (k)	P		P	[24]	P	[T]	P?		P ?		P ?		P?		P	[45]	P ?		P ?		P?	
Partial k-Trees	P	[2]	P	[1]	P	[T]	P ?		P	[1]	O?		P	[3]	P	[3]	P?		P ?		0 ?	
Bandwidth-k	P	[68]	P	[64]	P	[T]	P?		P	[64]	P ?		P?		P	[64]	P	[64]	P?		P	58]
Degree-k	P	[T]	N	[GJ]	P	[T]	N	[GJ]	N	[GJ]	N	[49]	N	[GJ]	N	[GJ]	N	[GJ]	N	[GJ]	P	[58]
Planar	P	[GJ]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	O		N	[GJ]	N	[GJ]	P	[GJ]	N	[35]	P	[GJ]
Series Parallel	P	[79]	P	[75]	P	[T]	P?		P	[74]	P	[74]	P	[74]	P	[54]	P	[GJ]	P	[82]	P	[GJ]
Outerplanar	P		P	[6]	P	[T]	P	[6]	P	[67]	P	[67]	P	[T]	P	[6]	P	[GJ]	P	[81]	P	[GJ]
Halin	P		P	[6]	P	[T]	P	[6]	P	[74]	P	[74]	P	[T]	P	[6]	P	[GJ]	P ?		P	[GJ]
k-Outerplanar	P		P	[6]	P	[T]	P	[6]	P	[6]	O?		P	[6]	P	[6]	P	[GJ]	P?		P	[GJ]
Grid	P		P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[51]	N	[55]	P	[T]	N	[35]	P	[GJ]
$K_{3,3}$-Free	P	[4]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	O?		N	[GJ]	N	[GJ]	P	[5]	N	[GJ]	O?	
Thickness-k	N	[60]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	N	[49]	N	[GJ]	N	[GJ]	N	[7]	N	[GJ]	O?	
Genus-k	P	[34]	N	[GJ]	P	[T]	N	[10]	N	[GJ]	O?		N	[GJ]	N	[GJ]	O?		N	[GJ]	P	[61]
Perfect	O!		P	[42]	P	[42]	P	[42]	P	[42]	O?		N	[1]	N	[14]	O?		N	[GJ]	I	[GJ]
Chordal	P	[76]	P	[40]	P	[40]	P	[40]	P	[40]	O?		N	[22]	N	[14]	O?		N	[83]	I	[GJ]
Split	P	[40]	O?		N	[22]	N	[19]	O?		N	[83]	I	[15]								
Strongly Chordal	P	[31]	P	[40]	P	[40]	P	[40]	P	[40]	O?		O?		P	[32]	O?		P	[83]	O?	
Comparability	P	[40]	O?		N	[1]	N	[28]	O?		N	[GJ]	I	[GJ]								
Bipartite	P	[T]	P	[GJ]	P	[T]	P	[GJ]	P	[T]	P	[GJ]	N	[1]	N	[28]	P	[T]	N	[GJ]	I	[GJ]
Permutation	P	[40]	O?		0		P	[33]	O?		P	[23]	P	[21]								
Cographs	P	[T]	P	[40]	P	[40]	P	[40]	P	[40]	O?		P	[25]	P	[33]	O?		P	[23]	P	[25]
Undirected Path	P	[39]	P	[40]	P	[40]	P	[40]	P	[40]	O?		O?		N	[16]	O?		O?		I	[GJ]
Directed Path	P	[38]	P	[40]	P	[40]	P	[40]	P	[40]	O?		O?		P	[16]	O?		P	[83]	O?	
Interval	P	[17]	P	[44]	P	[44]	P	[44]	P	[44]	O?		P	[53]	P	[16]	O?		P	[83]	P	[57]
Circular Arc	P	[78]	P	[44]	P	[50]	P	[44]	N	[36]	O?		O?		P	[13]	O?		P	[83]	O?	
Circle	P	[71]	P	[GJ]	P	[50]	O?		N	[36]	O?		P	[12]	O?		O?		P	[70]	O?	
Proper Circ. Arc	P	[77]	P	[44]	P	[50]	P	[44]	P	[66]	O?		P	[12]	P	[13]	O?		P	[83]	O?	
Edge (or Line)	P	[47]	P	[GJ]	P	[T]	N	[GJ]	N	[49]	O?		N	[11]	N	[GJ]	O?		N	[70]	I	[15]
Claw-Free	P	[T]	P	[63]	O?		N	[GJ]	N	[49]	O?		N	[11]	N	[GJ]	O?		N	[70]	I	[15]

Complexity-separating graph classes

	VERTEXCOL	EDGECOL
perfect	P	N
chordal	P	O
split	P	O
strongly chordal	P	O
comparability	P	N
bipartite	P	P
permutation	P	O
cographs	P	O
indifference	P	O
split-indifference	P	P
N NP-complete	$\mathrm{P}:$ polynomial $\mathrm{O}:$ open	

Johnson's NP-completeness column 1985
I. Holyer - SIAM J. Comput. 1981

Complexity-separating problems

	VERTEXCOL	EDGECOL
perfect	P	N
chordal	P	O
split	P	O
strongly chordal	P	O
comparability	P	N
bipartite	P	P
permutation	P	O
cographs	P	O
indifference	P	O
split-indifference	P	P

N : NP-complete P : polynomial O : open
L. Cai, J. Ellis - Discrete Appl. Math. 1991

Spinrad's book 2003

Complexity-separating problems

	VERTEXCOL	EDGECOL
perfect	P	N
chordal	P	O
split	P	O
strongly chordal	P	O
comparability	P	N
bipartite	P	P
permutation	P	O
cographs	P	O
indifference	P	O
split-indifference	P	P

N : NP-complete P: polynomial O: open
C. Ortiz Z., N. Maculan, J. Szwarcfiter - Discrete Appl. Math. 1998
C. Simone, C. Mello - Theoret. Comput. Sci. 2006

Full dichotomies

Classes of problems for which every problem is classified into P or NP-complete

Problems: edge coloring, total coloring

Graph classes: unichord-free, split-indifference, chordless

Unichord-free graphs

χ-bounded graph class: $\chi \leq f(\omega)$

Perfect graph: $\chi=\omega$

Line graph: $x \leq \omega+1$, the Vizing bound
A. Gyárfás - Zastos. Mat. 1987

Unichord-free graphs

χ-bounded graph class: $\chi \leq f(\omega)$

Perfect graph: $\chi=\omega$

Line graph: $\chi \leq \omega+1$, the Vizing bound

Which choices of forbidden induced subgraphs give χ-bounded class?

Unichord-free graphs: $\chi \leq \omega+1$

Structure theorem:
every graph in the class can be built from basic graphs
N. Trotignon, K. Vušković - J. Graph Theory 2009

Combining edge-colorings with respect to 2-cutset

Decomposition with respect to a proper 2-cutset $\{\mathrm{a}, \mathrm{b}\}$ G is Class $1: \Delta$ colors suffice, but $\mathrm{G}_{X}=\mathrm{P}^{*}$ is Class 2: $\Delta+1$ colors needed

Edge-coloring unichord-free graphs

Class $C=$ unichord-free graphs

	$\Delta=3$	$\Delta \geq 4$	regular
graphs of C	N	N	N
4-hole-free graphs of C	N	P	P
6-hole-free graphs of C	N	N	N
\{4-hole, 6-hole\}-free graphs of C	P	P	P

"Chromatic index of graphs with no cycle with a unique chord"
Theoret. Comput. Sci. 2010 (with Raphael Machado, Kristina Vušković)

Edge-coloring unichord-free graphs

Class $\mathrm{C}=$ unichord-free graphs

graphs of C	N	N	N
4-hole-free graphs of C	N	P	P
6-hole-free graphs of C	N	N	N
\{4-hole, 6-hole\}-free graphs of C	P	P	P

EDGECOL is N for k-partite r-regular, for each $k \geq 3, r \geq 3$

	$k \leq 2$	$k \geq 3$
k-partite graphs	P	N

"Chromatic index of graphs with no cycle with a unique chord"
Theoret. Comput. Sci. 2010 (with Raphael Machado, Kristina Vušković)

Class 2 = overfull implies EDGECOL is P

Overfull graph: $|\mathrm{E}|>\Delta\left\lfloor\frac{\mid \mathrm{VI}}{2}\right\rfloor$
Complete multipartite: Class 2 = overfull
Graphs with a universal vertex: Class $2=$ overfull
Split-indifference graphs: Class $2=$ subgraph overfull
$\{4$-hole,unichord $\}$-free graphs, with $\Delta \neq 3$: Class $2=$ subgraph overfull
D. Hoffman, C. Rodger - J. Graph Theory 1992
M. Plantholt - J. Graph Theory 1981
C. Ortiz Z., N. Maculan, J. Szwarcfiter - Discrete Appl. Math. 1998

Class 2 = overfull implies EDGECOL is P

Overfull graph: $|\mathrm{E}|>\Delta\left\lfloor\frac{\mid \mathrm{VI}}{2}\right\rfloor$
Complete multipartite: Class 2 = overfull
Graphs with a universal vertex: Class $2=$ overfull
Split-indifference graphs: Class $2=$ subgraph overfull
$\{4$-hole,unichord $\}$-free graphs, with $\Delta \neq 3$: Class $2=$ subgraph overfull
D. Hoffman, C. Rodger - J. Graph Theory 1992
M. Plantholt - J. Graph Theory 1981
C. Ortiz Z., N. Maculan, J. Szwarcfiter - Discrete Appl. Math. 1998

Conjecture for edge-coloring chordal graphs:
Class 2 = subgraph overfull
"On edge-colouring indifference graphs"
Theoret. Comput. Sci. 1997 (with João Meidanis, Célia Mello)

Total coloring conjecture

Vizing's edge coloring theorem: every graph is ($\Delta+1$)-edge colorable

Total coloring conjecture: every graph is $(\Delta+2)$-total colorable Type $1=(\Delta+1)$-total colorable, Type $2=(\Delta+2)$-total colorable
M. Molloy, B. Reed - Combinatorica 1998

Natural to consider classes of graphs for which TCC is established

TCC for bipartite: 2-color vertices, Δ-color edges

Total coloring is hard

NP-hard for k-regular bipartite

Reduction from edge-coloring

Consider classes of graphs for which edge-coloring is polynomial

Edge-coloring is polynomial for split-indifference graphs
C. McDiarmid, A. Sánchez-Arroyo - Discrete Math. 1994
C. Ortiz Z., N. Maculan, J. Szwarcfiter - Discrete Appl. Math. 1998

Type 2 = Hilton condition implies TOTALCOL is P

	Δ even	Δ odd
complete	Type 1	Type 2 (Hilton condition)
univ. vertex	Type 1	Hilton condition
split	Type 1	open
indifference	Type 1	open
split-indifference	Type 1	Hilton condition
3 max cliques	Type 1	open

A. Hilton - Discrete Math. 1989

What is the largest class of graphs for which:
G Type 2 iff Hilton condition holds for closed neighborhood of Δ vertex

Necessary condition:
Δ even implies Type 1
"The total chromatic number of split-indifference graphs"
Discrete Math. 2012 (with Christiane Campos, Raphael Machado, Célia Mello)

Total chromatic number of unichord-free graphs

	VERTEXCOL	EDGECOL	TOTALCOL
unichord-free	P	N	N
$\{4$-hole,unichord\}\}-free, $\Delta \geq 4$	P	P	P
$\{4$-hole,unichord\}-free, $\Delta=3$	P	N	P

Surprising full-dichotomy wrt EDGECOL:
$\Delta \geq 4$ is polynomial whereas $\Delta=3$ is NP-complete

Surprising complexity-separating graph class:
EDGECOL is NP-complete whereas totalcol is polynomial
"Complexity of colouring problems restricted to unichord-free and \{square,unichord\}-free graphs", Discrete Appl. Math. 2014 (with Raphael Machado and Nicolas Trotignon)

Edge coloring chordless graphs

G is chordless iff $\mathrm{L}(\mathrm{G})$ is wheel-free

Chordless, with $\Delta=3$ is Class 1 implies $\left\{\right.$ wheel, $\left.\mathrm{ISK}_{4}\right\}$-free is 3 vertex colorable
B. Lévêque, F. Maffray, N. Trotignon - J. Comb. Theory, Ser. B 2012

Chordless is a subclass of unichord-free EDGECOL is NP-complete for unichord-free graphs

Every chordless, with $\Delta>3$ is Class 1
"Edge-colouring and total-colouring chordless graphs"
Discrete Math. 2013 (with Raphael Machado and Nicolas Trotignon)

Edge and total coloring complexity-separating classes

When restricted to \{square,unichord\}-free graphs, edge coloring is NP-complete whereas total coloring is polynomial

Clique-colouring unichord-free graphs

A clique-colouring of G is an assignment of colours to the vertices of G such that no inclusion-wise maximal clique of size at least 2 is monochromatic

Colouring of hypergraphs arising from graphs: clique, biclique

subgraphs may even have a larger clique-chromatic number

subgraphs may even have a larger biclique-chromatic number
"Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs" Algorithmica 2017 (with Hélio Macedo and Raphael Machado)

Complexity restricted to unichord-free and special subclasses

Colouring problem \backslash class	General	Unichord-free	$\{\square$, unichord $\}$-free	$\{\Delta$, unichord $\}$-free
Vertex-col.	$\mathcal{N} \mathcal{P C}[14]$	$\mathcal{P}[26]$	$\mathcal{P}[26]$	$\mathcal{P}[26]$
Edge-col.	$\mathcal{N} \mathcal{P C}[13]$	$\mathcal{N P \mathcal { P } [1 8]}$	$\mathcal{N} \mathcal{P C}[18]$	$\mathcal{N P \mathcal { P } [1 8]}$
Total-col.	$\mathcal{N} \mathcal{P C}[21]$	$\mathcal{N P \mathcal { P C } [1 7]}$	$\mathcal{P}[16,17]$	$\mathcal{N} \mathcal{P C}[17]$
Clique-col.	$\Sigma_{2}^{p} \mathcal{C}[20]$	\mathcal{P}	\mathcal{P}	$\mathcal{P}(\kappa=\chi)$
Biclique-col.	$\Sigma_{2}^{p} \mathcal{C}[10]$	\mathcal{P}	\mathcal{P}	$\mathcal{P}\left(\kappa_{\mathbf{B}}=\mathbf{2}\right)$

[10] M. Groshaus, F. Soulignac, P. Terlisky - J. Graph Algorithms Appl. 2014
[20] D. Marx - Theoret. Comput. Sci. 2011
"Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs"
Algorithmica 2017 (with Hélio Macedo and Raphael Machado)

Are all perfect graphs 3-clique-colourable?

Every diamond-free perfect graph is 3-clique-colourable
G. Bacsó, S. Gravier, A. Gyárfás, M. Preissmann, A. Sebő - SIAM J. Discrete Math. 2004
M. Chudnovsky, I. Lo - J. Graph Theory 2017

Every unichord-free graph is 3 -clique-colourable A unichord-free graph is 2 -clique-colourable if and only if it is perfect
"Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs" Algorithmica 2017 (with Hélio Macedo and Raphael Machado)

Dániel Marx plenary talk at ICGT 2014

> Every graph is easy or hard: dichotomy theorems for graph problems

Dániel Marx ${ }^{1}$
${ }^{1}$ Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
Budapest, Hungary

ICGT 2014
Grenoble, France
July 3, 2014

Dániel Marx plenary talk at ICGT 2014

Dichotomy theorems

- Dichotomy theorems give goods research programs: easy to formulate, but can be hard to complete.
- The search for dichotomy theorems may uncover algorithmic results that no one has thought of.
- Proving dichotomy theorems may require good command of both algorithmic and hardness proof techniques.

LAWCG

VIII Latin American Workshop on Cliques in Graphs

ICM 2018 Satellite Event
August 9-11, 2018 Rio de Janeiro, RJ
http://lawcg2018.icomp.ufam.edu.br

Important dates
Submissions open on: January, 15th 2018. Closing date for submissions: March 31st 2018.

Notification of acceptance: May 15th 2018.

