

Complexity-separating graph classes for vertex, edge and total coloring

Celina de Figueiredo

Classification into P or NP-complete of challenging problems in graph theory

Full dichotomy: class of problems where each problem is classified into P or NP-complete

Coloring problems: vertex, edge, total

NP-completeness ongoing guide

Identification of an interesting problem, of an interesting graph class

Categorization of the problem according to its complexity status

Problems and complexity-separating graph classes

Graph classes and complexity-separating problems

Johnson's NP-completeness column 1985 Spinrad's book 2003

Ongoing Guide – graph restrictions and their effect

GRAPH CLASS	ME	MBER	INI	DSET	CLI	QUE	CLI	PAR	Сн	RN UM	CHR	IND	HAN	1CIR	DOM	ASET	MAX	хCut	StT	REE	GRA	AISO
Trees/Forests	Р	[T]	Р	[GJ]	Р	[T]	Р	[GJ]	Р	[T]	Р	[GJ]	Р	[T]	Р	[GJ]	Р	[GJ]	Р	[T]	Р	[G
Almost Trees (k)	P		P	[24]	Р	[T]	P ?		P ?		P ?		P ?		Р	[45]	P ?		P ?		P ?	
Partial k-Trees	P	[2]	P	[1]	Р	[T]	P ?		Р	[1]	O ?		Р	[3]	Р	[3]	P ?		P ?		O ?	
Bandwidth-k	P	[68]	P	[64]	Р	[T]	P ?		Р	[64]	P ?		P ?		Р	[64]	Р	[64]	P ?		Р	[5
Degree-k	P	[T]	N	[GJ]	Р	[T]	Ν	[GJ]	Ν	[GJ]	Ν	[49]	Ν	[GJ]	Ν	[GJ]	Ν	[GJ]	Ν	[GJ]	Р	[5
Planar	Р	[GJ]	N	[GJ]	Р	[T]	Ν	[10]	Ν	[GJ]	0		Ν	[GJ]	N	[GJ]	Р	[GJ]	Ν	[35]	Р	[6
Series Parallel	P	[79]	P	[75]	Р	[T]	P ?		Р	[74]	Р	[74]	Р	[74]	Р	[54]	Р	[GJ]	Р	[82]	Р	[6
Outerplanar	P		P	[6]	Р	[T]	Р	[6]	Р	[67]	Р	[67]	Р	[T]	Р	[6]	Р	[GJ]	Р	[81]	Р	[0
Halin	P		P	[6]	Р	[T]	Р	[6]	Р	[74]	Р	[74]	Р	[T]	Р	[6]	Р	[GJ]	P ?		Р	[0
k-Outerplanar	P		P	[6]	Р	[T]	Р	[6]	Р	[6]	O ?		Р	[6]	Р	[6]	Р	[GJ]	P ?		Р	[0
Grid	P		P	[GJ]	Р	[T]	Р	[GJ]	Р	[T]	Р	[GJ]	Ν	[51]	Ν	[55]	Р	[T]	Ν	[35]	Р	[0
$K_{3,3}$ -Free	P	[4]	N	[GJ]	Р	[T]	Ν	[10]	Ν	[GJ]	O ?		Ν	[GJ]	Ν	[GJ]	Р	[5]	Ν	[GJ]	O ?	
Thickness-k	N	[60]	N	[GJ]	Р	[T]	Ν	[10]	Ν	[GJ]	Ν	[49]	Ν	[GJ]	Ν	[GJ]	Ν	[7]	Ν	[GJ]	O ?	
Genus-k	P	[34]	N	[GJ]	Р	[T]	Ν	[10]	Ν	[GJ]	O ?		Ν	[GJ]	Ν	[GJ]	O ?		Ν	[GJ]	Р	[6
Perfect	0!		Р	[42]	Р	[42]	Р	[42]	Р	[42]	O ?		Ν	[1]	N	[14]	O ?		N	[GJ]	Ι	[0
Chordal	P	[76]	P	[40]	Р	[40]	Р	[40]	Р	[40]	O ?		Ν	[22]	Ν	[14]	O ?		Ν	[83]	Ι	[0
Split	P	[40]	P	[40]	Р	[40]	Р	[40]	Р	[40]	O ?		Ν	[22]	Ν	[19]	O ?		Ν	[83]	Ι	[1
Strongly Chordal	P	[31]	P	[40]	Р	[40]	Р	[40]	Р	[40]	O ?		O ?		Р	[32]	O ?		Р	[83]	O ?	
Comparability	P	[40]	P	[40]	Р	[40]	Р	[40]	Р	[40]	O ?		Ν	[1]	Ν	[28]	O ?		Ν	[GJ]	Ι	[0
Bipartite	P	[T]	P	[GJ]	Р	[T]	Р	[GJ]	Р	[T]	Р	[GJ]	Ν	[1]	Ν	[28]	Р	[T]	Ν	[GJ]	Ι	[0
Permutation	P	[40]	P	[40]	Р	[40]	Р	[40]	Р	[40]	O ?		0		Р	[33]	O ?		Р	[23]	Р	[2
Cographs	P	[T]	P	[40]	Р	[40]	Р	[40]	Р	[40]	O ?		Р	[25]	Р	[33]	O ?		Р	[23]	Р	[2
Undirected Path	P	[39]	P	[40]	Р	[40]	Р	[40]	Р	[40]	O ?		O ?		Ν	[16]	O ?		O ?		Ι	[0
Directed Path	P	[38]	P	[40]	Р	[40]	Р	[40]	Р	[40]	O ?		O ?		Р	[16]	O ?		Р	[83]	O ?	
Interval	P	[17]	P	[44]	Р	[44]	Р	[44]	Р	[44]	O ?		Р	[53]	Р	[16]	O ?		Р	[83]	Р	[5
Circular Arc	P	[78]	P	[44]	Р	[50]	Р	[44]	Ν	[36]	O ?		O ?		Р	[13]	O ?		Р	[83]	O ?	
Circle	P	[71]	P	[GJ]	Р	[50]	O ?		Ν	[36]	O ?		Р	[12]	O ?		O ?		Р	[70]	O ?	
Proper Circ. Arc	P	[77]	P	[44]	Р	[50]	Р	[44]	Р	[66]	O ?		Р	[12]	Р	[13]	O ?		Р	[83]	O ?	
Edge (or Line)	P	[47]	P	[GJ]	Р	[T]	Ν	[GJ]	Ν	[49]	O ?		Ν	[11]	Ν	[GJ]	O ?		Ν	[70]	Ι	[1
Claw-Free	P	[T]	P	[63]	O ?		Ν	[GJ]	Ν	[49]	O ?		Ν	[11]	Ν	[GJ]	O ?		Ν	[70]	Ι	[1

Complexity-separating graph classes

	VERTEXCOL	EDGECOL
perfect	Р	N
chordal	Р	0
split	Р	0
strongly chordal	Р	0
comparability	P	Ν
bipartite	Р	Р
permutation	Р	0
cographs	Р	Ο
indifference	Р	0
split-indifference	Р	Р

N: NP-complete P: polynomial O: open

Johnson's NP-completeness column 1985

I. Holyer - SIAM J. Comput. 1981

Complexity-separating problems

	VERTEXCOL	EDGECOL
perfect	Р	N
chordal	Р	0
split	Р	0
strongly chordal	Р	0
comparability	Р	Ν
bipartite	Р	P
permutation	Р	0
cographs	Р	Ο
indifference	Р	0
split-indifference	Р	P

N: NP-complete P: polynomial O: open

L. Cai, J. Ellis – *Discrete Appl. Math.* 1991 Spinrad's book 2003

Complexity-separating problems

	VERTEXCOL	EDGECOL
perfect	Р	Ν
chordal	Р	0
split	Р	0
strongly chordal	Р	0
comparability	Р	Ν
bipartite	Р	Р
permutation	Р	0
cographs	Р	0
indifference	Р	0
split-indifference	Р	Ρ

N: NP-complete P: polynomial O: open

C. Ortiz Z., N. Maculan, J. Szwarcfiter – *Discrete Appl. Math.* 1998 C. Simone, C. Mello – *Theoret. Comput. Sci.* 2006 Classes of problems for which every problem is classified into P or NP-complete

Problems: EDGE COLORING, TOTAL COLORING

Graph classes: unichord-free, split-indifference, chordless

Unichord-free graphs

 χ -bounded graph class: $\chi \leq f(\omega)$

Perfect graph: $\chi = \omega$

Line graph: $\chi \leq \omega + 1$, the Vizing bound

A. Gyárfás – Zastos. Mat. 1987

Unichord-free graphs

 χ -bounded graph class: $\chi \leq f(\omega)$

Perfect graph: $\chi = \omega$

Line graph: $\chi \leq \omega + 1$, the Vizing bound

Which choices of forbidden induced subgraphs give χ -bounded class?

Unichord-free graphs: $\chi \leq \omega + 1$

Structure theorem:

every graph in the class can be built from basic graphs

N. Trotignon, K. Vušković – J. Graph Theory 2009

Combining edge-colorings with respect to 2-cutset

Decomposition with respect to a proper 2-cutset $\{a, b\}$ G is Class 1: Δ colors suffice, but $G_X = P^*$ is Class 2: $\Delta + 1$ colors needed

Edge-coloring unichord-free graphs

Class C = unichord-free graphs

	$\Delta = 3$	$\Delta \ge 4$	regular
graphs of C	N	N	N
4-hole-free graphs of C	N	Р	Р
6-hole-free graphs of C	N	N	N
{4-hole, 6-hole}-free graphs of C	P	P	Р

"Chromatic index of graphs with no cycle with a unique chord" *Theoret. Comput. Sci.* 2010 (with Raphael Machado, Kristina Vušković)

Edge-coloring unichord-free graphs

Class C = unichord-free graphs

	$\Delta = 3$	$\Delta \ge 4$	regular
graphs of C	N	N	N
4-hole-free graphs of C	N	P	Р
6-hole-free graphs of C	N	N	Ν
{4-hole, 6-hole}-free graphs of C	Р	P	Р

EDGECOL is N for k-partite r-regular, for each $k \ge 3$, $r \ge 3$

$$\begin{tabular}{|c|c|c|c|c|} $k \le 2$ & $k \ge 3$ \\ \hline k-partite graphs P & N \end{tabular}$$

"Chromatic index of graphs with no cycle with a unique chord" *Theoret. Comput. Sci.* 2010 (with Raphael Machado, Kristina Vušković)

Overfull graph:
$$|\mathsf{E}| > \Delta \left\lfloor \frac{|\mathsf{V}|}{2} \right\rfloor$$

Complete multipartite: Class 2 = overfull Graphs with a universal vertex: Class 2 = overfull Split-indifference graphs: Class 2 = subgraph overfull $\{4-hole,unichord\}$ -free graphs, with $\Delta \neq 3$: Class 2 = subgraph overfull

- D. Hoffman, C. Rodger J. Graph Theory 1992
- M. Plantholt J. Graph Theory 1981
- C. Ortiz Z., N. Maculan, J. Szwarcfiter Discrete Appl. Math. 1998

Overfull graph:
$$|\mathsf{E}| > \Delta \left\lfloor \frac{|\mathsf{V}|}{2} \right\rfloor$$

Complete multipartite: Class 2 = overfull Graphs with a universal vertex: Class 2 = overfull Split-indifference graphs: Class 2 = subgraph overfull $\{4-hole,unichord\}$ -free graphs, with $\Delta \neq 3$: Class 2 = subgraph overfull

D. Hoffman, C. Rodger – J. Graph Theory 1992

M. Plantholt – J. Graph Theory 1981

C. Ortiz Z., N. Maculan, J. Szwarcfiter - Discrete Appl. Math. 1998

Conjecture for edge-coloring chordal graphs:

Class 2 = subgraph overfull

"On edge-colouring indifference graphs"

Theoret. Comput. Sci. 1997 (with João Meidanis, Célia Mello)

Total coloring conjecture

Vizing's edge coloring theorem: every graph is $(\Delta + 1)$ -edge colorable

Total coloring conjecture: every graph is $(\Delta + 2)$ -total colorable Type 1 = $(\Delta + 1)$ -total colorable, Type 2 = $(\Delta + 2)$ -total colorable

M. Molloy, B. Reed – *Combinatorica* 1998

Natural to consider classes of graphs for which TCC is established

TCC for bipartite: 2-color vertices, Δ -color edges

Total coloring is hard

NP-hard for k-regular bipartite

Reduction from edge-coloring

Consider classes of graphs for which edge-coloring is polynomial

Edge-coloring is polynomial for split-indifference graphs

C. McDiarmid, A. Sánchez-Arroyo – *Discrete Math.* 1994
C. Ortiz Z., N. Maculan, J. Szwarcfiter – *Discrete Appl. Math.* 1998

Type 2 = Hilton condition implies TOTALCOL is P

	Δ even	Δ odd
complete	Type 1	Type 2 (Hilton condition)
univ. vertex	Type 1	Hilton condition
split	Type 1	open
indifference	Type 1	open
split-indifference	Type 1	Hilton condition
3 max cliques	Type 1	open

A. Hilton – Discrete Math. 1989

What is the largest class of graphs for which:

G Type 2 iff Hilton condition holds for closed neighborhood of Δ vertex

Necessary condition:

 Δ even implies Type 1

"The total chromatic number of split-indifference graphs"

Discrete Math. 2012 (with Christiane Campos, Raphael Machado, Célia Mello)

Total chromatic number of unichord-free graphs

	VERTEXCOL	EDGECOL	TOTALCOL
unichord-free	Р	N	N
$\{4-hole, unichord\}$ -free, $\Delta \geq 4$	Р	P	Р
{4-hole, unichord}-free, $\Delta = 3$	Р	Ν	P

Surprising full-dichotomy wrt EDGECOL:

 $\Delta \geq 4$ is polynomial whereas $\Delta = 3$ is NP-complete

Surprising complexity-separating graph class: EDGECOL is NP-complete whereas TOTALCOL is polynomial

"Complexity of colouring problems restricted to unichord-free and {square,unichord}-free graphs", *Discrete Appl. Math.* 2014 (with Raphael Machado and Nicolas Trotignon)

Edge coloring chordless graphs

G is chordless iff L(G) is wheel-free

```
Chordless, with \Delta = 3 is Class 1 implies {wheel, ISK<sub>4</sub>}-free is 3 vertex colorable
```

B. Lévêque, F. Maffray, N. Trotignon – J. Comb. Theory, Ser. B 2012

Chordless is a subclass of unichord-free EDGECOL is NP-complete for unichord-free graphs

Every chordless, with $\Delta > 3$ is Class 1

"Edge-colouring and total-colouring chordless graphs" *Discrete Math.* 2013 (with Raphael Machado and Nicolas Trotignon)

Edge and total coloring complexity-separating classes

When restricted to {square,unichord}-free graphs, edge coloring is **NP-complete** whereas total coloring is **polynomial** A clique-colouring of G is an assignment of colours to the vertices of G such that no inclusion-wise maximal clique of size at least 2 is monochromatic sonal copy

Colouring of hypergraphs arising from graphs: clique, biclique

subgraphs may even have a larger clique-chromatic number

subgraphs may even have a larger biclique-chromatic number

"Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs" *Algorithmica* 2017 (with Hélio Macedo and Raphael Machado)

Complexity restricted to unichord-free and special subclasses

Colouring problem \ class	General	Unichord-free	$\{\Box, unichord\}$ -free	$\{\triangle, unichord\}$ -free
Vertex-col.	NPC [14]	P [26]	P [26]	P [26]
Edge-col.	\mathcal{NPC} [13]	\mathcal{NPC} [18]	\mathcal{NPC} [18]	\mathcal{NPC} [18]
Total-col.	\mathcal{NPC} [21]	\mathcal{NPC} [17]	P [16,17]	NPC [17]
Clique-col.	$\Sigma_2^p \mathcal{C}$ [20]	${\cal P}$	${\cal P}$	$\mathcal{P}\left(\kappa=\chi\right)$
Biclique-col.	$\Sigma_2^p \mathcal{C}$ [10]	${\cal P}$	${\cal P}$	$\mathcal{P}(\kappa_B=2)$

[10] M. Groshaus, F. Soulignac, P. Terlisky – J. Graph Algorithms Appl. 2014

[20] D. Marx – Theoret. Comput. Sci. 2011

"Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs" *Algorithmica* 2017 (with Hélio Macedo and Raphael Machado)

Are all perfect graphs 3-clique-colourable?

Every diamond-free perfect graph is 3-clique-colourable

G. Bacsó, S. Gravier, A. Gyárfás, M. Preissmann, A. Sebő – SIAM J. Discrete Math. 2004
M. Chudnovsky, I. Lo – J. Graph Theory 2017

Every unichord-free graph is 3-clique-colourable A unichord-free graph is 2-clique-colourable if and only if it is perfect

"Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs" *Algorithmica* 2017 (with Hélio Macedo and Raphael Machado)

Dániel Marx plenary talk at ICGT 2014

Every graph is easy or hard: dichotomy theorems for graph problems

Dániel Marx¹

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> ICGT 2014 Grenoble, France July 3, 2014

> > 1

Dániel Marx plenary talk at ICGT 2014

Dichotomy theorems

- Dichotomy theorems give goods research programs: easy to formulate, but can be hard to complete.
- The search for dichotomy theorems may uncover algorithmic results that no one has thought of.
- Proving dichotomy theorems may require good command of both algorithmic and hardness proof techniques.

VIII Latin American Workshop on Cliques in Graphs

ICM 2018 Satellite Event

LAWCG 2018

August 9-11, 2018 Rio de Janeiro, RJ

http://lawcg2018.icomp.ufam.edu.br

Important dates

~

Submissions open on: January, 15th 2018. Closing date for submissions: March 31st 2018. Notification of acceptance: May 15th 2018.