Even Pairs in Bull-reducible Graphs

Celina M.H. de Figueiredo, Frédéric Maffray and Claudia Regina Villela Maciel

Abstract

A bull is a graph with five vertices a, b, c, d, e and five edges $a b, b c$, $c d, b e, c e$. A graph G is bull-reducible if no vertex of G lies in two bulls. An even pair is a pair of vertices such that every chordless path joining them has even length. We prove that for every bull-reducible Berge graph G with at least two vertices, either G or its complementary graph \bar{G} has an even pair.

1. Introduction

A graph is perfect if for every induced subgraph H of G the chromatic number of H is equal to its clique number. Perfect graphs were defined by Claude Berge [1]. The study of perfect graphs led to several interesting and difficult problems. The first one is their characterization. Berge conjectured that a graph is perfect if and only if it contains no odd hole and no odd antihole, where a hole is a chordless cycle of length at least 4, and an antihole is the complementary graph of a hole. It has become customary to call Berge graph any graph that contains no odd hole and no antihole, and to call the above conjecture the "Strong Perfect Graph Conjecture". This conjecture was proved by Chudnovsky, Robertson, Seymour, and Thomas [4] in 2002. A second problem is the existence of a polynomial-time algorithm to color optimally the vertices of a perfect graph. This problem was solved in 1984 by Grötschel, Lovász and Schrijver [10] with an algorithm based on the ellipsoid method for linear programming. A third problem is the existence of a polynomial-time algorithm to decide if a graph is Berge. This was solved by Chudnovsky, Cornuéjols, Liu, Seymour and Vušković [3] in 2002. There remains a number of interesting open problems in the context of perfect graphs. Some of them are related to the concept of even pair.
Even pairs: An even pair [18] in a graph G is a pair of vertices such that every chordless path between them has even length. A graph G is called a quasi-parity
graph [18] if for every induced subgraph H of G on at least two vertices, either H has an even pair or \bar{H} has an even pair. A graph G is called a strict quasi-parity graph [18] if every induced subgraph of G on at least two vertices has an even pair. Clearly, strict quasi-parity graphs are quasi-parity graphs. Meyniel [18] proved that every quasi-parity graph is perfect. The concept of even pair turned out to be very useful for proving that certain classes of Berge graphs are perfect and for designing optimization algorithms on special classes of perfect graphs. See [8] for a survey on this matter. Some questions of particular interest are the characterization of quasi-parity graphs and of strict-quasi-parity graphs. Hougardy [14, 15] (see also [8]) made two conjectures: (1) there is a family F of line-graphs of bipartite graphs such that a graph is a strict quasi-parity graph if and only if it does not contain an odd hole, an antihole, or a graph in F; (2) there is a family F^{\prime} of line-graphs of bipartite graphs such that a graph is a quasi-parity graph if and only if it does not contain an odd hole, an odd antihole, or a graph in F^{\prime}. These two conjectures are still unsolved.

Bull-free graphs: A bull is a graph with five vertices r, y, x, z, s and five edges $r y, y x, y z, x z, z s$; see Figure 1. We will frequently use the notation $r-y x z-s$ for such a graph. Chvátal and Sbihi [6] proved in 1987 that every bull-free Berge graph is perfect. Subsequently Reed and Sbihi [20] gave a polynomial-time algorithm for recognizing bull-free Berge graphs. De Figueiredo, Maffray and Porto [9] proved that every bull-free Berge graph is a quasi-parity graph, and that every bull-free Berge graph with no antihole is a strict quasi-parity graph. Hayward [11] proved that every bull-free graph with no antihole if perfectly orderable (see [5, 13] for this definition), as conjectured by Chvátal. These results also settled Hougardy's above two conjectures for bull-free graphs.

Figure 1. The bull $r-y x z-s$.
Bull-reducible graphs: A graph G is called bull-reducible if every vertex of G lies in at most one bull of G. Clearly, bull-free graphs are bull-reducible. Everett, de Figueiredo, Klein and Reed [7] proved that every bull-reducible Berge graph is perfect. Although this result now follows directly from the Strong Perfect Graph Theorem [4], the proof given in [7] is much simpler and leads moreover to a polynomial-time recognition algorithm for bull-reducible Berge graphs whose complexity is lower than that given for all Berge graphs in [3]. Here we will prove:

Theorem 1. Let G be a bull-reducible Berge graph with at least two vertices. Then either G or \bar{G} has an even pair.

We note that this theorem settles Hougardy's above two conjectures in the case of bull-reducible graphs. The proof of this theorem is given in Section 3, while Section 2 presents some technical lemmas. We tend to follow the standard terminology of graph theory [2], but we will use the verb "sees" instead of "is adjacent to" and "misses" instead of "is not adjacent to".

2. Some technical lemmas

As in [20], call wheel a graph made of an even hole of length at least 6 plus a vertex that sees all vertices of this hole. Say that a proper subset H of vertices of a graph G is homogeneous if every vertex of $V(G) \backslash H$ either sees all vertices of H or misses all vertices of H and $2 \leq|H| \leq|V(G)|-1$. We recall two lemmas from [7].

Lemma 2 ([7]). Let G be a bull-reducible odd hole-free graph, and let C be a shortest even hole of length at least 6 in G, with its vertices colored alternately red and blue. Let v be any vertex in $V(G) \backslash V(C)$. Then v satisfies exactly one of the following conditions:

- $N(v) \cap V(C)=\emptyset$;
- $N(v) \cap V(C)=V(C)$, so C and v form a wheel;
- $N(v) \cap V(C)$ consists in either all red vertices and no blue vertex or all blue vertices and no red vertex;
- $N(v) \cap V(C)$ consists in either one, or two consecutive or three consecutive vertices of C;
- $N(v) \cap V(C)$ consists in two vertices at distance 2 along C;
- C has length 6 and $N(v) \cap V(C)$ consists in four vertices such that exactly three of them are consecutive.

Lemma 3 (Wheel Lemma [7]). Let G be a bull-reducible odd hole-free graph. If G contains a wheel, then G contains a homogeneous set.

Now we give a few more lemmas that will be useful in the proof of the main result.
Lemma 4. Let G be a bull-reducible odd hole-free graph. Let $P=u_{0} \cdots \cdots-u_{r}$ be a chordless path of G of odd length $r \geq 5$, and let c be a vertex of $V(G) \backslash V(P)$ that sees u_{0} and u_{r}. Then up to symmetry we have either:

1. $N(c) \cap V(P)=V(P)$;
2. $N(c) \cap V(P)=\left\{u_{0}, u_{1}, u_{r}\right\}$ or $\left\{u_{0}, u_{1}, u_{3}, u_{r}\right\}$, and in this case there is a bull $u_{r}-c u_{0} u_{1}-u_{2}$;
3. $r=5$ and $N(c) \cap V(P)=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{5}\right\}$, and in this case there is a bull $u_{0}-c u_{2} u_{3}-u_{4}$.

Proof. Since G contains no odd hole, c has two consecutive neighbors along P. If outcome 1 of the Lemma does not hold, then up to symmetry there exists an integer $i \in\{0, \ldots, r\}$ such that c sees u_{i}, u_{i+1} and misses u_{i+2}. Clearly $i \leq r-3$.

Suppose i is odd. So $i \leq r-4$. We find a first bull $u_{r}-c u_{i} u_{i+1}-u_{i+2}$. Then $i=1$, for otherwise we find a second bull $u_{0}-c u_{i} u_{i+1}-u_{i+2}$ containing c. Then c misses every u_{j} with $5 \leq j \leq r-1$, for otherwise we find a second bull $u_{j}-c u_{1} u_{2}-u_{3}$ containing c. Then c sees u_{4} for otherwise $\left\{c, u_{2}, u_{3}, \ldots, u_{r}\right\}$ induces an odd hole. Then $r<7$ for otherwise $\left\{c, u_{4}, u_{5}, \ldots, u_{r}\right\}$ induces an odd hole. So $r=5$. But then we find a second bull $u_{0}-c u_{5} u_{4}-u_{3}$ containing c. Thus i is even.

Suppose $i=0$. Then we find a first bull $u_{r}-c u_{0} u_{1}-u_{2}$; and then c misses every c_{j} with $4 \leq j \leq r-1$, for otherwise we find a second bull $u_{j}-c u_{0} u_{1}-u_{2}$ containing c. So we obtain outcome 2 .

Suppose i is even and $i \geq 2$. Then we find a first bull $u_{0}-c u_{i} u_{i+1}-u_{i+2}$. Then $i=r-3$, for otherwise we find a second bull $u_{r}-c u_{i} u_{i+1}-u_{i+2}$ containing c. Then c sees u_{i-1}, for otherwise we find a second bull $u_{i-1}-u_{i} c u_{i+1}-u_{i+2}$ containing c. If $r=5$ we have outcome 3 . So suppose $r \geq 7$, so $i \geq 4$. Then c sees u_{i-2}, for otherwise we find a second bull $u_{i-2}-u_{i-1} u_{i} c-u_{r}$ containing c. But then we find a second bull $u_{i-2}-c u_{i} u_{i+1}-u_{i+2}$ containing c. This completes the proof of the lemma.

A P_{4} is a chordless path on four vertices. We call double broom the graph made of a P_{4} (called the central P_{4} of the double broom), plus two non-adjacent vertices a, b that see all vertices of the P_{4}, plus a vertex a^{\prime} that sees only a and a vertex b^{\prime} that sees only b. See Figure 2.

Figure 2. A double broom and its complement

Lemma 5. Let G be a bull-reducible Berge graph. Let P be a chordless odd path of G of length at least 5 , and let $a, b, a^{\prime}, b^{\prime}$ be four vertices of G such that $a a^{\prime}$ and $b b^{\prime}$ are edges, $a b^{\prime}$ and $b a^{\prime}$ are not edges, a, b see the two endpoints of P, and a^{\prime}, b^{\prime} miss the two endpoints of P. Then G or \bar{G} contains a double broom.

Proof. Note that a, b do not lie on P. On the other hand, a^{\prime}, b^{\prime} may be interior vertices of P. Put $P=u_{0}-u_{1} \cdots-u_{r}$, with odd $r \geq 5$. Note that each of $a b$ and $a^{\prime} b^{\prime}$ may be an edge or not. More precisely, if $a b$ is an edge then $a^{\prime} b^{\prime}$ is an edge, for otherwise we find two intersecting bulls $a^{\prime}-a u_{0} b-b^{\prime}$ and $a^{\prime}-a u_{r} b-b^{\prime}$. Conversely, if $a^{\prime} b^{\prime}$ is an edge then $a b$ is an edge, for otherwise $\left\{a^{\prime}, a, u_{0}, b, b^{\prime}\right\}$ induces an odd hole.

We can apply Lemma 4 to P and each of a, b. If we have outcome 2 for one of a, b, say for a, then (regardless of symmetry) there is a bull containing a, u_{0}, u_{r};
and then we do not have outcome 2 or 3 for b, for otherwise there would be a second bull containing one of u_{0}, u_{r}. If we have outcome 3 for both a, b, then we find two bulls containing u_{2}, u_{3}. Therefore we must have outcome 1 for at least one of a, b, say for b, that is, b sees all vertices of P. It follows that a^{\prime} does not lie on P. We claim that a^{\prime} misses every vertex of P. For suppose the contrary. Then, up to symmetry, a^{\prime} sees u_{i} and misses u_{i-1} with $1 \leq i \leq(r-1) / 2$, and we find a bull $a^{\prime}-u_{i} u_{i-1} b-u_{r}$. Then a^{\prime} sees u_{r-1}, for otherwise we find a second bull $a^{\prime}-u_{i} u_{i-1} b-u_{r-1}$ containing b. But then we find a second bull $a^{\prime}-u_{r-1} u_{r} b-u_{0}$ containing b, a contradiction. So the claim holds.

If we have outcome 2 for a, then $u_{r}-a u_{0} u_{1}-u_{2}$ and $a^{\prime}-a u_{0} u_{1}-u_{2}$ are two intersecting bulls, a contradiction. If we have outcome 3 for a, then $u_{0}-a u_{2} u_{3}-u_{4}$ and $a^{\prime}-a u_{2} u_{3}-u_{4}$ are two intersecting bulls. So a sees all vertices of P, which restores the symmetry between a and b, and thus b^{\prime} does not lie on P and misses every vertex of P. Now, if both $a b, a^{\prime} b^{\prime}$ are non-edges, then $\left\{u_{0}, u_{1}, u_{2}, u_{3}, a, b, a^{\prime}, b^{\prime}\right\}$ induces a double broom in G, while if both are edges, the same subset induces a double broom in \bar{G}. This completes the proof of the lemma.

Lemma 6. Let G be a bull-reducible C_{5}-free graph that contains a double broom. Then G has a homogeneous set that contains the central P_{4} of the double broom.

Proof. Pick any double broom of G, and label its vertices $w_{1}, w_{2}, w_{3}, w_{4}, a, b, a^{\prime}, b^{\prime}$ so that its edges are $w_{1} w_{2}, w_{2} w_{3}, w_{3} w_{4}, a w_{1}, a w_{2}, a w_{3}, a w_{4}, b w_{1}, b w_{2}, b w_{3}, b w_{4}$, $a a^{\prime}, b b^{\prime}$. Vertices $w_{1}, w_{2}, w_{3}, w_{4}$ form the central P_{4} of the double broom and we write $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. We partition the vertices of $V(G) \backslash W$ as follows:

- Let T be the set of vertices of $V(G) \backslash W$ that see all of $w_{1}, w_{2}, w_{3}, w_{4}$.
- Let P be the set of vertices of $V(G) \backslash W$ that see at least one but not all of $w_{1}, w_{2}, w_{3}, w_{4}$.
- Let F be the set of vertices of $V(G) \backslash W$ that see none of $w_{1}, w_{2}, w_{3}, w_{4}$.

Clearly the four sets W, T, P, F are pairwise disjoint and their union is $V(G)$. Note that $a, b \in T$ and $a^{\prime}, b^{\prime} \in F$. We define some subsets of T as follows:

$$
\begin{aligned}
& A=\left\{t \in T \mid t a^{\prime} \in E, t b^{\prime} \notin E\right\} \\
& B=\left\{t \in T \mid t a^{\prime} \notin E, t b^{\prime} \in E\right\} \\
& C=\left\{t \in T \mid t a^{\prime} \in E, t b^{\prime} \in E\right\}
\end{aligned}
$$

Note that A, B, C are pairwise disjoint and that $a \in A, b \in B$.
Claim 6.1. There is no edge between A and B.
Proof. For suppose there is an edge $u v$ with $u \in A, v \in B$. Then $a^{\prime}-u w_{i} v-b^{\prime}$ is a bull, for every $i=1, \ldots, 4$, so a^{\prime} belongs to four bulls, a contradiction.

Claim 6.2. If $p \in P$, then:

1. There exist adjacent vertices $w_{g}, w_{h} \in W$ such that p sees w_{g} and misses w_{h};
2. There exist nonadjacent vertices $w_{r}, w_{s} \in W$ such that p sees w_{r} and misses w_{s}.

Proof. This follows directly from the definition of P and the fact that W induces a connected subgraph in G and in \bar{G}.

Claim 6.3. Every vertex of P sees all of $A \cup B \cup C$ and none of a^{\prime}, b^{\prime}.
Proof. Consider any $p \in P$ and $u \in A$. We first prove that p sees u. Suppose on the contrary that p misses u.

Case 1: There is a subpath $w-w^{\prime}-w^{\prime \prime}$ of W such that p sees both w, w^{\prime} and misses $w^{\prime \prime}$. If p misses a^{\prime}, then $p-w^{\prime} w^{\prime \prime} u-a^{\prime}$ is a bull, while if p sees a^{\prime}, then $a^{\prime}-p w w^{\prime}-w^{\prime \prime}$ is a bull. In either case, p must miss b^{\prime} for otherwise $b^{\prime}-p w w^{\prime}-w^{\prime \prime}$ is a second bull containing p, a contradiction. Then p sees b or else $p-w^{\prime} w^{\prime \prime} b-b^{\prime}$ is a second bull containing p. But then $u-w^{\prime} p b-b^{\prime}$ is a second bull containing p. So p sees u.

Case 2: p sees exactly one of w_{1}, w_{2} and misses w_{4}. Then $\left\{p, w_{1}, w_{2}, u, w_{4}\right\}$ induces a bull. This implies $p b \in E$, for otherwise $\left\{p, w_{1}, w_{2}, b, w_{4}\right\}$ induces a second bull containing p, a contradiction. Then p sees a^{\prime}, for otherwise $\left\{p, w_{1}, w_{2}, u, a^{\prime}\right\}$ induces a second bull containing p. But then $\left\{a^{\prime}, p, w_{g}, b, w_{4}\right\}$, where $g \in\{1,2\}$ is such that p sees w_{g}, induces a second bull containing p, a contradiction. So p sees u. The case where p sees exactly one of w_{3}, w_{4} and misses w_{1} is symmetric.

It is easy to see that if we are not in one of the above two cases, and up to symmetry, then p sees w_{1}, w_{4} and misses w_{2}, w_{3}; but then $\left\{p, w_{1}, w_{2}, w_{3}, w_{4}\right\}$ induces a C_{5}, a contradiction. Thus we have proved that p sees u, and so p sees every vertex of $A \cup B$.

Now we prove that p misses both a^{\prime} and b^{\prime}. By Claim 6.2 there are two nonadjacent vertices $w_{r}, w_{s} \in W$ such that p sees w_{r} and misses w_{s}. Suppose that p sees a^{\prime}. Then $a^{\prime}-p w_{r} b-w_{s}$ is a bull. Now if p sees b^{\prime}, then $b^{\prime}-p w_{r} a-w_{s}$ is a second bull containing p; while if p misses b^{\prime}, then $a^{\prime}-p w_{r} b-b^{\prime}$ is a second bull containing p, in either case a contradiction. So p misses a^{\prime} and by symmetry it misses b^{\prime}.

Finally, we prove that p sees every vertex $c \in C$. Recall that c sees both a^{\prime}, b^{\prime}. By Claim 6.2, there are two adjacent vertices $w_{g}, w_{h} \in W$ such that p sees w_{g} and misses w_{h}. Then p sees c for otherwise we find two bulls $p-w_{g} w_{h} c-a^{\prime}$ and $p-w_{g} w_{h} c-b^{\prime}$ that contain p, a contradiction. Thus Claim 6.3 holds.

Now we define subsets X, Z of F and a subset Y of $T \backslash(A \cup B \cup C)$ as follows:

- $x \in X$ if $x \in F$ and there exists in G a path $p-x_{1} \cdots-x_{i}$, with $p \in P, i \geq 1$, $x_{1}, x_{2}, \ldots, x_{i} \in F$ and $x=x_{i}$. Any such path will be called a forcing sequence for x.
- $y \in Y$ if $y \in T \backslash(A \cup B \cup C)$ and there exists in \bar{G} a path $x-y_{1} \cdots \cdots y_{j}$, with $x \in P \cup X, j \geq 1, y_{1}, y_{2}, \ldots, y_{j} \in T \backslash(A \cup B \cup C)$, and $y=y_{j}$. Note that if x is not in P there exists a forcing sequence $p-x_{1} \cdots-x_{i}$ for $x=x_{i}$. In this case the sequence $p-x_{1} \cdots-x_{i}-y_{1} \cdots-y_{j}$ will be called a forcing sequence for y. In case $x \in P$ the sequence $x-y_{1} \cdots \cdots y_{j}$ will be called a forcing sequence for y. In either case a forcing sequence for y can be denoted by $x_{0}-\cdots-x_{i}-y_{1} \cdots-y_{j}$ with $i \geq 0$ and $j \geq 1$.
- $z \in Z$ if $z \in F \backslash X$ and there exists in G a path $y-z_{1}-\ldots-z_{k}$, with $y \in Y, k \geq 1$, $z_{1}, z_{2}, \ldots, z_{k} \in F \backslash X$, and $z=z_{k}$. Note that there exists a forcing sequence $x_{0}-x_{1} \cdots-x_{i}-y_{1} \cdots-y_{j}$ for $y=y_{j}$, with $i \geq 0$ and $j \geq 1$. The sequence $x_{0}-x_{1-}$ $\cdots-x_{i}-y_{1} \cdots-y_{j}-z_{1} \cdots-z_{k}$ will be called a forcing sequence for z.
Naturally we can consider for each $v \in X \cup Y \cup Z$ a shortest forcing sequence. Such sequences have notable properties which we express in the following claims.

Claim 6.4.

1. If $x \in X$ and $p-x_{1} \cdots-x_{i}$ is a shortest forcing sequence for $x=x_{i}$ then it is a chordless path of G.
2. If $y \in Y$ and $x_{0}-x_{1} \cdots-x_{i}-y_{1} \cdots-y_{j}$ is a shortest forcing sequence for $y=y_{j}$, with the above notation, then $x_{0}-x_{1} \cdots-x_{i}$ is a chordless path of $G, x_{i}-y_{1}-$ $\cdots-y_{j}$ is a chordless path of \bar{G}, and, if $i \geq 1$, each of $x_{0}, x_{1}, \ldots, x_{i-1}$ sees each of y_{1}, \ldots, y_{j}.
3. If $z \in Z$ and $p-x_{1} \cdots-x_{i}-y_{1}-\cdots-y_{j}-z_{1}-\cdots-z_{k}$ is a shortest forcing sequence for $z=z_{k}$, with the above notation, then $p-x_{1} \cdots-x_{i}$ is a chordless path of G, x_{i} $y_{1} \cdots-y_{j}$ is a chordless path of $\bar{G}, y_{j}-z_{1} \cdots-z_{k}$ is a chordless path of G, each of $p, x_{1}, \ldots, x_{i-1}$ sees each of y_{1}, \ldots, y_{j}, and each of $p, x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{j-1}$ misses each of z_{1}, \ldots, z_{k}.

Proof. The claim follows routinely from the definition of X, Y, Z and from the definition of a shortest forcing sequence. Details are omitted.
Claim 6.5. If $y \in Y$, a shortest forcing sequence for y contains at most two vertices of X.

Proof. For suppose on the contrary that there exists a shortest forcing sequence $S=p-x_{1} \cdots-x_{i}-y_{1} \cdots \cdots y_{j}$ with $j \geq 1$ and $i \geq 3$. Then S satisfies the properties stated in Claim 6.4, part 2. Then for each $h=1, \ldots, 4$ we find a bull $w_{h}-$ $y_{1} x_{i-2} x_{i-1}-x_{i}$ that contains y_{1}, so y_{1} lies in four bulls, a contradiction.
Claim 6.6. If $z \in Z$, a shortest forcing sequence for z contains no vertex of X.
Proof. For suppose on the contrary that $S=p-x_{1} \cdots \cdots-x_{i}-y_{1} \cdots \cdots y_{j}-z_{1} \cdots \cdots-z_{k}$ is a shortest forcing sequence for $z=z_{k}$ with $i \geq 1$. Recall that S satisfies the properties stated in Claim 6.4, part 3. By Claim 6.2, there are nonadjacent vertices $w_{r}, w_{s} \in W$ such that p sees w_{r} and misses w_{s}. By the preceding claim we have $i \leq 2$. Suppose $i=1$. Then $w_{s}-y_{1} w_{r} p-x_{1}$ is a bull. If $j=1$, then $z_{1}-y_{1} w_{r} p-x_{1}$ is a second bull containing p; if $j=2$, then $z_{1}-y_{2} x_{1} p-y_{1}$ is a second bull containing p; if $j \geq 3$, then $z_{1}-y_{j} y_{j-2} p-y_{j-1}$ is a second bull containing p; in either case we have a contradiction. So $i=2$. Then $w_{s}-y_{1} p x_{1}-x_{2}$ is a bull. If $j=1$, then $z_{1}-y_{1} p x_{1}-x_{2}$ is a second bull containing p; if $j=2$, then $z_{1}-y_{2} x_{2} x_{1}-y_{1}$ is a second bull containing x_{1}; if $j \geq 3$, then $z_{1}-y_{j} y_{j-2} p-y_{j-1}$ is a second bull containing p; in either case we have a contradiction. Thus the claim holds.
Claim 6.7. If $z \in Z, a$ shortest forcing sequence for z contains at most two vertices of Y.

Proof. For let $S=p-y_{1} \cdots-y_{j}-z_{1} \cdots-z_{k}$ be a shortest forcing sequence for $z=z_{k}$. The sequence S satisfies the properties stated in Claim 6.4, part 3, and it contains no vertex of X by Claim 6.6. Suppose that $j \geq 3$. Then $z_{1}-y_{j} y_{j-2} w_{h}-y_{j-1}$ is a bull that contains z_{1} for each $h=1, \ldots, 4$, a contradiction. So $j \leq 2$, and the claim holds.

Let H be the set of vertices that form the connected component of $G \backslash(T \backslash Y)$ that contains W.

Claim 6.8. $H=W \cup P \cup X \cup Y \cup Z$.
Proof. Put $H^{\prime}=W \cup P \cup X \cup Y \cup Z$. First we prove that $H^{\prime} \subseteq H$. Clearly, $W \subseteq H$. We also have $P \cup X \cup Y \subset H$ since every vertex of $P \cup X \cup Y$ is linked to W by a path in $G \backslash(T \backslash Y)$. Consequently $Z \subset H$, since every vertex of Z is linked to Y by a path in $G \backslash(T \backslash Y)$. So we have $H^{\prime} \subseteq H$.

Conversely, let $h \in H$. Recall that $V(G)$ is partitioned into the four sets W, P, T, F. If $h \in W \cup P$ then $h \in H^{\prime}$. If $h \in T$, then, by the definition of H, we have $h \in Y$. If $h \in F$, then, by the definition of H, there exists a path in $G \backslash(T \backslash Y)$ from h to W. Along this path, let v be the first vertex, starting from h, that is not in F. Then v must be in $P \cup W \cup Y$. If $v \in P \cup W$, then $h \in X$. If $v \in Y$, then $h \in Z$. So we have $H \subseteq H^{\prime}$, and the claim holds.

Claim 6.9. Every vertex of H sees all of $T \backslash(A \cup B \cup C \cup Y)$.
Proof. Consider any $t \in T \backslash(A \cup B \cup C \cup Y)$. So t sees all of W by the definition of T. In addition, t sees all of $P \cup X \cup Y$, for otherwise t would be in Y. Now suppose that t misses a vertex z of Z. There exists a shortest forcing sequence S for z, and by Claims 6.6 and 6.7 we have $S=p-y_{1} \cdots-y_{j}-z_{1} \cdots-z_{k}$ with $z=z_{k}$ and with $j \in\{1,2\}$. We may also choose z such that k is as small as possible, so t sees all vertices of $S \backslash z_{k}$. Let w_{g}, w_{h} be two adjacent vertices of W such that p sees w_{g} and misses w_{h}. Suppose $j=1$. Then we find a first bull $p-w_{g} w_{h} y_{1}-z_{1}$. If $k=1$, then $p-t w_{h} y_{1}-z_{1}$ is a second bull containing p; if $k=2$, then $p-t y_{1} z_{1}-z_{2}$ is a second bull containing p; if $k \geq 3$, then $p-t z_{k-2} z_{k-1}-z_{k}$ is a second bull containing p; in either case there is a contradiction. So $j=2$. Then we find a first bull $y_{1}-w_{g} p y_{2}-z_{1}$. If $k=1$, then $y_{1}-t p y_{2}-z_{1}$ is a second bull containing y_{1}; if $k=2$, then $y_{1}-t y_{2} z_{1}-z_{2}$ is a second bull containing y_{1}; If $k \geq 3$, then $y_{1}-t z_{k-2} z_{k-1}-z_{k}$ is a second bull containing y_{1}; in either case there is a contradiction. Thus the claim holds.

Claim 6.10. Every vertex of X sees all of $A \cup B \cup C$ and none of a^{\prime}, b^{\prime}.
Proof. Consider any $x \in X$. By the definition of X, there exists a shortest forcing sequence $S=p-x_{1} \cdots-x_{i}$ for $x=x_{i}$, with $i \geq 1, p \in P$, and $x_{1}, \ldots, x_{i-1} \in X$. Then S satisfies the properties stated in Claim 6.4, part 1, i.e., S is a chordless path. Let w_{r}, w_{s} be nonadjacent vertices of W such that p sees w_{r} and misses w_{s}. We argue by induction on i.

Assume $i=1$. Let $u \in A \cup C$, and suppose that x misses u. We find a first bull $w_{s}-u w_{r} p-x$. Then x sees b, for otherwise $w_{s}-b w_{r} p-x$ is a second
bull containing x. Then x misses a^{\prime}, for otherwise $a^{\prime}-x p b-w_{s}$ is a second bull containing x. But then $a^{\prime}-u w_{r} p-x$ is a second bull containing x. Hence x sees every vertex of $A \cup C$. Analogously, x sees every vertex of B. Suppose that x sees a^{\prime}. So we find a first bull $a^{\prime}-x p b-w_{s}$. Then x misses b^{\prime}, for otherwise we find a second bull $b^{\prime}-x p a-w_{s}$ containing x. But then $b^{\prime}-b p x-a^{\prime}$ is a second bull containing x. Hence x misses a^{\prime}, and analogously, x misses b^{\prime}.

Now assume $i \geq 2$. So vertices x_{i-1} and x_{i-2} are defined, with $x_{i-1} \in X$ and $x_{i-2} \in P \cup X$. Let $u \in A \cup C$, and suppose that x_{i} misses u. By the induction hypothesis u sees x_{i-1} and x_{i-2}, and we obtain a first bull $x_{i}-x_{i-1} x_{i-2} u-w_{s}$. Then x_{i} sees b, for otherwise $x_{i}-x_{i-1} x_{i-2} b-w_{s}$ is a second bull containing x_{i}. Then x_{i} misses a^{\prime}, for otherwise $a^{\prime}-x_{i} x_{i-1} b-w_{s}$ is a second bull containing x_{i}. But then $x_{i}-x_{i-1} x_{i-2} u-a^{\prime}$ is a second bull containing x_{i}. Hence, x_{i} sees every $u \in A \cup C$. Analogously, x_{i} sees every vertex of B. Suppose that x_{i} sees a^{\prime}. By the induction hypothesis, x_{i-1} sees b. Hence $a^{\prime}-x_{i} x_{i-1} b-w_{r}$ and $a^{\prime}-x_{i} x_{i-1} b-w_{s}$ are two intersecting bulls, a contradiction. Hence, x_{i} misses a^{\prime}, and analogously, x_{i} misses b^{\prime}. Thus the claim holds.
Claim 6.11. Every vertex of Y sees all of $A \cup B \cup C$ and none of a^{\prime}, b^{\prime}.
Proof. Consider any $y \in Y$. By the definition of Y, there exists a shortest forcing sequence $S=x_{0}-\cdots-x_{i}-y_{1}-y_{2}-\cdots-y_{j}$ for $y=y_{j}$, with $j \geq 1$, and by Claim 6.5 we have $i \leq 2$. Since $Y \subseteq T \backslash(A \cup B \cup C), y$ misses a^{\prime} and b^{\prime}. Consider any $u \in A \cup C$. Pick a vertex w as follows: If $i=0$ then $x_{i} \in P$ and x_{i} sees a vertex $w \in W$. If $i>0$ then we take $w=x_{i-1}$. By Claims 6.3 and $6.10, x_{i}$ and w see both u, b and miss both a^{\prime}, b^{\prime}. Also w sees all of y_{1}, \ldots, y_{j} by the definition of Y. We prove by induction on j that y sees u. Suppose the contrary.

Assume $j=1$. So we find a first bull $a^{\prime}-u x_{i} w-y$. If u sees b^{\prime}, we find a second bull $b^{\prime}-u x_{i} w-y$, a contradiction. So u misses b^{\prime}, so $u \in A$, so u misses b by Claim 6.1. Then y sees b, for otherwise we find a second bull $b^{\prime}-b x_{i} w-y$ containing y. But then we find a second bull $b^{\prime}-b y w-u$ containing y. Hence, y sees every $u \in A \cup C$. Analogously, y sees every vertex of B.

Assume $j \geq 2$. By the induction hypothesis, y_{j-1} sees u and b. Then we find a first bull $a^{\prime}-u y_{j-1} w-y$. If u sees b^{\prime}, we find a second bull $b^{\prime}-u y_{j-1} w-y$, a contradiction. So u misses b^{\prime}, so $u \in A$, so u misses b by Claim 6.1. Then y sees b, for otherwise we find a second bull $b^{\prime}-b y_{j-1} w-y$ containing y. But then we find a second bull $b^{\prime}-b y w-u$ containing y. Hence, y sees every $u \in A \cup C$. Analogously, y sees every vertex of B. Thus the claim holds.
Claim 6.12. Every vertex of Z sees all of $A \cup B \cup C$ and none of a^{\prime}, b^{\prime}.
Proof. Consider any $z \in Z$. By Claims 6.6 and 6.7 , there exists a shortest forcing sequence $S=p-y_{1} \cdots-y_{j}-z_{1} \cdots-z_{k}$ for $z=z_{k}$ with $1 \leq j \leq 2$; and S satisfies the properties given in Claim 6.4, part 3. Consider any $u \in A \cup B \cup C$. So u sees all of W and, by the preceding claims, u sees all of p, y_{1}, \ldots, y_{j}. As usual there exist adjacent vertices $w_{g}, w_{h} \in W$ such that p sees w_{g} and misses w_{h}. We prove that z sees u and misses a^{\prime}, b^{\prime} by induction on k.

Assume $k=1$. If $j=1$, we find a bull $z-y_{1} w_{h} w_{g}-p$. Then z sees u for otherwise we find a second bull $z-y_{1} w_{h} u-p$ containing z. So z sees all of $A \cup B \cup C$. Then z misses a^{\prime}, for otherwise we find a second bull $a^{\prime}-z y_{1} b-p$ containing z. Likewise z misses b^{\prime}. If $j=2$, we find a bull $z-y_{2} p w_{g}-y_{1}$. Then z sees u, for otherwise we find a second bull $z-y_{2} p u-y_{1}$ containing z. So z sees all of $A \cup B \cup C$. Then z misses a^{\prime}, for otherwise we find a second bull $a^{\prime}-z y_{2} b-y_{1}$ containing z. Likewise z misses b^{\prime}. So the claim holds when $k=1$.

Assume $k \geq 2$. By the induction hypothesis, u sees all of z_{1}, \ldots, z_{k-1}. If $j=1$, we find a bull $p-w_{g} w_{h} y_{1}-z_{1}$. Then z sees u, for otherwise we find a second bull $p-u z^{\prime} z_{k-1}-z$ containing z, where $z^{\prime}=z_{k-2}$ if $k \geq 3$ and $z^{\prime}=y_{1}$ if $k=2$. If $j=2$, we find a bull $z_{1}-y_{2} p w_{g}-y_{1}$. Then z sees u, for otherwise we find a second bull $z-z_{k-1} z^{\prime} u-y_{1}$ containing y_{1}, where $z^{\prime}=z_{k-2}$ if $k \geq 3$ and $z^{\prime}=y_{2}$ if $k=2$. So z sees all of $A \cup B \cup C$. In either case $(j=1$ or 2$), z$ misses a^{\prime}, for otherwise we find a second bull $a^{\prime}-z z_{k-1} b-p$ containing p. Likewise z misses b^{\prime}. Thus the claim holds.

Claim 6.13. H is a homogeneous set.
Proof. Since H is a component of $G \backslash(T \backslash Y)$, it suffices to prove the property that every vertex $v \in H$ sees every vertex $t \in T \backslash Y$. Claim 6.9 establishes this property when $t \in T \backslash(A \cup B \cup C \cup Y)$. Suppose $t \in A \cup B \cup C$. Then when $v \in W$ the property follows from the definition of A, B, C; and when $v \in P, X, Y, Z$ the property follows respectively from Claims $6.3,6.10,6.11$ and 6.12 . Thus the claim holds.

This completes the proof of Lemma 6.

3. Even pairs

Recall that a graph is weakly triangulated if G and \bar{G} contain no hole of length at least 5 . In the case of weakly triangulated the desired result is already known as it was proved by Hayward, Hoàng and Maffray [12] in a stronger form. Say that two non-adjacent vertices form a 2-pair if every chordless path joining them has length 2.

Theorem 7 ([12]). Let G be a weakly triangulated graph that is not a clique. Then G has a 2-pair.

Now we are ready to prove our main result, which we state again:
Theorem 8. Let G be a bull-reducible Berge graph with at least two vertices. Then either G or \bar{G} has an even pair.
Proof. We prove Theorem 8 by induction on the number of vertices of the graph G. First, suppose that G and \bar{G} contain no hole of length at least 5 . Then G is weakly triangulated. In that case the result follows from Theorem 7. So suppose that G is not weakly triangulated. Suppose that G has a homogeneous set. By
the induction hypothesis, the subgraph H induced by this set has two vertices a, b that form an even pair in H or in \bar{H}. Since every vertex of $G \backslash H$ either sees both a, b or misses both a, b, it follows that a, b also form an even pair in G or in \bar{G}.

Now suppose that G has no homogeneous set and that one of G, \bar{G} contains a hole of length at least 5 . By Lemma $3, G$ and \bar{G} contain no wheel. By Lemma 6 , G and \bar{G} contain no double broom. Let l be the number of vertices of a shortest hole of length at least 5 in G or \bar{G}. By symmetry, we may assume that G contains a hole of length l. Note that $l \geq 6$ and l is even since G is Berge. So $V(G)$ contains l pairwise disjoint and non-empty subsets V_{1}, \ldots, V_{l} such that, for each $i=1, \ldots, l$ (with subscript arithmetic modulo l), every vertex of V_{i} sees every vertex of $V_{i-1} \cup V_{i+1}$ and misses every vertex of $V_{i+2} \cup V_{i+3} \cup \cdots \cup V_{i-3} \cup V_{i-2}$. We write $V^{*}=V_{1} \cup V_{2} \cup \cdots \cup V_{l}$. We can choose these sets so that V^{*} is maximal. Given these subsets, we define some further subsets:

- Let A_{1} be the set of vertices of $V(G) \backslash V^{*}$ that see all of $V_{2} \cup V_{4} \cup \cdots \cup V_{l}$ and miss all of $V_{1} \cup V_{3} \cup \cdots \cup V_{l-1}$;
- Let A_{2} be the set of vertices of $V(G) \backslash V^{*}$ that see all of $V_{1} \cup V_{3} \cup \cdots \cup V_{l-1}$ and miss all of $V_{2} \cup V_{4} \cup \cdots \cup V_{l}$;
- For each $i=1, \ldots, l$, let X_{i} be the set of vertices of $V(G) \backslash\left(V^{*} \cup A_{1} \cup A_{2}\right)$ that see all of $V_{i-1} \cup V_{i+1}$ and miss all of $V_{i-2} \cup V_{i+2}$;
- Let $Z=V(G) \backslash\left(V^{*} \cup A_{1} \cup A_{2} \cup X_{1} \cup \cdots \cup X_{l}\right)$.

Clearly, the sets $V_{1}, \ldots, V_{l}, A_{1}, A_{2}, X_{1}, \ldots, X_{l}, Z$ are pairwise disjoint and their union is $V(G)$. Let us now establish some useful properties of these sets. In the following claims, for each $i=1, \ldots, l$, we let v_{i} be an arbitrary vertex of V_{i}.

Claim 8.1. For $i=1, \ldots, l$, if $X_{i} \neq \emptyset$ then $l=6$ and every vertex of X_{i} has a neighbor in V_{i+3}. Moreover, if a vertex of X_{i} sees all of V_{i+3} then it has a neighbor in V_{i}.

Proof. For simpler notation put $i=3$. Let x be any vertex of X_{3}. So x sees all of $V_{2} \cup V_{4}$ and misses all of $V_{1} \cup V_{5}$. Then x must have a neighbor in $V_{6} \cup \cdots \cup V_{l}$, for otherwise we could add x to V_{3}, which would contradict the maximality of V^{*}. Let h be the smallest index such that x has a neighbor y in V_{h} with $6 \leq h \leq l$. If $h \geq 7$, the set $\left\{x, v_{4}, \ldots, v_{h-1}, y\right\}$ induces a hole of length $h-2$, with $5 \leq h-2 \leq l-2$, which contradicts G being Berge (if h is odd) or the definition of l (if h is even). So $h=6$. Suppose $l \geq 8$. Then we can apply Lemma 2 to the hole induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, y, \ldots, v_{l}\right\}$ and to x, which implies that x sees every v_{j} with even $j \neq 6$ and misses every v_{j} with odd j. Then applying Lemma 2 to the hole induced by $\left\{v_{1}, \ldots, v_{l}\right\}$ implies that x also sees every $v_{6} \in V_{6}$. But then we have $x \in A_{1}$, which contradicts the definition of X_{3}. Thus the first part of the claim holds.

To prove the second part, let x be a vertex of X_{3} that sees all of V_{6}. Thus $l=6$. So x sees all of $V_{2} \cup V_{4} \cup V_{6}$ and misses all of $V_{1} \cup V_{5}$. By Lemma 2, if x has no neighbor in V_{3} then x must be in A_{1}, which contradicts the definition of X_{3}. So x has a neighbor in V_{3}. Thus the claim holds.

Claim 8.2. For $i=1, \ldots, l$, there is no P_{4} in $V_{i} \cup X_{i}$.

Proof. For if there is a P_{4} in $V_{i} \cup X_{i}$, then its four vertices together with v_{i-1}, $v_{i-2}, v_{i+1}, v_{i+2}$ induce a double broom, a contradiction.

Claim 8.3. For $i=1, \ldots, l$, if i is odd there is no edge between $V_{i} \cup X_{i}$ and A_{1}; and if i is even there is no edge between $V_{i} \cup X_{i}$ and A_{2}.

Proof. Up to symmetry and for simpler notation we may take $i=3$ and suppose that there exists an edge $d a$ with $d \in V_{3} \cup X_{3}$ and $a \in A_{1}$. The definition of A_{1} implies $d \in X_{3}$ and so, by Claim 8.1, we have $l=6$ and d has a neighbor $u_{6} \in V_{6}$. If d has a neighbor $u_{3} \in V_{3}$ then we find two bulls $u_{3}-d a u_{6}-v_{5}$ and $u_{3}-d a u_{6}-v_{1}$ containing d, a contradiction. So d has no neighbor in V_{3}, and so, by Claim 8.1, d has a non-neighbor $w_{6} \in V_{6}$. Then we find two bulls $v_{3}-v_{4} d a-w_{6}$ and $v_{3}-v_{2} d a-w_{6}$ containing d, a contradiction. Thus the claim holds.

Claim 8.4. For $i=1, \ldots, l$, there is no edge between $V_{i} \cup X_{i}$ and $V_{i+2} \cup X_{i+2}$.
Proof. Put $i=3$, and suppose that there is an edge $x y$ with $x \in V_{3} \cup X_{3}$ and $y \in V_{5} \cup X_{5}$. Since x has a neighbor in $V_{5} \cup X_{5}$ we have $x \notin V_{3}$, so $x \in X_{3}$; and then, by Claim 8.1, we have $l=6$ and x has a neighbor $u_{6} \in V_{6}$. Likewise, y is in X_{5} and has a neighbor $u_{2} \in V_{2}$. If x has a non-neighbor $w_{6} \in V_{6}$ and y has a non-neighbor $w_{2} \in V_{2}$ then $\left\{x, y, w_{6}, v_{1}, w_{2}\right\}$ induces a C_{5}, a contradiction. So we may assume, up to symmetry, that x sees all of V_{6}. Then, by Claim 8.1, x has a neighbor $w_{3} \in V_{3}$. So we find a first bull $w_{3}-x y u_{6}-v_{1}$. If y has a neighbor $w_{5} \in V_{5}$, then we find a second bull $w_{5}-y x u_{2}-v_{1}$ containing x, a contradiction. So y has no neighbor in V_{5}, and, by Claim 8.1, y has a non-neighbor $w_{2} \in V_{2}$. But then we find a second bull $v_{1}-w_{2} w_{3} x-y$, a contradiction. Thus the claim holds.

Claim 8.5. For $i=1, \ldots, l$, let x be a vertex that has a neighbor and a non-neighbor in $V_{i} \cup X_{i}$. If x has a neighbor in V_{i-1}, then it misses all of V_{i+2}. Likewise, if it has a neighbor in V_{i+1}, then it misses all of V_{i-2}.

Proof. Put $i=3$ and let a, b respectively be a neighbor and a non-neighbor of x in $V_{3} \cup X_{3}$. Recall that a, b see all of $V_{2} \cup V_{4}$ and miss all of $V_{1} \cup V_{5}$. Suppose up to symmetry that x has neighbors $u_{2} \in V_{2}$ and $u_{5} \in V_{5}$. Then x sees every $v_{4} \in V_{4}$, for otherwise $\left\{x, u_{2}, b, v_{4}, u_{5}\right\}$ induces an odd hole. Then Lemma 2, applied to x and the hole induced by $\left\{v_{1}, u_{2}, v_{3}, v_{4}, u_{5}, v_{6}, \ldots, v_{l}\right\}$ for every $v_{3} \in V_{3}, v_{6} \in V_{6}$, $v_{1} \in V_{1}$, and the fact that G contains no wheel, implies that $l=6$ and that x sees every vertex of $V_{6} \cup V_{4}$ and none of $V_{1} \cup V_{3}$. So $x \in A_{1} \cup X_{5}$; and since x has a neighbor, we have $x \in X_{5}$; but then the edge $x a$ contradicts Claim 8.4. Thus the claim holds.

Claim 8.6. For $i=1, \ldots, l$, there is no chordless odd path of G of length at least 5 whose two endpoints are in $V_{i} \cup X_{i}$.

Proof. For suppose that there is such a path P. Then its two endpoints see both v_{i-1}, v_{i+1} and miss both v_{i-2}, v_{i+2}, and so we can apply Lemma 5 in G to P and
vertices $v_{i-1}, v_{i+1}, v_{i-2}, v_{i+2}$, which implies that G or \bar{G} contains a double broom, a contradiction.
Claim 8.7. For $i=1, \ldots, l$, there is no chordless odd path in \bar{G} of length at least 5 whose two endpoints are in $V_{i} \cup X_{i}$.
Proof. For suppose that there is such a path Q in \bar{G}. Then, in \bar{G}, its two endpoints see both v_{i-2}, v_{i+2} and miss both v_{i-1}, v_{i+1}, and so we can apply Lemma 5 in \bar{G} to Q and vertices $v_{i-1}, v_{i+1}, v_{i-2}, v_{i+2}$, which implies that G or \bar{G} contains a double broom, a contradiction.

Claim 8.8. For $i=1, \ldots, l$, suppose that there exists a chordless path $x-a-b-y$ in G with $a, b \in V_{i} \cup X_{i}$. Then one of x, y is in $V_{i} \cup X_{i}$.
Proof. Put $i=3$, and suppose that x sees v_{2}, v_{4}. By Claim 8.5, x misses all of $V_{1} \cup V_{5}$. If x has a non-neighbor $w_{2} \in V_{2}$, we find two intersecting bulls $v_{1}-w_{2} b a-x$ and $w_{2}-a x v_{4}-v_{5}$. So x sees all of V_{2}; likewise x sees all of V_{4}. So $x \in V_{3} \cup X_{3} \cup A_{2}$; actually, since x sees a and by Claim 8.3, we have $x \in V_{3} \cup X_{3}$. So the claim holds in this case. It holds similarly if y sees v_{2}, v_{4}.

Suppose now that x does not see both v_{2}, v_{4}, and the same for y. At least one of x, y must see at least one of v_{2}, v_{4}, for otherwise we find two intersecting bulls $x-a v_{2} b-y$ and $x-a v_{4} b-y$. So assume x sees v_{2} and misses v_{4}. By Claim 8.5, x misses v_{5}, and so we find a bull $x-a b v_{4}-v_{5}$. Then y sees v_{4}, for otherwise we find a second bull $x-a v_{4} b-y$ containing a. Then y misses v_{1} by Claim 8.5 and v_{2} by the preceding paragraph. But then we find a second bull $y-b a v_{2}-v_{1}$ containing a. Thus the claim holds.

Claim 8.9. For $i=1, \ldots, l$, suppose that there exists a chordless path $a-u-v-b$ in G with $a, b \in V_{i} \cup X_{i}$. Then one of u, v is in $V_{i} \cup X_{i}$.
Proof. Put $i=3$. So a, b see all of $V_{2} \cup V_{4}$ and miss all of $V_{1} \cup V_{5}$.
First consider the case where one u, v, say u, has a neighbor in each of V_{2}, V_{4}. Let $u_{2} \in V_{2}, u_{4} \in V_{4}$ be neighbors of u. By Claim 8.5, u misses all of $V_{1} \cup V_{5}$. Suppose that u has a non-neighbor $w_{2} \in V_{2}$. Then we find a first bull $w_{2}-a u u_{4}-$ v_{5}. Vertex v sees w_{2}, for otherwise $\left\{w_{2}, a, u, v, b\right\}$ induces an odd hole. Then, by Claim 8.5, v misses all of V_{5}. Vertex v sees v_{1}, for otherwise we find a second bull $v_{1}-u_{2} a u-v$ containing a. Then, by Claim 8.5, v misses all of V_{4}. But then we find a second bull $v_{5}-u_{4} a u-v$ containing a. So u sees all of V_{2}, and similarly u sees all of V_{4}. So u is in $V_{3} \cup X_{3} \cup A_{1}$; and the definition of V_{3}, X_{3} and Claim 8.3 imply $u \in V_{3} \cup X_{3}$. So in this case the claim holds.

In the remaining case, we may assume that u misses all of V_{4}, and so v sees all of V_{4} (for otherwise $\left\{w_{4}, a, u, v, b\right\}$ induces an odd hole for any $w_{4} \in V_{4} \backslash N(v)$), and so v misses all of V_{2}, and so u sees all of V_{2}. By Claim 8.5, u misses all of V_{5}, and v misses all of V_{1}. If u misses any $w_{1} \in V_{1}$, we find two intersecting bulls $w_{1}-v_{2} u a-v_{4}$ and $w_{1}-v_{2} a u-v$, a contradiction. So u sees all of V_{1}. Likewise, v sees all of V_{5}. By Lemma 2 applied to u and to the hole induced by $\left\{v_{1}, \ldots, v_{l}\right\}$, and since u sees v_{1}, v_{2} and misses v_{4}, v_{5}, we have $N(u) \cap\left\{v_{6}, \ldots, v_{l}\right\} \subseteq\left\{v_{l}\right\}$.

Likewise we have $N(v) \cap\left\{v_{6}, \ldots, v_{l}\right\} \subseteq\left\{v_{6}\right\}$. Suppose $l \geq 8$. If u misses v_{l} and v misses v_{6} then $\left\{v_{1}, u, v, v_{5}, v_{6}, \ldots, v_{l}\right\}$ induces a hole of odd length $l-1$. If u sees v_{l} and v sees v_{6} then $\left\{u, v, v_{6}, \ldots, v_{l}\right\}$ induces a hole of odd length $l-3$. If u sees v_{l} and v misses v_{6}, then $\left\{u, v, v_{5}, v_{6}, \ldots, v_{l}\right\}$ induces an even hole of length $l-2$, a contradiction to the definition of l. A similar contradiction occurs if u misses v_{l} and v sees v_{6}. So we must have $l=6$. Then every v_{6} sees one of u, v, for otherwise $\left\{v_{1}, u, v, v_{5}, v_{6}\right\}$ induces an odd hole. Up to symmetry let us assume that v has a neighbor $u_{6} \in V_{6}$. Then v misses every $v_{3} \in V_{3}$, for otherwise $\left\{v, v_{3}, v_{2}, v_{1}, u_{6}\right\}$ induces an odd hole. Suppose that v also has a non-neighbor $w_{6} \in V_{6}$. Then, u sees w_{6}, for otherwise $\left\{w_{6}, v_{1}, u, v, v_{5}\right\}$ induces an odd hole; and u misses every $v_{3} \in V_{3}$, for otherwise $\left\{u, v_{3}, v_{4}, v_{5}, w_{6}\right\}$ induces an odd hole; but then $\left\{v_{2}, u, v, v_{4}, v_{3}\right\}$ induces an odd hole, a contradiction. Thus v sees all of V_{6}. Now the fact that v sees all of $V_{4} \cup V_{5} \cup V_{6}$ and misses all of $V_{1} \cup V_{3}$ implies that v is in $V_{5} \cup X_{5}$; but then the edge $v b$ contradicts Claim 8.4. Thus the claim holds.

Claim 8.10. If for some $i=1, \ldots, l$, the set $V_{i} \cup X_{i}$ is not a clique then it contains an even pair of G or an even pair of \bar{G}.

Proof. Put $i=3$. For any two vertices $a, b \in V_{3} \cup X_{3}$, put $N_{i n}(a, b)=N(a) \cap$ $N(b) \cap\left(V_{3} \cup X_{3}\right)$. Choose a pair $\{a, b\}$ of non-adjacent vertices of $V_{3} \cup X_{3}$ that maximizes the size of $N_{i n}(a, b)$ (such a pair exists since $V_{3} \cup X_{3}$ is not a clique). If the claim does not hold, $\{a, b\}$ is not an even pair of G, so there exists a chordless odd path of G with endpoints a, b. By Claim 8.6 this path has length 3, so we can write it as $a-u-v-b$. By Claim 8.9, we may assume up to symmetry that $u \in V_{3} \cup X_{3}$. Consider any $d \in N_{\text {in }}(a, b)$. Then d sees u, for otherwise $u-a-d$ - b is a P_{4} in $V_{3} \cup X_{3}$, which contradicts Claim 8.2. So we have $N_{i n}(a, b) \subseteq N_{i n}(u, b)$, and the choice of $\{a, b\}$ implies $N_{i n}(a, b)=N_{i n}(u, b)$. We claim that $\{a, u\}$ is an even pair of \bar{G}. For suppose that there exists a chordless odd path Q in \bar{G} with endpoints a, u. By Claim 8.7, Q has length 3. So we can write $Q=a-x-y-u$ in \bar{G}, which means that in G we have a chordless path $y-a-u-x$. By Claim 8.8, one of x, y is in $V_{3} \cup X_{3}$. By symmetry we may assume that $x \in V_{3} \cup X_{3}$. Then x misses b, for otherwise we have $x \in N_{\text {in }}(u, b) \backslash N_{i n}(a, b)$. Then x sees every $d \in N_{i n}(a, b)$, for otherwise $x-u-d-b$ is a P_{4} in $V_{3} \cup X_{3}$, which contradicts Claim 8.2. But then we have $N_{i n}(a, x) \supseteq N_{i n}(a, b) \cup\{u\}$, which contradicts the choice of $\{a, b\}$. Thus the claim holds.

Claim 8.11. If for some $i=1, \ldots, l$, the set $V_{i} \cup X_{i}$ induces a clique of size at least 2 then any two vertices of $V_{i} \cup X_{i}$ form an even pair of \bar{G}.

Proof. For suppose that there is a chordless odd path Q in \bar{G} with endpoints a, b in $V_{i} \cup X_{i}$. By Claim 8.7, Q has length 3, so we can write $Q=a-x-y-b$ in \bar{G}, and so we have a chordless path $y-a-b-x$ in G. By Claim 8.8, one of x, y is in $V_{i} \cup X_{i}$; but this contradicts the fact that $V_{i} \cup X_{i}$ is a clique. Thus the claim holds.

Claim 8.12. Suppose that for every $i=1, \ldots, l$, the set $V_{i} \cup X_{i}$ has size 1. Then $\left\{v_{i}, v_{i+2}\right\}$ is an even pair of G for every i.

Proof. For suppose on the contrary and up to symmetry that $\left\{v_{1}, v_{3}\right\}$ is not an even pair; so there is a chordless odd path $P=x_{0}-x_{1} \cdots-x_{r}$ with $v_{1}=x_{0}, v_{3}=x_{r}$ and $r \geq 3$. Since $V(P) \cup\left\{v_{2}\right\}$ cannot induce an odd hole (when $r=3$), and by Lemma 4 (when $r \geq 5$), and up to symmetry, we may assume that v_{2} sees x_{1}. If x_{1} sees v_{l}, then x_{1} misses v_{l-1} by Lemma 2, and we have $x_{1} \in V_{1} \cup X_{1}$, a contradiction. So x_{1} misses v_{l}, and we find a bull $v_{l}-v_{1} x_{1} v_{2}-v_{3}$. Then v_{2} misses x_{r-1}, for otherwise by symmetry we find a second bull $v_{4}-v_{3} x_{r-1} v_{2}-v_{1}$. If $r=3$, then v_{l} sees x_{2}, for otherwise we find a second bull $v_{l}-v_{1} v_{2} x_{1}-x_{2}$ containing v_{2}; but then $\left\{v_{l}, v_{1}, v_{2}, v_{3}, x_{2}\right\}$ induces an odd hole. So $r \geq 5$. Since v_{2} misses x_{r-1}, we have outcome 2 or 3 of Lemma 4, and in either case Lemma 4 states that there is a second bull containing v_{2}, a contradiction. Thus the claim holds.

Claims 8.10, 8.11 and 8.12 complete the proof of the theorem.

4. Comments

For any integer $k \geq 0$, let \mathcal{B}_{k} be the class of graphs in which every vertex belongs to at most k bulls. So \mathcal{B}_{0} is the class of bull-free graphs, and \mathcal{B}_{1} is the class of bull-reducible graphs. One can consider the following statements:

Statement A_{k} : For every Berge graph G in \mathcal{B}_{k} with at least two vertices, either G or \bar{G} has an even pair.
Statement A_{k}^{\prime} : For every Berge graph G in \mathcal{B}_{k} that contains no antihole, either G is a clique or G has an even pair.
Statement $A_{k}^{\prime \prime}$: For every Berge graph G in \mathcal{B}_{k} that contains no antihole, G is perfectly orderable.
Statements A_{0} and A_{0}^{\prime} are theorems proved in [9]. Statement $A_{0}^{\prime \prime}$ is a theorem proved in [11]. Statement A_{1} is the main result in this article. Statements A_{1}^{\prime} and A_{2}^{\prime} are theorems, as they can be obtained easily as corollaries of the main result in [17]. On the other hand, consider the graph H_{12} with 12 vertices v_{1}, \ldots, v_{12} such that $v_{1}-v_{2}-\cdots-v_{8}-v_{1}$ is a hole, vertex v_{9} is adjacent to v_{1}, v_{2}, v_{11}, vertex v_{10} is adjacent to v_{3}, v_{4}, v_{12}, vertex v_{11} is adjacent to v_{5}, v_{6}, v_{9}, and vertex v_{12} is adjacent to v_{7}, v_{8}, v_{10}. Then it is easy to see that H_{12} is a Berge graph (it is actually the line-graph of a bipartite graph), it contains no antihole, it is in \mathcal{B}_{5}, and H_{12} and its complement have no even pair. So H_{12} is a counterexample to statements A_{k}, A_{k}^{\prime} for any $k \geq 5$. Moreover, the graph " E " in [13, p. 142, Fig. 7.1] is a counterexample to $A_{3}^{\prime \prime}$. We do not have a proof or a counterexample for any of the remaining statements $A_{2}, A_{3}, A_{4}, A_{3}^{\prime}, A_{4}^{\prime}$ and $A_{1}^{\prime \prime}, A_{2}^{\prime \prime}$.

References

[1] C. Berge. Les problèmes de coloration en théorie des graphes. Publ. Inst. Stat. Univ. Paris 9 (1960) 123-160.
[2] C. Berge. Graphs. North-Holland, Amsterdam/New York, 1985.
[3] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković. Recognizing Berge graphs. Combinatorica 25 (2005) 143-187.
[4] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas. The strong perfect graph theorem. Manuscript, 2002. To appear in Annals of Mathematics.
[5] V. Chvátal. Perfectly ordered graphs. In Topics on Perfect Graphs (Ann. Discrete Math. 21), C. Berge and V. Chvátal eds., North-Holland, Amsterdam, 1984, 63-65.
[6] V. Chvátal, N. Sbihi. Bull-free Berge graphs are perfect. Graphs and Combinatorics 3 (1987) 127-139.
[7] H. Everett, C.M.H. de Figueiredo, S. Klein, B. Reed. The perfection and recognition of bull-reducible Berge graphs. RAIRO Theoretical Informatics and Applications 39 (2005) 145-160.
[8] H. Everett, C.M.H. de Figueiredo, C. Linhares Sales, F. Maffray, O. Porto, B.A. Reed. Even pairs. In [19], 67-92.
[9] C.M.H. de Figueiredo, F. Maffray, O. Porto. On the structure of bull-free perfect graphs. Graphs and Combinatorics 13 (1997) 31-55.
[10] M. Grötschel, L. Lovász, A. Schrijver. Polynomial algorithms for perfect graphs. In Topics on Perfect Graphs (Ann. Discrete Math. 21), C. Berge and V. Chvátal eds., North-Holland, Amsterdam, 1984, 325-356.
[11] R. Hayward. Bull-free weakly chordal perfectly orderable graphs. Graphs and Combinatorics 17 (2000) 479-500.
[12] R. Hayward, C.T. Hoàng, F. Maffray. Optimizing weakly triangulated graphs. Graphs and Combinatorics 5 (1989), 339-349. See erratum in vol. 6 (1990) 33-35.
[13] C.T. Hoàng. Perfectly orderable graphs: a survey. In [19], 139-166.
[14] S. Hougardy, Perfekte Graphen, PhD thesis, Institut für Ökonometrie und Operations Research, Rheinische Friedrich Wilhelms Universität, Bonn, Germany, 1991.
[15] S. Hougardy, Even and odd pairs in line-graphs of bipartite graphs, European J. Combin. 16 (1995) 17-21.
[16] L. Lovász. Normal hypergraphs and the weak perfect graph conjecture. Discrete Math. 2 (1972) 253-267.
[17] F. Maffray, N. Trotignon. A class of perfectly contractile graphs. To appear in J. Comb. Th. B (2006) 1-19.
[18] H. Meyniel. A new property of critical imperfect graphs and some consequences. Eur. J. Comb. 8 (1987) 313-316.
[19] J.L. Ramírez-Alfonsín, B.A. Reed. Perfect Graphs. Wiley Interscience, 2001.
[20] B. Reed, N. Sbihi. Recognizing bull-free perfect graphs. Graphs and Combinatorics 11 (1995) 171-178.

Celina M.H. de Figueiredo
Departamento de Ciência da Computação
Instituto de Matemática
Universidade Federal do Rio de Janeiro
Caixa Postal 68530
21945-970 Rio de Janeiro, RJ, Brazil
e-mail: celina@cos.ufrj.br
Frédéric Maffray
CNRS, Laboratoire Leibniz
46 avenue Félix Viallet
F-38041 Grenoble Cedex, France
e-mail: frederic.maffray@imag.fr
Claudia Regina Villela Maciel
Instituto de Matemática
Universidade Federal Fluminense
Rua Mário Santos Braga
s/n Praça do Valonguinho
CEP 24.020-140, Niterói, RJ, Brazil
e-mail: crvillela@globo.com

