
Discrete Applied Mathematics 274 (2020) 26–34

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

On the computational complexity of closest genome problems
Luís Felipe I. Cunha a,∗, Pedro Feijão b, Vinícius F. dos Santos c,
Luis Antonio B. Kowada d, Celina M.H. de Figueiredo a

a Universidade Federal do Rio de Janeiro, Brazil
b Simon Fraser University, Canada
c Universidade Federal de Minas Gerais, Brazil
d Universidade Federal Fluminense, Brazil

a r t i c l e i n f o

Article history:
Received 13 April 2017
Received in revised form 22 January 2019
Accepted 2 April 2019
Available online 27 April 2019

Keywords:
Closest problem
Single-cut-or-join
Breakpoint
Block-interchange

a b s t r a c t

Genome rearrangements are events where large blocks of DNA exchange places during
evolution. The analysis of these events is a promising tool for understanding evolutionary
genomics. Many pairwise rearrangement distances have been proposed, based on finding
the minimum number of rearrangement events to transform one genome into the other,
using some predefined operation. When more than two genomes are considered, we
have the more challenging problem of rearrangement-based phylogeny reconstruction.
One important problem is the Closest Genome Problem (CGP), that aims to find, for
a given distance notion, a genome that minimizes the maximum distance to any other,
which can be seen as finding a genome in the center of all others. The Hamming Closest
String Problem (Hamming-CSP) was already studied and settled to be NP-complete. In
this paper, we show that the CGP is NP-complete for well-known genome rearrangement
distances, such as the single-cut-or-join, the breakpoint and the block interchange.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Several genome rearrangement metrics, defined as minimum edit distance problems, are combinatorial challenges with
many applications in computational biology [16] and have received much attention in recent years. Among the studied
distances are the Cayley, reversal, transposition, block-interchange and breakpoint distances for the case where genomes
are represented as permutations [2,6,9]. Genomes have also other models, more suited for representing multichromosomal
genomes. Regarding this approach, the double-cut-and-join (DCJ) [10] and single-cut-or-join (SCJ) [8] distances are two
commonly used metrics.

When more than two genomes are given as input, a relevant problem is the Median Genome Problem, where we want
to find a solution genome that minimizes the sum of the distances between the solution and all others of the input. There
are many approaches regarding the problem of finding ancestral genomes. When considering metrics, the Breakpoint and
the DCJ median problems are NP-complete [10,15], but the SCJ median problem is polynomially solvable. Haghighi and
Sankoff [12] proved that regarding the breakpoint metric (they also conjectured that regarding the double-cut-and-join
metric), a tendency for medians is to fall on or to be close to one of the input orders, which contain no information for
the phylogeny reconstruction.

∗ Corresponding author.
E-mail addresses: lfignacio@cos.ufrj.br (L.F.I. Cunha), pfeijao@sfu.ca (P. Feijão), viniciussantos@dcc.ufmg.br (V.F. dos Santos), luis@ic.uff.br

(L.A.B. Kowada), celina@cos.ufrj.br (C.M.H. de Figueiredo).

https://doi.org/10.1016/j.dam.2019.04.002
0166-218X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dam.2019.04.002
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2019.04.002&domain=pdf
mailto:lfignacio@cos.ufrj.br
mailto:pfeijao@sfu.ca
mailto:viniciussantos@dcc.ufmg.br
mailto:luis@ic.uff.br
mailto:celina@cos.ufrj.br
https://doi.org/10.1016/j.dam.2019.04.002

L.F.I. Cunha, P. Feijão, V.F. dos Santos et al. / Discrete Applied Mathematics 274 (2020) 26–34 27

Since in some cases medians give no new information, an alternative problem is the Closest Genome Problem (CGP),
that aims to find a genome that minimizes the maximum distance to any other, which can be seen as finding a genome
in the center of all others, i.e. a genome corresponding to the radius of the input set.

Lanctot et al. [14] studied the CGP for strings regarding the Hamming distance, and settled that this problem is
NP-complete. Popov [17] studied a version on permutations regarding the Cayley metric, and showed that the Cayley-
CGP is NP-complete. To the best of our knowledge, the CGP has not been studied for other polynomially solvable distance
problems. We focus only on distance problems that are polynomially solvable, since if the distance problem is NP-complete
for a given metric M, then M-CGP is also NP-complete.

In this paper, we consider the Closest Genome Problem with respect to different genome models and rearrangement
metrics. For multichromosomal genomes, the SCJ distance is a simple model with the advantage of simplifying problems
that are NP-hard under other models, such as the genome median and small parsimony, for which a solution can be found
in polynomial time [8]. Somewhat surprisingly, we show that SCJ-CGP is an NP-complete problem. For the breakpoint and
block-interchange distances, which are well-known metrics where genomes are modeled as permutations, we show that
Breakpoint-CGP and the Block interchange-CGP are NP-complete.

This paper is organized as follows: in Section 2 we report the Hamming Closest String Problem, which is the basis
of our NP-completeness reductions, and the metrics we deal with in this paper; in Section 3 we prove NP-completeness,
where in Section 3.1 we prove that SCJ-CGP is NP-complete; in Section 3.2 we prove that Breakpoint-CGP is NP-complete
and in Section 3.3 we prove that Block-interchange-CGP is NP-complete; and finally in Section 4 we discuss some open
questions for further work about complexity and approximation algorithms on the closest and the median problems.

2. Preliminaries

Input genomes can be uni- or multichromosomal, and chromosomes might be linear or circular. To model multichro-
mosomal genomes, some definitions are needed. Let G = {1, . . . , n} be a set of genes, representing an oriented segment of
DNA, and let E =

⋃
i∈G{i

h, it} be the set of gene extremities, representing the head and tail of each gene. An adjacency is an
unoriented pair of extremities of a same gene or of distinct genes. A general genome, or simply a genome, is represented
by a set of adjacencies where the tail and head of each gene appear at most once. An extremity that is not connected
to any other is a telomere. For instance, for a gene set G = {1, 2, 3, 4}, A = {1h2t , 2h3h, 4h4t

} represents a genome,
composed of two chromosomes, one linear and one circular. Note that extremities 1t and 3t are telomeres and therefore
are unambiguously omitted from the genome representation.

Genome rearrangements are events where large blocks of DNA exchange places during evolution. For some genome
rearrangement models, we may consider genomes as strings or as permutations, which are particular strings, as we see
next.

An alphabet Σ is a non empty set of letters, and a string over Σ is a finite sequence of letters of Σ . The Hamming
distance of two strings of the same length s and σ denoted dH (s, σ) is defined as the number of mismatched positions
between s and σ . The Hamming distance of a string s of length m denoted dH (s) is the Hamming distance of s and ι = 0m.

A permutation of length n is a particular string with a unique occurrence of each letter, since it is a bijection from
the set {1, 2, . . . , n} onto itself π = [π(0)π (1)π (2) · · · π (n)π(n + 1)], such that π(0) = 0 and π(n + 1) = n + 1. The
operations we consider will never act on π(0) nor π(n + 1).

The union of the permutations α and β of lengths n and m, respectively, is the permutation π constructed by the
juxtaposition of α and β , π = [0 α(1) α(2) . . . α(n) β(1) + n β(2) + n . . . β(m) + n n + m + 1]. For instance the
permutation [0 1 2 3 4 7 6 5 8 9] is the union of [0 1 2 3 4 5] and [0 3 2 1 4 5].

Given a metric M and dM (p, π) the distance between permutations p and π with respect to the metric M , the
distance of a permutation π of length m denoted dM (π) is the distance between π and the identity permutation ι =

[0 1 2 · · · n n + 1].

Closest genome problem. The Metric-M Closest Genome Problem is defined as follows:

Metric-M Closest Genome Problem (M-CGP)
INPUT: Set of genomes {g1, g2, . . . , gℓ}, and a non-negative integer f .
QUESTION: Is there a genome σ such that maxi=1,...,ℓ dM (gi, σ) ≤ f ?

If there is a positive answer for M-CGP, then a solution of M-CGP is any genome σ that satisfies maxi=1,...,ℓ dM (gi, σ) ≤ f .
The CGP was considered through the version of strings with respect to the Hamming distance, it was proposed by

Lanctot et al. [14] as the closest string problem (CSP), defined by given a set of strings {s1, s2, . . . , sℓ} over an alphabet Σ of
length m each, and a non-negative integer f , one wants to find a string σ of length m such that maxi=1,...,ℓ dH (si, σ) ≤ f .

The CSP was proposed in the context of some biological problems, such as: discovering potential drug targets, creating
diagnostic probes, universal primers or unbiased consensus sequences. All these problems reduce to the task of finding
a pattern that, with some error, occurs in one set of strings (closest string problem). Lanctot et al. [14] also proved that
the Hamming-CSP is NP-complete for a binary alphabet.

Given a set of genomes (general genomes, strings or permutations), the Closest Genome Problem aims to find a
solution genome that minimizes the maximum distance between the solution and all other input genomes. The metric of
distances depends on the context of the problem.

28 L.F.I. Cunha, P. Feijão, V.F. dos Santos et al. / Discrete Applied Mathematics 274 (2020) 26–34

Metrics. In this work, we consider the distances of single-cut-or-join on general genomes, and of breakpoint and block-
interchange on permutations, for which these distance problems were proposed in the context of genome rearrangements.
Similarly to the Hamming distance on strings with respect to the CSP problem, which was motivated by applications in
bioinformatics, the metrics studied in the present paper are much studied by the bioinformatics community [6,8,9].

The single-cut-or-join is an operation that transforms one genome into another one by a cut or a join to transform a
uni- or multichromosomal genome into another one. A cut breaks a pair of consecutive elements, by breaking a linear
chromosome in two, or cutting a circular chromosome in a linear one. A join is the inverse operation of a cut, merging
two free extremities.

The breakpoint distance is the number of consecutive elements in one permutation that are not consecutive in another
one. Note that on the breakpoint distance we do not apply any operation to transform a permutation into another one.

The block-interchange operation transforms one permutation into another one by exchanging two blocks, and gener-
alizes the transposition operation (whose blocks are consecutive) and the Cayley operation (whose blocks are unitary).
The block-interchange distance of two permutations is the minimum number of block-interchanges to transform one
permutation into another one, and the block-interchange distance of a permutation π is the block-interchange distance
between π and ι.

Relationship between distances and between closest problems. Note that a block-interchange generalizes a transposition and
generalizes also a Cayley operation. Nevertheless, with respect to the distance problem, general operations do not imply
the same computational complexity of more particular operations. For instance, with respect to the block-interchange
distance, it can be computed in polynomial time [6], whereas the transposition distance is an NP-complete problem [4],
and the Cayley distance is a polynomial problem.

On the other hand, if a distance problem is NP-complete, then the closest problem for the same operation is also
NP-complete. Indeed, by considering the input set of permutations with two permutations π, ι such that π ̸= ι and we
ask for a permutation with distance for a metric M at most d for each, we can see the distance as the closest problem
with a particular instance. Since, by the triangular inequality, it is necessary that dM (π, ι) ≤ 2d.

Although the Transposition-CGP is NP-complete, if we consider some particular input sets then we can determine
a closest permutation in polynomial time. For instance, let us consider the toric equivalence, which is an equivalence
relation between permutations, where permutations in the same class have the same transposition distance [7]. Given a
permutation for which we know its transposition distance (let us say it is equal to d), hence we know the distances of
any other permutation and the distance of any pair of permutations in the same toric class. Therefore, if any d′

≥ d is
the input radius asked in the problem, then the identity permutation is a solution permutation. Another example is to
consider n ≤ 15, once we know the exact distance of any permutation as discussed in [7] (let us say d is the maximum
distance of any permutation). Therefore, if any d′

≥ d is chosen to be the radius in the CGP, then the identity permutation
is a solution.

We review next how to obtain in polynomial time the distances between general genomes, and between permutations
based on the breakpoints and on the reality and desire diagram.

The single-cut-or-join distance. The single-cut-or-join (SCJ) distance between two genomes A and B is the minimum number
of cuts and joins necessary to transform A in B where a cut breaks an adjacency and a join glues two separate extremities.
This distance can be calculated with dSCJ (A, B) = |A\B| + |B\A| [8].

The breakpoint distance. An adjacency in a permutation (resp. a reverse adjacency in a permutation) π with respect to δ is a
pair (a, e) of consecutive elements in π such that (a, e) (resp. the pair (e, a)) is also consecutive in δ. If a pair of consecutive
elements is neither an adjacency nor a reverse adjacency, then (a, e) is called a breakpoint, and we denote b(π, δ) the
number of breakpoints of π with respect to δ. Hence, the breakpoint distance between π and δ is dBP (π, δ) = b(π, δ).

The block-interchange distance. Bafna and Pevzner [2] proposed a useful graph, the reality and desire diagram, which
allowed non-trivial bounds on the transposition distance [2], and also provided, as established by Christie [6], the exact
block-interchange distance.

Given a permutation π of length n, the reality and desire diagram G(π) of π , is a multigraph G(π) = (V , R ∪ D), where
V = {0, −1, +1, −2, +2, . . . ,−n, +n, −(n + 1)}, each element of π corresponds to two vertices and we also include
the vertices labeled by 0 and −(n + 1), and the edges are partitioned into two sets: the reality edges R and the desire
edges D. The reality edges represent the adjacency between the elements on π , that is R = {(+π (i), −π (i + 1)) |i =

1, . . . , n − 1} ∪ {(0, −π (1)), (+π (n), −(n + 1))}; and the desire edges represent the adjacency between the elements on ι,
that is D = {(+i, −(i + 1)) |i = 0, . . . , n}. Fig. 1 illustrates the reality and desire diagram of a permutation.

As a direct consequence of the construction of this graph, every vertex in G(π) has degree 2, so G(π) can be partitioned
into disjoint cycles. We say that a cycle in π has length k, or that it is a k-cycle, if it has exactly k reality edges (or,
equivalently, k desire edges). Hence, the identity permutation of length n has n+1 cycles of length 1. We denote C(G(π))
the number of cycles in G(π).

After applying a block-interchange bℓ in a permutation π , the number of cycles C(G(π)) changes in such a way that:
C(G(πbℓ)) = C(G(π)) + x, such that x ∈ {−2, 0, 2}. The block-interchange bℓ is thus classified as an x-move for π .

Christie [6] proved for the block-interchange operation the existence of a 2-move for any permutation, which says that
the number of cycles yields the exact block-interchange distance:

L.F.I. Cunha, P. Feijão, V.F. dos Santos et al. / Discrete Applied Mathematics 274 (2020) 26–34 29

Fig. 1. The reality and desire diagram of the permutation [0 2 1 4 3 5 6 7 8 9 10 12 11 13], where bold edges are reality edges, and the others are the
desire edges.

Theorem 2.1 ([6]). The block-interchange distance of a permutation π of length n is dBI (π) =
(n+1)−C(G(π))

2 .

On the other hand, by allowing only the particular case of the transposition operation, a 2-move is not always possible
to be found. We say a transposition affects a cycle if the extremities of the two blocks of the transposition eliminate a
reality edge of a cycle and create another edge. This new edge may increase, decrease, or keep the number of cycles.

Bafna and Pevzner [2] showed conditions of a cycle for a transposition to be an x-move. If a transposition t is a
−2-move, then t affects three distinct cycles. However, if a transposition t is a 0-move or a 2-move, then t affects at
least two elements of the same cycle [2]. We shall see that, when considering the block-interchange operation for the
CGP, it is useful to apply 0-move transpositions.

An interesting transformation in a permutation is the reduction, since the permutation obtained after the trans-
formation preserves the block-interchange distance. The reduced permutation of π , denoted gl(π), is the permutation
whose reality and desire diagram G(gl(π)) is equal to G(π) without the cycles of length 1, and has its vertices relabeled
accordingly. For instance the reduced permutation corresponding to the permutation in Fig. 1 is [0 2 1 4 3 5 7 6 8].
Christie [6] proved an important equality.

Theorem 2.2 ([6]). The block-interchange distances of a permutation π and its reduced permutation gl(π) satisfy dBI (π) =

dBI (gl(π)).

3. NP-completeness for CGP

Next, we present reductions from Hamming-CSP to CGP. We apply transformations from a generic instance of
Hamming-CSP to particular instances of the M-CGP with respect to the single-cut-or-join, the breakpoint, and the block-
interchange metrics. In each one, we establish a relationship between the Hamming distance of binary strings and the
distance on the corresponding metric. We refer to Section 2 for definitions and properties of: Hamming distances between
two strings s and σ , dH (s, σ), and of a string s, dH (s); single-cut-or-join distance between two genomes A and B, dSCJ (A, B);
breakpoint distances between two permutations π and δ, dBP (π, δ), and of a permutation π , dBP (π); and block-interchange
distances between two permutations p and π , dBI (p, π), and of a permutation π , dBI (π).

3.1. Single-cut-or-join–CGP is NP-complete

For any string s of length m on Σ = {0, 1}, let g(s) represent a genome on the gene set G = {1, . . . ,m} obtained next
in Algorithm 1.

Algorithm 1: GenomeSCJ (s)
input : Binary string s of length m.
output: Genome g(s)

1 each occurrence of 0 in position k corresponds to the telomeres kh and kt .
2 each occurrence of 1 in position k corresponds to the adjacency khkt .

For instance, for s = 1011, we have that g(s) = {1h1t , 3h3t , 4h4t
} (2h and 2t are telomeres, omitted in the genome

set). Therefore, for any two strings p and r of length m, it follows that dH (p, r) = dSCJ (g(p), g(r)), since for each position
k where p and r are different, there is exactly one adjacency in (g(p)\g(r)) ∪ (g(r)\g(p)).

Lemma 3.1. Given a set of strings s1, s2, . . . , sℓ over alphabet Σ = {0, 1} of length m each, and a non-negative integer
d, there is a Hamming closest string σ of length m such that maxi=1,...,ℓ dH (si, σ) ≤ d if, and only if, there is a SCJ closest
genome π such that maxi=1,...,ℓ dSCJ (g(si), π) ≤ d.

30 L.F.I. Cunha, P. Feijão, V.F. dos Santos et al. / Discrete Applied Mathematics 274 (2020) 26–34

Fig. 2. Permutation βs = [0 1 2 3 4 6 5 7 8 10 9 11 12 13] where s = 011, obtained from Algorithm 2, with the breakpoint distance dBP (βs) = 4,
since the breakpoints are (4, 6), (5, 7), (8, 10) and (9, 11). The Hamming distance of s is dH (s) =

dBP (βs)
2 = 2.

Proof. (⇒) Since dH (p, r) = dSCJ (g(p), g(r)) for any two strings p and r of length m, it follows that the genome π = g(σ)
satisfies maxi=1,...,ℓ dSCJ (g(si), π) ≤ d.

(⇐) On the other hand, if there is a SCJ closest genome π with maximum distance d from all genomes in the set
{g(s1), . . . , g(sℓ)}, then let π ′ be the genome where we remove any adjacency from π that is not on the form khkt .

Clearly, dSCJ (g(si), π ′) ≤ dSCJ (g(si), π) for i = 1, . . . , ℓ, and π ′ is also a SCJ closest genome. Then, the string σ with a 1
on every position k where an adjacency khkt is present on π ′, and 0 otherwise, maxi=1,...,ℓ dH (si, σ) ≤ d, and is a Hamming
closest string with maximum distance d. □

Lemma 3.1 implies the following result.

Theorem 3.1. The Single-cut-or-join-CGP is NP-complete.

3.2. Breakpoint–CGP is NP-complete

Firstly, we apply Algorithm 2 that transforms an arbitrary binary string s of length m into a particular permutation βs
of length 4m.

Algorithm 2: PermutBP (s)
input : Binary string s of length m.
output: Permutation βs

1 each occurrence of 0 in position i corresponds to the elements 4i − 3, 4i − 2, 4i − 1 and 4i in positions 4i − 3,
4i − 2, 4i − 1, 4i, respectively.

2 each occurrence of 1 in position i corresponds to the elements 4i − 3, 4i − 2, 4i − 1 and 4i in positions 4i − 2,
4i − 3, 4i − 1, 4i, respectively.

Note that any permutation obtained in Algorithm 2 is constructed by successive unions of [0 1 2 3 4 5] and [0 2 1 3 4 5].
Fig. 2 illustrates the construction of a permutation for a given string with respect to Algorithm 2.

Next, we establish the following relationship between the Hamming distance of an input string and the Breakpoint
distance of its output permutation obtained from Algorithm 2.

Lemma 3.2. Given βs the permutation obtained from a binary string s by Algorithm 2, the Breakpoint distance of βs is
dBP (βs) = 2dH (s).

Proof. Each element 1 of the binary string yields an exchange between two consecutive elements, hence we are creating
exactly two breakpoints. □

Now, we show how a solution for the Hamming-CSP implies a solution for the Breakpoint-CPP, and vice versa.

Lemma 3.3. Given a set of k permutations obtained by Algorithm 2, there is a breakpoint closest permutation with max
distance equal to 2d if, and only if, there is a Hamming closest string with max distance equal to d.

Proof. (⇒) If β ′ can be built by Algorithm 2 for some input string s′, then, by Lemma 3.2, s′ is a closest string.
Otherwise (similar to Lemma 3.7), given any solution permutation we search from the left to the right to find the first

position where the corresponding element is different from the one intended to be by the algorithm. In each case, we
transform to a new permutation with a longer prefix agreeing with the algorithm output, without increasing the distance
to every input permutation. By repeating this process a string agreeing with the algorithm output can be found and, by
Lemma 3.2, a string with maximum distance equal to d can be constructed.

We consider each case of a position not agreeing with an element intended to be by Algorithm 2.

• position 4i − 3: We call a = 4i − 3 and b = 4i − 2 the possible elements that could be in this position.

– If a and b are not consecutive to the right of the position 4i − 3, then there is a universal breakpoint, i.e. a
breakpoint with respect to all input permutations, on the right of a or on the right of b. In this case we apply
a flipping from the position 4i − 3 until such universal breakpoint.

L.F.I. Cunha, P. Feijão, V.F. dos Santos et al. / Discrete Applied Mathematics 274 (2020) 26–34 31

– If a and b appear consecutive to the right of the position 4i − 3, then there is a universal breakpoint. If such
breakpoint is on the right of a (in the case of b, a) or on the right of b (in the case of a, b), then we apply a
flipping from the position 4i − 3 until such universal breakpoint.
From now on, we consider a and b consecutive, but there is a breakpoint on the left of such pair.

– If there is a universal breakpoint on the right of the pair a, b (or b, a), then we apply a transposition such that
the first block starts at position 4i − 3 and ends at the element before the pair a, b (or b, a), and the second
block ends at the universal breakpoint.

– If there is not a universal breakpoint on the right of the pair a, b (or b, a), then every consecutive pair after
the position 4i − 3 has difference at most 2, since any pair of consecutive elements is also a pair in an
input permutation, for which by Algorithm 2 such property holds. Let x, y, z be the elements in positions
4i − 3, 4i − 2, 4i − 1, respectively. Since the a, b (or b, a) are both less than x, hence the pair x − 1, x + 1
appears consecutive and on the right of a, b (or b, a), otherwise such difference would be greater than 2, since
x is in position 4i − 3.

∗ If the transposition putting x between x−1 and x+1 does not create any breakpoint, then we apply such
transposition. The resulted permutation is approximating to our intended solution, since the element 4i−3
is becoming closer to the intended position.

∗ If such transposition putting x between x − 1 and x + 1 creates a breakpoint with respect to some
input permutation, but it only happens when x, y is an adjacency in such input permutation. In this case,
y = x − 2 or y = x + 2. Without loss of generality, we assume y = x − 2. Since the difference between
two consecutive elements is at most 2, hence x− 3 is also on the right of a, b and is consecutive to x− 1.
So, we apply a transposition to put x between x − 1 and x + 1, and afterwards we apply a transposition
to put y = x − 2 between x − 3 and x − 1. Now, we prove that in this case the number of breakpoints
does not increase for no one permutation. For any input permutation, after the transpositions we have at
most 3 breakpoints: one on the left of z, another one on the left or the right of x, and another one on the
left or the right of y. Before the transpositions we have at least 3 breakpoints: by the construction, one
between x − 3 and x − 1 or between x − 1 and x + 1. Similarly, we have at least one breakpoint between
x and y, or between y and z (if yz is not a universal breakpoint, then z = x − 4, and for the same reason
x, x−2, x−4 cannot be all adjacencies). Moreover, we have a third breakpoint, on the left of x. Therefore,
for any input permutation, the number of breakpoints does not increase after these transpositions.

• position 4i− 2. If 4i− 3 is already correct, we apply a flipping from the element in position 4i− 2 until the element
4i−2, this operation always decreases the number of breakpoints, since the element 4i−3 is adjacent to the element
4i−2 with respect to all input permutations. If after such operation we have created a breakpoint after the position
where the 4i − 2 is, then there is no problem, since we are removing one breakpoint in putting 4i − 3 adjacent to
4i − 2. Hence, we are not increasing the number of breakpoints.

• position 4i − 1. If there is a universal breakpoint on the right of the element 4i − 1, then we apply a flipping and
the number of breakpoints does not increase. Otherwise, the element 4i is adjacent on the right of 4i − 1, hence
we apply a transposition putting the 4i− 1, 4i in the correct positions. In the worst case the number of breakpoints
is the same, since we are creating a breakpoint between the elements before 4i − 1 and after the element 4i, but
creating an adjacency between 4i − 2 and 4i − 1.

• position 4i. In this case we can apply a flipping from the position 4i until the position where the element 4i is. For
the same reason of the second case, the number of breakpoints is not increasing.

(⇐) Given a solution string s, we obtain the associated permutation βs given by Algorithm 2. By Lemma 3.2 we have
the solution s regarding the Hamming-CSP corresponding to the permutation βs with the value of max distance equal
to 2d. □

Lemma 3.3 implies the following result.

Theorem 3.2. The Breakpoint-CGP is NP-complete.

3.3. Block-interchange-CGP is NP-complete

Firstly, we apply Algorithm 3 that transforms an arbitrary binary string s of length m into a particular permutation λs
of length 2m.

Note that any permutation obtained in Algorithm 3 is constructed by successive unions of [0 1 2 3] and [0 2 1 3]. Fig. 3
illustrates the construction of a permutation for a given string with respect to Algorithm 3.

Lemma 3.4. Given a string s of length m and the permutation λs of length 2m obtained in Algorithm 3, then the reduced
permutation gl(λs) has length n′, where 2dH (s) ≤ n′

≤ 3dH (s) − 1.

32 L.F.I. Cunha, P. Feijão, V.F. dos Santos et al. / Discrete Applied Mathematics 274 (2020) 26–34

Algorithm 3: PermutBI (s)
input : Binary string s of length m
output: Permutation λs

1 each occurrence of 0 in position i corresponds to the elements 2i − 1 and 2i in positions 2i − 1 and 2i, respectively.
2 each occurrence of 1 in position i corresponds to the elements 2i − 1 and 2i in positions 2i and 2i − 1, respectively.

Fig. 3. Permutation λs = [0 2 1 4 3 5 6 7 8 9 10 12 11 13] obtained from Algorithm 3 – its reality and desire diagram is in Fig. 1 – where s = 110001,
with reduced permutation gl(λs) = [0 2 1 4 3 5 7 6 8], and number of cycles of its reality and desired diagram C(G(gl(λs))) = 2. The Hamming
distance of s is equal to the Block-interchange distance of λs .

Proof. If the string s is s = 1dH (s)0m−dH (s) (or s = 0m−dH (s)1dH (s)), then to obtain the reduced permutation of λs we remove
2(m − dH (s)) elements. Therefore, the associated permutation has length n′

= 2m − 2(m − dH (s)) = 2dH (s). On the other
hand, if s is s = (01)

m
2 (or s = (10)

m
2), then each adjacency 2i − 1, 2i is removed to obtain the reduced permutation,

excepted the first adjacency 1,2 (or the last one 2m − 1, 2m), for which both elements are removed. So, the length of
the reduced permutation is n′

= 2dH (s) + dH (s) − 1. Since these are the cases of maximum and minimum number of 0s
adjacent, hence they correspond to the minimum and maximum lengths of the associated permutations, respectively. □

Lemma 3.5. If λs is a permutation obtained in Algorithm 3 and gl(λs) its reduced permutation of length 2dH (s) + x, for
0 ≤ x ≤ dH (s) − 1, then C(G(gl(λs))) = x + 1.

Proof. There exist x contiguous sequences of bits 0 in s, and a sequence of bits 0 is between two contiguous sequences
of bits 1. It implies a cycle in the reality and desire diagram for each contiguous sequence of bits 1. □

Next, we establish the key equality between the Hamming distance of an input string and the block-interchange
distance of its output permutation obtained from Algorithm 3.

Lemma 3.6. Given λs the permutation obtained from a binary string s by Algorithm 3, the block-interchange distance of λs
is equal to the Hamming distance of s, dBI (λs) = dH (s).

Proof. Since dBI (λs) = dBI (gl(λs)), from Lemma 3.5 we have that dBI (gl(λs)) =
2dH (s)+x+1−(x+1)

2 , which implies dBI (λs) =

dH (s). □

Now, we show how a solution for the Hamming-CSP implies a solution for the block-interchange-CPP, and vice versa.

Lemma 3.7. Given a set of k permutations obtained by Algorithm 3, there is a block-interchange closest permutation with
max distance at most d if, and only if, there is a Hamming closest string with max distance equal to d.

Proof. (⇒) If λ′ can be built by Algorithm 3 for some input string s′, then, by Lemma 3.6, s′ is a closest string.
Otherwise, given a solution permutation, we search from the left to the right to find the first position where the

corresponding element is different from the one intended to be by the algorithm, which can be a position 2i − 1 or a
position 2i. In each case, we transform to a new permutation with a longer prefix agreeing with the algorithm output,
without increasing the distance to any input permutation.

Hence, we apply transpositions on the solution permutation to obtain a new one. To guarantee that the distance of
this new permutation and every one of the input is not increasing, we show in each case, the worst operation is a 0-move
with respect to every input permutation, since such transposition affects elements of either the same cycle in the reality
and desire diagram, or it creates new adjacencies.

By repeating this process, a string agreeing with the algorithm output can be found and, by Lemma 3.6, a string with
maximum distance equal to d can be constructed.

1. in position 2i − 1 there is a correct element, but in position 2i there is not the element 2i − 1 nor the element 2i,
either.

Given any solution permutation, the elements until the position 2i − 1 are correct, but an element a > 2i is in position
2i. Let a′ be an adjacency of a with respect to all input permutations. Let us assume without loss of generality i = 2.
Since if i > 2, then all elements between 1 and 2i − 2 are already before the position 2i − 1. Hence, we consider a
solution permutation [1 2 3 a . . . 4 . . .], such that it can be either: (i) [1 2 3 a . . . 4 . . . a′ . . .], or (ii) [1 2 3 a . . . a′ . . . 4 . . .].
Therefore, we compare this solution to any kind of input permutation.

L.F.I. Cunha, P. Feijão, V.F. dos Santos et al. / Discrete Applied Mathematics 274 (2020) 26–34 33

If the solution is (i), we obtain [1 2 3 a . . . 4 . . . a′ . . .] → [1 2 3 4 . . . a′ a . . .]. For each possible input permutation, we
justify below that the distance between the new permutation and each input does not increase.

• Case 1. If an input has the adjacency a, a′, then:
Subcase 1.1: [1 2 3 4 . . . a a′ . . .], we are creating one cycle of length 1, by creating the adjacency 3, 4. Hence, such
transposition is at least a 0-move;
Subcase 1.2: [1 2 4 3 . . . a a′ . . .], the elements a and a′ are in the same cycle. Hence, such transposition is at least a
0-move;
Subcase 1.3: [2 1 3 4 . . . a a′ . . .], we are creating one cycle of length 1, by creating the adjacency a, a′. Hence, such
transposition is at least a 0-move, similar the Subcase 1.1;
Subcase 1.4: [2 1 4 3 . . . a a′ . . .], the elements 0, 1, 2, 3, 4 are in the same cycle. Hence, such transposition is at least
a 0-move, since it affects the elements 3, 4.

• Case 2. If an input has the adjacency a′, a, then:
Subcase 2.1: [1 2 3 4 . . . a′ a . . .], we are creating two cycles of length 1, by creating the adjacencies 3, 4 and a′, a;
Subcase 2.2: [1 2 4 3 . . . a′ a . . .], we are creating one cycle of length 1, by creating the adjacency a′, a. Hence, such
transposition is at least a 0-move;
Subcase 2.3: [2 1 3 4 . . . a′ a . . .], we are creating one cycle of length 1, by creating the adjacency 3, 4. Hence, such
transposition is at least a 0-move, similar the Subcases 1.1 and 1.3;
Subcase 2.4: [2 1 4 3 . . . a′ a . . .], we are creating one cycle of length 1, by creating the adjacency a′, a. Hence, such
transposition is at least a 0-move.

If the solution is (ii), we obtain [1 2 3 a . . .4 . . . b c . . .] → [1 2 3 4 . . . b a . . .], for the pair b, c being a universal
breakpoint, i.e. a breakpoint with respect to all input permutations. Note the existence of such breakpoint, since the
element a is before the element 4 in the permutation and there is some place at the right of 4 where a should be. For
each possible input permutation we justify below that the distance between the new permutation and each input does
not increase. In Subcases 1.1, 2.1, 1.3, 2.3 we are creating one cycle of length 1, by the adjacency 3, 4. Hence, such
transposition is at least a 0-move; The remaining cases the transposition applied is between elements of same cycle.

2. in position 2i − 1 there is not the element 2i − 1 nor the element 2i, either.

In this case we assume the solution is [1 2 a . . . 3 . . . 4 . . .]. We consider the inputs with the adjacency 3, 4 or the
adjacency 4, 3, so we do not need to deal with the case of the solution [1 2 a . . . 4 . . . 3 . . .].

In all cases [1 2 4 3 . . .], [1 2 3 4 . . .], [2 1 4 3 . . .], and [2 1 3 4 . . .], the elements 2, 4 are in the same cycle. Hence, any
transposition affecting such elements that fix element 4 after 2 is at least a 0-move.

(⇐) Given a solution string s, we obtain the associated permutation λs given by Algorithm 3. By Lemma 3.6 we have the
solution s regarding the Hamming-CSP corresponding to the permutation λs with the same value of max distance d. □

Lemma 3.7 implies the following result.

Theorem 3.3. The Block-interchange-CGP is NP-complete.

4. Further work

This paper describes the complexity of the Closest Genome Problem with respect to well-known metrics. Table 1
summarizes the state of the art of the computational complexity of the distance, closest and median problems with
respect to seven well-known metrics. We find in the second column the complexity status for the closest problem
with respect to the metrics studied in this paper (single-cut-or-join, breakpoint and block-interchange), for the Cayley,
reversal, transposition, and for the double-cut-and-join (DCJ), which is another well-known metric studied in the context
of comparative genomics [10] closely related to the single-cut-or-join, but so far not considered with respect to the closest
problem.

Despite the hardness to decide the CGP with respect to the metrics shown in the present paper, some interesting
questions arise.

How to improve the 2-approximation algorithm that computes all pairwise distances? By the triangular inequality, a
necessary condition for a string to be the center with radius at most d is that the distance of any pair in the input string set
must be at most 2d. Hence, if such condition is true for a given input string set, then any string of the input is a solution
with approximation ratio 2 of an optimal solution. Since the two considered metrics admit polynomial algorithms to
compute the distances, one question would be to lower the approximation ratio.

34 L.F.I. Cunha, P. Feijão, V.F. dos Santos et al. / Discrete Applied Mathematics 274 (2020) 26–34

Table 1
Computational complexity of the distance, closest and median problems. High-
lighted cells are the contributions in the present paper. We conjecture that Closest
Problem is NP-complete for DCJ and Reversal (signed) distances.

What can be further said about the kendall-τ median problem? A related problem is the Median Problem, where we
ask for the solution string/permutation that minimizes the sum of the distances between the solution and the input
string/permutation set. The Hamming Median String Problem is a polynomial problem [11], but regarding permutations
the breakpoint [15], transposition [1], and reversal [5] Median Permutation Problems are NP-complete. For the DCJ,
Tannier et al. [19] proved that DCJ Median problem is NP-complete, and Feijão and Meidanis [8] proved that the SCJ
Median problem is polynomial, as described in Table 1.

The Kendall-τ operation, also known as the bubble sort, is an exchange between two consecutive elements in a
permutation. Hence, the Block-interchange, as well as the Transposition and the Cayley, are all generalizations of the
Kendall-τ operation. The Kendall-τ Median problem is known to be NP-complete, but its complexity is open when the
input set has three permutations [3].

Note that the relationship between the closest and the median problems often appears in classical combinatorial
optimization problems. The closest problem is a min–max problem and the median problem is a min-sum problem. For
instance, in graph theory, given two sets of vertices, there are the min–max disjoint path and the min-sum disjoint path
problems. These path problems were considered in several papers, where they are polynomial or NP-complete, according
to distinct classes of graphs [13,18]. Hence, it is interesting to investigate and contrast the computational complexity of
the closest and the median problems for several metrics of distances.

Acknowledgments

The authors thank the anonymous referees for the diligent reading and suggestions. This study was financed in part
by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001, by the Fundação
de Amparo à Pesquisa do Estado do Rio de Janeiro — Brasil (FAPERJ), and by Conselho Nacional de Desenvolvimento Científico
e Tecnológico — Brasil (CNPq).

References

[1] M. Bader, The transposition median problem is NP-complete, Theoret. Comput. Sci. 412 (2011) 1099–1110.
[2] V. Bafna, P.A. Pevzner, Sorting by transpositions, SIAM J. Discrete Math. 11 (1998) 224–240.
[3] G. Blin, M. Crochemore, S. Hamel, S. Vialette, Medians of an odd number of permutations, Pure Math. Appl. 21 (2) (2010) 161–175.
[4] L. Bulteau, G. Fertin, I. Rusu, Sorting by transpositions is difficult, SIAM J. Discrete Math. 26 (3) (2012) 1148–1180.
[5] A. Caprara, The reversal median problem, INFORMS J. Comput. 15 (2003) 93–113.
[6] D.A. Christie, Sorting permutations by block-interchange, Inform. Process. Lett. 60 (1996) 165–169.
[7] L.F.I. Cunha, L.A.B. Kowada, R.A. Hausen, C.M.H. Figueiredo, Advancing the transposition distance and the diameter through lonely permutations,

SIAM. J. Discrete Math. 27 (4) (2013) 1682–1709.
[8] P. Feijão, J. Meidanis, SCJ: a breakpoint-like distance that simplifies several rearrangement problems, IEEE/ACM Trans. Comput. Biol. Bioinf. 8

(1318) (2011).
[9] G. Fertin, A. Labarre, I. Rusu, E. Tannier, S. Vialette, Combinatorics of Genome Rearrangements, The MIT Press, 2009.

[10] R. Friedberg, A.E. Darling, S. Yancopoulos, Genome rearrangement by the double cut and join operation, Methods Mol. Bio. 285 (452) (2008)
385.

[11] J. Gramm, R. Niedermeier, P. Rossmanith, Fixed-parameter algorithms for CLOSEST STRING and related problems, Algorithmica 37 (2003) 25–42.
[12] M. Haghighi, D. Sankoff, Medians seek the corners, and other conjectures, BMC Bioinformatics 13 (Suppl 19) (2012) S5.
[13] Y. Kobayashi, C. Sommer, On shortest disjoint paths in planar graphs, Discrete Optim. 7 (2010) 234–245.
[14] J.K. Lanctot, M. Li, B. Ma, S. Wang, L. Zhang, Distinguishing string selection problems, Inf. Comput. 185 (1) (2003) 41–55.
[15] I. Pe’er, R. Shamir, The Median Problems for Breakpoints are NP-Complete, Technical report TR98-071, The Electronic Colloquium on

Computational Complexity, 1998.
[16] P.A. Pevzner, Computational Molecular Biology: An Algorithmic Approach, The MIT Press, 2000.
[17] V.Y. Popov, Multiple genome rearrangement by swaps and by element duplications, Theoret. Comput. Sci. 385 (2007) 115–126.
[18] N. Robertson, P.D. Seymour, An outline of a disjoint paths algorithm, in: Paths, Flows, and VLSI-Layout, Springer-Verlag, 1990, pp. 267–292.
[19] E. Tannier, C. Zheng, D. Sankoff, Multichromosomal median and halving problems under different genomic distances, BMC Bioinformatics 10

(2009) 120.

http://refhub.elsevier.com/S0166-218X(19)30205-7/sb1
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb2
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb3
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb4
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb5
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb6
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb7
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb7
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb7
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb8
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb8
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb8
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb9
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb10
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb10
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb10
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb11
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb12
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb13
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb14
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb15
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb15
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb15
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb16
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb17
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb18
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb19
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb19
http://refhub.elsevier.com/S0166-218X(19)30205-7/sb19

	On the computational complexity of closest genome problems
	Introduction
	Preliminaries
	NP-completeness for CGP
	Single-cut-or-join–CGP is NP-complete
	Breakpoint–CGP is NP-complete
	Block-interchange-CGP is NP-complete

	Further work
	Acknowledgments
	References

