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a b s t r a c t

The notion of zig-zag number was introduced as an attempt to provide a unified
algorithmic framework for directed graphs. Nevertheless, little was known about the
complexity of computing this directed graph invariant. We prove that deciding whether
a directed graph has zig-zag number at most k is in NP for each fixed k ≥ 0. Although for
most of the natural decision problems this is an almost trivial result, settling k-zig-zag
number in NP is surprisingly difficult. In addition, we prove that 2-zig-zag number is
already an NP-hard problem.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Structural graph parameters, such as treewidth, cutwidth and cliquewidth, have been crucial in the development
f parameterized complexity theory. Indeed, many problems that are hard on general graphs become tractable when
arameterized by such parameters [5,6]. However, one of the limitations of these parameters is the fact that they do not
ake the direction of edges into account. For instance, directed acyclic graphs (DAGs) in general have unbounded width
ith respect to any of the parameters mentioned above. Nevertheless, certain problems can be solved efficiently on DAGs
y using straightforward algorithms. For instance, Directed Hamiltonian path can be solved in linear time on DAGs with

a depth-first search algorithm.
Building on this observation, Johnson, Robertson, Seymour and Thomas [12] initiated a quest for the development of

width measures that explicitly take the direction of edges into consideration. In particular, they defined in [12] the notion
of directed treewidth and showed that some linkage problems that are NP-hard on general directed graphs can be solved
in polynomial time on directed graphs of constant directed treewidth. Additionally, a directed analog of the notion of
pathwidth was also defined by Reed, Thomas, and Seymour around the same time (see for instance cf. [1]).

The introduction of directed treewidth and directed pathwidth motivated the development of many other width
measures for directed graphs that focus on distinct algorithmic or structural properties [2,3,7,9,10,15,16]. A general
algorithmic framework for directed width measures was developed in [13] with the introduction of the notion of zig-zag
number of a directed graph, and subsequently generalized in [14] with the definition of the notion of tree-zig-zag number
of a directed graph.
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It was shown in [13] that if G is a class of directed graphs expressible by a monadic-second order logic formula ϕ and
here is a positive integer p such that each directed graph in G can be cast as a union of p directed paths, then, given a
ecomposition of a directed graph G of zig-zag number at most k, one can count in time f (ϕ, p, k) · |G|

O(p·k) the number of
subgraphs of G isomorphic to some member of G, for some computable function f . Since directed path decompositions of
width d can be efficiently converted into decompositions of zig-zag number O(d), the counting problem described above
can also be solved in time f (ϕ, p, d) · |G|

O(p·d) on directed graphs of directed pathwidth at most d. These results were
subsequently generalized in [14] to their respective counterparts for directed graphs of tree-zig-zag number at most k
and of directed treewidth at most d. The results in [13] and in [14] were the first algorithmic metatheorems relating the
monadic-second order logic of graphs to directed pathwidth and directed treewidth, respectively.

In a seminal paper analyzing the algorithmic potential of directed width measures, Ganian et al. [8] defined a width
measure to be algorithmically useful if it satisfies the following properties: (1) every graph problem expressible in MSO1
logic admits an XP-time algorithm when parameterized by the measure and (2) for each constant k, the class of graphs of
width at most k is closed under taking directed topological minors. Interestingly, it was shown in [8] that, under standard
complexity theoretic assumptions, any width measure satisfying properties (1) and (2) behaves essentially in the same
way as the usual notion of undirected treewidth (see Theorems 6.6 and 6.7 of [8] for precise statements). We note that any
directed width measure that is constant on DAGs, including zig-zag number, tree-zig-zag number and most of the width
measures defined so far, fail to satisfy property (1) since 3-coloring is MSO1 definable and NP-complete on DAGs. Despite
of this fact, zig-zag number and tree-zig-zag number have been proved to be algorithmically relevant, by establishing
through the metatheorems presented in [13,14] a unified algorithmic framework to solve problems on directed graphs
of low directed pathwidth and of low directed treewidth, respectively. Another interesting aspect of zig-zag number and
tree-zig-zag number is the fact that they can be regarded as graph invariants with challenging theoretical open problems,
from the perspectives of computational complexity and graph theory.

In fact, several complexity questions with respect to computing zig-zag number and tree-zig-zag number of a directed
graph remain open. In particular, the computational complexity of the problem of determining whether a directed graph
has zig-zag number at most k, even for constant k, has remained open since the introduction of this notion in [13].

We show in Section 3 that determining whether a directed graph G has zig-zag number at most k can be solved non-
deterministically in time |G|

O(k), implying that this problem lies in NP for each fixed k. While the respective statement
s almost trivial with respect to other directed width measures, such as directed pathwidth, which is known to be in
[18], our proof settling k-zig-zag number in NP turned out to be an interesting quest. This is due to the fact that the
efinition of zig-zag number, which we formally present in Section 2, involves the alternation of an existential and a
niversal quantifiers. Thus, a naive application of the definition would only lead to a Σ P

2-upper bound for the problem.
To circumvent this, and settle the problem in NP, our proof may be regarded as a way of redefining the property of a
directed graph having zig-zag number at most k in a purely existential fashion.

On the other hand, through a polynomial-time reduction from Positive not all equal 3SAT, we prove in Section 4
that deciding whether a directed graph has zig-zag number at most 2 is an NP-hard problem. It is worth noting that
this intractability result does not affect the applicability of the algorithmic metatheorem presented in [13], since for each
k ∈ N, directed path decompositions of width k can be converted efficiently into linear orderings of zig-zag number
O(k) [13], and directed path-decompositions of width k, whenever exist, can be constructed in time nO(k) [18].

Besides these proposed results, we analyze in Section 5 how zig-zag number and directed treewidth are related to
each other. We prove that there are directed graphs of constant directed treewidth but unbounded zig-zag number. As
a consequence, with the results of [14], we obtain that the family of directed graphs of constant tree-zig-zag number is
strictly richer than the family of directed graphs of constant zig-zag number.

2. Preliminaries

A directed simple graph (or, simply directed graph) is a pair G = (V , E) comprising a non-empty vertex set V and an
edge set E ⊆ {(u, v) : (u, v) ∈ V × V , u ̸= v}. In what follows, we may write n or |G| to denote the number of vertices of
G, and we may write V (G) and E(G) to refer to the vertex set and to the edge set of G, respectively.

For each positive integer n, we let [n] .
= {1, 2, . . . , n}. Let G be a directed graph on n vertices. For each bijection

π : V (G) → [n], we let <π⊆ V (G) × V (G) be the linear order associated with π such that, for each u, v ∈ V (G), u <π v if
and only if π (u) < π (v). Analogously, we let >π⊆ V (G)×V (G) be the linear order such that, for each u, v ∈ V (G), u >π v
if and only if π (u) > π (v). Let X, Y ⊆ V (G) be two non-empty sets. We write X <π Y to denote that u <π v for each

∈ X and each v ∈ Y . We define X >π Y similarly. Moreover, for any non-empty set X ⊆ V (G), we write minπ X to
enote the unique vertex u ∈ X such that {u} <π X \ {u}. We define maxπ X similarly.

The zig-zag number of a directed graph. Let n be a positive integer, G be a directed graph on n vertices and π : V (G) →

[n] be a bijection. For simplicity, assume that V (G) = {u1, . . . , un} and, for each ui, uj ∈ V (G), i < j if and only if ui <π uj.
For a proper subset X ⊂ V (G), we let EG(X) denote the subset of edges of G with one endpoint in X and another

ndpoint in V (G) \ X . An edge cut (or simply cut) of G is defined as a subset S ⊆ E(G) such that, for some X ⊂ V (G),
= EG(X). For each i ∈ [n−1], we let SG(π, i)

.
= EG({u1, . . . , ui}) be the ith cut of G with respect to π . Then, the cutwidth of

with respect to π is defined as cw(G, π ) .= maxi∈[n−1]|SG(π, i)|, and the cutwidth of G is defined as the minimum cw(G, π )
ver all bijections π : V (G) → [n].
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Fig. 1. Directed graph G, bijection π : V (G) → [|G|], where i < j iff ui <π uj , and directed paths P1 and P2 (in bold), such that zn(G, π, P1) = 1 and
zn(G, π, P2) = 2, respectively.

Let P be a directed path of G. We let zn(G, π, P) be the maximum number of edges of P that are part of the cut SG(π, i),
where the maximum is taken over all i ∈ [n − 1]. More formally,

zn(G, π, P) .= max
i∈[n−1]

|E(P) ∩ SG(π, i)|.

Then, we let zn(G, π ) be the maximum zn(G, π, P) over all directed paths P of G. Finally, we define the zig-zag number of
G, denoted by zn(G), as the minimum zn(G, π ) over all bijections π : V (G) → [n].

Fig. 1 exemplifies a directed graph G and a bijection π : V (G) → [|G|] such that zn(G, π ) = 2. In fact, one can verify
that zn(G) = zn(G, π ) = 2.

It is straightforward from the definition of zig-zag number that a directed graph has zig-zag number 0 if and only if it
does not contain any edge. Moreover, one can verify that every directed acyclic graph with at least one edge has zig-zag
number 1. Indeed, it is known that a directed graph G is directed acyclic if and only if it admits a topological ordering, i.e.
linear order <π such that u <π v for each (u, v) ∈ E(G). Thus, one can verify that, if G is a directed acyclic graph and π

corresponds to a topological ordering of G, then zn(G, π ) = 1. In other words, graphs of zig-zag number at least 2 must
contain directed cycles. On the other hand, every directed graph G with a directed cycle of length at least 3 necessarily
has zig-zag number greater than or equal to 2. Indeed, in this case, for each bijection π : V (G) → [|G|], there always exist
three distinct vertices a, b, c ∈ V (G) such that ⟨a, b, c⟩ is a directed path of G, where a <π b and c <π b. Intuitively, the
zig-zag number of a directed graph measures how much its directed cycles are nested.

Next, we formally define the Zig-zag number problem.

Input: A directed graph G and a non-negative integer k.
Question: Is zn(G) ≤ k? In other words, does there exist a bijection π : V (G) → [|G|] such that, for every

directed path P of G,

zn(G, π, P) = max
i∈[|G|−1]

|E(P) ∩ SG(π, i)| ≤ k?

Zig-zag number

In particular, for each fixed non-negative integer k, we define k-zig-zag number as the decision problem that, given a
irected graph G, asks whether zn(G) ≤ k. More formally:

Input: A directed graph G.
Question: Is zn(G) ≤ k? In other words, does there exist a bijection π : V (G) → [|G|] such that, for every

directed path P of G,

zn(G, π, P) = max
i∈[|G|−1]

|E(P) ∩ SG(π, i)| ≤ k?

k-zig-zag number

3. NP-membership for fixed k

In this section, we prove that k-zig-zag number is in NP for each fixed k. We remark that a naive application of the
definition of zig-zag number of a directed graph naturally leads to a Σ P

2-upper bound. To circumvent this and settle
k-zig-zag number in NP, we show how to replace the inner universal quantifier, which iterates over all directed paths,
with an XP-time deterministic computation corresponding to a guessed linear order of the vertices of the input graph
and the integer k. More specifically, we prove the following theorem.

Theorem 1. Let G be a directed graph and k be a non-negative integer. One can non-deterministically decide in time |G|
O(k)

whether zn(G) ≤ k.

In order to prove Theorem 1, we reduce the problem of deciding whether zn(G, π ) ≥ k + 1, for a guessed bijection
π : V (G) → [|G|], to the Reachability problem in a suitably defined directed acyclic graph, denoted by DG(π, k), which we
call compatibility graph of the triple (G, π, k). The formal definition of such a graph is properly given later on. Next, we
describe how this section is organized.
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In Section 3.1, we define the concept of compatible subcut sequence of a directed graph G with respect to a bijection
: V (G) → [|G|]. Based on this concept, we provide a necessary and sufficient condition for zn(G, π ) ≥ k + 1.
onsidering such a condition, we formally define in Section 3.2 the notion of compatibility graph and, then, we introduce
characterization relating the existence of the compatible subcut sequences of interest to the existence of directed paths
ith |G| − 1 vertices in the compatibility graph of (G, π, k). The proof of this characterization is presented in Section 3.3.

.1. Compatible subcut sequence

Let G be a directed graph on n vertices and π : V (G) → [n] be a bijection. For simplicity, assume throughout this section
hat V (G) = {u1, . . . , un} and, for each ui, uj ∈ V (G), i < j if and only if ui <π uj.

The cut sequence of G with respect to π is defined as the sequence

γG,π
.
= ⟨SG(π, 1), . . . , SG(π, n − 1)⟩.

or each i, j ∈ [n − 1], with i < j, and each two subcuts S ′

i ⊆ SG(π, i) and S ′

j ⊆ SG(π, j), we say that S ′

i is compatible with
′

j , and we denote this fact by S ′

i ≺G,π S ′

j , if for each e = (u, v) ∈ E(G) the two conditions below are observed.

(1) If e ∈ S ′

i , and either π (u) > j or π (v) > j, then e ∈ S ′

j .
(2) If e ∈ SG(π, i) \ S ′

i , then e ̸∈ S ′

j .

ntuitively, condition (1) says that, if e belongs to the subcut S ′

i and either the order of u or the order of v, with respect
to π , is greater than j, then e must belong to the subcut S ′

j . On the other hand, condition (2) says that if e belongs to the
cut SG(π, i) but does not belong to the subcut S ′

i , then e cannot belong to the subcut S ′

j .
A compatible subcut sequence of γG,π is a sequence of subcuts

γ ′
= ⟨S ′

1, . . . , S
′

n−1⟩

such that S ′

i ⊆ SG(π, i) for each i ∈ [n − 1], and S ′

j ≺G,π S ′

j+1 for each j ∈ [n − 2]. A neat idea behind the definition of
compatible subcut sequence is to focus on neighboring subcuts S ′

j and S ′

j+1 for each j ∈ [n− 2]. We let Γ (γG,π ) be the set
of all compatible subcut sequences of γG,π .

The next proposition establishes that the compatibility conditions (1) and (2) described above are sufficient to ensure
that, if S ′

i and S ′

j are two subcuts in a same compatible subcut sequence, then there do not exist any inconsistency with
respect to the edges that belong to S ′

i and to S ′

j . More specifically, provided that S ′

i and S ′

j are two subcuts in a same
compatible subcut sequence, for any edge e belonging simultaneously to the cuts SG(π, i) and SG(π, j), we have that e
belongs to S ′

i if and only if it belongs to S ′

j .

Proposition 1. Let G be a directed graph, π : V (G) → [|G|] be a bijection and γ ′
= ⟨S ′

1, . . . , S
′

|G|−1⟩ ∈ Γ (γG,π ). For each edge
e ∈ E(G) and each i ∈ [|G| − 1], if e ∈ SG(π, i) \ S ′

i , then e ̸∈ S ′

j for any j ∈ [|G| − 1].

Proof. Let i, j ∈ [|G| − 1], with i ̸= j, and e = (u, v) be an edge in SG(π, i). The proof is split into two cases.
First, assume that i < j. Note that i < |G| − 1, otherwise j < i. Moreover, we have by hypothesis that S ′

l ≺G,π S ′

l+1 for
each l ∈ {i, . . . , |G| − 2}. Thus, if e ∈ SG(π, l)\S ′

l , then e ̸∈ S ′

l+1 for each l ∈ {i, . . . , |G| − 2}. This inductively implies that, if
e ∈ SG(π, i) \ S ′

i , then either e ̸∈ SG(π, l) or e ∈ SG(π, l) \ S ′

l for each l ∈ {i + 1, . . . , |G| − 1}. In particular, if e ∈ SG(π, i) \ S ′

i ,
then e ̸∈ S ′

j .
Now, assume that i > j. We prove that, if e ∈ S ′

j , then e ∈ S ′

i . Thus, additionally assume that e ∈ S ′

j . Since e ∈ SG(π, j)
and e ∈ SG(π, i), either π (u) > l or π (v) > l for each l ∈ {j, . . . , i}. This and the hypothesis that S ′

l ≺G,π S ′

l+1 imply that,
if e ∈ S ′

l , then e ∈ S ′

l+1 for each l ∈ {j, . . . , i − 1}. Therefore, since e ∈ S ′

j , we inductively obtain that e ∈ S ′

l for each
l ∈ {j, . . . , i}. In particular, e ∈ S ′

i . □

Let γ ′
= ⟨S ′

1, . . . , S
′

n−1⟩ be a compatible subcut sequence in Γ (γG,π ). The width of γ ′ is defined as

ω(γ ′) .= max
i∈[n−1]

|S ′

i |.

If E ′
=

⋃
i∈[n−1] S

′

i ̸= ∅, then we define G[γ ′
]
.
= G[E ′

] as the directed graph induced by E ′. In particular, we remark that
γG,π is a compatible subcut sequence itself of width cw(G, π ) and that G[γG,π ] consists in the directed graph obtained
from G by removing all of its isolated vertices.

The next lemma states that deciding whether zn(G, π ) ≥ k+1 is equivalent to deciding whether there is a compatible
subcut sequence of γG,π of width at least k + 1, whose associated directed graph is a directed path.

Lemma 1. Let G be a directed graph, π : V (G) → [|G|] be a bijection and k be a non-negative integer. Then, zn(G, π ) ≥ k+ 1
if and only if there is a compatible subcut sequence γ ′

= ⟨S ′

1, . . . , S
′

|G|−1⟩ ∈ Γ (γG,π ) such that ω(γ ′) ≥ k + 1 and G[γ ′
] is a

directed path.
89
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Fig. 2. A compatibility graph.

roof. First, suppose that zn(G, π ) ≥ k + 1, and let P be a directed path of G such that zn(G, π, P) ≥ k + 1. Consider
he sequence γ ′

= ⟨S ′

1, . . . , S
′

|G|−1⟩ of subcuts such that S ′

i = E(P) ∩ SG(π, i) for each i ∈ [|G| − 1]. We prove that γ ′ is
compatible subcut sequence of γG,π . In other words, we prove that S ′

i ≺G,π S ′

i+1 for each i ∈ [|G| − 2]. Note that, if for
ome i ∈ [|G| − 2] there exists an edge e ∈ SG(π, i) \ S ′

i , then e ∈ E(G) \ E(P) and, consequently, e ̸∈ S ′

i+1. Now, suppose
hat for some i ∈ [|G| − 2] there exists an edge e = (u, v) ∈ S ′

i such that either π (u) > i + 1 or π (v) > i + 1. Clearly,
e ∈ E(P). Moreover, note that e ∈ SG(π, i + 1). Thus, e ∈ S ′

i+1, otherwise e ∈ SG(π, i + 1) \ S ′

i+1, which would imply that
e ∈ E(G) \ E(P). Therefore, γ ′ is indeed a compatible subcut sequence of γG,π . Additionally, one can straightforwardly
verify that ω(γ ′) ≥ k + 1 and G[γ ′

] is a directed path.
Conversely, suppose that there exists a compatible subcut sequence γ ′

= ⟨S ′

1, . . . , S
′

|G|−1⟩ of γG,π such that ω(γ ′) ≥ k+1
and G[γ ′

] is a directed path. Thus, there exists i ∈ [|G| − 1] such that |S ′

i | ≥ k + 1. As a result, if P = G[γ ′
], then

zn(G, π, P) ≥ |S ′

i | ≥ k + 1. Therefore, zn(G, π ) ≥ zn(G, π, P) ≥ k + 1. □

3.2. Compatibility graph

In this section, we define the notion of compatibility graph. Intuitively, each directed path with |G| − 1 vertices of the
compatibility graph DG(π, k) corresponds to a compatible subcut sequence γ ′ of γG,π satisfying the conditions described
in Lemma 1. More specifically, the vertices of DG(π, k) consist in special tuples which, along with the directed edges
between them, define a dynamic programming table. This table stores all the information needed to guarantee that, if
there is a directed path in DG(π, k) with |G| − 1 vertices, then there exists a compatible subcut sequence γ ′ of γG,π such
that ω(γ ′) ≥ k + 1.

In order to capture the above property, we partition the vertex set of DG(π, k) into |G|−1 distinct levels, such that each
level i ∈ [|G| − 1] is associated with the cut SG(π, i) and there is a directed edge in DG(π, k) from a vertex u to a vertex v
nly if u belongs to a level i and v belongs to the level i + 1, and some additional constraints (described in Section 3.2.2)
re satisfied. The vertices in the level i = 1 are called initial, the vertices in a level i ∈ [|G| − 1] \ {1, |G| − 1} are called

intermediary, and the vertices in the level i = |G| − 1 are called final. We note that, by definition, the initial vertices of
DG(π, k) have in-degree 0 and the final vertices of DG(π, k) have out-degree 0. Fig. 2 illustrates the partitioning of the
vertex set of the compatibility graph DG(π, k) into these |G| − 1 distinct levels.

One can alternatively regard DG(π, k) as an acyclic finite automaton — with transition set defined by the adjacency
relation described in Section 3.2.2. From this perspective, the initial vertices represent the initial states of the automaton
and the final vertices represent the final states of the automaton.

The following immediate observation provides the basis for the definition of compatibility graph.

Observation 1. A directed graph P is a directed path if and only if it satisfies the following four conditions:

DP1) P has exactly one vertex, called source vertex, with in-degree 0 and out-degree 1;
DP2) P has exactly one vertex, called target vertex, with in-degree 1 and out-degree 0;
DP3) All the other vertices of P have in-degree 1 and out-degree 1;
DP4) P is weakly connected.

In particular, for a compatible subcut sequence γ ′ of γG,π , we have that G[γ ′
] is a directed path if and only if it satisfies

Conditions (DP1)–(DP4). Based on that, and aiming at devising a dynamic programming method that determines whether
there exists a compatible subcut sequence γ ′ such that G[γ ′

] is a directed path and that, more generally, satisfies the
conditions described in Lemma 1, we define the set BG(π, k). This set consists of all tuples of the form

ui =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)
,

where i ∈ [n − 1], S ′

i is a subcut of SG(π, i) with cardinality at most k + 1, Si is either an empty set or a partition of S ′

i ,
φi, ϕi, τi ∈ {0, 1, 2} are ternary flags and ψi ∈ {0, 1} is a boolean flag. We remark that, for each i ∈ [n − 1], there are at
most nO(k) distinct tuples u ∈ B (π, k). Indeed, for each i ∈ [n− 1], the cut S (π, i) has at most 2i(n− i) ≤ n2/2 directed
i G G
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Fig. 3. Example of a compatible subcut sequence: γ ′
= ⟨S ′

1, . . . , S
′

11⟩, where S ′

1 = ∅, S ′

2 = {e1}, S ′

3 = {e1, e2, e3}, S ′

4 = {e1, e2, e3, e4, e5}, S ′

5 = {e1, e2, e5},
S ′

6 = {e1, e2}, S ′

7 = {e1, e2, e6}, S ′

8 = {e6}, S ′

9 = ∅, S ′

10 = ∅, and S ′

11 = {e7}.

edges, which is the maximum possible number of directed edges between the vertices belonging to {u1, . . . , ui} and the
vertices belonging to {ui+1, . . . , un}. Thus, SG(π, i) has at most

(n2/2
k+1

)
= O(n2k+2) distinct subcuts S ′

i of cardinality at most
k + 1, and each such a subcut S ′

i admits at most (k + 1)O(k) distinct partitions.
Let i ∈ [n − 1] and pi =

(
1, S ′

1, φ1, ϕ1, S1, τ1, ψ1
)
, . . . ,

(
i, S ′

i , φi, ϕi, Si, τi, ψi
)

be a sequence of tuples, such that S ′

j is
compatible with S ′

j+1 for each j ∈ [i − 1]. Then, let Hi be the subgraph of G with vertex set V (Hi) = {u1, . . . , ui} ∪ Xi and
edge set E(Hi) = S ′

1 ∪ · · · ∪ S ′

i , where Xi denotes the set of endpoints of the edges in S ′

1 ∪ · · · ∪ S ′

i . Note that Hi may contain
isolated vertices.

Intuitively, the ternary flag φi (the ternary flag ϕi, resp.) informs whether there exist zero, one, or more than one
vertices from {u1, . . . , ui} that are source vertices (target vertices, resp.) of Hi.

The partition Si represents the set of all non-trivial weakly connected components of Hi, restricted to the subcut S ′

i , that
are defined by only taking into account the vertices from {u1, . . . , ui}. In other words, two edges e, e′

∈ S ′

i belong to a
same part of Si if and only if there exists an undirected path of Hi between an endpoint of e and an endpoint of e′ that
only uses vertices from {u1, . . . , ui}. For instance, consider the compatible subcut sequence γ ′ illustrated in Fig. 3. In this
example, S1 = ∅, S2 = {{e1}}, S3 = {{e1} , {e2, e3}}, S4 = {{e1} , {e2, e3} , {e4, e5}}, S5 = {{e1} , {e2, e5}}, S6 = {{e1} , {e2}},
7 = {{e1} , {e2} , {e6}}, S8 = {{e6}}, S9 = ∅, S10 = ∅, and S11 = {{e7}}.
The ternary flag τi informs whether there exist zero, one, or more than one non-trivial weakly connected components of

i that do not contain any of the vertices from {ui+1, . . . , un}. For instance, consider again the compatible subcut sequence
′ illustrated in Fig. 3. In this example, τi = 0 for each i ∈ {1, . . . , 7}, τ8 = 1, and τi = 2 for each i ∈ {9, 10, 11}.
Finally, the boolean flag ψi informs whether or not there exists a subcut of width k + 1 among the subcuts S ′

1, . . . , S
′

i .

.2.1. Initial, final and intermediary tuples
Now, we present the formal definitions of the notions of initial, final and intermediary tuples, which precisely comprise

he vertex set of DG(π, k). More specifically, the initial tuples correspond to the initial vertices of DG(π, k), the final
uples correspond to the final vertices of DG(π, k), and the intermediary tuples correspond to the intermediary vertices
f DG(π, k).
Let u =

(
i, S ′

i , φi, ϕi, Si, τi, ψi
)
be a tuple in BG(π, k).

We say that u is initial if i = 1 and the following conditions are satisfied:

1. The vertex u1 has at most one in-edge and at most one out-edge in S ′

1;
2. If u1 has no in-edge and one out-edge in S ′

1, then φ1 = 1 and ϕ1 = 0;
3. If u1 has one in-edge and no out-edge in S ′

1, then φ1 = 0 and ϕ1 = 1;
4. If u1 has one in-edge and one out-edge in S ′

1 or does not have any incident edge in S ′

1, then φ1 = 0 and ϕ1 = 0;
5. If S ′

1 = ∅, then S1 = ∅; otherwise, S1 =
{
S ′

1

}
;

6. τ1 = 0;
7. If |S ′

1| = k + 1, then ψ1 = 1; otherwise, ψ1 = 0.

On the other hand, we say that u is final if i = n − 1 and the following conditions are satisfied:

1. The vertex un has at most one in-edge and at most one out-edge in S ′

n−1;
2. If un has no in-edge and one out-edge in S ′

n−1, then φn−1 = 0 and ϕn−1 = 1;
3. If un has one in-edge and no out-edge in S ′

n−1, then φn−1 = 1 and ϕn−1 = 0;
4. If un has one in-edge and one out-edge in S ′

n−1 or does not have any incident edge in S ′

n−1, then φn−1 = 1 and
ϕn−1 = 1;

5. |Sn−1| ≤ 2, and if |Sn−1| = 1, then |S ′

n−1| = 1;
6. τn−1 ≤ 1, and if τn−1 = 1, then S ′

n−1 = ∅;
7. ψn−1 = 1.

Intuitively, the tuple u is called initial (final, resp.) if i = 1 (i = n− 1, resp.) and the values assigned to the parameters
S ′

i , φi, ϕi, Si, τi and ψi establish a valid configuration with respect to the semantic of each parameter itself and with respect
to Conditions (DP1)–(DP4).
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Fig. 4. Connectedness rules. (Red) dotted lines represent non-edges, (black) thicker lines represent non-mandatory edges, and (blue) normal style
lines represent mandatory edges.

Finally, we say u is intermediary if i ∈ [n − 1] \ {1, n − 1}.

.2.2. Compatibility relation
Let u =

(
i, S ′

i , φi, ϕi, Si, τi, ψi
)
and v =

(
j, S ′

j , φj, ϕj, Sj, τj, ψj
)
be a pair of tuples from BG(π, k). We say that u is

ompatible with v, and we denote such a fact by u ⇝ v, if j = i + 1, S ′

i ≺G,π S ′

j , and u and v satisfy the Vertex degree,
onnectedness and Minimum subcut width rules, which are presented below.

ertex degree rules.

1. The vertex uj has at most one in-edge and at most one out-edge in S ′

i ∪ S ′

j .
2. If uj has no in-edge and one out-edge in S ′

i ∪ S ′

j , then φj = min {2, φi + 1} and ϕj = ϕi.
3. If uj has one in-edge and no out-edge in S ′

i ∪ S ′

j , then φj = φi and ϕj = min {2, ϕi + 1}.
4. If uj has one in-edge and one out-edge in S ′

i ∪ S ′

j or does not have any incident edge in S ′

i ∪ S ′

j , then φj = φi and
ϕj = ϕi.

onnectedness rules.

1. If S ′

i \ S ′

j = ∅ and uj has no incident edge in S ′

j (see Fig. 4(a)), then τj = τi and Sj = Si.
2. If S ′

i \ S ′

j = ∅ but uj has some incident edge in S ′

j (see Fig. 4(b)), then τj = τi and Sj = Si ∪
{
S ′

j \ S ′

i

}
.

3. If S ′

i \S
′

j ̸= ∅ and S ′

j ̸= ∅ (see Figs. 4(c) and 4(d)), then τj = τi and Sj = (Si \Q′

j)∪Qj, where Q′

j denotes the collection
of all sets in Si that have at least one edge in S ′

i with uj as an endpoint, i.e.

Q′

j =
{
Q ∈ Si :Q ∩ (S ′

i \ S ′

j ) ̸= ∅
}
,

and Qj denotes the singleton collection whose set comprises all edges in S ′

j with uj as an endpoint, along with all
edges in S ′

j that belong to a set of Q′

j , i.e.

Qj =

{
(S ′

j \ S ′

i ) ∪
(⋃

Q∈Q′
j
Q ∩ S ′

j

)}
.

In this case, we further require Qj ̸= ∅.
Informally, Q′

j represents the set of non-trivial weakly connected components restricted to S ′

i that have at least
one edge in S ′

i with uj as an endpoint. Since, when considering the subcut S ′

j , all such components contain uj as
a common vertex, they actually form a single non-trivial weakly connected component restricted to S ′

j . This single
component is represented by Qj, which, besides the edges that are already present in S ′

i , contains all the edges in
S ′

j with uj as an endpoint.
4. If S ′

i \ S ′

j ̸= ∅ but S ′

j = ∅ (see Fig. 4(e)), then τj = min {2, τi + 1} and Sj = ∅.

inimum subcut width rule.

(1) If ψ = 1 or |S ′
| = k + 1, then ψ = 1.
i j j
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We notice that, for any sequence ⟨u1, . . . , un−1⟩ of tuples from BG(π, k), such that ui is compatible with ui+1 for each
∈ [n − 2], there exists a unique associated compatible subcut sequence γ ′

∈ Γ (γG,π ). Thus, the intuition behind the
ertex degree and Connectedness rules is ensuring that, if γ ′ is the subcut sequence associated with a directed path
u1, . . . , un−1⟩ in DG(π, k), then G[γ ′

] satisfies Conditions (DP1)–(DP4). And, the intuition behind the Minimum subcut
idth rule is ensuring that the width of any such compatible subcut sequences γ ′ is at least k + 1.
Now, we are finally able to formally define the notion of compatibility graph and then prove Theorem 1.
For each directed graph G, each bijection π : V (G) → [|G|] and each non-negative integer k, we define the compatibility

raph of the triple (G, π, k) as the directed acyclic graph DG(π, k) with vertex set

V = {u ∈ BG(π, k) : u is initial, intermediary or final}

nd edge set

E = {(u, v) ∈ V × V : u ⇝ v} .

Lemma 2 states that deciding whether there exists a compatible subcut sequence of γG,π of width at least k+1 whose
ssociated directed graph is a directed path is equivalent to deciding whether there exists a directed path of DG(π, k)
ith n − 1 vertices. Then, based on this characterization and on Lemma 1, we prove in Lemma 3 that deciding whether
n(G, π ) ≥ k + 1 is reducible to the Reachability problem in DG(π, k).

Section 3.3 is devoted to present the proof of Lemma 2.

emma 2. Let G be a directed graph, π : V (G) → [|G|] be a bijection and k be a non-negative integer. There exists a compatible
ubcut sequence γ ′

∈ Γ (γG,π ) such that ω(γ ′) ≥ k + 1 and G[γ ′
] is a directed path if and only if there exists a directed path

f DG(π, k) with |G| − 1 vertices.

emma 3. Given a directed graph G, a bijection π : V (G) → [|G|] and a non-negative integer k, one can deterministically
ecide in time |G|

O(k) whether zn(G, π ) ≤ k.

roof. First, we construct the directed graph DG(π, k). Note that, for each tuple

ui =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)

∈ BG(π, k),

the subcut S ′

i has at most k+1 distinct elements. As a result, one can easily check in time polynomial in k if ui is an initial,
n intermediary or a final tuple. Moreover, since there are |G|

O(k) distinct tuples in BG(π, k), the vertex set of DG(π, k) can
be determined in time |G|

O(k)
·poly(k) = |G|

O(k). Regarding the edge set of DG(π, k), we have by definition that there exists
a directed edge from a vertex ui =

(
i, S ′

i , φi, ϕi, Si, τi, ψi
)
to a vertex uj =

(
j, S ′

j , φj, ϕj, Sj, τj, ψj
)
of DG(π, k) if and only if ui

s compatible with uj, i.e., j = i+ 1, S ′

i ≺G,π S ′

j , and u and v satisfy the Vertex degree, Connectedness and Minimum subcut
width rules. Since |S ′

i | ≤ k+1 and |S ′

j | ≤ k+1, the satisfaction of the Vertex degree, Connectedness and Minimum subcut
width rules by u and v can be clearly checked in time polynomial in k. In addition, one can verify whether S ′

i ≺G,π S ′

j in
time polynomial in |G|. Thus, it can be checked in time poly(|G|, k) whether there should exist in DG(π, k) a directed edge
from u to v. This implies that the edge set of DG(π, k) can be determined in time |G|

O(k)
· |G|

O(k)
· poly(|G|, k) = |G|

O(k).
Therefore, DG(π, k) can be wholly constructed in time |G|

O(k).
Then, by using an algorithm for the Reachability problem, we decide in time linear in the number of vertices and

edges of DG(π, k), i.e. in time |G|
O(k), whether there is a directed path of DG(π, k) with |G| − 1 vertices. By Lemmas 1 and

2, such a path exists if and only if zn(G, π ) ≥ k + 1. Therefore, we can decide in time |G|
O(k) whether zn(G, π ) ≤ k. □

As a result, we obtain that deciding whether zn(G) ≤ k is in NP for each fixed k ≥ 0, concluding thereby the proof of
Theorem 1.

3.3. Proof of Lemma 2

Assume that V (G) = {u1, . . . , un} and, for each ui, uj ∈ V (G), i < j if and only if ui <π uj. Consider the following
auxiliary claim.

Claim 1. Let p = ⟨u1, . . . , un−1⟩ be a sequence of tuples such that

1. for each i ∈ [n − 1], ui =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)

∈ BG(π, k);
2. u1 is initial;
3. for each i ∈ [n − 2], ui ⇝ ui+1;

and let γ ′
= ⟨S ′

1, . . . , S
′

n−1⟩ be the compatible subcut sequence corresponding to p. Then, for each ℓ ∈ [n − 2], we have that
any two edges e, e′

∈ S ′

ℓ belong to a same part of Sℓ if and only if there exists in G[γ ′
] an undirected path between x and

y that only contains vertices from {u1, . . . , uℓ}, where x and y denote the endpoints of e and e′, respectively, that belong to
{u1, . . . , uℓ}.
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Proof of claim. The proof is by induction on ℓ.
Base case. Suppose that ℓ = 1. In this case, x = y. Then, trivially, there exists in G[γ ′

] an undirected path between
and y that only contains vertices from {u1, . . . , uℓ}. Moreover, it follows from the fact that u1 is an initial tuple that
1 =

{
S ′

ℓ

}
. Thus, e and e′ belong to a same part of S1.

Inductive hypothesis. Suppose that there exists ι ∈ [|G| − 1] such that the claim holds for each ℓ ∈ [ι− 1].
Inductive step. Suppose that ℓ = ι > 1. First, consider x = y, and let i = π (x) ≤ ι. Similarly to the base case, there

rivially exists an undirected path of G[γ ′
] between x and y that only contains vertices from {u1, . . . , uι}. Moreover, since

i−1 ⇝ ui, it follows from the Connectedness rules that e and e′ belong to a same part of Si. As a result, we obtain that
and e′ also belong to a same part of Sι. Thus, in what follows, consider x ̸= y. Additionally, assume without loss of
enerality that π (x) < π (y).
First, we prove that, if e and e′ belong to a same part of Sι, then there is in G[γ ′

] an undirected path between x and
that only contains vertices from {u1, . . . , uι}. Thus, suppose e and e′ belong to a same part of Sι. Note that, if e and

′ belong to a same part of Si for some i < ι, then the result immediately follows from the inductive hypothesis. Thus,
ssume that ι is the least integer j ∈ {π (y), . . . , n − 1} such that e and e′ belong to a same part of Sj.
Consider ι = π (y). Since uι−1 ⇝ uι, it follows from the Connectedness rules that there exists an edge e′′

∈ S ′

ι−1 \ S ′
ι

uch that e and e′′ belong to a same part of Sι−1, otherwise e and e′ would belong to distinct parts of Sι. Then, let z be
he endpoint of e′′ that belongs to {u1, . . . , uι−1}. By the inductive hypothesis, there exists in G[γ ′

] an undirected path
etween x and z that only contains vertices from {u1, . . . , uι−1}. Moreover, since ι = π (y) and e′′

∈ S ′

ι−1 \ S ′
ι , we have that

is an endpoint of e′′. Therefore, there exists in G[γ ′
] an undirected path between x and y that only contains vertices

rom {u1, . . . , uι}.
Now, consider ι > π (y). By the Connectedness rules, there exist two distinct edges e′′

x , e
′′
y ∈ S ′

ι−1 \ S ′
ι , such that e

and e′′
x belong to a same part of Sι−1 and e′ and e′′

y belong to a same part of Sι−1, otherwise e and e′ would belong to
distinct parts of Sι. Then, let zx and zy be the endpoints of e′′

x and e′′
y , respectively, that belong to {u1, . . . , uι−1}. By the

inductive hypothesis and by the minimality of ι, there exist in G[γ ′
] two vertex-disjoint undirected paths Px = ⟨x, . . . , zx⟩

nd Py = ⟨zy, . . . , y⟩ that only contain vertices from {u1, . . . , uι−1}, where Px is a path between x and zx, and Py is a path
etween zy and y. Therefore, since z ′′

x and z ′′
y are both neighbors of uι, Px + ⟨uι⟩ + Py = ⟨x, . . . , zx, uι, zy, . . . , y⟩ is an

ndirected path between x and y that only use vertices from {u1, . . . , uι}.
Now, we prove the converse part, i.e. if there is in G[γ ′

] an undirected path between x and y that only contains vertices
rom {u1, . . . , uι}, then e and e′ belong to a same part of Sι. Thus, suppose that there is in G[γ ′

] an undirected path P
etween x and y that only contains vertices from {u1, . . . , uι}. Also, assume that ι is the least integer in {π (y), . . . , n − 1}
olding such a property.
Consider ι = π (y). In this case, one can verify that there exists exactly one edge e′′ in the set E(P) ∩ S ′

ι−1 \ S ′
ι . Let z be

he endpoint of e′′ that belongs to {u1, . . . , uι−1}. Note that, P − y = P − uι is an undirected path between x and z that
nly contains vertices from {u1, . . . , uι−1}. By the inductive hypothesis, e and e′′ belong to a same part of Sι−1. Therefore,
e obtain by Connectedness rule 3 that e and e′ belong to a same part of Sι.
Now, consider ι > π (y). In this case, there exist exactly two distinct edges e′′

x , e
′′
y in the set E(P) ∩ S ′

ι−1 \ S ′
ι . Let zx and

y be the endpoints of e′′
x and e′′

y , respectively, that belong to {u1, . . . , uι−1}. Note that, P − uι consists of two undirected
ath Px and Py that only contain vertices from {u1, . . . , uι−1}, where Px is an undirected path between x and zx, and Py is
n undirected path between zy and y. Thus, it follows from the inductive hypothesis that e and e′′

x belong to a same part
f Sι−1, and that e′ and e′′

y belong to a same part of Sι−1. Therefore, by Connectedness rule 3, e and e′ belong to a same
art of Sι. ■

Now, we are finally able to properly prove Lemma 2.
First, suppose that there exists γ ′

= ⟨S ′

1, . . . , S
′

n−1⟩ ∈ Γ (γG,π ) such that P = G[γ ′
] is a directed path and ω(γ ′) ≥ k+1.

et u1 =
(
1, S ′

1, φ1, ϕ1, S1, τ1, ψ1
)
be the initial tuple in BG(π, k) obtained from the subcut S ′

1. We notice that, given the
ubcut S ′

1, the parameters φ1, ϕ1, S1, τ1 and ψ1 are uniquely determined according to the definition of initial tuple. Thus,
1 is well-defined. Additionally, note that, according to the Vertex degree, Connectedness and Minimum subcut width
ules, for each i ∈ {2, . . . , n − 1} and each tuple

ui−1 =
(
i − 1, S ′

i−1, φi−1, ϕi−1, Si−1, τi−1, ψi−1
)

∈ BG(π, k),

here exists exactly one tuple ui =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)

∈ BG(π, k) such that ui−1 is compatible with (i.e. ui−1 ⇝ ui).
Consequently, there exists a unique sequence ⟨u1, . . . , un−1⟩ of tuples from BG(π, k) that can be obtained from γ ′ and

atisfies the conditions of u1 being initial and of ui being compatible with ui+1 for each i ∈ [n − 2].
We claim that such a sequence ⟨u1, . . . , un−1⟩ corresponds to a directed path of DG(π, k) with n− 1 vertices. To prove

his, we just need to show that the tuple un−1 =
(
n − 1, S ′

n−1, φn−1, ϕn−1, Sn−1, τn−1, ψn−1
)
is final.

Since by hypothesis P is a directed path, every vertex of P has in-degree at most one and out-degree at most one.
oreover, P contains exactly one source vertex uι ∈ V (P) for some ι ∈ [n]. Thus, one can verify that: if ι < n, then φi = 0

or each i ∈ [ι − 1] and φj = 1 for each j ∈ {ι, . . . , n − 1}; and, if ι = n, then φi = 0 for each i ∈ [n − 1]. Similarly, P
ontains exactly one target vertex uι′ ∈ V (P) for some ι′ ∈ [n]. Thus, one can verify that: if ι′ < n, then ϕi = 0 for each
∈ [ι′ − 1] and ϕj = 1 for each j ∈

{
ι′, . . . , n − 1

}
; and, if ι′ = n, then ϕi = 0 for each i ∈ [n− 1]. As a result, if ι ̸= n and

′
̸= n, then φn−1 = 1 and ϕn−1 = 1. On the other hand, note that ι ̸= ι′. Hence, if ι = n and ι′ < n, then φn−1 = 0 and

= 1; and if ι < n and ι′ = n, then φ = 1 and ϕ = 0.
n−1 n−1 n−1

94



M.C. Dourado, C.M.H. de Figueiredo, A.A. de Melo et al. Discrete Applied Mathematics 312 (2022) 86–105

s

h

Moreover, since ω(γ ′) ≥ |S ′
ι | = k + 1 for some ι ∈ [n − 1], one can easily verify that ψi = 0 for each i ∈ [ι − 1] and

ψj = 1 for each j ∈ {ι, . . . , n − 1}.
Now, let a and b be the least and the greatest integers in [n − 1], respectively, such that S ′

a ̸= ∅ and S ′

b ̸= ∅. Since
by hypothesis ω(γ ′) ≥ k + 1 ≥ 1, such integers a and b are well-defined. Thus, it follows from the fact that P is weakly
connected that the following properties hold.

1. For each i ∈ [a − 2], S ′

i \ S ′

i+1 = ∅ and ui+1 has no incident edge in S ′

i+1, which implies τi+1 = τi = 0.
2. S ′

a−1 \ S ′
a = ∅ but ua has some incident edge in S ′

a, which implies τa = τa−1 = 0.
3. For each i ∈ {a, . . . , b − 1}, S ′

i+1 ̸= ∅, which implies τi+1 = τi = 0. In particular, if b = n− 1, then τn−1 = 0. On the
other hand, if b < n− 1, then S ′

b \ S ′

b+1 ̸= ∅ and S ′

b+1 = ∅, which implies τb+1 = τb + 1 = 1; moreover, S ′

i−1 \ S ′

i = ∅

and S ′

i = ∅ for each i ∈ {b + 2, . . . , n − 1}, which implies τi = τi−1 = 1.

As a result, we obtain that τn−1 ≤ 1, and that τn−1 = 1 implies S ′

n−1 = ∅.
Since un has at most one in-edge and at most one out-edge in S ′

n−1, it is immediate that |S ′

n−1| ≤ 2 and |Sn−1| ≤ 2.
Moreover, it follows from Claim 1 that |Sn−1| = 1 implies |S ′

n−1| = 1, otherwise P would not be a directed path.
Now, we prove the converse of Lemma 2. Suppose that there is in DG(π, k) a directed path p = ⟨u1, . . . , un−1⟩ with

n − 1 vertices. One can verify that, for each i ∈ [n − 1], ui necessarily consists in a tuple in BG(π, k) of the form

ui =
(
i, S ′

i , φi, ϕi, Si, τi, ψi
)
.

Note that, γ ′
= ⟨S ′

1, . . . , S
′

n−1⟩ ∈ Γ (γG,π ). Moreover, it follows from the definition of DG(π, k) that the tuple un−1 is final.
As a result, ψn−1 = 1, and thus ω(γ ′) ≥ k + 1, since by the Minimum subcut width rule we have that ψn−1 = 1 if and
only if |S ′

i | = k + 1 for some i ∈ [n − 1]. Thus, it just remains to prove that G[γ ′
] is a directed path. We prove in the

following claims that G[γ ′
] satisfies each of Conditions (DP1)–(DP4), respectively.

Claim 2. G[γ ′
] contains exactly one source vertex.

Proof of claim. Since un−1 is final, either φn−1 = 0 or φn−1 = 1.
Suppose that φn−1 = 1. By the Vertex degree rules, φi ≤ φi+1 for each i ∈ [n − 2]. Hence, there exists ι ∈ [n − 1] such

that φi = 0 for each i ∈ [ι − 1] and φj = 1 for each j ∈ {ι, . . . , n − 1}. Since u1 is initial, if ι = 1, then uι has no in-edge
and one out-edge in S ′

1. On the other hand, if ι > 1, then, by the Vertex degree rules, uι has no in-edge and one out-edge
in S ′

ι−1 ∪ S ′
ι . Consequently, uι is a source vertex of G[γ ′

]. Moreover, one can verify that, for any i ∈ [n] \ {ι}, there is no
vertex ui that has in-degree 0 and out-degree 1 in G[γ ′

], otherwise φn−1 = 2. Therefore un is the only source vertex of
G[γ ′

].
Now, suppose that φn−1 = 0. Then, un has no in-edge and one out-edge in S ′

n−1, otherwise un−1 would not be final.
Thus, un is a source vertex of G[γ ′

]. In addition, note that φi = 0 for each i ∈ [n− 1], otherwise φn−1 ̸= 0. As a result, we
obtain that, for any i ∈ [n − 1], there is no vertex ui that has in-degree 0 and out-degree 1 in G[γ ′

]. Therefore un is the
only source vertex of G[γ ′

]. ■

Claim 3. G[γ ′
] contains exactly one target vertex.

Proof of claim. The proof of this claim is analogous to the proof of Claim 2, following from the fact that ϕi ≤ ϕi+1 for
each i ∈ [n − 2], and from the fact that either ϕn−1 = 0 or ϕn−1 = 1, since un−1 is a final tuple. ■

Claim 4. Let s and t be the source and target vertices of G[γ ′
], respectively, and let u ∈ V (G[γ ′

])\{s, t}. Then, u has in-degree 1
and out-degree 1 in G[γ ′

].

Proof of claim. By hypothesis u1 is initial, un−1 is final and ui ⇝ ui+1 for each i ∈ [n − 2]. This implies that every vertex
of G[γ ′

] has in-degree at most 1 and out-degree at most 1. Moreover, it follows from the uniqueness of s and from the
uniqueness of t that the vertex u is neither a source vertex nor a target vertex of G[γ ′

]. Therefore, since G[γ ′
] does not

contain isolated vertices, we obtain that u necessarily has in-degree 1 and out-degree 1 in G[γ ′
]. ■

Claim 5. G[γ ′
] is a weakly connected graph.

Proof of claim. For the sake of contradiction, suppose that G[γ ′
] is not weakly connected. Then, there exist two distinct

vertices ui, uj ∈ V (G[γ ′
]) such that there is no undirected path between them in G[γ ′

]. Let ui′ be a vertex of G[γ ′
] such

that there exists in G[γ ′
] an undirected path between ui and ui′ , for some i′ ∈ {1, . . . , n} \ {i}. And, let uj′ be a vertex

of G[γ ′
] such that there exists in G[γ ′

] an undirected path between uj and uj′ , for some j′ ∈ {1, . . . , n} \ {j}. Note that,
uch vertices ui′ and uj′ necessarily exist, since by definition G[γ ′

] does not contain any isolated vertices. Assume without
loss of generality that i′ > i and j′ > j. Additionally, assume that i′ is the greatest integer belonging to {i + 1, . . . , n} that

′
′

′
olds the property of existing in G[γ ] an undirected path between ui and ui . Analogously, assume that j is the greatest
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Fig. 5. Proof that G[γ ′
] is weakly connected. (Red) dotted lines represent non-edges, (black) thicker lines represent possibly existing edges, (blue)

aved lines represent undirected paths, and (blue) normal style lines represent mandatory edges. In these illustrations, we assume that ι = i′ (the
ase ι = j′ is symmetric).

nteger belonging to {j + 1, . . . , n} that holds the property of existing in G[γ ′
] an undirected path between uj and uj′ . Let

= min
{
i′, j′

}
. By the maximalities of i′ and j′, there is no edge in S ′

ι that has uι as an endpoint, i.e.{
(x, y) ∈ S ′

ι : x = uι or y = uι
}

= ∅. (1)

Moreover, one can readily verify that S ′

ι−1 \ S ′
ι ̸= ∅. We split the remainder of this proof into two cases.

Case 1. Suppose that
{
i, . . . , i′

}
∩

{
j, . . . , j′

}
̸= ∅ (see Fig. 5(a)). Note that, necessarily S ′

ι ̸= ∅. Then, it follows from Eq. (1)
and from Claim 1 that there is no part Q ∈ Sι−1 such that Q ∩ (S ′

ι−1 \ S ′
ι) ̸= ∅ and Q ∩ S ′

ι ̸= ∅, otherwise there would
exist in G[γ ′

] an undirected path between ui and uj. Thus, Qι = ∅. Therefore, since S ′

ι−1 \ S ′
ι ̸= ∅ and S ′

ι ̸= ∅, we obtain by
Connectedness rule 3 that uι−1 is not compatible with uι.

Case 2. Suppose that
{
i, . . . , i′

}
∩

{
j, . . . , j′

}
= ∅ (see Fig. 5(b)). It follows from Eq. (1) and from Claim 1 that there is

no part Q ∈ Sι−1 such that Q ∩ (S ′

ι−1 \ S ′
ι) ̸= ∅ and Q ∩ S ′

ι ̸= ∅, otherwise i′ or j′ would not be maximum with respect
to the aforementioned properties. Thus, Qι = ∅. However, possibly S ′

ι = ∅. First, suppose that S ′
ι ̸= ∅. Then, as in the

previous case, it follows from the fact that S ′

ι−1 \ S ′
ι ̸= ∅ and from the Connectedness rules that the tuple uι−1 is not

compatible with the tuple uι. On the other hand, suppose that S ′
ι = ∅. Then, τι ≥ 1. As a result, τl = τl−1 ≥ 1 for each

l ∈
{
ι+ 1, . . . ,max

{
i′, j′

}
− 1

}
, and τl = 2 for each l ∈

{
max

{
i′, j′

}
, . . . , n − 1

}
. In particular, we obtain that:

1. either n > max
{
i′, j′

}
, and then τn−1 = 2;

2. or n = max
{
i′, j′

}
, and then S ′

n−1 ̸= ∅ and τn−1 = 1.

In either case, un−1 is not a final tuple. Therefore, G[γ ′
] is weakly connected. ■

By the previous claims, we obtain that G[γ ′
] is indeed a directed path, and thereby we conclude the proof of Lemma 2.

4. NP-hardness

In this section, we prove that 2-zig-zag number is an NP-hard problem. For that, we present a polynomial-time
reduction from Positive not all equal 3SAT, which is a well-known NP-complete problem [17], defined next.

Input: Set X of variables and a collection C of clauses over X such that each clause has no negative
literal and exactly three positive literals.

Question: Is there a truth assignment α : X → {0, 1} such that each clause in C has at least one true literal
and at least one false literal under α?

Positive not all equal 3SAT (PNAE 3SAT)

Construction 1. Let I = (X, C) be an instance of PNAE 3SAT with variable set X and clause set C. We let GI be the directed
raph obtained from I as follows.

• For each variable xi ∈ X, add the vertices u1
i , u

2
i and u3

i , and add the edges
(
u1
i , u

2
i

)
,
(
u2
i , u

3
i

)
and

(
u3
i , u

1
i

)
.

• For each clause Cj ∈ C, add the vertices v1j , v
2
j and v3j , and add the edges

(
v1j , v

2
j

)
,
(
v2j , v

3
j

)
and

(
v3j , v

1
j

)
. Moreover,

assuming Cj =
{
xl1 , xl2 , xl3

}
with l1 < l2 < l3, add the edges

(
u1
l1
, v1j

)
,
(
u3
l1
, v1j

)
,
(
u1
l2
, v2j

)
,
(
u3
l2
, v2j

)
,
(
u1
l3
, v3j

)
and(

u3
l3
, v3j

)
.

For each variable xi ∈ X, we let Hi denote the subgraph of GI induced by the vertices in
{
u1
i , u

2
i , u

3
i

}
. And, for each clause

j ∈ C, we let H̃j denote the subgraph of GI induced by the vertices in
{
v1j , v

2
j , v

3
j

}
. We remark that Hi and H̃j are directed

ycles of length 3.

Fig. 6 exemplifies the directed graph GI , described in Construction 1.
We establish in Lemmas 4 and 6 that there exists a satisfying truth assignment for an instance I of PNAE 3SAT if

nd only if there exists a linear order of zig-zag number at most 2 for the vertices of G . The central idea of our proof
I
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Fig. 6. Directed graph GI obtained from the instance I = (X, C) of PNAE 3SAT where X = {x1, x2, x3, x4} and C = {C1 = {x1, x2, x3} , C2 = {x2, x3, x4}}.

Fig. 7. Case in which the clause Cj =
{
xl1 , xl2 , xl3

}
has exactly one true literal under the truth assignment α, say xlq for some q ∈ {1, 2, 3}.

is to explore the possible internal relative orderings of the vertices of each directed cycle of GI and, for each clause
Cj =

{
xl1 , xl2 , xl3

}
∈ C, the possible ordered relative placements among the subgraphs Hl1 , Hl2 , Hl3 , and H̃j.

Lemma 4. Let I = (X, C) be an instance of PNAE 3SAT. If I is a yes instance of PNAE 3SAT, then zn(GI ) ≤ 2.

roof. Let α : X → {0, 1} be a truth assignment such that each clause in C has at least one true literal and at least one
alse literal under α. In what follows, we define from α a linear order <π of the vertices of GI such that zn(GI , π ) ≤ 2.

Throughout this proof, consider X =
{
x1, . . . , x|X |

}
and C =

{
C1, . . . , C|C|

}
.

For each variable xi ∈ X , set{
u1
i <π u2

i <π u3
i if α(xi) = 1

u1
i >π u2

i >π u3
i otherwise.

et V ′

0
.
=

{
u1
i , u

2
i , u

3
i :α(xi) = 0

}
and V ′

1
.
=

{
u1
i , u

2
i , u

3
i :α(xi) = 1

}
. Then, for each y ∈ V ′

0 and each z ∈ V (GI )\V ′

0, set y <π z.
nd, for each y ∈ V ′

1 and each z ∈ V (GI ) \ V ′

1, set y >π z.
Let Cj be a clause in C. Assume that Cj =

{
xl1 , xl2 , xl3

}
with l1 < l2 < l3. There are two cases to be considered. First,

uppose that Cj has exactly one true literal under α, say lq for some q ∈ {1, 2, 3}. Then, set

v
p
j <π v

q
j <π v

r
j ,

here p = q mod 3 + 1 and r = (q + 1) mod 3 + 1. Now, suppose that Cj has exactly two true literals under α. Thus, Cj
as exactly one false literal under α, say lq for some q ∈ {1, 2, 3}. Then, set

v
p
j >π v

q
j >π v

r
j ,

here p = q mod 3 + 1 and r = (q + 1) mod 3 + 1.
Finally, for each pair of distinct variables xi, xi′ ∈ X with i < i′, such that α(xi) = α(xi′ ), set up

i <π uq
i′ for each

, q ∈ {1, 2, 3}. And, for each pair of distinct clauses Cj, Cj′ ∈ C with j < j′, set vpj <π v
q
j′ for each p, q ∈ {1, 2, 3}.

One can readily verify that <π is indeed a linear order of the vertices of GI .
Now, we prove that zn(GI , π ) ≤ 2. For the sake of contradiction, suppose that there exists a directed path P in GI

uch that zn(GI , π, P) ≥ 3. Assume without loss of generality that P is a minimal path with respect to the property that
n(GI , π, P) ≥ 3. Recall that, for each variable xi ∈ X , Hi is a directed cycle of length 3. Similarly, for each clause Cj ∈ C,
j is a directed cycle of length 3. Consequently, P is neither a subgraph of Hi nor a subgraph of H̃j, for any xi ∈ X and
ny Cj ∈ C, otherwise zn(GI , π, P) < 3. Moreover, every edge of GI is either an edge of one of these subgraphs Hi and H̃j
r is an edge from a vertex of Hi to a vertex of H̃j, for some xi ∈ X and some Cj ∈ C. As a result, there exists precisely
ne variable xi ∈ X and there exists precisely one clause Cj ∈ C such that V (P) ∩ V (Hi) ̸= ∅ and V (P) ∩ V (H̃j) ̸= ∅. More
pecifically, P consists in a directed path on at most 4 vertices (by its minimality) from a vertex of Hi to a vertex of H̃j
hat only contains vertices belonging to V (Hi) ∪ V (H̃j). Assume that Cj =

{
xl1 , xl2 , xl3

}
with l1 < l2 < l3.

First, consider the case in which Cj has exactly one true literal under α, and let xlq be such a literal for some q ∈ {1, 2, 3}.
Thus, vpj <π v

q
j <π v

r
j , where p = q mod 3+1 and r = (q+1) mod 3+1. Consequently, if i = lq, then u1

i <π u2
i <π u3

i and
V (Hi) >π V (H̃j), which implies zn(GI , π, P) < 3 (see Fig. 7(a)). On the other hand, if i = lp or i = lr , then u1

i >π u2
i >π u3

i
and V (Hi) <π V (H̃j), which also implies zn(GI , π, P) < 3 (see Figs. 7(b) and 7(c)).

Now, consider the case in which Cj has exactly two true literals under α, and let lq be the only false literal of Cj under
α for some q ∈ {1, 2, 3}. Thus, vpj >π v

q
j >π v

r
j , where p = q mod 3 + 1 and r = (q + 1) mod 3 + 1. If i = lq, then

u1
i >π u2

i >π u3
i and V (Hi) <π V (H̃j), which implies zn(GI , π, P) < 3 (see Fig. 8(a)). On the other hand, if i = lp or i = lr ,

then u1 < u2 < u3 and V (H ) > V (H̃ ), which also implies zn(G , π, P) < 3 (see Figs. 8(b) and 8(c)).
i π i π i i π j I
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Fig. 8. Case in which the clause Cj =
{
xl1 , xl2 , xl3

}
has exactly one false literal under the truth assignment α, say xlq for some q ∈ {1, 2, 3}.

Fig. 9. Case 1: u2
i <π u1

i <π u3
i . (a) v

q
j <π u1

i . (b) v
q
j >π u1

i .

Therefore, such a path P does not exist in GI , and consequently we obtain that zn(GI ) ≤ zn(GI , π ) ≤ 2. □

emma 5. Let I = (X, C) be an instance of PNAE 3SAT, π : V (GI ) → [|GI |] be a bijection such that zn(GI , π ) ≤ 2, and let
i ∈ X. If Cj ∈ C is a clause containing xi as a literal, then either V (Hi) <π V (H̃j) or V (Hi) >π V (H̃j). Furthermore, if there
xists a clause Cj ∈ C containing xi as a literal such that V (Hi) <π V (H̃j), then V (Hi) <π V (H̃j′ ) for every other clause Cj′ ∈ C
ontaining xi as a literal.

roof. Let Cj ∈ C be a clause containing xi as a literal. For the sake of contradiction, suppose that neither V (Hi) <π V (H̃j)
or V (Hi) >π V (H̃j). Then, either there exist two vertices vpj , v

p′

j ∈ V (H̃j) such that{
v
p
j

}
<π V (Hi) <π

{
v
p′

j

}
, (2)

r there exists a vertex vpj ∈ V (H̃j) such that, for some pair a, b ∈ {1, 2, 3} with a ̸= b,

ua
i <π v

p
j <π ub

i . (3)

ence, based on inequalities (2) and (3), one can verify that in either case there exist two (not necessarily distinct) vertices
p
j , v

p′

j ∈ V (H̃j) such that

v
p
j <π max πV (Hi) and v

p′

j >π min πV (Hi) (4)

n particular, we note that, vpj = v
p′

j if and only if the second case – the one described by inequality (3) – holds.
Additionally, since by hypothesis xi is a literal of Cj, there exists a vertex vqj ∈ V (H̃j) such that

(
u1
i , v

q
j

)
,
(
u3
i , v

q
j

)
∈ E(GI ).

t is worth mentioning that, possibly, vpj ̸= v
q
j and vp

′

j ̸= v
q
j . If v

p
j ̸= v

q
j , then there exists a directed path P ′

1 = ⟨v
q
j , . . . , v

p
j ⟩

in H̃j from v
q
j to vpj that has at least one edge. Analogously, if vp

′

j ̸= v
q
j , then there exists a directed path P ′

2 = ⟨v
q
j , . . . , v

p′

j ⟩

in H̃j from v
q
j to vp

′

j that has at least one edge.
We split the remainder of this proof into three main cases.
(Case 1). Suppose that u2

i <π u1
i <π u3

i . If v
q
j <π u1

i , then P = ⟨u1
i , u

2
i , u

3
i , v

q
j ⟩ is a directed path of GI such that

zn(GI , π, P) = 3 (see Fig. 9(a)). Similarly, if vqj >π u1
i , then P = ⟨u2

i , u
3
i , u

1
i , v

q
j ⟩ is a directed path of GI such that

zn(GI , π, P) = 3 (see Fig. 9(b)).
For the remainder cases, let vrj ∈ V (H̃j) such that

(
v
q
j , v

r
j

)
∈ E(GI ). Note that, by construction, such a vertex vrj exists

and, besides that, is well-defined.
(Case 2). Suppose that u3

i <π u2
i <π u1

i . If v
q
j <π u2

i , then P = ⟨u2
i , u

3
i , u

1
i , v

q
j ⟩ is a directed path of GI such that

zn(GI , π, P) = 3 (see Fig. 10(a)). Assume that vqj >π u2
i . If v

q
j >π u1

i , then we obtain from (4) that vpj ̸= v
q
j . Consequently,

the path P = ⟨u1
i , u

2
i , u

3
i , v

q
j , . . . , v

p
j ⟩ — obtained by concatenating P ′′

= ⟨u1
i , u

2
i , u

3
i , v

q
j ⟩ with P ′

1 — is a directed path of GI

such that zn(GI , π, P) ≥ 3 (see Fig. 10(b)). Assume that vqj <π u1
i . If v

r
j >π v

q
j , then P = ⟨u3

i , u
1
i , v

q
j , v

r
j ⟩ is a directed path

of GI such that zn(GI , π, P) = 3 (see Fig. 10(c)). Otherwise, if vrj <π v
q
j , then P = ⟨u1

i , u
2
i , u

3
i , v

q
j , v

r
j ⟩ is a directed path of

GI such that zn(GI , π, P) = 3 (see Fig. 10(d)).
(Case 3). Suppose that u1

i <π u3
i <π u2

i . If v
q
j >π u3

i , then P = ⟨u1
i , u

2
i , u

3
i , v

q
j ⟩ is a directed path of GI such that

zn(GI , π, P) = 3 (see Fig. 11(a)). Assume that vqj <π u3
i . If v

q
j <π u1

i , then we obtain from (4) that vp
′

j ̸= v
q
j . Consequently,

the path P = ⟨u1
i , u

2
i , u

3
i , v

q
j , . . . , v

p′

j ⟩ — obtained by concatenating P ′′
= ⟨u1

i , u
2
i , u

3
i , v

q
j ⟩ with P ′

2 — is a directed path of GI

such that zn(G , π, P) ≥ 3 (see Fig. 11(b)). Assume that vq > u1. If vr < v
q, then P = ⟨u3, u1, v

q
, vr⟩ is a directed path
I j π i j π j i i j j
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Fig. 10. Case 2: u3
i <π u2

i <π u1
i . (a) v

q
j <π u2

i . (b) v
q
j >π u2

i and vqj >π u1
i . (c) u2

i <π v
q
j <π u1

i and vrj >π v
q
j . (d) u2

i <π v
q
j <π u1

i and vrj <π v
q
j .

Fig. 11. Case 3: u1
i <π u3

i <π u2
i . (a) v

q
j >π u3

i . (b) v
q
j <π u3

i and vqj <π u1
i . (c) u1

i <π v
q
j <π u3

i and vrj <π v
q
j . (d) u1

i <π v
q
j <π u3

i and vrj >π v
q
j .

Fig. 12. Case in which u3
i <π u1

i <π u2
i . (a) v

q
j >π u1

i . (b) v
q
j <π u1

i .

Fig. 13. Case in which u1
i <π u2

i <π u3
i . (a) v

q
j >π u2

i . (b) v
q
j <π u2

i and vqj <π u1
i . (c) u1

i <π v
q
j <π u2

i and vrj <π v
q
j . (d) u1

i <π v
q
j <π u2

i and
r
j >π v

q
j .

Fig. 14. Case in which u2
i <π u3

i <π u1
i . (a) v

q
j <π u3

i . (b) v
q
j >π u3

i and vqj >π u1
i . (c) u3

i <π v
q
j <π u1

i and vrj >π v
q
j . (d) u3

i <π v
q
j <π u1

i and
r
j <π v

q
j .

f GI such that zn(GI , π, P) = 3 (see Fig. 11(c)). Otherwise, if vrj >π v
q
j , then P = ⟨u1

i , u
2
i , u

3
i , v

q
j , v

r
j ⟩ is a directed path of

I such that zn(GI , π, P) = 3 (see Fig. 11(d)).
One can readily verify that the case in which u3

i <π u1
i <π u2

i is symmetric to Case 1 (see Fig. 12), the case in which
1
i <π u2

i <π u3
i is symmetric to Case 2 (see Fig. 13), and the case in which u2

i <π u3
i <π u1

i is symmetric to Case 3 (see
ig. 14). Additionally, note that, regardless of the existence of the vertex vpj , Case 1 and consequently the case in which
3
i <π u1

i <π u2
i do not consist in valid configurations, otherwise zn(G, π ) ≥ 3 even if V (Hi) <π V (H̃j) or V (Hi) >π V (H̃j).

Thus, V (Hi) <π V (H̃j) or V (Hi) >π V (H̃j), otherwise zn(G, π ) ≥ 3. Particularly, one can further verify that if
3
i <π u2

i <π u1
i or u2

i <π u3
i <π u1

i , then necessarily V (Hi) <π V (H̃j). Analogously, we have that if u1
i <π u3

i <π u2
i

r u1
i <π u2

i <π u3
i , then V (Hi) >π V (H̃j). Therefore, if V (Hi) <π V (H̃j), then V (Hi) <π V (H̃j′ ) for every other clause Cj′ ∈ C

ontaining xi as a literal. □

emma 6. Let I = (X, C) be an instance of PNAE 3SAT. If zn(GI ) ≤ 2, then I is a yes instance of PNAE 3SAT.

roof. Let π : V (GI ) → [|GI |] be a bijection such that zn(GI , π ) ≤ 2. It follows from Lemma 5 that, for each variable
∈ X and each clause C ∈ C, if V (H ) > V (H̃ ), then V (H ) > V (H̃ ′ ) for each clause C ′ ∈ C containing x as a literal.
i j i π j i π j j i
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V

c

t

Fig. 15. (a) and (c) α(xl1 ) = α(xl2 ) = α(xl3 ) = 1. (b) and (d) α(xl1 ) = α(xl2 ) = α(xl3 ) = 0. (a) and (b) vpj <π v
q
j <π v

r
j . (c) and (d) vpj >π v

q
j >π v

r
j .

Thus, we let α : x → {0, 1} be the truth assignment defined as follows: for each variable xi ∈ X , α(xi) = 1 if and only if
(Hi) >π V (H̃j) for each clause Cj ∈ C.
Now, we prove that each clause in C has at least one true literal and at least one false literal under α. For the sake of

ontradiction, suppose that there exists a clause Cj =
{
xl1 , xl2 , xl3

}
in C such that α(xl1 ) = α(xl2 ) = α(xl3 ). Let q ∈ {1, 2, 3},

p = q mod 3 + 1 and r = (q + 1) mod 3 + 1.
Suppose that α(xl1 ) = α(xl2 ) = α(xl3 ) = 1. Thus,

{
u1
l1
, u1

l2
, u1

l3

}
>π V (H̃j). Consequently, if v

p
j <π v

q
j <π vrj ,

then P = ⟨u1
lp , v

p
j , v

r
j , v

q
j ⟩ is a directed path of GI such that zn(GI , π, P) = 3 (see Figs. 15(a)); on the other hand, if

v
p
j >π v

q
j >π v

r
j , then P = ⟨u1

lq , v
q
j , v

p
j , v

r
j ⟩ is a directed path of GI such that zn(GI , π, P) = 3 (see Figs. 15(c)).

Suppose that α(xl1 ) = α(xl2 ) = α(xl3 ) = 0. Thus,
{
u1
l1
, u1

l2
, u1

l3

}
<π V (H̃j). Consequently, if v

p
j <π v

q
j <π vrj ,

hen P = ⟨u1
lq , v

q
j , v

p
j , v

r
j ⟩ is a directed path of GI such that zn(GI , π, P) = 3 (see Figs. 15(b)); on the other hand, if

v
p
j >π v

q
j >π v

r
j , then P = ⟨u1

lp , v
p
j , v

r
j , v

q
j ⟩ is a directed path of GI such that zn(GI , π, P) = 3 (see Figs. 15(d)).

Therefore, each clause in C has at least one true literal and at least one false literal under α, and consequently I is a
yes instance of PNAE 3SAT. □

Theorem 2. 2-zig-zag Number is NP-complete.

Proof. By Theorem 1, 2-zig-zag Number is in NP. It follows from Lemmas 4 and 6 that I is a yes instance of PNAE
3SAT if and only if zn(GI ) ≤ 2. Therefore, since GI can be constructed in time polynomial in |I|, 2-zig-zag Number is
NP-complete. □

5. Zig-zag number and directed treewidth

It was proved in [13] that directed graphs of constant directed pathwidth have constant zig-zag number, and that
there exist directed graphs of constant zig-zag number but unbounded directed pathwidth. Hence, the family of directed
graphs of constant zig-zag number properly contains the family of directed graphs of constant directed pathwidth.

Nevertheless, it is unknown whether or not a similar result would hold with respect to zig-zag number and directed
treewidth. In this section, we prove that there exist directed graphs of constant directed treewidth but unbounded zig-zag
number. More specifically, we prove the following theorem.

Theorem 3. There exist directed graphs on n vertices of constant directed treewidth but zig-zag number Ω(log n).

We remark that, although it was shown in [2] that there are directed graphs of constant directed treewidth but
unbounded directed pathwidth, this result cannot be directly used to conclude the respective statement relating directed
treewidth and zig-zag number.

Another interesting aspect of our result follows from the fact that directed graphs of constant directed treewidth
have constant tree-zig-zag number [14]. Consequently, there are directed graphs of constant tree-zig-zag number but
unbounded zig-zag number. Therefore, considering the fact that directed graphs of constant zig-zag number have constant
tree-zig-zag number [14], we obtain that the family of directed graphs of constant tree-zig-zag number is strictly richer
than the family of directed graphs of constant zig-zag number.

5.1. Basic definitions

A directed graph G is called bidirected if, for each two distinct vertices u, v ∈ V (G), (u, v) ∈ E(G) if and only if
(v, u) ∈ E(G). Note that, bidirected graphs may be regarded as undirected graphs. Based on that, we say that a pair
of edges (u, v) and (u, v) of a bidirected graph G is a bidirected edge between u and v. A directed graph H is called an
undirected minor of a bidirected graph G if H can be obtained from G by deleting vertices and edges, and by contracting
bidirected edges.

An undirected tree decomposition of a directed graph G is a pair
(
T , {Xt}t∈V (T )

)
satisfying the following conditions:

1. T is a undirected tree;
2.

⋃
X = V (G);
t∈V (T ) t
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3. for each edge (u, v) ∈ E(G), there exists a node t ∈ V (T ) such that {u, v} ⊆ Xt ;
4. for each vertex u ∈ V (G), the graph T [{t ∈ V (T ) : u ∈ Xt}] is connected.

In particular,
(
T , {Xt}t∈V (T )

)
is called an undirected path decomposition of G if T is an undirected path. The width of an

undirected tree decomposition
(
T , {Xt}t∈V (T )

)
is defined as the integer maxt∈V (T )|Xt | − 1. The undirected treewidth of a

directed graph G is defined as the minimum width over all tree decompositions of G, and the undirected pathwidth of G
is defined as the minimum width over all path decompositions of G.

Throughout this section we are mainly concerned with bidirected graphs. Thus, based on Lemmas 7 and 8, stated next,
it suffices to define only the notions of undirected pathwidth and of undirected treewidth. For the definitions of directed
pathwidth and directed treewidth, we refer to Refs. [12,15,18].

Lemma 7 ([1]). If G is a bidirected graph, then the directed pathwidth of G is equal to its undirected pathwidth.

Lemma 8 ([12]). If G is a bidirected graph, then the directed treewidth of G is equal to its undirected treewidth.

For the sake of simplicity, we also omit the formal definition of tree-zig-zag number, and we refer to Ref. [14].
Informally, the tree-zig-zag number of a directed graph G is defined similarly to the zig-zag number of G except for,
instead of linear orders, considering binary arboreal orders. That is to say, partial orders <π⊆ V (G) × V (G) such that, for
each vertex v ∈ V (G), the following conditions hold: the set {u ∈ V (G) : u <π v} is linearly ordered by <π and there are
at most two vertices v′

∈ V (G) with v <π v′ such that, for any u ∈ V (G), u <π v′ if and only if u <π v.

5.2. Directed vertex separation number

Let G be a directed graph on n vertices and π : V (G) → [n] be a bijection. Assume that V (G) = {u1, . . . , un} and, for
each ui, uj ∈ V (G), i < j if and only if ui <π uj. The directed vertex separation number of G with respect to π is defined as
the maximum number of vertices in {ui+1, . . . , un} that have some out-neighbor in {u1, . . . , ui}, where the maximum is
aken over all i ∈ [n − 1]. More formally,

dvsn(G, π ) .= max
i∈[n−1]

|
{
v ∈ {ui+1, . . . , un} :N+

G (v) ∩ {u1, . . . , ui} ̸= ∅
}
|,

here N+

G (v) denotes the out-neighborhood of v in G. The directed vertex separation number of G, denoted by dvsn(G), is
efined as the minimum dvsn(G, π ) over all bijections π : V (G) → [n].

emma 9 ([19]). Let G be a directed graph. The directed pathwidth of G is equal to the directed vertex separation number of G.

emma 10. If G1 and G2 are two directed graphs over a same vertex set X, and π : X → [|X |] is a bijection, then
vsn(G1 ∪ G2, π ) ≤ dvsn(G1, π ) + dvsn(G2, π ).

Proof. Assume that X = {u1, . . . , un} and, for each ui, uj ∈ V (G), i < j if and only if ui <π uj. Let i ∈ [n − 1]. Suppose
hat there exist ℓ1 distinct vertices v ∈ {ui+1, . . . , un} such that N+

G1
(v) ∩ {u1, . . . , ui} ̸= ∅. Analogously, suppose that

here exist ℓ2 distinct vertices v ∈ {ui+1, . . . , un} such that N+

G2
(v) ∩ {u1, . . . , ui} ̸= ∅. As a result, there exist at most

1 + ℓ2 distinct vertices v ∈ {ui+1, . . . , un} such that N+

G1
(v) ∩ {u1, . . . , ui} ̸= ∅ or N+

G2
(v) ∩ {u1, . . . , ui} ̸= ∅. In other

ords, there exist at most ℓ1 + ℓ2 distinct vertices v ∈ {ui+1, . . . , un} such that N+

G1∪G2
(v) ∩ {u1, . . . , ui} ̸= ∅. Therefore,

vsn(G1 ∪ G2, π ) ≤ dvsn(G1, π ) + dvsn(G2, π ). □

emma 11. Let G be a directed graph, P be a directed path of G, and let H be the directed graph such that V (H) = V (G) and
(H) = E(P). Then, for each bijection π : V (G) → [|G|], dvsn(H, π ) ≤ zn(H, π ) ≤ zn(G, π ).

roof. The second inequality follows from the fact that H is a subgraph of G. Now, we prove that the first inequality holds.
ssume that V (G) = {u1, . . . , un} and, for each ui, uj ∈ V (G), i < j if and only if ui <π uj. Let i ∈ [n − 1]. Since the set of
dges of H induces a directed path, it follows from the definition of zig-zag number that there exist at most zn(H, π ) edges
n the cut SH (π, i). As a result, there exist at most zn(H, π ) vertices v ∈ {ui+1, . . . , un} such that N+

H (v)∩ {u1, . . . , ui} ̸= ∅.
herefore, dvsn(H, π ) ≤ zn(H, π ). □

emma 12. Let p be a positive integer, G be a directed graph and π : V (G) → [|G|] be a bijection. If G can be described as
he union of p directed paths, then dvsn(G, π ) ≤ p · zn(G, π ).

roof. Suppose that there are p directed paths P1, . . . , Pp such that G =
⋃

i∈[p] Pi. For each i ∈ [p], let Hi be the directed
raph with vertex set V (Hi) = V (G) and edge set E(Hi) = E(Pi). Note that, G =

⋃
i∈[p] Hi. It follows from Lemma 11 that,

or each i ∈ [p], dvsn(Hi, π ) ≤ zn(Hi, π ). Therefore, by Lemma 10, dvsn(G, π ) ≤ p · zn(G, π ). □
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Fig. 16. Directed paths P1 and P2 obtained by Algorithm 1, respectively.

.3. Proof of Theorem 3

Let Bn be a rooted oriented complete binary tree on n vertices. For each non-leaf vertex u ∈ V (Bn), we write left(u) to
enote the left child of u in Bn, and we write right(u) to denote the right child of u in Bn.
We let Bn be the bidirected graph with vertex set V (Bn) = V (Bn) × {0, 1, 2} obtained by the union of two suitable

directed paths P1 and P2, recursively defined in Algorithm 1, and their respective reverse directed paths P ′

1 and P ′

2. More
specifically, if r is the root of Bn, then P1 and P2 are defined as the directed paths returned by the function calls

• Construct-Path(Bn, P = ⟨⟩, u = r, idx = 1) and
• Construct-Path(Bn, P = ⟨⟩, u = r, idx = 2)

of Algorithm 1, respectively, and P ′

1 is the reverse directed path of P1 and P ′

2 is the reverse directed path of P2. Therefore,
Bn can be decomposed into four directed paths. Fig. 16 illustrates P1 and P2.

Algorithm 1: Construction of directed graph Bn.
function Construct-Path(Bn, P, u, idx)

1 a = (idx − 1) mod 3; b = idx mod 3; c = (idx + 1) mod 3
2 P := P + ⟨(u, a) , (u, b)⟩ // concatenates P with the sequence ⟨(u, a) , (u, b)⟩
3 if u is not a leaf of Bn then
4 P := Construct-Path(Bn, P, left(u), idx)
5 P := Construct-Path(Bn, P, right(u), idx)
6 P := P + ⟨(u, c)⟩ // concatenates P with the sequence ⟨(u, c)⟩
7 return P

Lemma 13. The complete binary tree Bn is an undirected minor of Bn.

roof. First, we note that, for each i ∈ {1, 2}, if there exists a directed edge (u, v) in the directed path Pi, then there exists
the directed edge (v, u) in the reverse directed path P ′

i of Pi. This implies that, whenever (u, v) is a directed edge in Pi for
some i ∈ {1, 2}, Bn contains a bidirected edge between the nodes u and v. As a result, in order to show the existence of a
idirected edge in Bn between nodes u and v, it is enough to show that either (u, v) or (v, u) is a directed edge in Pi for

some i ∈ {1, 2}.
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Fig. 17. Tree decomposition T = (T ,X ) of Bn , where the rounded squares represent the bags of the nodes of T .

Based on that, we now remark that, for each node t ∈ V (Bn), there exist in Bn a bidirected edge between the nodes
t, 0) and (t, 1), and a bidirected edge between the nodes (t, 1) and (t, 2). Indeed, this follows from the facts that (t, 1)
immediately succeeds (t, 0) in the directed path P1, and that (t, 2) immediately succeeds (t, 1) in the directed path P2. In
addition, it follows from construction of P1 that, for each non-leaf node t ∈ V (Bn), there exist in Bn an edge between the
nodes (t, 1) and (left(t), 0), and an edge between the nodes (right(t), 2) and (t, 2). Similarly, it follows from construction
of P2 that, for each non-leaf node t ∈ V (Bn), there exist in Bn an edge between the nodes (t, 2) and (left(t), 1), and an
edge between the nodes (right(t), 0) and (t, 0).

Thus, let contr(Bn) denote the bidirected graph obtained from Bn by contracting, for each node t ∈ V (Bn), the bidirected
edge between (t, 0) and (t, 1), and the bidirected edge between (t, 1) and (t, 2). By the discussion above, contr(Bn) is a
subgraph of Bn. Therefore, Bn is an undirected minor of Bn. □

Lemma 14. zn(Bn) = Ω(log n).

Proof. By Lemma 13, Bn is an undirected minor of Bn. As a result, we obtain that the undirected pathwidth of Bn is at least
the undirected pathwidth of Bn cf. [4]. Moreover, it is well-known that complete binary trees on n vertices have undirected
pathwidth Θ(log n) cf. [2,14]. Thus, since Bn is a bidirected graph, it follows from Lemma 7 that the directed pathwidth
of Bn is Ω(log n). Consequently, by Lemma 9, dvsn(Bn) = Ω(log n). Moreover, by construction, Bn can be described as the
union of 4 directed paths. Then, it follows from Lemma 12 that zn(Bn) ≥

dvsn(Bn)
4 . Therefore, zn(Bn) = Ω(log n). □

emma 15. For each positive integer n, Bn has directed treewidth at most 8.

roof. Based on Lemma 8, it suffices to prove that Bn admits a undirected tree decomposition T = (T ,X ) of width 8,
here X = (Xt )t∈V (T ).
We define T simply as the complete binary tree obtained from Bn by removing all its leaves. Then, for each node

∈ V (T ), we define the bag of t as the set Xt = {t, left(t), right(t)} × {0, 1, 2}. Fig. 17 illustrates the tree decomposition
= (T ,X ). One can verify that T is a tree decomposition of Bn of width 8.

Based on Lemmas 14 and 15, we conclude the proof of Theorem 3.

. Concluding remarks

We have shed new light on the time complexity of computing the zig-zag number of a directed graph. Nonetheless,
ome questions still remain open.
More specifically, we have proved that one can non-deterministically decide whether a directed graph G admits zig-

ag number at most k in time |G|
O(k), concluding that k-zig-zag number is in NP for each fixed k ≥ 0. Nevertheless,

t remains unknown whether k-zig-zag number admits a non-deterministic FPT-time algorithm. Another interesting
uestion concerns to determine whether Zig-zag number is also in NP for non-fixed k. It is worth mentioning that, to settle
-zig-zag number in NP, we have actually proved that, given a directed graph G and a bijection π : V (G) → [|G|], deciding
hether zn(G, π ) ≤ k is polynomial-time solvable for fixed k. However, for non-fixed k, deciding whether zn(G, π ) ≤ k is
oNP-complete. As a matter of fact, given a bipartite directed graph G with bipartition V (G) = X ∪Y , if π : V (G) → [|G|] is
defined in such a way that x <π y for each x ∈ X and each y ∈ Y , then deciding whether zn(G, π ) ≥ |G| − 1 is equivalent
to deciding whether G admits a Hamiltonian path, which is a well-known NP-complete problem [11].

Another intriguing question concerns to determine whether 1-zig-zag number is polynomial-time solvable. As already
mentioned, every directed acyclic graph has zig-zag number at most 1, and every directed graph containing directed cycles
of length at least 3 must have zig-zag number at least 2. However, there exist directed graphs that are not directed acyclic
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Fig. 18. (a) Example of directed graph G that is not directed acyclic and has zig-zag number 1. (b) Example of directed graph G that does not
ontain directed cycles of length at least 3 and yet has zig-zag number 2.

ut still have zig-zag number at most 1 (see Fig. 18(a)). Note that, such graphs can only contain directed cycles that are
igons, i.e. directed cycles of length 2. Nevertheless, this is not a sufficient condition for a directed graph to have zig-zag
umber at most 1. In fact, there exist directed graphs that only contain directed cycles that are digons and yet have
ig-zag number at least 2 (see Fig. 18(b)). A property that seems to be useful to resolve this problem is the fact that, for
very directed graph G, zn(G) ≤ 1 if and only if there exists a bijection π : V (G) → [|G|] such that, for each three distinct
ertices a, b, c ∈ V (G), with (a, b) , (b, c) ∈ E(G), either a <π b <π c or c <π b <π a.
Motivated by the NP-hardness of 2-zig-zag number, we additionally ask whether k-zig-zag number is NP-hard for

≥ 3. In particular, determining whether k-zig-zag number is polynomially reducible to (k + 1)-zig-zag number is an
lusive open problem. Generally, such a reduction must consist in constructing a directed graph H from a given directed
raph G, such that zn(H) = zn(G) + 1. However, since for distinct bijections π : V (G) → [|G|] there might exist distinct
irected paths P of G such that zn(G, π, P) = zn(G, π ), it is not obvious at all how G should be modified so as to produce
directed graph with zig-zag number exactly one unit greater than zn(G). Indeed, consider for instance the operation
f adding a universal vertex, i.e. a vertex that is an out-neighbor and an in-neighbor of all the other vertices. There exist
irected graphs G such that the addition of a universal vertex results in a directed graph with zig-zag number strictly
reater than zn(G) + 1; while there also exist directed graphs G such that the addition of a universal vertex results in a
irected graph with zig-zag number equal to zn(G).
It is worth mentioning that, even if k-zig-zag number is proved to be NP-hard for every k ≥ 3, zig-zag number is

till a directed width measure of important theoretical and algorithmic interest. Indeed, besides the fact that zig-zag
umber is asymptotically upper bounded by directed pathwidth, there possibly exist efficient approximation algorithms
ith constant approximation factors for the k-zig-zag number problem, which remains an open question. Motivated by
hat, we ask for the existence of such approximation algorithms.

Finally, other important questions that are still open concern the establishment of relations between zig-zag number
nd distinct width measures. We have proved that there exist directed graphs of constant directed treewidth but
nbounded zig-zag number. However, it is unknown whether the family of directed graphs of constant directed
reewidth contains the family of directed graphs of constant zig-zag number. We remark that a counter-example for
uch containment would also imply the existence of directed graphs of constant tree-zig-zag number but unbounded
irected treewidth, closing an open question from [14]. Related to this, we ask for the existence of a characterization of
ig-zag number in terms of pursuit games.
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