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A k-total coloring of a graph G is an assignment of k colors to its elements (vertices and 
edges) so that adjacent or incident elements have different colors. The total chromatic 
number is the smallest integer k for which the graph G has a k-total coloring. Clearly, this 
number is at least �(G) + 1, where �(G) is the maximum degree of G . When the lower 
bound is reached, the graph is said to be Type 1. In 2018, the direct product of cycle graphs 
Cm × Cn , for m = 3p, 5�, 8� with p ≥ 2 and � ≥ 1, and arbitrary n ≥ 3, was proved to be 
Type 1 and suggested the conjecture that, except for C4 × C4, the direct product of cycle 
graphs Cm × Cn with m, n ≥ 3 is Type 1. We prove this conjecture and search further for 
sufficient conditions to ensure that the direct product of graphs is Type 1. We ask whether 
one factor being Type 1 is enough to ensure that the direct product also is a Type 1 graph. 
We prove that the direct product of a conformable regular graph with a regular graph 
is always conformable. We also prove that the direct product of a Type 1 graph with a 
bipartite graph is always Type 1.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). A k-total coloring of G is an assignment 
of k colors to its elements (vertices and edges) such that adjacent or incident elements have distinct colors. The total 
chromatic number χT (G) is the smallest integer k for which G has a k-total coloring. Clearly, χT (G) ≥ �(G) + 1, where 
�(G) is the maximum degree of G . The Total Coloring Conjecture (TCC), posed fifty years ago independently by Vizing [16]
and Behzad et al. [1], states that χT (G) ≤ �(G) + 2. Graphs with χT (G) = �(G) + 1 are said to be Type 1 and graphs 
with χT (G) = �(G) + 2 are said to be Type 2. In 1977, Kostochka [9] verified the TCC for all graphs with maximum degree 
4. Surprisingly, Murthy [12] has communicated in an unpublished manuscript a proof that the TCC holds for all graphs. 
Although the TCC is trivially settled for all bipartite graphs, the problem of determining the total chromatic number of a 
k-regular bipartite graph is NP-hard, for each fixed k ≥ 3 [11], exposing how challenging the problem of total coloring is.
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The direct product (also called tensor product or categorical product) of two graphs G and H is a graph denoted by G × H , 
whose vertex set is the Cartesian product of the vertex sets V (G) and V (H) that is {(u, v) : u ∈ V (G), v ∈ V (H)}, for which 
vertices (u, v) and (u′, v ′) are adjacent if and only if uu′ ∈ E(G) and v v ′ ∈ E(H). The definition clearly implies that the 
maximum degree satisfies �(G × H) = �(G) · �(H), and that the direct product G × H is a regular graph if and only 
if both G and H are regular graphs. Concerning the category of graphs, where objects are graphs and morphisms are 
graph homomorphisms, we know that the direct product G × H is the categorical product that is defined by projections 
pG : G × H → G and pH : G × H → H . The direct product has the commutative property, that is, the graph G × H is 
isomorphic to the graph H × G . Moreover, the direct product G × H is bipartite if and only if G or H is bipartite, and it is 
disconnected if and only if G and H are bipartite graphs. In particular, when both G and H are connected bipartite graphs, 
the direct product G × H has exactly two bipartite connected components.

A total coloring defines a vertex coloring and an edge coloring, and both coloring problems have been studied with 
respect to the direct product. A z-vertex (resp. z-edge) coloring of a graph is an assignment of z colors to its vertices 
(resp. edges) so that adjacent vertices (resp. incident edges) have distinct colors. The chromatic number (resp. index) is the 
smallest integer z for which a graph has a z-vertex (resp. edge) coloring. Concerning vertex coloring, Hedetniemi conjectured 
in 1966 that the chromatic number of G × H would be equal to the minimum of the chromatic numbers of G and H [6]. 
Recently, fifty years later, the conjecture was refuted by Shitov [14]. Concerning edge coloring, Jaradat [7] proved that if one 
factor reaches the lower bound for edge coloring, so does the direct product. We investigate whether an analogous property 
holds for total coloring, by asking whether one factor being Type 1 is enough to ensure that the direct product also is a 
Type 1 graph.

A cycle graph, denoted by Cn, n ≥ 3, is a connected 2-regular graph. The graph Cn is Type 1 if n is multiple of 3 and 
Type 2, otherwise [17]. The direct product of cycle graphs Cm × Cn is a 4-regular graph, and it is disconnected precisely 
when both m and n are even, in which case Cm × Cn consists of two isomorphic 4-regular bipartite connected components 
each being a spanning subgraph of the complete bipartite graph K nm

4 , nm
4

.
Concerning the total coloring of the direct product, there are few known results. Most classified direct product of graphs 

are Type 1. Prnaver and Zmazek [13] established the TCC for the direct product of a path of length greater or equal to 3 and 
an arbitrary graph G with chromatic index χ ′(G) = �(G). They also proved, for m, n ≥ 3, that χT (Pm × Pn) and χT (Pm ×Cn)

are equal to 5. Recently, the total chromatic number of direct product of complete graphs has been fully determined as being 
Type 1 with the exception of K2 × K2 [2].

An equitable total coloring is a total coloring where the number of elements colored with each color differs by at most one. 
In 2009, Tong et al. [15] showed that the equitable total chromatic number of the Cartesian product of Cm and Cn , denoted 
by Cm�Cn , is equal to 5 for all possible values m, n ≥ 3. It is known that C2n+1 × C2n+1 ∼= C2n+1�C2n+1 [5], therefore we 
know that χT (C2n+1 × C2n+1) = 5, for all n ≥ 1.

In 2018, Geetha and Somasundaram [5] conjectured that, except for C4 × C4, all direct product of cycle graphs Cm × Cn
are Type 1. As evidence, they established three infinite families of Type 1 direct product of cycle graphs: for arbitrary n ≥ 3, 
χT (Cm × Cn) = 5 if m = 3p, 5�, 8�, where p ≥ 2 and � ≥ 1. To describe the claimed total colorings for the three infinite 
families, they present four tables whose entries are the 5 colors given to suitable matchings between independent sets of 
vertices that are colored with no conflicts.

In Section 2, we present a general pattern that gives a 5-total coloring for all graphs Cm ×Cn , except for C4 ×C4. Therefore 
we ensure that the open remaining infinite families of Cm ×Cn are also Type 1. In Section 3, we investigate further conditions 
that ensure that the direct product G × H is Type 1. We ask whether one factor reaching the lower bound is enough to 
ensure that the direct product also reaches the lower bound for the total chromatic number. We manage to classify into 
Type 1 or Type 2 additional bipartite direct product of graphs.

2. Total coloring of Cm × Cn

In this section, we prove that the graph Cm × Cn is Type 1, except for C4 × C4. Note that the graph C4 × C4 is Type 2, as 
it is isomorphic to two copies of K4,4, well known to be Type 2, and it is the single exception among the direct product of 
cycle graphs Cm × Cn .

The present section is devoted to the proof of Theorem 1.

Theorem 1. Except for C4 × C4 , the graph Cm × Cn is Type 1.

We omit five particular cases that are too small to apply the used technique, but are easy to verify to be Type 1, for 
instance by using the free open-source mathematics software system Sage Math. They are: C3 ×C3, C3 ×C4, C3 ×C7, C4 ×C7
and C7 × C7. Fig. 1 presents a 5-total coloring of C3 × C3. Therefore, as Cm × Cn is isomorphic to Cn × Cm , we shall consider 
in our proof Cm × Cn with m, n ≥ 3 and m 	= 3, 4, 7.

We shall write m = 5k + b, for k ≥ 0 and b = 5, 6, 8, 9, 12. Note that as m 	= 7, the next case is m = 12 for which the 
remainder of the division by 5 is 2. For instance, to obtain a 5-total coloring of C3 × C24, we consider the isomorphic graph 
C24 × C3 and write 24 = 5k + b, with k = 3 and b = 9.

To prove Theorem 1, we construct a 5-total coloring of an auxiliary graph, called matching quotient, from which we 
obtain a 5-total coloring of Cm × Cn . We use suitable independents sets and matchings between them, inspired by the 
2
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Fig. 1. A 5-total coloring of C3 × C3.

Fig. 2. A 5-total coloring of C5 × C5 (left) and the respective colored matching quotient Q [C5 × C5] (right).

Color Vertices Edges

1 (pink) I0 M1, M3

2 (green) I1 M2, M4

3 (blue) I2 M0, M ′
3

4 (yellow) I3 M ′
1, M ′

4

5 (brown) I4 M ′
0, M ′

2

Fig. 3. The table and the drawing of a 5-total coloring of the base case Q [C5 × Cn]. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

strategy used by Geetha and Somasundaram [5] to total color the three particular infinite families. For i = 0, . . . , m − 1, 
denote by Ii = {(i, j) | j = 0, . . . , n − 1}, Mi = {(i, j)((i + 1) mod m, ( j + 1) mod n) | j = 0, . . . , n − 1} and M ′

i = {(i, j)((i +
1) mod m, ( j −1) mod n) | j = 0, . . . , n −1}. Clearly, each set has n elements, and sets Mi and M ′

i are two perfect matchings 
between independent sets Ii and Ii+1 in Cm × Cn . From that, we define the matching quotient of Cm × Cn , denoted by 
Q [Cm × Cn], as the multigraph where each of its m vertices correspond to an independent set Ii, i = 0, . . . , m − 1, and we 
have two edges between Ii and Ii+1 which correspond to Mi and M ′

i . Note that a 5-total coloring of the matching quotient 
Q [Cm × Cn] represents a 5-total coloring of Cm × Cn . Fig. 2 presents an example of a matching quotient, by depicting the 
matching quotient Q [C5 × C5] of C5 × C5.

In Subsections 2.1 and 2.2, we establish a 5-total coloring of the matching quotient of Cm × Cn , proving Theorem 1. In 
Subsection 2.1, we exhibit a 5-total coloring of the matching quotients of five base infinite families: C5 ×Cn, C6 ×Cn, C8 ×Cn , 
C9 ×Cn and C12 ×Cn , for n ≥ 3. Note that the base infinite families are those where m = 5k +b for k = 0 and b = 5, 6, 8, 9, 12. 
We observe that the 5-total coloring of the base infinite family C5 × Cn acts as a pattern. In Subsection 2.2, for the matching 
quotient of Cm × Cn , with an arbitrary large value of m, we observe that we can split this graph into (possibly many) pattern 
blocks that are identified with the matching quotient of C5 × Cn , and one base block which is identified with the matching 
quotient of each base infinite family C5 × Cn , C6 × Cn , C8 × Cn , C9 × Cn and C12 × Cn . The 5-total colorings of the matching 
quotients, given in Subsection 2.1, produce a 5-total coloring of each block such that there are no conflicts of colors. The 
strategy of splitting the graph into blocks gives a 5-total coloring of the matching quotient of Cm ×Cn , ensuring that Cm ×Cn

is Type 1.

2.1. Base infinite families

We consider first the base infinite families Q [Cm × Cn] with m = 5, 6, 8, 9, 12 and n ≥ 3. We refer to Figs. 3, 4, 5, 6 and 7
for the 5-total coloring of each base case.

In these figures, note that the 5-total colorings of the base infinite families have important features in common: the 
same color 1 (pink) given to the vertex I0, the same color 2 (green) given to the matching Mm−1 and the same color 4 
3
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Color Vertices Edges
1 I0, I3 M1, M4

2 I1, I4 M2, M5

3 I2, I5 M0, M3

4 − M ′
1, M ′

3, M ′
5

5 − M ′
0, M ′

2, M ′
4

Fig. 4. The table and the drawing of a 5-total coloring of the base case Q [C6 × Cn].

Color Vertices Edges
1 I0, I5 M1, M3, M6

2 I1, I4 M2, M5, M7

3 I2, I7 M0, M ′
3, M ′

5

4 I3, I6 M ′
1, M4, M ′

7

5 − M ′
0, M ′

2, M ′
4, M ′

6

Fig. 5. The table and the drawing of a 5-total coloring of the base case Q [C8 × Cn].

Color Vertices Edges
1 I0, I3, I6 M1, M4, M7

2 I1, I4, I7 M2, M5, M8

3 I2 M0, M3, M ′
5, M ′

7

4 I5 M ′
1, M ′

3, M6, M ′
8

5 I8 M ′
0, M ′

2, M ′
4, M ′

6

Fig. 6. The table and the drawing of a 5-total coloring of the base case Q [C9 × Cn].

Color Vertices Edges
1 I0, I3, I6, I9 M1, M4, M7, M10

2 I1, I8 M2, M ′
4, M6, M9, M11

3 I2, I7 M0, M3, M5, M8, M ′
10

4 I5, I10 M ′
1, M ′

3, M ′
6, M ′

8, M ′
11

5 I4, I11 M ′
0, M ′

2, M ′
5, M ′

7, M ′
9

Fig. 7. The table and the drawing of a 5-total coloring of the base case Q [C12 × Cn].

(yellow) given to the matching M ′
m−1. These shared features provide the needed compatibility that allows us to define a 

common pattern used when we deal with larger values of m.

2.2. Merging the pattern to generate a 5-total coloring for arbitrary m

To obtain a 5-total coloring of the matching quotient Q [Cm × Cn] for an arbitrary large value of m, we repeatedly merge 
the pattern block given by 5-total coloring of the matching quotient Q [C5 × Cn] with the 5-total coloring of its base block 
Q [Cb × Cn], for b = 5, 6, 8, 9, 12. Note that the colored Q [C5 × Cn] is the first base case and is also the only pattern used 
for an arbitrary value of m independently of its base case.

Recall that, as we argued in the beginning of Section 2, by swapping m and n, we are always able to consider n ≥ 3
and write a large value of m ≥ 10 as m = 5k + b, for k ≥ 1 and b = 5, 6, 8, 9, 12. We optimally color first its base block 
Cb × Cn and then repeatedly merge with k copies of the optimally colored pattern block C5 × Cn . So the 5-total coloring of 
Q [Cm × Cn] is defined by two steps as follows:

• Base step: For each i = 0, . . . , b − 1, the color of Ii (respectively, Mi and M ′
i ) in Q [Cm × Cn] is the same as the color of 

Ii (respectively, Mi and M ′
i ) in its base case Q [Cb × Cn].

• Pattern step: For each i = b, . . .m −1, write t = (i −b) mod 5, and the color of Ii (respectively, Mi and M ′
i ) in Q [Cm ×Cn]

is the same as the color of It (respectively, Mt and M ′
t ) in the pattern Q [C5 × Cn].

For instance, consider m = 11 and please refer to Fig. 8. Note that, in the base step, we color the elements Ii , Mi and M ′
i , 

for i = 0, . . . , 5, of Q [C11 × Cn] with the same colors as its base infinite family Q [C6 × Cn]. Now, in the pattern step, we 
color the elements Ii, Mi and M ′

i , for i = 6, 7, 8, 9, 10 of Q [C11 × Cn] with the same colors as the pattern Q [C5 × Cn] (as in 
Fig. 3). Analogously, when m = 16 we merge the pattern Q [C5 × Cn] twice into Q [C6 × Cn] to obtain a 5-total coloring of 
the matching quotient Q [C16 × Cn] as highlighted in Fig. 9 by elements Ii, Mi and M ′

i , for i = 6, . . . , 15. Thus, for a general 
m = 5k + b we merge k patterns Q [C5 × Cn] into the corresponding base infinite family Q [Cb × Cn] to obtain a 5-total 
coloring of the matching quotient Q [C5k+b × Cn].
4
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Fig. 8. A 5-total coloring of the matching quotient Q [C11 × Cn]. This 5-total coloring is obtained by merging once the 5-total coloring of the highlighted 
pattern Q [C5 × Cn] into the 5-total coloring of Q [C6 × Cn].

Fig. 9. A 5-total coloring of the matching quotient Q [C16 × Cn]. This 5-total coloring is obtained by merging twice the 5-total coloring of the highlighted 
pattern Q [C5 × Cn] into the 5-total coloring of Q [C6 × Cn].

Note that there is no conflict between the assigned colors in the defined 5-total coloring for an arbitrary value of m. 
Indeed, we already know that each base infinite family has color 1 (pink) to I0, color 2 (green) to Mb−1 and color 4 
(yellow) to M ′

b−1. Note that, regardless of how many times we use the pattern, there is no conflict between the patterns, 
as the edges colored 2 (green) and 4 (yellow) in the case base Q [C5 × Cn] are the ones used between the patterns. Also, 
there is no conflict between the base case and the pattern, as the edges colored 2 (green) and 4 (yellow) between Ib−1 and 
Ib (pink), and between I0 colored 1 (pink) and Im−1, are both used in our base cases, where both Ib−1 and Im−1 have a 
colored 1 (pink) neighbor vertex.

3. On total coloring bipartite direct product of graphs

In this section, we pose and investigate two questions motivated by the search for a general pattern for the classification 
into Type 1 or Type 2 of the direct product of two graphs. In this sense, it is natural to seek sufficient conditions for the 
direct product to be Type 1. Prnaver and Zmazek [13] proved that if G admits a �(G)-edge coloring, then G × Pm is Type 1, 
for m ≥ 3. Mackeigan and Janssen [10] subsequently proved that if G × K2 is Type 1, then G × H is also Type 1, for any 
bipartite graph H . Recall that for edge coloring, Jaradat [7] proved that if one factor reaches the lower bound for edge 
coloring, so does the direct product. We investigate whether an analogous property holds for total coloring:

Question 1. Concerning total coloring, given a Type 1 graph G and an arbitrary graph H, is the direct product G × H Type 1?

The analogous question has been considered for the Cartesian product, but has only been partially answered. It is known 
that if the factor with largest vertex degree is of Type 1, then the Cartesian product is also of Type 1 [18]. So far, all known 
Type 2 direct product of two graphs are the direct product G × H , where G and H are Type 2, including cases with G = H . 
The known Type 2 direct product of two graphs are: K2 × K2, C4 × C4, Kn,n × Km,m , and Cm × K2 for m not a multiple of 3. 
On the other hand, a Type 1 direct product of two graphs G × H can be obtained when G and H are Type 1, when G and 
H are Type 2, or else when one of them is Type 1 and the other is Type 2. For instance, Km is Type 1 when m is odd and 
Type 2 when m is even, and yet the direct product Km × Kn is Type 1 when both m and n are odd [2], when m, n 	= 2 are 
both even [5], or else when m or n is even [10]; whereas when m = n = 2, the graph K2 × K2 is Type 2. The present work 
established that the direct product Cm × Cn is Type 1 when m, n 	= 4, and yet Cm is Type 1 when m is multiple of 3 and 
Type 2 otherwise; whereas when m = n = 4, the graph C4 × C4 is Type 2.

We contribute toward answering Question 1 by giving positive evidences. A regular graph G is conformable if G ad-
mits a vertex coloring with �(G) + 1 colors such that the number of vertices in each color class has the same parity as 
|V (G)| [3]. It is known that every Type 1 graph must satisfy the conformable condition [3]. The converse is not true, but 
being conformable helps to identify whether a graph has the potential to be Type 1 or to be sure that it cannot be Type 1. In 
Theorem 2, we show a sufficient condition on the graph G for the direct product of regular graphs G × H to be conformable.

Theorem 2. Let G and H be two regular graphs. If G is conformable, then G × H is conformable.

Proof. Since G is conformable, let us consider a vertex coloring f : V (G) → {1, . . . , �(G) + 1} such that, for every i =
1, . . . , �(G) + 1, the color class Fi = f −1(i) has cardinality of the same parity as |V (G)|. Consider one of the projections 
that define the direct product p : V (G × H) → V (G). Therefore, we have a function f ◦ p : V (G × H) → {1, . . . , �(G) + 1}, 
5
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which is a vertex coloring of G × H such that every color class consists of the vertices in the Cartesian product of the sets 
of vertices of Fi and V (H), denoted by Fi × V (H), for i = 1, . . . , �(G) + 1.

We consider two cases. First, consider the case when G × H is a graph of even order. In this case, |V (G)| or |V (H)| is 
even. Recall that �(G × H) = �(G) · �(H). Consider a vertex coloring γ : V (G × H) → {1, . . . , �(G) · �(H) + 1}, defined by 
γ (x, a) = f (x). Note that this function is actually obtained from f ◦ p by changing the codomain, thus this is also a vertex 
coloring of G × H , but possibly there are empty color classes. An empty set has cardinality zero, which is of even parity. 
We have to prove that γ is conformable, that is, we have to prove that every non-empty color class of γ has an even 
cardinality. But, a non-empty color class of γ is of the form Fi × V (H), where Fi a color class of f . Since Fi has the same 
cardinality of |V (G)| and |Fi × V (H)| = |Fi | · |V (H)|, if |V (G)| or |V (H)| is even, then |Fi × V (H)| is also even, and thus, γ
is a conformable coloring of G × H .

Now, consider the case when G × H is a graph of odd order, that is |V (G)| and |V (H)| are odd. Since G and H are 
regular graphs, we have that �(G) and �(H) are even. Observe that all color classes of c ◦ p have odd cardinality. Next, we 
define a conformable coloring γ : V (G × H) → {1, . . . , �(G) · �(H) + 1}. Observe that all color classes of γ must have odd 
cardinality, hence they must have at least one vertex. The idea is to remove even amount of vertices of each color class of 
f ◦ p. In this way, the parity of these color classes is preserved and additionally we define new color classes of cardinality 
one, for each of this removed vertices. Consider V (H) = {v1, . . . , vn} and consider, for each i = 1, . . . , �(G) + 1, a fixed 
element ui of Fi . We define:

Ai =
{ {(ui, v j) | j = 1, . . . ,�(H) − 2}, if i = 1, . . . ,�(G)/2

{(ui, v j) | j = 1, . . . ,�(H)}, if i = (�(G)/2) + 1, . . . ,�(G)

In addition, define

A =
�(G)⋃
i=1

Ai .

We construct a vertex coloring γ of G × H by defining its color classes, each one is a subset of a color class of f ◦ p. 
Each color class of γ is Fi × V (H) − Ai , for i = 1, . . . , �(G), F�(G)+1 and {(u, v)}, for (u, v) ∈ A. In order to show that γ
is conformable, we have to show that γ has �(G) · �(H) + 1 color classes and that each color class has odd cardinality, as 
follows.

First, the number of color classes of γ is �(G) + 1 + |A|. Since

|A| =
�(G)∑
i=1

|Ai| = (

�(G)
2∑

i=1

|Ai|) + (

�(G)∑
i=(

�(G)
2 )+1

|Ai |) = �(G)

2
(�(H) − 2) + �(G)

2
�(H)

= (
�(G)

2
)(2�(H) − 2) = �(G)(�(H) − 1),

we have that �(G) + 1 + |A| = �(G) · �(H) + 1.
Finally, we prove that each color class of γ has odd cardinality. Recall that H is of odd order and has even degree. 

Since f is a conformable coloring of G and G is of odd order, each Fi is of odd cardinality, for i = 1, . . . , �(G) + 1. For each 
i = 1, . . . , �(G)/2, Fi × V (H) − Ai has odd cardinality |Fi | · |V (H)| −�(H) +2. Similarly, for each i = (�(G)/2) +1, . . . , �(G), 
Fi × V (H) − Ai has odd cardinality |Fi | · |V (H)| − �(H). Clearly, F�(G)+1 and {(u, v)}, for (u, v) ∈ A have odd cardinality. 
Therefore, γ is a conformable coloring of G × H .

For examples of the odd and even cases, see Figs. 1 and 10, respectively. Note that the conformable colorings of the base 
infinite families in Section 2 are not obtained in the same way, except C6 × Cn , n ≥ 3. �

By Theorem 2, we contribute to Question 1 since given regular graphs G and H with G of Type 1, we know that G × H is 
conformable. Conformable graphs of odd order and sufficient large maximum degree are Type 1, see Chew [4]. For example, 
in [2], we use this fact together with Hamiltonian decompositions, to give a full classification of the total chromatic number 
of the direct product of complete graphs Km × Kn .

The next lemma presents a sufficient condition on the graph G for the direct product G × K2 to be Type 1, which leads 
to a corollary that answers Question 1 positively when one factor is Type 1 and the other is bipartite.

Lemma 1. If G is Type 1, then G × K2 is Type 1.

Proof. Let f : V (G) ∪ E(G) → {1, . . . , �(G) + 1} be a total coloring of a Type 1 graph G . Consider one of the projections that 
define the direct product p : V (G × K2) ∪ E(G × K2) → V (G) ∪ E(G) and the composite function f ◦ p : V (G × K2) ∪ E(G ×
K2) → {1, . . . , �(G) + 1}. Observe that �(G × K2) = �(G).

First note that, as before, f ◦ p, when restricted to the vertices of G × K2, is a vertex coloring. Second, let (x, i)(y, j) ∈
E(G × K2) and suppose this edge (x, i)(y, j) and its endvertex (x, i) have the same color, that is ( f ◦ p)((x, i)(y, j)) =
6
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Fig. 10. A 5-total coloring of C6 × C8 which is also the conformable coloring of Theorem 2.

Fig. 11. A 4-total coloring of G × K2 obtained by a 4-total coloring of G .

( f ◦ p)(x, i). Thus, f (xy) = f (x), a contradiction since x is an endvertex of the edge xy in G . Finally, let (x, i)(y, j) and 
(y, j)(z, k) be two adjacent edges of G × K2 and suppose that these edges have the same colors, that is ( f ◦ p)((x, i)(y, j)) =
( f ◦ p)((y, j)(z, k)). Thus, f (xy) = f (yz), a contradiction since xy and yz are adjacent edges in G . �

Fig. 11 presents a 4-total coloring of G × K2, where G is the Cartesian product G = C3�K2. Lemma 1 along with the 
above mentioned result of Mackeigan and Janssen [10] give the following corollary:

Corollary 1. If G is Type 1 and H is bipartite, then G × H is Type 1.

We remark that C3 × C4 is Type 1, which agrees with Corollary 1, as C3 is Type 1 and C4 is a bipartite graph. We remark 
that Cm × K2 is Type 1 if and only if m is multiple of 3. The converse of Corollary 1 is not true, since there are many 
examples of a Type 2 graph G such that the direct product of G × K2 is Type 1. For instance, Km for even m is Type 2, and 
yet Km × K2 is the complete bipartite graph Km,m minus a perfect matching, known to be Type 1 for m ≥ 4 [17].

Also, for two complete bipartite graphs Km,m′ and Kn,n′ , the direct product Km,m′ × Kn,n′ is Type 2 if and only if m = m′
and n = n′ . Otherwise, it is Type 1. Indeed, note that if m 	= m′ or n 	= n′ , then Km,m′ × Kn,n′ is Type 1, by Corollary 1 since 
it is known that Km,m′ is Type 1 [17]. On the other hand, if m = m′ and n = n′ , the graph Km,m × Kn,n is isomorphic to two 
copies of Kmn,mn [8]. It is known that Kmn,mn is Type 2 [17] and thus also Km,m × Kn,n .

If G is bipartite and Type 1, then Corollary 1 implies that G × G is Type 1 as well. In this context, we conclude by 
proposing the property for a general Type 1 graph:

Question 2. Given a Type 1 graph G, is the direct product G × G Type 1 as well?
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Appendix A

In Fig. 12, we highlight a 5-total coloring of one of the graphs present in the table in Fig. 4. As m and n are even, the 
disconnected graph C6 × C8 is bipartite and has two bipartite connected components that are isomorphic to a subgraph of 
the bipartite graph K12,12.

Fig. 12. A depiction of a 5-total coloring of C6 × C8.

Cm × Cn is Type 1 when m = 5k + 2, for some k ≥ 1, as presented in Table 1, Table 3 and table in Fig. 7.
In this case, we construct a general table only for m = 5k + 2, for k ≥ 2 as table in Fig. 7. Since it is known that if m = 5

or m = 6, the total chromatic number of Cm × Cn is 5, we have only 3 particular graphs to establish a 5 total coloring when 
m = 7: C7 × C3, C7 × C4 and C7 × C7. Recall that the direct product is commutative so we can consider the graphs C3 × C7, 
C4 × C7 and C7 × C7, respectively, as presented in Table 1, Table 2 and Table 3, respectively. Finally, the remaining particular 
cases are C3 × C3 and C3 × C4 as presented in Table 4 and Table 5, respectively.

Table 1
A 5-total coloring of C3 × C7.

Color class Vertices Edges
1 (0,0), (0,2), (0,3) (0,1)(1,2), (0,4)(2,3), (0,5)(1,4), (0,6)(2,0), (1,0)(2,1)

(1,1)(2,2), (1,3)(2,4), (1,5)(2,6), (1,6)(2,5)

2 (0,1), (1,3), (1,4), (1,5) (0,0)(2,6), (0,2)(2,1), (0,3)(2,2), (0,4)(2,5), (0,5)(2,4)

(1,6) (0,6)(1,0), (1,1)(2,0), (1,2)(2,3)

3 (0,4), (0,5), (0,6), (1,1) (0,0)(1,6), (0,1)(2,0), (0,2)(2,3), (0,3)(1,2), (1,0)(2,6)

(2,1) (1,3)(2,2), (1,4)(2,5), (1,5)(2,4)

4 (1,0), (1,2), (2,5) (0,0)(2,1), (0,1)(2,2), (0,2)(1,1), (0,3)(2,4), (0,4)(1,3)

(0,5)(2,6), (0,6)(1,5), (1,4)(2,3), (1,6)(2,0)

5 (2,0), (2,2), (2,3), (2,4) (0,0)(1,1), (0,1)(1,0), (0,2)(1,3), (0,3)(1,4), (0,4)(1,5)

(2,6) (0,5)(1,6), (0,6)(2,5), (1,2)(2,1)
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Table 2
A 5-total coloring of C4 × C7.

Color class Vertices Edges
1 (0,0), (0,5), (0,6), (1,2) (0,1)(3,0), (0,2)(3,1), (0,3)(3,4), (0,4)(3,5), (1,0)(2,1)

(1,3), (2,6), (3,2), (3,3) (1,1)(2,2), (1,4)(2,3), (1,5)(2,4), (1,6)(2,5), (2,0)(3,6)

2 (0,1), (0,2), (1,4), (1,5) (0,0)(1,1), (0,3)(1,2), (0,4)(1,3), (0,5)(1,6), (0,6)(1,0)

(2,0), (2,1), (3,4), (3,5) (2,2)(3,1), (2,3)(3,2), (2,4)(3,3), (2,5)(3,6), (2,6)(3,0)

(0,0)(3,1), (0,1)(3,2), (0,2)(1,1), (0,4)(3,3), (0,5)(1,4)

3 (0,3), (1,0), (2,2), (3,6) (0,6)(3,5), (1,2)(2,3), (1,3)(2,4), (1,5)(2,6), (1,6)(2,0)

(2,1)(3,0), (2,5)(3,4)

(0,0)(1,6), (0,1)(1,2), (0,2)(1,3), (0,3)(1,4), (0,5)(3,6)

4 (0,4), (1,1), (2,5), (3,0) (0,6)(1,5), (1,0)(2,6), (2,0)(3,1), (2,1)(3,2), (2,2)(3,3)

(2,3)(3,4), (2,4)(3,5)

(0,0)(3,6), (0,1)(1,0), (0,2)(3,3), (0,3)(3,2), (0,4)(1,5)

5 (1,6), (2,3), (2,4), (3,1) (0,5)(3,4), (0,6)(3,0), (1,1)(2,0), (1,2)(2,1), (1,3)(2,2)

(1,4)(2,5), (2,6)(3,5)

Table 3
A 5-total coloring of C7 × C7.

Color class Vertices Edges
(0,2), (1,6), (3,1), (4,5) (0,0)(1,1), (0,1)(6,2), (0,3)(6,4), (0,4)(1,3), (0,5)(6,6)

1 (4,6), (5,3), (6,0) (0,6)(1,5), (1,0)(2,6), (1,2)(2,1), (1,4)(2,5), (2,0)(3,6)

(2,2)(3,3), (2,3)(3,4), (2,4)(3,5), (3,0)(4,1), (3,2)(4,3)

(4,0)(5,6), (4,2)(5,1), (4,4)(5,5), (5,0)(6,1), (5,2)(6,3)

(5,4)(6,5)

(0,1), (0,3), (0,6), (2,0) (0,0)(1,6), (0,2)(6,3), (0,4)(6,5), (0,5)(1,4), (1,0)(2,1)

2 (3,0), (3,2), (3,3), (6,1) (1,1)(2,2), (1,2)(2,3), (1,3)(2,4), (1,5)(2,6), (2,5)(3,4)

(6,6) (3,1)(4,2), (3,5)(4,4), (3,6)(4,0), (4,1)(5,0), (4,3)(5,2)

(4,5)(5,4), (4,6)(5,5), (5,1)(6,2), (5,3)(6,4), (5,6)(6,0)

(1,2), (1,4), (2,2), (2,4) (0,0)(6,1), (0,1)(1,0), (0,2)(1,3), (0,3)(6,2), (0,4)(1,5)

3 (2,6), (3,4), (5,0), (5,1) (0,5)(1,6), (0,6)(6,0), (1,1)(2,0), (2,1)(3,0), (2,3)(3,2)

(6,3), (6,4), (6,5) (2,5)(3,6), (3,1)(4,0), (3,3)(4,4), (3,5)(4,6), (4,1)(5,2)

(4,2)(5,3), (4,3)(5,4), (4,5)(5,6), (5,5)(6,6)

(0,0), (0,4), (0,5), (1,0) (0,1)(6,0), (0,2)(1,1), (0,3)(1,2), (0,6)(6,5), (1,3)(2,2)

4 (3,6), (4,1), (4,3), (4,4) (1,4)(2,3), (1,5)(2,4), (1,6)(2,5), (2,0)(3,1), (2,1)(3,2)

(5,6) (2,6)(3,5), (3,0)(4,6), (3,3)(4,2), (3,4)(4,5), (4,0)(5,1)

(5,0)(6,6), (5,2)(6,1), (5,3)(6,2), (5,4)(6,3), (5,5)(6,4)

(1,1), (1,3), (1,5), (2,1) (0,0)(6,6), (0,1)(1,2), (0,2)(6,1), (0,3)(1,4), (0,4)(6,3)

5 (2,3), (2,5), (3,5), (4,0) (0,5)(6,4), (0,6)(1,0), (1,6)(2,0), (2,2)(3,1), (2,4)(3,3)

(4,2), (5,2), (5,4), (5,5) (2,6)(3,0), (3,2)(4,1), (3,4)(4,3), (3,6)(4,5), (4,4)(5,3)

(6,2) (4,6)(5,0), (5,1)(6,0), (5,6)(6,5)

Table 4
A 5-total coloring of C3 × C3 presented in a table and in a figure.

A 5-total coloring of C3 × C3

Color Vertices Edges

Red (0,0), (1,0), (2,0) (0,1)(1,2), (0,2)(2,1), (1,1)(2,2)

Green (0,1), (1,1), (2,1) (0,0)(2,2), (0,2)(1,0), (1,2)(2,0)

Orange (0,2) (0,0)(1,2), (0,1)(2,2), (1,0)(2,1), (1,1)(2,0)

Blue (1,2) (0,0)(2,1), (0,1)(2,0), (0,2)(1,1), (1,0)(2,2)

Yellow (2,2) (0,0)(1,1), (0,1)(1,0), (0,2)(2,0), (1,2)(2,1)

Table 5
A 5-total coloring of C3 × C4.

Color class Vertices Edges
1 (0,0), (0,1) (0,2)(1,3), (0,3)(2,0), (1,0)(2,3), (1,1)(2,2), (1,2)(2,1)

2 (0,2), (0,3) (0,0)(1,3), (0,1), (2,2), (1,0)(2,1), (1,1)(2,0), (1,2)(2,3)

3 (1,0), (1,1), (1,2), (1,3) (0,0)(2,1), (0,1)(2,0), (0,2)(2,3), (0,3)(2,2)

4 (2,0), (2,1) (0,0)(2,3), (0,1)(1,2), (0,2)(1,1), (0,3)(1,0), (1,3)(2,2)

5 (2,2), (2,3) (0,0)(1,1), (0,1)(1,0), (0,2)(2,1), (0,3)(1,2), (1,3)(2,0)
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