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Abstract

A k-total coloring of a graph G is an assignment of k colors to the elements (vertices and edges) of G so that adjacent or incident
elements have different colors. The total chromatic number is the smallest integer k for which G has a k-total coloring. The well
known Total Coloring Conjecture states that the total chromatic number of a graph is either ∆(G) + 1 or ∆(G) + 2, where ∆(G) is the
maximum degree of G. We consider the direct product of complete graphs Km × Kn. It is known that if at least one of the numbers m
or n is even, then Km × Kn has total chromatic number equal to ∆(Km × Kn) + 1, except when m = n = 2. We prove that the graph
Km × Kn has total chromatic number equal to ∆(Km × Kn) + 1 when both m and n are odd numbers, ensuring in this way that all
graphs Km × Kn have total chromatic number equal to ∆(Km × Kn) + 1, except when m = n = 2.
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1. Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). A k-total coloring of a graph G is an
assignment of k colors to the elements (vertices and edges) of G so that adjacent or incident elements have different
colors. The total chromatic number, denoted by χT (G), is the smallest integer k for which G has a k-total coloring.
Clearly, χT (G) ≥ ∆(G) + 1 and the Total Coloring Conjecture (TCC), posed independently by Vizing [11] and Behzad
et al. [2], states that χT (G) � ∆(G) + 2, where ∆(G) is the maximum degree of G. Graphs with χT (G) = ∆(G) + 1 are
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said to be Type 1 and graphs with χT (G) = ∆(G) + 2 are said to be Type 2. The TCC has been verified in restricted
cases, such as cubic graphs [10] and graphs with large maximum degree [7], but has not been settled for all regular
graphs for more than fifty years.

We denote an undirected edge e ∈ E(G) whose ends are u and v by uv. The direct product (also called tensor
product or Kronecker product) of two graphs G and H is a graph denoted by G × H, whose vertex set is the Cartesian
product V(G) × V(H), for which vertices (u, v) and (u', v') are adjacent if and only if uu' ∈ E(G) and vv' ∈ E(H), whose
maximum degree ∆(G × H) = ∆(G) · ∆(H), and G × H is regular if and only if both G and H are regular graphs. Let

G1 = (V, E1) and G2 = (V, E2) be two graphs on the same vertex set V and where E1 ∩ E2 = ∅, and denote by
2⊕

i=1
Gi the

direct sum graph G = (V, E1 ∪ E2) of graphs G1 and G2. In this work, we use the well known property that the direct

product is distributive over edge disjoint union of graphs, that is, if G =
t⊕

i=1
Gi, where Gi are edge-disjoint subgraphs of

G and E(G) = E(G1) ∪ E(G2) ∪ . . . ∪ E(Gt), then H ×G =
t⊕

i=1
(H ×Gi).

The complete graph on n vertices is denoted by Kn. The direct product of complete graphs Km × Kn is a regular
graph of degree ∆(Km × Kn) = (m − 1)(n − 1) and can be described as an n-partite graph with m vertices in each part.
The total chromatic number of Km × Kn has been determined when m or n is an even number. When m = n = 2, we
have the disconnected 2K2, which is Type 2, since each connected component K2 is Type 2. When m ≥ 3, Km × K2 is
the complete bipartite graph Km,m minus a perfect matching, and Yap [12] proved that this graph is Type 1. When n ≥ 4
and n is an even number, Geetha and Somasundaram [6] proved that Kn × Kn is Type 1. Janssen and Mackeigan [8]
recently proved that Km × Kn is Type 1 when m or n is an even number, with m, n ≥ 3. As far as we know, for the
remaining case, when both m and n are odd numbers, it is not known whether Km × Kn is Type 1 or Type 2. In this
work, we establish the total chromatic number of Km × Kn, when m and n are odd numbers, by proving that this graph
is Type 1. Thus, we can conclude that, except for m = n = 2, the graph Km × Kn is Type 1.

In order to achieve the claimed total colorings for all graphs Km × Kn, when m and n are odd numbers, we prove
two theorems according to whether m and n are both large enough or not. In Section 2, we recall the conformable
necessary condition to be Type 1 and a known lower bound on the vertex degree for regular graphs which ensures the
equivalence, and we prove Lemma 2.1 and Theorem 2.2 which together provide the required total colorings of the
direct product of complete graphs Km × Kn, for odd numbers m, n ≥ 13. In Section 3, we present preliminary concepts
on Hamiltonian decompositions used to obtain a guiding color for the remaining target total colorings. In Section 4, we
prove Theorem 4.1 which provides the required total colorings of Km × Kn, for odd numbers m, n ≥ 3 and m < 13.

2. The conformable condition is enough for odd numbers m, n ≥ 13

A regular graph G is conformable [3] if G admits a vertex coloring with ∆(G) + 1 colors such that the number of
vertices in each color class has the same parity as |V(G)|.

Lemma 2.1. For odd numbers m, n ≥ 3, the graph Km × Kn is conformable.

Proof. Consider m ≤ n. We construct a vertex coloring with (m − 1)(n − 1) + 1 colors such that each color class is
composed by 1 or 3 vertices. Let t = m+n−2

2 . Since t < n, vertices (0, i), (1, i), (2, i) in the direct product Km × Kn define
an independent set and can receive the same color ci, for i = {0, . . . , t − 1}. Now color each of the mn − 3t remaining
uncolored vertices with a different additional color, to obtain the desired vertex coloring with t + (mn − 3t) = mn − 2t =
mn − m − n + 2 = (m − 1)(n − 1) + 1 = ∆(Km × Kn) + 1 colors.

Hilton and Hind [7] established the TCC for graphs G having ∆(G) ≥ 3
4 |V(G)|. Chetwynd et al. [4] proved that letting

G be a regular graph of odd order and with degree ∆(G) ≥
√

7
3 |V(G)|, then G is Type 1 if and only if G is conformable.

Chew [5] improved this result by showing that it is enough to require that ∆(G) ≥ (
√

37−1)
6 |V(G)|. In Theorem 2.2, we

establish that when m, n ≥ 13 are odd numbers, then ∆(Km × Kn) satisfies the lower bound required by Chew, which
together with Lemma 2.1 implies the desired result.

Theorem 2.2. For odd numbers m, n ≥ 13, the graph Km × Kn is Type 1.
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Proof. Let m, n ≥ 13 be two odd numbers. Hence, (7 −
√

37)n − 6 ≥ (7 −
√

37) · 13 − 6 ≥ 0 and n ≥ 13 ≥ 72
13(7−

√
37)−6

.

So, 13(7 −
√

37)n ≥ 72 + 6n and 13(7 −
√

37)n − 13 · 6 ≥ 72 + 6n − 13 · 6, which implies that 13 ≥ 6(n−1)
(7−
√

37)n−6
.

Now, as m ≥ 13, we have that m ≥ 6(n−1)
(7−
√

37)n−6
. Therefore, (7 −

√
37)mn − 6m ≥ 6n − 6, which is equivalent to

(1−
√

37)mn+6mn−6m−6n+6 ≥ 0. So, mn−m−n+1 = (m−1)(n−1) ≥ (
√

37−1)
6 mn. Since ∆(Km×Kn) = (m−1)(n−1),

we have that ∆(Km × Kn) ≥ (
√

37−1)
6 |V(Km × Kn)|. Therefore, by Chew’s result [5] and by Lemma 2.1, we have that

Km × Kn is Type 1.

3. Hamiltonian decompositions to get a guiding color for odd numbers m, n ≥ 3 and m < 13

We consider 5 infinite families: K3 × Kn, K5 × Kn, K7 × Kn, K9 × Kn and K11 × Kn, with n ≥ 3 an odd number. For
K3 × Kn, K5 × Kn and K7 × Kn, in Subsection 3.1, we use Waleski’s Hamiltonian decomposition of Kn to define suitable
Hamiltonian decompositions of Km × Kn, first when gcd(m, n) = 1 and second when gcd(m, n) � 1; in Subsection 3.2,
we apply the constructed Hamiltonian decomposition to define a guiding color representing a color class from which
the target (∆(Km × Kn) + 1)-total coloring is finally obtained in Subsection 4.1. For K9 × Kn and K11 × Kn, we use
Chew’s result [5] and Lemma 2.1 to obtain that the family K9 × Kn is Type 1 for n ≥ 23 and the family K11 × Kn is
Type 1 for n ≥ 15 in Subsection 4.2.

3.1. Hamiltonian decompositions

A k-regular graph G has a Hamiltonian decomposition (or is Hamiltonian decomposable) if its edge set can be
partitioned into k

2 Hamiltonian cycles when k is an even number, or into (k−1)
2 Hamiltonian cycles plus a one factor (or

perfect matching) when k is an odd number. Please refer to [1] for a survey on Hamiltonian decompositions of various
product graphs.

Consider the well known Waleski’s Hamiltonian decomposition of the complete graph Kn for n ≥ 3. We shall focus
on an odd number n. Let n = 2w + 1 and label the vertices of Kn as 0, 1, . . . , 2w. Following the notation used in [1],
let Cn be the Hamiltonian cycle 〈0, 1, 2, 2w, 3, 2w − 1, 4, 2w − 2, 5, 2w − 3, . . . ,w + 3,w,w + 2,w + 1, 0〉. If σ is the
permutation (0)(1, 2, 3, 4, . . . , 2w − 1, 2w), then σ0(Cn), σ1(Cn), σ2(Cn), . . . , σw−1(Cn) is a Hamiltonian decomposition

of Kn. Observe that σ0(Cn) = Cn. We write Kn =
w⊕

i=1
σi−1(Cn). Denote by σt(Cn)z, with z = 0, 1, . . . , n− 1 the zth-vertex

in the cycle σt(Cn), and note that the vertex 0 is always the 0th-vertex. Note that for t ≥ w, the cycle σt(Cn) is the
opposite cycle of σt mod w(Cn), that is, σt(Cn)z = σ

t mod w(Cn)n−z for all z ≥ 1.
For instance consider n = 5, write n = 2w + 1 and thus w = 2, to get the Hamiltonian decomposition K5 =

2⊕
i=1
σi−1(C5), where σ0(C5) = 〈0, 1, 2, 4, 3, 0〉 and σ1(C5) = 〈0, 2, 3, 1, 4, 0〉, as highlighted in Figure 1. Note that

σ2(C5) = 〈0, 3, 4, 2, 1, 0〉 is the opposite cycle of σ0(C5), and σ3(C5) = 〈0, 4, 1, 3, 2, 0〉 is the opposite cycle of σ1(C5).

Fig. 1. Waleski’s Hamiltonian decomposition of K5 = σ
0(C5)

⊕
σ1(C5).

It is well known and not hard to see that the direct product of cycle graphs is Hamiltonian decomposable if and
only if at least one of them is an odd cycle [9]. In what follows, for both m and n odd numbers, we shall use Waleski’s
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Hamiltonian decomposition of the complete graph Kn and the well known distributive property of the direct product
to define a Hamiltonian decomposition of Km × Kn, for m = 3, 5, 7 and odd number n ≥ 3 suitable to our target total
coloring.

Write odd numbers m, n ≥ 3 as m = 2q + 1 and n = 2w + 1. Let gcd(m, n) = d. For j = 1, . . . , 2q,
i = 1, . . . , 2w and k = 0, . . . , d − 1, denote by C( j, i)k the cycle on mn

d vertices 〈C( j, i)k
z〉z=0,..., mn

d
, where C( j, i)k

z =

(σ j−1(Cm)(z+k) mod m, σ
i−1(Cn)z mod n), with z = 0, . . . , mn

d , is the zth-vertex of the cycle C( j, i)k. Observe that according to
the notation for vertex C( j, i)k

z , we have C( j, i)k
0 = C( j, i)k

mn
d

, and the vertex (0, 0) is always the 0th-vertex of C( j, i)0.
We consider next the construction of a Hamiltonian decomposition of Km × Kn according to whether gcd(m, n) = 1

or not. Case 1 considers gcd(m, n) = 1 which gives a single k = 0 and that each C( j, i)0 is a Hamiltonian cycle which
gives that {C( j, i) = C( j, i)0 | j = 1, . . . q and i = 1, . . . , 2w} is a Hamiltonian decomposition of Km × Kn. Case 2
considers gcd(m, n) � 1 which implies that each cycle C( j, i)k is not a Hamiltonian cycle. We construct a Hamiltonian
decomposition of Km ×Kn given by {C( j, i) | j = 1, . . . , 2q and i = 1, . . . ,w} where each Hamiltonian cycle is composed
by d paths obtained from the cycles C( j, i)k, such that, for each k = 0, ..., d − 1, the cycle C( j, i)k becomes a path by
removing one edge.

Case 1: gcd(m, n) = 1. Consider {C( j, i) | j = 1, . . . q and i = 1, . . . , 2w}, a Hamiltonian decomposition of Km × Kn,

where C( j, i) = C( j, i)0, see an example in Figure 2. Indeed, consider Km =
q⊕

j=1
(σ j−1(Cm)) and Kn =

w⊕
i=1

(σi−1(Cn))

the Waleski’s Hamiltonian decompositions of Km and Kn, respectively. Thus we write Km × Kn =
q⊕

j=1

w⊕
i=1

(σ j−1(Cm) ×

σi−1(Cn)). As the degree ∆(σ j−1(Cm) × σi−1(Cn)) = 4, for any j = 1, 2, . . . , q and for any i = 1, 2, . . . ,w, each subgraph
σ j−1(Cm) × σi−1(Cn) of Km × Kn has two Hamiltonian cycles: C( j, i) and C( j, i + w), and so, it is enough to consider
C( j, i) for j = 1, . . . , q and i = 1, . . . , 2w.

For instance, consider K3 × K5 in Figure 2. As gcd(3, 5) = 1 we use K3 × K5 =
1⊕

j=1

2⊕
i=1

(σ j−1(C3) × σi−1(C5)), the 2

Hamiltonian cycles of the subgraph σ0(C3)×σ0(C5) of K3×K5 are C(1, 1) and C(1, 3). Analogously, the 2 Hamiltonian
cycles of the subgraph σ0(C3) × σ1(C5) of K3 × K5 are C(1, 2) and C(1, 4).

Fig. 2. A depiction of K3 ×K5 partitioned into 4 Hamiltonian cycles. In (a) we have the Hamiltonian cycle C(1, 1) with 3 colors: the edges (1, 1)(2, 2),
(1, 2)(2, 4) and (1, 3)(2, 0) are colored with the guiding purple color; the endvertices of the purple edges and the remaining edges of C(1, 1) are
colored with colors orange and dark green. In (b) we have the Hamiltonian cycle C(1, 2) also colored with 3 colors: the edge (0, 1)(1, 4) also colored
with the guiding purple color; the endvertices of the purple edge and the remaining edges of C(1, 2) are colored with colors red and dark blue. In
(c) we have C(1, 3) also with 3 colors: the edge (1, 0)(2, 3) also colored with the guiding purple color; the endvertices of the purple edge and the
remaining edges of C(1, 3) are colored with colors light blue and light green. Finally in (d) we have C(1, 4) also colored with 3 colors: the edge
(0, 3)(2, 1) also colored with the guiding purple color; the endvertices of the purple edge and the remaining edges of C(1, 4) are colored with colors
pink and yellow.

Case 2: gcd(m, n) = d > 1. By definition, in this case, each C( j, i)k is not a Hamiltonian cycle. For k = 0, . . . , d − 1,
denote by P( j, i)k the path induced by the mn

d vertices C( j, i)k
z , with z = 0, . . . , mn

d −1, obtained from C( j, i)k by removing
one edge. Consider {C( j, i) | j = 1, . . . , 2q and i = 1, . . . ,w} a Hamiltonian decomposition of Km × Kn, where the
Hamiltonian cycles are defined as follows.
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(i) For m = 3, C( j, i) = 〈P( j, i)0, P( j, i)1, P( j, i)2, (0, 0)〉
For i = 1, . . . ,w, the cycles C(1, i) and C(2, i) form a Hamiltonian decomposition of σ0(C3) × σi−1(Cn).

For instance, consider K3 × K9 in Figure 3. As gcd(3, 9) = 3 we write K3 × K9 =
4⊕

i=1
(σ0(C3) × σi−1(C9)). The 2

Hamiltonian cycles of the subgraph σ0(C3) × σ0(C9) are C(1, 1) and C(2, 1); and analogously of the subgraph
σ0(C3) × σ1(C9) are C(1, 2) and C(2, 2); of the subgraph σ0(C3) × σ2(C9) are C(1, 3) and C(2, 3); finally of the
subgraph σ0(C3) × σ3(C9) are C(1, 4) and C(2, 4).

Fig. 3. A depiction of K3 × K9 partitioned into 8 Hamiltonian cycles. We have the Hamiltonian cycle C(1, 1) with 3 colors: the edges (1, 1)(2, 2),
(1, 3)(2, 7) and (1, 6)(2, 5) are colored with the guiding purple color; the endvertices of the purple edges and the remaining edges of C(1, 1) are colored
with colors red and yellow. In the remaining 7 Hamiltonian cycles, each of them has one edge with the guiding purple color whose endvertices and
the remaining edges of the cycle are colored with additional new two colors. The vertices (0, 0), (0, 2), (0, 4), (0, 5), (0, 6), (0, 7) and (0, 8) are an
independent set and can be colored with the guiding purple color obtaining a 17-total coloring of K3 × K9.

(ii) For m = 5, C( j, i) =
{
〈P( j, i)0, P( j, i)1, P( j, i)2, P( j, i)3, P( j, i)4, (0, 0)〉, if j = 1, 3
〈P( j, i)0, P( j, i)2, P( j, i)4, P( j, i)1, P( j, i)3, (0, 0)〉, if j = 2, 4

For i = 1, . . . ,w, the set of cycles {C( j, i) | j = 1, . . . , 4} is a Hamiltonian decomposition of K5 × σi−1(Cn).

(iii) For m = 7, C( j, i) =
{
〈P( j, i)0, P( j, i)3, P( j, i)4, P( j, i)5, P( j, i)1, P( j, i)2, P( j, i)6, (0, 0)〉, if j = 1, 3, 5
〈P( j, i)0, P( j, i)4, P( j, i)1, P( j, i)3, P( j, i)6, P( j, i)2, P( j, i)5, (0, 0)〉, if j = 2, 4, 6

For i = 1, . . . ,w, the set of cycles {C( j, i) | j = 1, . . . , 6} is a Hamiltonian decomposition of K7 × σi−1(Cn).

3.2. ∆((Km × Kn) + 1)-total coloring from elements of a guiding color

We are ready to explain how a (∆(Km×Kn)+1)-total coloring of Km×Kn is obtained by considering the Hamiltonian
decomposition of Km × Kn into Hamiltonian cycles C(i, j) defined in Subsection 3.1. In a (∆(Km × Kn) + 1)-total
coloring, each color class is such that each vertex is either inside the color class or is incident to an edge of the color
class. We shall choose a guiding color with the additional property that its color class contains one or three edges of
each Hamiltonian cycle. Note that each Hamiltonian cycle is an odd cycle and, by Vizing’s theorem [11], admits a
3-edge coloring. Thus, for each cycle, we assign two additional colors to the remaining edges of the Hamiltonian cycle
and to the endvertices of the edges with the guiding color, as Figures 2 and 3. With suitable choices for the edges of
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the matching colored by the guiding color, the so far uncolored vertices define an independent set which can be also
colored with the guiding color as Figure 4.

In order to obtain a (∆(Km × Kn) + 1)-total coloring, we give a table composed by the elements of the guiding color
class. We identify the edges of the guiding color on the corresponding Hamiltonian cycle where they belong. If the
Hamiltonian cycle contains a unique edge of the guiding color, then its endvertices and the remaining edges of the
cycle are easily colored using two additional colors. If the Hamiltonian cycle contains three edges of the guiding color,
then we can easily see that their endvertices define two independent sets that can be colored with two colors as also the
remaining edges of the cycle.

For instance, consider K3 × K5 in Figure 4. We represent a table and a subgraph highlighting all elements (edges
and vertices) colored by the guiding color and the colored vertices of Figure 2. We can identify which of the four
Hamiltonian cycles contains which highlighted edges by observing the colors of their endvertices. In Fig 2(a), the six
endvertices of the three edges colored with the guiding color (purple) in C(1, 1) are the three vertices (1, 1), (1, 2) and
(1, 3) defining an independent set that can be assigned with one color (orange), and the three vertices (2, 0), (2, 2) and
(2, 4) defining another independent set that can be assigned with one color (green). The remaining edges of C(1, 1) can
be assigned with the colors orange and green. Analogously for the Hamiltonian cycles C(1, 2),C(1, 3) and C(1, 4), as in
Figure 2. The remaining uncolored vertices (0, 0), (0, 2) and (0, 4) of Figure 2 represent an independent set that can be
colored with the guiding color. Thus we can easily obtain a 9-total coloring of K3 × K5 from the elements colored with
the guiding color.

Elements of K3 × K5 of the guiding color
C(1, 1) (1, 1)(2, 2), (1, 3)(2, 0), (1, 2)(2, 4)
C(1, 2) (0, 1)(1, 4)
C(1, 3) (1, 0)(2, 3)
C(1, 4) (2, 1)(0, 3)

Vertices: (0, 0), (0, 2), (0, 4)

Fig. 4. A table composed by the elements of the guiding purple color in K3 × K5, and its depiction using colors of the endvertices to identify the
Hamiltonian cycles containing them.

4. Proof of Theorem 4.1

In this section, we consider only the direct product of odd complete graphs Km × Kn with m, n ≥ 3 and m < 13.
Along the proof, we may sometimes omit the fact that m, n are odd numbers and m, n ≥ 3, since it is clear that we
work only with odd complete graphs greater than 2. Theorem 4.1 includes the five Type 1 infinite families of the direct
product of complete graphs: K3 × Kn, K5 × Kn, K7 × Kn, K9 × Kn and K11 × Kn. Theorem 4.1 completes the result that
Km × Kn is Type 1, except when m = n = 2 .

Theorem 4.1. For odd numbers m, n ≥ 3 with m < 13, the graph Km × Kn is Type 1.

We now present two subsections. In each subsection, for each considered family, we omit a finite number of
particular graphs that are too small to obey the described pattern. For each particular graph, we were able to describe a
particular Type 1 total coloring using the general strategy of first obtaining a particular Hamiltonian decomposition and
then choosing a suitable guiding color. Their particular Hamiltonian decompositions and their tables containing the
elements of the guiding color are omitted in the extended abstract.

4.1. Families K3 × Kn, K5 × Kn, K7 × Kn

In this subsection, we consider three Type 1 infinite families Km × Kn, for m = 3, 5, 7 and n > m an odd number,
dividing into two steps: when gcd(m, n) = 1 in Lemma 4.2 and when gcd(m, n) = m in Lemma 4.3.

Lemma 4.2. For m = 3, 5, 7 and an odd number n > m with gcd(m, n) = 1, the graph Km × Kn is Type 1.

Proof. To obtain a (∆(Km × Kn) + 1)-total coloring for the three infinite families Km × Kn for m = 3, 5, 7 and n > m an
odd number with gcd(m, n) = 1, first we use the Hamiltonian decomposition of Km × Kn defined in Subsection 3.1 Case
1 to construct the three tables respectively with the elements of the guiding color.
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• For m = 3. The general case for K3 × Kn, with n ≥ 11 and gcd(3, n) = 1, is presented in Table 1. This case m = 3
has 2 omitted particular graphs: K3 × K5 (solved in Subsection 3.2, see Figure 4) and K3 × K7.

Table 1. Elements of K3 × Kn of the guiding color, for n = 2w + 1, n ≥ 11 and gcd(3, n) = 1.
Cycle Edges Cycle Edges Cycle Edges
C(1, 1) (1, 1)(2, 2), (1, 3)(2, 2w − 1), (1, 2w − 2)(2, 5) C(1, 3) (0, 3)(1, 4) C(1, 2w − 2) (2, 0)(0, 2w − 2)
C(1, i) (1, i)(2, i + 1), i = 2, 5, 6, . . . , 2w − 3, 2w − 1 C(1, 4) (1, 0)(2, 4) C(1, 2w) (1, 2w)(2, 1)

Vertices: (0, i), i = 0, . . . , 2w, i � 3, 2w − 2

• For m = 5. The general case for K5 × Kn, with n ≥ 17, n � 21 and gcd(5, n) = 1, is presented in Table 2. This
case m = 5 has 5 omitted particular graphs: for n = 7, 9, 11, 13, 21.

Table 2. Elements of K5 × Kn of the guiding color, for n = 2w + 1, n ≥ 17, n � 21 and gcd(5, n) = 1.
Cycle Edges Cycle Edges
C(1, 1) (2, 2)(4, 2w), (2, 2w − 2)(4, 5), (2, 7)(4, 2w − 5) C(2, 1) (3, 2)(1, 2w)
C(1, i) (2, i + 1)(4, i − 1), i = 2, . . . , 2w − 1, i � 6, 2w − 4, 2w − 3 C(2, i) (3, i + 1)(1, i − 1), i = 2, . . . , 2w − 1, i � 5, 2w − 5, 2w − 4
C(1, 6) (0,w + 6)(1, 0) C(2, 5) (4, 0)(0, 5)

C(1, 2w − 4) (2, 0)(4, 2w − 4) C(2, 2w − 5) (3, 0)(1, 2w − 5)
C(1, 2w − 3) (3, 2w − 4)(0, 2w − 1) C(2, 2w − 4) (0, 2w − 4)(2, 2w − 3)

C(1, 2w) (2, 1)(4, 2w − 1) C(2, 2w) (3, 1)(1, 2w − 1), (3, 2w − 3)(1, 4), (3, 6)(1, 2w − 6)
Vertices: (0, i), for i = 0, . . . , 2w, i � 5,w + 6, 2w − 4, 2w − 1

• For m = 7. The general case for K7 × Kn, with n ≥ 23, n � 25, 33 and gcd(7, n) = 1, is presented in Table 3. This
case m = 7 has 8 omitted particular graphs: for n = 9, 11, 13, 15, 17, 19, 25, 33.

Thus, the family Km × Kn, with odd numbers m = 3, 5, 7, n > m and gcd(m, n) = 1, is Type 1.

Table 3. Elements of K7 × Kn of the guiding color, for n = 2w + 1, n ≥ 23, n � 25, 33 and gcd(7, n) = 1.
Cycle Edges Cycle Edges
C(1, 1) (6, 2w)(3, 3), (6, 6)(3, 2w − 4), (6, 2w − 7)(3, 10) C(2, 2w − 8) (5, 0)(0, 2w − 8)
C(1, i) (6, i − 1)(3, i + 2), i = 2, . . . , 2w − 2, i � 7, 8, 2w − 6 C(2, 2w − 1) (1, 2w − 2)(4, 1), (1, 4)(4, 2w − 6), (1, 2w − 9)(4, 8)
C(1, 7) (2, 0)(6, 7) C(2, 2w) (1, 2w − 1)(4, 2)
C(1, 8) (4, 7)(0, 10) C(3, 1) (2, 2w)(5, 3)

C(1, 2w − 6) (0,w − 6)(1, 0) C(3, i) (2, i − 1)(5, i + 2), i = 2, . . . , 2w − 2, i � 6, 7, 2w − 7
C(1, 2w − 1) (6, 2w − 2)(3, 1) C(3, 6) (4, 0)(2, 6)

C(1, 2w) (6, 2w − 1)(3, 2) C(3, 7) (0, 6)(3, 9)
C(2, 1) (1, 2w)(4, 3) C(3, 2w − 7) (6, 0)(0, 2w − 7)
C(2, i) (1, i − 1)(4, i + 2), i = 2, . . . , 2w − 2, i � 5, 6, 2w − 8 C(3, 2w − 1) (2, 2w − 2)(5, 1)
C(2, 5) (3, 0)(1, 5) C(3, 2w) (2, 2w − 1)(5, 2), (2, 5)(5, 2w − 5), (2, 2w − 8)(5, 9)
C(2, 6) (5, 8)(0, 4)

Vertices: (0, i), i = 0, . . . , 2w, i � 4, 6, 10,w − 6, 2w − 8, 2w − 7

Lemma 4.3. For m = 3, 5, 7 and an odd number n > m with gcd(m, n) = m, the graph Km × Kn is Type 1.

Proof. Analogous to the proof of Lemma 4.2, to obtain a (∆(Km × Kn) + 1)-total coloring for the families Km × Kn,
when m = 3, 5, 7, n ≥ m are odd numbers and gcd(m, n) = m, first we use the Hamiltonian decomposition of Km × Kn

as Subsection 3.1 Case 2 to construct the three tables respectively with the elements of the guiding color.

• For m = 3. First, we construct a Hamilton decomposition of K3 × Kn as Subsection 3.1 Case 2(i). The general
case for K3×Kn, with n ≥ 9 and gcd(3, n) = 3, is presented in Table 4. This case m = 3 has one omitted particular
graph K3 × K3.

Table 4. Elements of K3 × Kn of the guiding color, for n = 2w + 1, n ≥ 9 and gcd(3, n) = 3.
Cycle Edges Cycle Edges
C(1, 1) (1, 1)(2, 2), (1, 3)(2, 2w − 1), (1, 2w − 2)(2, 5) C(1,w − 2) (2,w − 1)(0,w − 3)
C(1, i) (1, i)(2, i + 1), i = 2, 5, 6, . . . ,w − 3,w − 1,w C(2, i) (2,w + i + 1)(1,w + i), i = 1, . . . ,w − 3,w − 1
C(1, 3) (0, 3)(1, 4) C(2,w − 2) (2, 0)(1,w − 2)
C(1, 4) (1, 0)(2, 4) C(2,w) (2, 1)(1, 2w)

Vertices: (0, i), i = 0, . . . , 2w, i � 3,w − 3
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Table 5. Elements of K5 × Kn of the guiding color, for n = 2w + 1, n ≥ 15 and gcd(5, n) = 5.
Cycle Edges Cycle Edges
C(1, 1) (2, 2)(4, 2w), (2, 2w − 2)(4, 5), (2, 7)(4, 2w − 5) C(3,w − 4) (3, 2w − 4)(2, 0)
C(1, i) (2, i + 1)(4, i − 1), i = 2, . . . ,w, i � 6 C(3,w − 3) (1, 0)(0,w − 3)
C(1, 6) (3, 0)(0, 6) C(3,w) (4, 2w − 1)(2, 1)
C(2, 1) (3, 2)(1, 2w) C(4, i) (1,w + i − 1)(3,w + i + 1), i = 1, . . . ,w − 1, i � w − 5,w − 4
C(2, i) (3, i + 1)(1, i − 1), i = 2, . . . ,w, i � 5 C(4,w − 5) (4, 2w − 4)(1, 2w − 5)
C(2, 5) (4, 0)(0, 5) C(4,w − 4) (2, 2w − 3)(0, 2w − 4)
C(3, i) (4,w + i − 1)(2,w + i + 1), i = 1, . . . ,w − 1, i � w − 4,w − 3 C(4,w) (1, 2w − 6)(3, 6), (1, 4)(3, 2w − 3), (1, 2w − 1)(3, 1)

Vertices: (0, i), i = 0, . . . , 2w, i � 5, 6,w − 3, 2w − 4

• For m = 5. First, we construct a Hamilton decomposition of K5 × Kn as Subsection 3.1 Case 2(ii). The general
case for K5 × Kn, with n ≥ 15 and gcd(5, n) = 5, is presented in Table 5. This case m = 5 has one omitted
particular graph K5 × K5.
• For m = 7. First we construct a Hamilton decomposition of K7 × Kn as Subsection 3.1 Case 2(iii). The general

case for K7 × Kn, with n ≥ 35 and gcd(7, n) = 7, is presented in Table 6. This case m = 7 has 2 omitted particular
graphs K7 × K7 and K7 × K21.

Thus, the family Km × Kn, with odd numbers m = 3, 5, 7, n > m and gcd(m, n) = m, is Type 1.

Table 6. Elements of K7 × Kn of the guiding color, for n = 2w + 1, n ≥ 35 and gcd(7, n) = 7.
Cycle Edges Cycle Edges
C(1, 1) (6, 2w)(3, 3), (6, 6)(3, 2w − 4), (6, 2w − 7)(3, 10) C(4, i) (3,w + i + 2)(6,w + i − 1), i = 1, . . . ,w − 2, i � w − 6
C(1, i) (6, i − 1)(3, i + 2), i = 2, . . . ,w, i � 7, 8 C(4,w − 6) (1, 0)(0,w − 6)
C(1, 7) (2, 0)(6, 7) C(4,w − 1) (3, 1)(6, 2w − 2)
C(1, 8) (4, 7)(0, 10) C(4,w) (3, 2)(6, 2w − 1)
C(2, 1) (1, 2w)(4, 3) C(5, i) (4,w + i + 2)(1,w + i − 1), i = 1, . . . ,w − 2, i � w − 8
C(2, i) (1, i − 1)(4, i + 2), i = 2, . . . ,w, i � 5, 6 C(5,w − 8) (0, 2w − 8)(6, 0)
C(2, 5) (3, 0)(1, 5) C(5,w − 1) (4, 8)(1, 2w − 9), (4, 2w − 6)(1, 4), (4, 1)(1, 2w − 2)
C(2, 6) (5, 8)(0, 4) C(5,w) (4, 2)(1, 2w − 1)
C(3, 1) (2, 2w)(5, 3) C(6, i) (5,w + i + 2)(2,w + i − 1), i = 1, . . . ,w − 2, i � w − 7
C(3, i) (2, i − 1)(5, i + 2), i = 2, . . . ,w, i � 6, 7 C(6,w − 7) (0, 2w − 7)(5, 0)
C(3, 6) (4, 0)(2, 6) C(6,w − 1) (5, 1)(2, 2w − 2)
C(3, 7) (0, 6)(3, 9) C(6,w) (5, 9)(2, 2w − 8), (5, 2w − 5)(2, 5), (5, 2)(2, 2w − 1)

Vertices: (0, i), i = 0, . . . , 2w, i � 4, 6, 10,w − 6, 2w − 8, 2w − 7

4.2. Families K9 × Kn and K11 × Kn

Lemma 4.4. For m = 9, 11 and an odd number n ≥ m, the graph Km × Kn is Type 1.

Proof. In Section 2, we have actually proved that for odd numbers m, n the graph Km × Kn is Type 1, provided that
∆(G) ≥ (

√
37−1)
6 |V(G)|.

We show next that K9 × Kn with n ≥ 23 and K11 × Kn with n ≥ 15 satisfy the required bound. Indeed, for K9 × Kn,
when n ≥ 23, we have that n ≥ 16/(16− 3(

√
37− 1)). Therefore, 8(n− 1) ≥ (

√
37−1)
6 · 9n, that is ∆(K9 × Kn) ≥ (

√
37−1)
6 · |

V(K9 ×Kn) |. For K11 ×Kn, when n ≥ 15, we have that n ≥ 60/(60− 11(
√

37− 1)). Therefore, 10(n− 1) ≥ (
√

37−1)
6 · 11n,

that is ∆(K11 × Kn) ≥ (
√

37−1)
6 · | V(K11 × Kn) |. Thus, we have that for n ≥ 23, the graph K9 × Kn is Type 1 and for

n ≥ 15, the graph K11 × Kn is Type 1.
The omitted particular graphs are K9 × Kn, for n = 9, 11, 13, 15, 17, 19, 21, and K11 × Kn, for n = 11, 13.
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