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Abstract
In this work, we investigate the total and edge colorings of the Kneser graphs K (n, s).
We prove that the sparse case of Kneser graphs, the odd graphs Ok = K (2k−1, k−1),
have total chromatic number equal to�(Ok)+1.We prove that Kneser graphs K (n, 2)
verify theTotal ColoringConjecturewhen n is even, orwhen n is odd not divisible by 3.
For the remaining cases when n is odd and divisible by 3, we obtain a total coloring
of K (n, 2) with �(K (n, 2)) + 3 colors when n ≡ 3 mod 4, and with �(K (n, 2)) + 4
colors when n ≡ 1mod 4. Furthermore, we present an infinite family of Kneser graphs
K (n, 2) that have chromatic index equal to �(K (n, 2)).

Keywords Total coloring · Edge coloring · Odd graphs · Kneser graphs

Mathematics Subject Classification 05C15 · 05C85 · 05C69 · 05C76

1 Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). An
element of G is one of its vertices or edges, and the maximum degree of G is denoted
by �(G).

A k-edge coloring of G is an assignment of k colors to the edges of G so that
adjacent edges have different colors. The chromatic index, denoted by χ(G), is the
smallest integer k for which G has a k-edge coloring. Clearly, χ(G) ≥ �(G) and
Vizing s theorem (Vizing 1964) states that χ(G) ≤ �(G) + 1. Graphs with χ(G) =
�(G) are said to be Class 1 and graphs with χ(G) = �(G) + 1 are said to be
Class 2. Deciding between the two candidate values for the chromatic index is NP-

B D. Sasaki
diana.sasaki@ime.uerj.br

1 COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

2 Instituto Federal de Goiás, Goiás, Brazil

3 IME, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

4 LIPN, Université Sorbonne Paris Nord, Villetaneuse, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-021-00816-z&domain=pdf


120 Journal of Combinatorial Optimization (2022) 44:119–135

complete even for regular graphs of degree at least 3 (Leven and Galil 1983). A k-total
coloring of G is an assignment of k colors to the elements (vertices and edges) of G so
that adjacent or incident elements have different colors. The total chromatic number,
denoted by χT (G), is the smallest integer k for whichG has a k-total coloring. Clearly,
χT (G) ≥ �(G) + 1 and the Total Coloring Conjecture (TCC), posed independently
by Behzad et al. (1967) and Vizing (1964), states that χT (G) ≤ �(G) + 2. Graphs
with χT (G) = �(G) + 1 are said to be Type 1 and graphs with χT (G) = �(G) + 2
are said to be Type 2. The problem of determining the total chromatic number of an
arbitrary graph G is NP-hard (Sánchez-Arroyo 1989). The TCC has been verified in
restricted cases, such as cubic graphs Rosenfeld (1971) but has not been settled for
all regular graphs for more than fifty years, exposing how challenging the problem of
total coloring is. Surprisingly, T Srinivasa Murthy Murthy 2021 has communicated in
an unpublished manuscript a proof that the TCC holds for all graphs.

In this paper, we consider the total coloring and the edge coloring of Kneser graphs.
Given positive integers n, s with n ≥ 2s, the Kneser graph K (n, s) has as vertices the
s-subsets of an n-set, and two s-subsets are adjacent in K (n, s) if they are disjoint. The
Kneser graph K (n, s) has

(n
s

)
vertices and it is a

(n−s
s

)
-regular graph. Kneser graphs

have a very nice structure. For a survey on this much studied family of graphs we refer
the reader to Godsil and Royle (2004). Many graph theoretic parameters have been
computed for a Kneser graph K (n, s), for instance the independence number Erdős
et al. (1961), the chromatic number (Lovász 1978), the circular chromatic number
in a combinatorial perspective Liu and Zhu (2016) and the diameter Valencia-Pabon
and Vera (2005). An independent set of vertices of a graph is composed of mutually
nonadjacent vertices. An independent set of edges of a graph is composed of mutually
non incident edges and is called amatching. If a graph has an even number N of vertices
and there is amatching of the graphwith size N

2 then such amatching is called a perfect
matching. Notice that K (2s, s) is a perfect matching. By the famous Erdős-Ko-Rado
theorem (Erdős et al. 1961), the maximum size of an independent set in K (n, s) (i.e.
the independence number) equals

(n−1
s−1

)
. Moreover, for non trivial Kneser graphs (i.e.

when n > 2s), a maximum independent set I in K (n, s) has always a center, that is, an
integer w ∈ {1, 2, . . . , n} such that I = Iw = {A ∈ V (K (n, s)) : w ∈ A}. Therefore,
the only independent sets with maximum size in K (n, s) are the sets Ii , for 1 ≤ i ≤ n.

We shall focus on two well known families of Kneser graphs, which are opposed
regarding the density given by the number of edges over the number of edges in the
complete graph with the same number of vertices. Trivial opposed cases are the sparse
K (2k, k) which is a perfect matching, and the dense K (n, 1) which corresponds to
the complete graph Kn . For k ≥ 3, the family of Kneser graphs K (2k − 1, k − 1) is
known as odd graphs and denoted by Ok , they constitute the sparsest connected case
of the Kneser graphs. In 2020, Prajnanaswaroopa et al. (Prajnanaswaroopa et al. 2020)
communicated in an unpublished manuscript the TCC for all odd graphs, that is, these
graphs have a total coloring with �(Ok) + 2 colors. On the other hand, the densest
non trivial case is the family of Kneser graphs K (n, 2), which are the complements
of Johnson graphs J (n, 2) known to be isomorphic to the line graph of the complete
graph Kn (Godsil and Royle 2004). As far as we know, there are no results concerning
the total coloring of graphs K (n, 2).
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Concerning the edge coloring of Kneser graphs the known Class 2 odd graphs
Ok are the Petersen graph O3, and the odd graphs with an odd number of vertices
that are precisely Ok with k = 2r , for some positive integer r . In 1977, Fiorini and
Wilson (1977) conjectured that all other values of k give Class 1 odd graphs. Fiorini
and Wilson’s conjecture remains still open. The Kneser graphs K (n, 2) have an odd
number of vertices precisely when n ≡ 2 mod 4 or n ≡ 3 mod 4, which implies that
they are Class 2. Considering the ones with an even number of vertices, we establish
that all K (n, 2) with n ≡ 0 mod 4 are Class 1.

This paper is organized as follows. Section 2 improves the known upper bound by
proving that all odd graphs are Type 1. Section 3 gives the first known upper bound
for the total chromatic number of the family K (n, 2). Section 4 considers the edge
coloring of the family K (n, 2), establishing the first infinite family of Kneser graphs
that are Class 1. Section 5 concludes the paper by presenting a conjecture.

2 Odd graphs are Type 1

Recently, Prajnanaswaroopa et al. (Prajnanaswaroopa et al. 2020) have verified the
TCC for all odd graphs by using Biggs standard representation (Biggs 1979), where
an odd graph is decomposed into an independent set and a perfect matching. We use
this representation to prove that all odd graphs Ok = K (2k − 1, k − 1), k ≥ 3, are
Type 1.

Let w ∈ {1, 2, . . . , 2k − 1} and consider the independent set Iw of vertices with
centerw. Consider the subset Iw = V (Ok)\ Iw consisting of the (k−1)-subsets of the
set of size 2k − 1 that not contain w. Since each (k − 1)-subset is disjoint to precisely
one (k − 1)-subset, the corresponding vertices in Iw induce a matching. Therefore the
set of vertices V (Ok) is partitioned into Iw and Iw such that Iw is an independent set
and Iw induces a matching Mw. As Ok is k-regular, each vertex of Iw is adjacent to k
vertices of Mw, and each vertex of Mw is adjacent to k − 1 vertices of Iw (see Fig. 1).

Theorem 1 All odd graphs Ok, k ≥ 3, have a (k + 1)-total coloring.

Proof In order to prove that χT (Ok) = �(Ok)+ 1 = k + 1, consider the independent
set Iw and the matching Mw defined previously (see Fig. 1b). Assign color k + 1 to
all vertices in Iw and all edges in Mw.

To assign the other k colors, we construct an auxiliary bipartite graph Ak by subdi-
viding the edges of Mw, i.e., by removing all edges of Mw = {(x1, y1), (x2, y2),
. . . , (x|Mw |, y|Mw |)} and adding vertex vi , and edges (xi , vi ) and (vi , yi ), for
i = 1, . . . , |Mw| (see Fig. 1 (c)). The bipartite graph Ak has set of ver-
tices V (Ak) = V1 ∪ V2, where V1 = Iw ∪ {v1, v2, . . . , v|Mw |} and V2 =
{x1, y1, x2, y2, . . . , x|Mw |, y|Mw |}, and has set of edges E(Ak) = {E(Ok) \ Mw} ∪
{(x1, v1), (x2, v2), . . . , (x|Mw |, v|Mw |)} ∪ {(v1, y1), (v2, y2), . . ., (v|Mw |, y|Mw |)}. The
maximum degree of Ak is �(Ak) = �(Ok) = k, and by König’s theorem, Ak has a
k-edge coloring (see Fig. 1 (c)). We conclude the total coloring of Ok as follows.

Letφ be a k-edge coloring of Ak . Assign the colors given byφ to all edges incident to
the vertices of Iw. Finally, assign the color given by φ to the edge (xi , vi ) (respectively
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(a) (b) (c)

Fig. 1 a The Petersen graph O3 with the 4-total coloring obtained by Theorem 1. b The representation of
O3 with the independent set I5 and the matching M5. c The auxiliary bipartite A3 with a 3-edge coloring

(vi , yi )) to each vertex xi (respectively yi ). Since the colors assigned by φ to these
pairs of edges of Ak are different, adjacent vertices xi and yi in Ok have different
colors in the obtained total coloring. Therefore, χT (Ok) = �(Ok) + 1. An example
of the obtained total coloring is depicted in Fig. 1a.

3 An upper bound for the total chromatic number of K(n, 2)

We consider the infinite family of Kneser graphs K (n, 2) and the main result of this
section is Theorem 2. Recall that �(K (n, 2)) = (n−2

2

)
. The first Kneser graph of this

family is the graph K (4, 2), consisting of a perfect matching with 6 vertices, which
is Type 2. The second member is the Petersen graph K (5, 2) which is known to be
Type 1 (see Fig. 1).

Theorem 2 Let n ≥ 6. The total chromatic number of the Kneser graphs K (n, 2) is
upper bounded as follows:

χT (K (n, 2)) ≤
⎧
⎨

⎩

�(K (n, 2)) + 2 : n even, or n odd and not divisible by 3;
�(K (n, 2)) + 3 : n ≡ 3 mod 4 and divisible by 3;

�(K (n, 2)) + 4 : n ≡ 1 mod 4 and divisible by 3.

We prove Theorem 2 in Subsect. 3.3. In Subsect. 3.1 we present definitions and
notations used to deal with total and edge colorings of the Kneser graphs K (n, 2), and
in Subsect. 3.2 we present Algorithm 1 that gives a partial total coloring of the Kneser
graphs K (n, 2).
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3.1 Preliminaries

The following definitions and notation are used to deal with total and edge color-
ings of the Kneser graphs K (n, 2). For any integer n > 0, we denote by [n] the set
{1, 2, . . . , n}.

It is well known that the chromatic index of a complete graph χ(Kn) = n when
n is odd and χ(Kn) = n − 1 when n is even (Baranyai 1973). In fact, an optimal
edge coloring of Kn with n odd can be given by the edge partition E1, . . . , En , where
Ei = {{i − q, i + q} : 1 ≤ q ≤ n−1

2 }, for 1 ≤ i ≤ n, where arithmetic operations are
takenmodulo n (being 0 ≡ n). Notice thatwhen n is odd, i /∈ Ei for all i ∈ [n].When n
is even, an optimal edge coloring of Kn can be obtained from an optimal edge coloring
of Kn−1 where each set Ei of the edge partition of Kn−1 is added the edge {i, n}. For
example, when n = 5 we obtain the edge partition E1 = {{2, 5}, {3, 4}}, E2 =
{{1, 3}, {4, 5}}, E3 = {{2, 4}, {1, 5}}, E4 = {{3, 5}, {1, 2}} and E5 = {{1, 4}, {2, 3}},
and for n = 6 the edge partition will be Ei ∪ {i, 6} for 1 ≤ i ≤ 5.

Concerning the total chromatic number of complete graphsχT (Kn), it iswell known
that χT (Kn) = n when n is odd and χT (Kn) = n + 1 when n is even (Behzad et al.
1967). Optimal total colorings of Kn can be obtained as follows: If n is odd then, an
optimal total coloring of Kn can be constructed from the sets Si = {i} ∪ Ei , for 1 ≤
i ≤ n, where Ei is the set of edges described previously. If n is even then, an optimal
total coloring of Kn is obtained from an optimal edge coloring E1, E2, . . . , En+1 of
Kn+1 as follows: for 1 ≤ i ≤ n, let E ′

i be the set of edges E j in Kn+1 containing the
edge {i, n+1}. Thus, for 1 ≤ i ≤ n, Si = {i}∪(E ′

i \{i, n+1}) andMn+1 = En+1. For
example, when n = 4, we obtain from the optimal edge coloring E1, . . . , E5 of K5
described previously, an optimal total coloring of K4 as follows: S1 = {{1}, {2, 4}},
S2 = {{2}, {3, 4}}, S3 = {{3}, {1, 2}}, S4 = {{4}, {1, 3}} and M5 = {{1, 4}, {2, 3}}.

We present next definitions and notation that are used to construct a representation
of the Kneser graphs K (n, 2) where the vertices are partitioned into cliques.

Definition 1 Let t ≥ 2, r ≥ 1, and G be a graph with r t vertices. We say that G is
t-clique-decomposable if the vertices of G can be partitioned into r sets, where each
set induces a clique Ci , i = 1, 2, . . . , r , of size t . We say that G admits a t-clique
decomposition, denoted C1 ∪ C2 ∪ · · · ∪ Cr .

Let n ≥ 6 and let t = � n
2 	. Notice that t divides (n

2

)
. In fact,

(n
2

)
is equal to tn when

n is odd (resp. t(n − 1) when n is even). Moreover, there is a simple decomposition
of the vertex set of K (n, 2) into cliques of size t .

Lemma 1 Let n ≥ 6 and t = � n
2 	. The Kneser graph K (n, 2) admits the following

t-clique decomposition: Let Ci = Ei , for 1 ≤ i ≤ n, when n is odd (resp. for
1 ≤ i ≤ n − 1, when n is even), be a decomposition into cliques of size t of the vertex
set of K (n, 2), where the sets Ei are the edge sets of Kn corresponding to an optimal
edge coloring of Kn.

From now on, we use a t-ordered clique decomposition of K (n, 2), where each
cliqueCi in a t-clique decomposition of K (n, 2) is an ordered set having the following
properties.
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Table 1 The 3-ordered clique
decomposition of K (7, 2)

j C1 C2 C3 C4 C5 C6 C7

1 {4, 5} {1, 3} {1, 5} {1, 7} {1, 2} {1, 4} {1, 6}
2 {2, 7} {4, 7} {2, 4} {2, 6} {4, 6} {2, 3} {2, 5}
3 {3, 6} {5, 6} {6, 7} {3, 5} {3, 7} {5, 7} {3, 4}

(i) Each vertex {a, b} in Ci is ordered, that is, a < b.
(i i) Let t = |Ci |. If there exists a vertex { j, b} ∈ Ci , with j < b and 1 ≤ j ≤ t ,

then { j, b} is the j th vertex in the clique Ci , which is denoted by C j
i . Otherwise, the

remaining positions are fulfilled in increasing order by the remaining vertices which
are ordered in a lexicographical way.

Table 1 shows the 3-ordered clique decomposition of K (7, 2) as depicted in Fig. 2.
By the construction of the t-ordered clique decomposition of K (n, 2) we have the

following relevant observation.

Observation 1 Let n ≥ 6 and let t = � n
2 	. Let r = (n

2

)
/t and let C1 ∪ · · · ∪ Cr be the

t-ordered clique decomposition of K (n, 2) described previously. Thus,

i. If n is even, then for 1 ≤ i ≤ r: 1 ∈ C1
i ; and 2 ∈ C2

i except when i = n+2
2 .

ii. If n is odd, then for 1 ≤ i ≤ r: 1 ∈ C1
i except when i = 1; and 2 ∈ C2

i except
when i = 2 and i = n+3

2 . Moreover, the vertices C1
1 , C

2
2 and C2

n+3
2

are pairwise

non adjacent.

In fact, notice that by construction, if n is even, then C2
n+2
2

= { n+2
2 , n}. Moreover,

if n is odd, then C1
1 = { n+1

2 , n+3
2 }, C2

2 = { n+1
2 , n+7

2 }, and C2
n+3
2

= { n+1
2 , n+5

2 }. Thus,
by definition of K (n, 2), these vertices are pairwise non adjacent.

As each clique Ci is a complete graph, we use the following notation for a total
coloring of them: Let t = |Ci | and let Sp be the pth-color class of a total coloring of
Kt as defined in Subsect. 3.1, for 1 ≤ p ≤ t , and let Mt+1 be the perfect matching
forming the (t + 1)th-color class in Kt when t is even. Thus,

• Suppose that t is odd. We denote by Sp,i , with 1 ≤ p ≤ t , the pth-color class of
a total coloring of Ci , formed by the vertex C p

i and the set of edges {{Cw
i ,Cz

i } :
such that {w, z} ∈ Sp}.

• Suppose that t is even. Similarly to the odd case, but considering the total coloring
of Kt with t even and where Mt+1,i denotes the perfect matching in Ci of size t

2
formed by the edges {Cw

i ,Cz
i } such that {w, z} ∈ Mt+1.

Definition 2 Let n ≥ 6, t = � n
2 	, r = (n

2

)
/t and let C1 ∪ · · · ∪ Cr be the t-ordered

clique decomposition of K (n, 2). Denote by B(n, 2) the r -partite graph obtained
from K (n, 2) by removing the edges of each clique Ci . Each part of B(n, 2) is the
independent setCi . Furthermore, for 1 ≤ i 
= j ≤ r , denote by Bi, j (n, 2) the bipartite
subgraph of B(n, 2) induced by Ci ∪ C j .

Lemma 2 Let n ≥ 6, t = � n
2 	 and r = (n

2

)
/t . For 1 ≤ i 
= j ≤ r , the subgraph

Bi, j (n, 2) has the following properties.
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(i) If n is even, then Bi, j (n, 2) is (t − 2)-regular;
(i i) If n is odd, then �(Bi, j (n, 2)) = t − 1. Moreover, each Bi, j (n, 2) contains

exactly two vertices, one in Ci and the other in C j with degree t − 1, and these two
vertices are not adjacent when n = 3q and j = (i ± q) mod n; otherwise, these two
vertices are adjacent.

Proof (i) For n even, each clique Ci can be viewed as a perfect matching of Kn and
so

⋃

v∈Ci

v = [n]. Thus, given a vertex {i1, i2} ∈ Ci , there exist exactly two vertices

{ j1, j2}, { j ′1, j ′2} ∈ C j , with i 
= j ∈ [r ], such that exactly one of them contains i1
and the other one contains i2. Assume w.l.o.g. that i1 ∈ { j1, j2} and i2 ∈ { j ′1, j ′2}. The
remaining vertices in C j have empty intersection with the vertex {i1, i2}. Therefore,
the number of neighbors of vertex {i1, i2} ∈ Bi, j (n, 2) is exactly t − 2.

(i i) For n odd, each clique Ci corresponds to a matching in Kn of size n−1
2 . There-

fore, by construction of the t-ordered clique decomposition, each clique Ci misses
exactly the integer i (i.e. i does not belong to any vertex in Ci ). Now, let C j , with
j 
= i , be another clique in the decomposition of K (n, 2). In a similar way, the integer
j does not belong to any vertex in C j . Thus, let { j1, j2} ∈ C j such that i ∈ { j1, j2}.
Assume w.l.o.g. that j1 = i . There is exactly one vertex {i1, i2} ∈ Ci containing j2.
So, vertex { j1, j2} ∈ C j has exactly t − 1 neighbors in Ci . Similarly, there exists
only one vertex {i1, i2} ∈ Ci containing the integer j and thus, such a vertex has
exactly t − 1 neighbors in C j . All the remaining vertices in Bi, j (n, 2) have exactly
t − 2 neighbors. Finally, let {i ′, j} ∈ Ci and { j ′, i} ∈ C j (or {i, j ′} ∈ C j ) be the
two vertices of degree t − 1 in Bi, j (n, 2), with 1 ≤ i 
= j ≤ n. By construction,
(i ′, j) = (i − q mod n, i + q mod n) for some 1 ≤ q ≤ n−1

2 . Assume first that
j = i + q mod n. Therefore, ( j − q mod n, j + q mod n) ∈ C j is the vertex (i
mod n, (i + 2q) mod n) = (i, (i + 2q) mod n). As i 
= j , we have that i + 2q
mod n = i − q mod n ⇐⇒ i + 2q ≡ i − q mod n ⇐⇒ n divides 3q. Now,
assume that j = i − q mod n. Thus, ( j − q mod n, j + q mod n) ∈ C j is the
vertex (i − 2q mod n, i). Similarly to the previous case, i − 2q mod n = i + q
mod n ⇐⇒ n divides 3q. However, as q ≤ n−1

2 , the only possibility of the vertices
of degree t − 1 are not adjacent is when n = 3q and j = (i ± q) mod n.

Lemma 3 Let n > 6 be an odd integer such that n is not divisible by 3. Let B ′(n, 2) be
the n-partite graph having the set of vertices of B(n, 2) and where for 1 ≤ i 
= j ≤ n
there is only one edge between the parts Ci and C j which is the edge between the
only two vertices of degree t − 1 in Bi, j (n, 2). Thus, B ′(n, 2) is a 2-regular n-partite
graph.

Proof As n is odd, we have that B ′(n, 2) has n parts C1 ∪ . . . ∪ Cn . By Lemma 2
(i i), each one of the integers i ∈ [n] does not belong to any vertex in each part Ci .
Now, let { j, k} be any vertex in Ci . Thus, i 
= j 
= k ∈ [n] and by Lemma 2 (i i),
as 3 does not divide n, we have that vertex { j, k} ∈ Ci has only two neighbors, one
{i, j ′} ∈ C j and one {i, k′} ∈ Ck , such that vertices { j, k},{i, j ′} (resp. { j, k},{i, k′})
have degree t − 1 in B ′

i, j (n, 2) (resp. in B ′
i,k(n, 2)). As we have chosen any i ∈ [n]

and any vertex { j, k} ∈ Ci , each vertex in B ′(n, 2) has degree equal to 2.
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3.2 An algorithm for a partial total coloring of K(n, 2)

In this section, we present Algorithm 1 that gives a partial total coloring of the Kneser
graphs K (n, 2), which is used in the proof of Theorem 2. A partial k-total coloring of
a graph G is an assignment of k colors to a subset of elements of G such that adjacent
or incident elements in the subset have different colors.

Algorithm 1:

Input: Let n ≥ 6, t = � n
2 	 and r = (n

2

)
/t . Let C1 ∪ · · · ∪Cr be a t-ordered clique

decomposition of K (n, 2). Let E ′ be a subset of edges (possibly empty) in B(n, 2)
and let B∗(n, 2) be the graph B(n, 2) without the edges in E ′. Moreover, assume that
for each 1 ≤ i 
= j ≤ r , the bipartite subgraph B∗

i, j (n, 2) of B∗(n, 2) has maximum

degree equal to (t − 2) and let F1
i, j ∪ · · · ∪ Ft−2

i, j be an optimal (t − 2)-edge coloring
of B∗

i, j (n, 2).
Output: A partial total coloring of K (n, 2) with (t − 2)r colors.

1 For k = 1 to t − 2 do
2 For i = 1 to r do
3 (i) Color the independent set of elements Sk+2,i of clique Ci with

color i + r(k − 1).
4 (i i) For all edges {i1, i2} ∈ Ei (i.e. the i th edge color class of an

optimal edge coloring of Kr ), color all edges in Fk
i1,i2

with color
i + r(k − 1).

Lemma 4 Algorithm 1 is correct and gives a partial total coloring of the input graph
with (t − 2)r colors.

Proof Clearly, the number of colors used by Algorithm 1 is equal to (t − 2)r . We
know that r is an odd integer. In fact, r = n if n is odd, otherwise r = n − 1. As we
saw in Subsect. 3.1, Kr has an edge decomposition E1, E2, . . . , Er corresponding to
an optimal edge coloring such that integer i does not belong to the edge set Ei , for
1 ≤ i ≤ r . Let k = 1 and consider the most internal loop: for each 1 ≤ i ≤ r , we use
the information in the set Ei to color the edges and vertices of K (n, 2) as follows: as
integer i does not belong to Ei , first, we color the elements in the set S3,i of clique Ci

with color i . Notice that such a coloring of S3,i is proper. Next, for each edge {i1, i2} ∈
Ei , we use color i to color a matching between each one of the bipartite subgraphs
B∗
i1,i2

(n, 2) which corresponds to the edge set F1
i1,i2

. As for any {i1, i2}, {i ′1, i ′2} ∈ Ei

we have that {i1, i2} ∩ {i ′1, i ′2} = ∅ and {i} ∩ {i1, i2} = {i} ∩ {i ′1, i ′2} = ∅, such an
edge coloring is proper. So, at the end of the internal loop, we have properly colored,
with colors 1 ≤ i ≤ r , the set S3,i of Ci and one matching (i.e. a color class in an
optimal edge coloring) of each B∗

i1,i2
(n, 2) with 1 ≤ i1 
= i2 ≤ r . Thus, for each

fixed k, 1 ≤ k ≤ t − 2, when the internal loop ends, for each 1 ≤ i ≤ r , we have
properly colored the set Sk+2,i of Ci and one matching (i.e. a color class in an optimal
edge coloring) of each B∗

i1,i2
(n, 2), where 1 ≤ i1 
= i2 ≤ r and i 
= i1, i2, with

color i + r(k − 1). So, it is not difficult to see that at the end of Algorithm 1, all the
edges of each B∗

i1,i2
(n, 2)with 1 ≤ i1 
= i2 ≤ r have been properly coloredwith colors

1, 2, . . . , (t−2)r . Moreover, the sets S j,i of each cliqueCi of size t , where 3 ≤ j ≤ t ,
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Fig. 2 A depiction of the input graph of K (7, 2) highlighting the elements colored by Algorithm 1 with
(t − 2)r = (3 − 2)7 = 7 colors. As k takes only the value 1 (i.e. t = 3), for 1 ≤ i ≤ 7 Algorithm 1 colors
the independent set of elements S3,i of clique Ci , composed by one edge and one vertex with the color i
and, for all edges {i1, i2} ∈ Ei (i.e. the i

th edge color class of an optimal edge coloring of K7), Algorithm
1 also colors with color i all the edges in F1

i1,i2
. For instance, the elements which are colored with color 1

(orange) are the elements in S3,1 (i.e. the vertex {3, 6} and the edge {{4, 5}, {2, 7}}), and the set of edges in
F1
4,5 (i.e. {{1, 7}, {4, 6}}, {{2, 6}, {3, 7}} and {{3, 5}, {1, 2}}), and in F1

3,6 (i.e. {{1, 5}, {2, 3}}, {{2, 4}, {5, 7}}
and {{6, 7}, {1, 4}}) and in F1

2,7 (i.e. {{1, 3}, {2, 5}}, {{4, 7}, {1, 6}} and {{5, 6}, {3, 4}}). In fact, notice that
E1, the first color class of an optimal edge coloring of K7, is the set of edges {{4, 5}, {2, 7}, {3, 6}} (Color
figure online)

have been also properly colored with colors 1, 2, . . . , (t − 2)r . Thus, Algorithm 1 is
correct. Finally, notice that the sets S1,i and S2,i of each clique Ci , 1 ≤ i ≤ r , remain
uncolored. Therefore, Algorithm 1 gives a partial total coloring of the input graphs.
Figure 2 presents the elements colored by Algorithm 1 considering K (7, 2).

3.3 The proof of Theorem 2

The focus of this subsection is to assign colors to the vertices and edges of K (n, 2)
not colored by Algorithm 1 and thus obtain the bounds of Theorem 2. Let n ≥ 6 and
let �(K (n, 2)) = (n−2

2

) = n2−5n
2 + 3.

3.3.1 Case n even

If n is even, then t = n
2 and r = (n

2

)
/t = n−1. ByLemma 2 (i i), we know that for each

1 ≤ i 
= j ≤ r , the bipartite subgraph Bi, j (n, 2) of the graph B(n, 2) is (t−2)-regular.
Therefore, we can use Algorithm 1 by setting E ′ = ∅ in order to obtain a partial total
coloring of K (n, 2) with (t − 2)r = ( n2 − 2)(n − 1) = n2−5n

2 + 2 = �(K (n, 2)) − 1
colors in which all the edges in B(n, 2) are colored. In order to complete the total
coloring of K (n, 2), we need to consider the following cases:

1. Case t odd. As the total coloring of Kt is equal to t , it remains to color the sets S1,i
and S2,i of each clique Ci , with 1 ≤ i ≤ r . Clearly, for each 1 ≤ i 
= j ≤ r , no
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Fig. 3 A total coloring of K (6, 2) with �(K (6, 2)) + 2 = 8 colors. First, Algorithm 1 obtains a partial
total coloring with 5 colors (red, blue, green, yellow and purple) as follows. As k takes only the value 1
(i.e. t = 3) then, for 1 ≤ i ≤ 5, Algorithm 1 colors the elements in the set S3,i of clique Ci , composed by
one edge and one vertex, with the color i and, for all edges {i1, i2} ∈ Ei (i.e. the i

th edge color class of an
optimal edge coloring of K5), Algorithm 1 also colors with color i all the edges in F1

i1,i2
. For instance, at

the end of Algorithm 1, the elements which are colored with color 1 (red) are the elements in S3,1 (i.e. the
vertex {3, 4} and the edge {{1, 6}, {2, 5}}) and, the set of edges in F1

2,5 (i.e. {{1, 3}, {5, 6}}, {{2, 6}, {1, 4}}
and {{4, 5}, {2, 3}}) and in F1

3,4 (i.e . {{1, 5}, {4, 6}}, {{2, 4}, {3, 5}} and {{3, 6}, {1, 2}}). In fact, notice that
E1, the color class 1 in an optimal edge coloring of K5 is the set of edges {{2, 5}, {3, 4}}. In order to
complete the partial total coloring given by Algorithm 1, we color with color 6 (light blue) the elements in
S1,i of each clique Ci , and we color with color 7 (orange) the elements S2,i , except for vertex C

2
4 = {4, 6}

in S2,4 which needs different color 8 (gray) (Color figure online)

edge inside Ci is incident to any edge inside C j . Moreover, by Observation 1 (i),
1 ∈ C1

i and so, we can color all the edges and the vertex in each S1,i with color
(t−2)r+1.Again, byObservation 1 (i), we can color all the edges and the vertex in
each S2,i with color (t −2)r +2 except the vertexC2

n+2
2

for which we use the color

(t−2)r+3. Therefore, we use atmost�(K (n, 2))−1+3 = �(K (n, 2))+2 colors
to total coloring K (n, 2). For an example of the obtained (�(K (n, 2)) + 2)-total
coloring when t is odd, see Fig. 3.

2. Case t even. As the total coloring of Kt is t + 1, it remains to color the sets S1,i ,
S2,i and Mt+1,i of each clique Ci , with 1 ≤ i ≤ r . We proceed in a similar way as
in the Case 1 in order to color the sets S1,i with color (t − 2)r + 1. For i 
= n+2

2 ,
we color the sets S2,i and Mt+1, n+2

2
with color (t − 2)r + 2 and the sets S2, n+2

2
and Mt+1,i with color (t − 2)r + 3. Notice that by construction, the previous total
coloring is proper because the only clique whose second vertex is not of the form
{2, b}with 2 < b ≤ n is the cliqueC n+2

2
and thus, any edge inMt+1, n+2

2
is incident

to a vertex {2, b}. Therefore, we use at most�(K (n, 2))+2 colors to total coloring
K (n, 2).

3.3.2 Case n odd

If n is odd, then t = n−1
2 and r = (n

2

)
/t = n. For each i, j , with 1 ≤ i < j ≤ r , by

Lemma 2 (i i), the bipartite graph Bi, j (n, 2) has maximum degree equal to t − 1. We
must consider the following cases:
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a. n is not divisible by 3.By Lemma 3, the subgraph B ′(n, 2) of B(n, 2) is 2-regular.
Let E ′ be the set of edges of B ′(n, 2). By Lemma 2 (i i) and Lemma 3, the bipartite
subgraphs of the graph B(n, 2) without the set of edges E ′ are (t − 2)-regular.
Therefore, by applying theAlgorithm 1 to K (n, 2)with E ′ being the set of edges in
B ′(n, 2), we obtain a partial total coloring of K (n, 2)with (t−2)r = ( n−1

2 −2)n =
n2−5n

2 = �(K (n, 2))−3 colors. In order to complete the total coloring of K (n, 2),
we need to consider the following cases:

1. Case t odd. As the total coloring of Kt is equal to t , it remains to color the sets
S1,i and S2,i of each cliqueCi , with 1 ≤ i ≤ r . Clearly, for each 1 ≤ i 
= j ≤ r ,
no edge insideCi is incident to any edge insideC j .Moreover, byObservation 1
(i i), 1 ∈ C1

i except when i = 1; and 2 ∈ C2
i except when i = 2 and i = n+3

2 .
So, we color the elements in the sets S1,i and S2,i with colors �(K (n, 2)) − 2
and �(K (n, 2)) − 1 respectively, except the vertices C1

1 , C
2
2 and C2

n+3
2

which,

again by Observation 1 (i i), they are pairwise non adjacent. It remains to color
the edges in B ′(n, 2) and the set of vertices {C1

1 ,C
2
2 ,C

2
n+3
2

}. By Lemma 3,

B ′(n, 2) has maximum degree equal to 2. Therefore, 3 new colors are enough
to color the edges in B ′(n, 2) and the vertices in {C1

1 ,C
2
2 ,C

2
n+3
2

}. So, we use at
most �(K (n, 2)) − 1+ 3 = �(K (n, 2)) + 2 colors to total coloring K (n, 2).
Notice that in this case, n is not divisible by 3 and n 
≡ 1 mod 4.

2. Case t even. Notice that in this case n ≡ 1 mod 4. In order to complete
the total coloring of K (n, 2), it remains to color the sets S1,i , S2,i , the edges
Mt+1,i of each clique Ci , with 1 ≤ i ≤ r and the set of edges E ′ = B ′(n, 2).
Recall that each clique can be described as a complete graph Kt which admits
a (t + 1)-total coloring when t is even.
Consider the clique C1 = {x1y1, x2y2, . . . , xt yt } such that 2 ≤ xi 
= yi ≤ n
and let di = xi − 1. Note that, the graph B ′(n, 2) can be described as t
disjoint cycles of size n, w.l.o.g. we can construct these t disjoint cycles of
size n from C1 as follows: from each xi yi ∈ C1, with 1 ≤ i ≤ t , form the
cycles considering the integers modulo n byCycle(di ) = {xi yi , (xi +di )(yi +
di ), (xi + 2di )(yi + 2di ), . . . , (xi + ndi , yi + ndi ), xi yi }. As n is odd, we can
color the odd cycles with 3 colors as follows: for each Cycle(di ) assign the
edge {xi yi , (xi + di )(yi + di )} with the color �(K (n, 2)) − 2; for j ≥ 1 odd,
assign the edges {(xi + jdi )(yi + jdi ), (xi + ( j + 1)di )(yi + ( j + 1)di )} with
the color�(K (n, 2))−1 and for j > 1 even, assign the edges {(xi + jdi )(yi +
jdi ), (xi + ( j + 1)di )(yi + ( j + 1)di )} with the color �(K (n, 2)).
Assign with the color�−2 only the edges of set S1,i with 2 ≤ i ≤ n+1

2 and all
the elements in S1,i for n+3

2 ≤ i ≤ n. Note that, the colors of the edges incident
to the vertices C1

i with 2 ≤ i ≤ n+1
2 are �(K (n, 2)) − 2 and �(K (n, 2)) − 1

and so, we can assign the color �(K (n, 2)) to these vertices. Note that the
edges incident to the vertices in C1 are �(K (n, 2)) − 2 and �(K (n, 2)), so
we can assign the set S11 with the color �(K (n, 2)) − 1. It remains color the
set S2,i and the edges Mt+1,i of each clique Ci .
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Assign the sets Mt+1,2, Mt+1, n+3
2

and the sets S2,i for i 
= 2, n+3
2 with color

�(K (n, 2)) + 1; assign the edges of Mt+1,i with the color �(K (n, 2)) + 2.
Now for i = 2, n+2

2 , assign the sets S2,i with color �(K (n, 2)) + 2. Notice
that by construction, the previous total coloring is proper and therefore, we use
at most �(K (n, 2)) + 2 colors to total coloring K (n, 2). Figure 4 presents a
depiction of theKneser graph K (13, 2)with the elements colored as previously
using 5 colors.

b. n is divisible by 3. Let n = 3p for some odd integer p ≥ 3. Let E1, E2, . . . , En

be a optimal edge coloring of Kn , as defined in Section 2, representing a t-ordered
clique decomposition C1 ∪ · · · ∪ Cn of K (n, 2). As shown in Lemma 2 (i i),
there are some cliques Ci , C j such that they contain a vertex { j, i ′} and {i, j ′}
respectively, both of degree t − 1 in Bi, j (n, 2), but not adjacent between them.
Precisely, consider the cliques Ci , C j and Ck with i 
= j 
= k ∈ [n] such
that j = i − p mod 3p and k = i + p mod 3p. By construction, the ver-
tex { j, k} = {i − p mod 3p, i + p mod 3p} belongs to Ci . Moreover, the
vertex { j − p mod 3p, j + p mod 3p} = {k, i} belongs to C j and the ver-
tex {k − p mod 3p, k + p mod 3p} = {i, j} belongs to Ck . Therefore, the
two vertices of degree t − 1 in the bipartite graphs Bi, j (n, 2), Bi,k(n, 2) and
Bj,k(n, 2) respectively, are pairwise non adjacent. It is not hard to see that we
can partition the cliques C1, . . . ,C3p in triples verifying the previous property of
pairwise non adjacency between their respective vertices of degree t − 1. In fact,
for any i ∈ [n], let Orb(i) = {i} ∪ { j : j = i − p mod 3p or j = i + p
mod 3p} be the orbit of i . Clearly, there are exactly p different orbits and
they form a partition of [n]. For example, for n = 9 we have three orbits:
Orb(1) = {1, 4, 7}, Orb(2) = {2, 5, 8}, andOrb(3) = {3, 6, 9}. Now, for each orbit
Orb(i) = {i, j, k} we construct 3 vertex disjoint paths on three vertices in B(n, 2)
as follows: let Pi = {{ j1, j2}, { j, k}, {k1, k2}}, Pj = {{i1, i2}, {i, k}, {k3, k4}}, and
Pk = {{i3, i4}, {i, j}, { j3, j4}}, where {i1, i2}, {i3, i4} are two different vertices
in Ci ; { j1, j2}, { j3, j4} are two different vertices in C j ; and {k1, k2}, {k3, k4} are
two different vertices in Ck such that, {i1, i2} ,{ j1, j2} are adjacent in Bi, j (n, 2),
and {i3, i4}, {k1, k2} are adjacent in Bi,k(n, 2), and { j3, j4}, {k3, k4} are adjacent
in Bj,k(n, 2). Notice that the construction of such three vertex disjoint paths for
each orbit is always possible because n ≥ 9 and so each Ci has at least 4 ver-
tices. For example, for n = 9, the three vertex disjoint paths on 3 vertices of the
orbit Orb(1) can be P1 = {{8, 9}, {4, 7}, {5, 9}}, P4 = {{5, 6}, {1, 7}, {6, 8}}, and
P7 = {{3, 8}, {1, 4}, {3, 5}}.
Now, let F be the set of the edges of the 3p vertex disjoint paths on 3 vertices
constructed previously and associated to the p orbits of [n]. Moreover, let F ′ be the
set of edges in the graph B ′(n, 2). It’s not so hard to verify that themaximumdegree
of the bipartite graphs in the graph B(n, 2) without the edges in F ∪ F ′ is equal to
t −2. Therefore, we can apply the Algorithm 1 to K (n, 2) by setting E ′ = F ∪ F ′
which give us a partial total coloring of K (n, 2) with (t − 2)n = �(K (n, 2)) − 3
colors. Now, in order to complete such a total coloring for K (n, 2), we consider
the following cases:
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1. Case t odd. We proceed in a similar way as in the Case ii.a.1. Thus, we color the
elements in the sets S1,i and S2,i with colors�(K (n, 2))−2 and�(K (n, 2))−1
respectively, except the vertices C1

1 , C
2
2 and C2

n+3
2

which, by Observation 1 (i i),

they are pairwise non adjacent. Let B ′′(n, 2) be the graph B ′(n, 2) to which
we add the edges in the set F defined previously. Then, it remains to color the
edges in B ′′(n, 2) and the set of vertices {C1

1 ,C
2
2 ,C

2
n+3
2

}. By construction, the

maximum degree in B ′′(n, 2) is equal to 3. Therefore, four colors are enough
to color the edges in B ′′(n, 2). Moreover, the same new four colors are enough
also to color the independent vertices {C1

1 ,C
2
2 ,C

2
n+3
2

}. Therefore, we use at most

�(K (n, 2)) + 3 colors to total coloring K (n, 2). Notice that in this case, n ≡ 3
mod 4.

2. Case t even. As the total coloring of Kt is t + 1, it remains to color the sets S1,i ,
S2,i and Mt+1,i of each clique Ci , with 1 ≤ i ≤ n. We proceed in a similar way
as in the Case b.1 in order to color the sets S1,i , S2,i of each Ci and the edges in
B ′′(n, 2). Finally, we use a new color in order to color the edges of each edge set
Mt+1,i . Therefore, we use at most �(K (n, 2))+ 4 colors to total color K (n, 2).
Notice that in this case, n ≡ 1 mod 4.

As all the cases have been considered, we have that Theorem 2 holds. �

4 An infinite family of Class 1 K(n, 2) graphs

The Kneser graph K (4, 2) consisting of a perfect matching with 6 vertices is Class 1,
and the Petersen graph K (5, 2) is known to be Class 2. It is well known that a regular
graph with an odd number of vertices is Class 2. Recall that the number of vertices of
K (n, 2) is

(n
2

)
, so the Kneser graphs K (n, 2) with n ≡ 2 mod 4 or n ≡ 3 mod 4 are

precisely the ones with an odd number of vertices, which implies that they are Class 2.
In the following, we consider the Kneser graphs K (n, 2) with an even number of
vertices, that is with n ≡ 0 mod 4 or n ≡ 1 mod 4, which implies that n ≥ 8.

We use Algorithm 2 to obtain a �(K (n, 2))-edge coloring of the infinite family of
K (n, 2) when n ≡ 0 mod 4. Note that in this case both n and t = n

2 are even and
thus an optimal edge coloring of cliqueCi of an even size uses t −1 colors. Algorithm
2 is a variation of Algorithm 1 which is used only to color the edges of K (n, 2) as
follows.

Algorithm 2:

Input: Let n ≥ 8, t = � n
2 	 and r = (n

2

)
/t . Let C1 ∪ · · · ∪Cr be a t-ordered clique

decomposition of K (n, 2). Let E ′ be a subset of edges (possibly empty) in B(n, 2)
and let B∗(n, 2) be the graph B(n, 2) without the edges in E ′. Moreover, assume that
for each 1 ≤ i 
= j ≤ r , the bipartite subgraph B∗

i, j (n, 2) of B∗(n, 2) has maximum

degree equal to (t − 2) and let F1
i, j ∪ · · · ∪ Ft−2

i, j be an optimal (t − 2)-edge coloring
of B∗

i, j (n, 2).
Output: A partial edge coloring of K (n, 2) with (t − 2)r colors.

1 For k = 1 to t − 2 do
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Fig. 4 Disregarding the
elements colored by Algorithm 1
with (t − 2)r = (6 − 2)13 = 52
colors, we show how to
complete the total coloring of
K (13, 2) by highlighting the
elements colored with the 5 new
colors 53 (blue), 54 (green), 55
(red), 56 (purple) and
57 = �(K (13, 2)) + 2 (yellow).
Colors 53, 54 and 55 color the
elements in S1,i (i.e. each S1,i is
composed by two edges and one
vertex) of each clique Ci , for
1 ≤ i ≤ 13, as follows. First,
color 53 colors all the elements
in S1,i , for 8 ≤ i ≤ 13 and only
the edges in S1,i , for 2 ≤ i ≤ 7;
color 54 colors all the element in
S1,1, and color 55 colors only
the vertices of S1,i , for
2 ≤ i ≤ 7. Moreover, colors 53,
54 and 55 are used to color the
edges of graph B′(13, 2). Next,
color 56 colors the perfect
matchings M7,2 and M7,8, and it
also colors the elements in S2,i
of each Ci (except for the sets
S2,2 and S2,8 whose elements
are colored with color 57,
because 2 /∈ C2

2 = {7, 10} and
2 /∈ C2

8 = {7, 9} and thus, such
vertices are adjacents to vertices
colored with color 56). Finally,
color 57 colors the perfect
matchings M7,i of each Ci , for
i /∈ {2, 8} (Color figure online)

2 For i = 1 to r do
3 (i) Color all the edges in the set Ek+1,i = {{Cu

i ,Cv
i } : {u, v} ∈

Ek+1} (where Ek+1 denotes the (k + 1)th edge color class of an
optimal edge coloring of Kt ) of clique Ci with color i + r(k − 1).

4 (i i) For all edge {i1, i2} ∈ Ei (i.e. the i th edge color class of an
optimal edge coloring of Kr ), color all edges in Fk

i1,i2
with color

i + r(k − 1).

123



Journal of Combinatorial Optimization (2022) 44:119–135 133

Fig. 5 A depiction of a subgraph of the input graph K (8, 2) highlighting the edges colored by
Algorithm 2, for k = 1, 2 and when we fix i = 1, which use colors 1 (blue) and 8 (red). For
k = 1, let the second color class of an optimal edge coloring of K4 be E2 = {{1, 3}, {2, 4}} to
get the edges colored with the color 1(blue): E2,1 = {{{1, 8}, {3, 6}}, {{2, 7}, {4, 5}}}, and let the
second color class of an optimal edge coloring of K7 be E2 = {{2, 7}, {3, 6}, {4, 5}} to get the
edges colored also with the color 1 (blue) in F1

2,7 (i.e. {{1, 3}, {7, 8}}, {{2, 8}, {1, 6}}, {{5, 6}, {3, 4}}
and {{4, 7}, {2, 5}}), in F1

3,6 (i.e. {{1, 5}, {2, 3}}, {{2, 4}, {6, 8}}, {{3, 8}, {5, 7}} and {{6, 7}, {1, 4}}),
and in F1

4,5 (i.e. {{1, 7}, {5, 8}}, {{2, 6}, {3, 7}}, {{3, 5}, {4, 6}} and {{4, 8}, {1, 2}}). For k = 2, let
the third color class of an optimal edge coloring of K4 be E3 = {{1, 2}, {3, 4}} to get the
edges colored with the color 8(red): E3,1 = {{{1, 8}, {2, 7}}, {{3, 6}, {4, 5}}}, and let the second
color class of an optimal edge coloring of K7 be E2 = {{2, 7}, {3, 6}, {4, 5}} to get the edges
colored also with the color 8 (red) in F2

2,7 (i.e. {{1, 3}, {2, 5}}, {{2, 8}, {3, 4}}, {{5, 6}, {7, 8}} and

{{4, 7}, {1, 6}}), in F2
3,6 (i.e. {{1, 5}, {6, 8}}, {{2, 4}, {5, 7}}, {{3, 8}, {1, 4}} and {{6, 7}, {2, 3}}), and in F2

4,5
(i.e. {{1, 7}, {4, 6}}, {{2, 6}, {5, 8}}, {{3, 5}, {1, 2}}, and {{4, 8}, {3, 7}}) (Color figure online)

Figure 5 presents a subgraph of the input graph of K (8, 2) highlighting how Algo-
rithm 2 colors the edges when i = 1 is fixed.

Lemma 5 Algorithm 2 is correct and gives a partial edge coloring of the input graph
by using (t − 2)r colors.

Proof The proof is analogous to the one of Lemma 4. Just notice that t is even and
thus, an optimal edge coloring of Kt uses only t − 1 colors. Therefore, at the end of
Algorithm 2, the matching E1,i = {{Cu

i ,Cv
i } : {u, v} ∈ E1} (where E1 denotes the

first edge color class of an optimal edge coloring of Kt ) in each one of the cliques Ci ,
with 1 ≤ i ≤ r , remains uncolored.

Theorem 3 Let n ≡ 0 mod 4. Thus, χ (K (n, 2)) = �(K (n, 2)).

Proof Since n ≡ 0 mod 4, by Lemma 2 (i) we can apply the Algorithm 2 to K (n, 2)
by setting E ′ = ∅. Notice that r = n − 1 and t = n

2 . Thus, by Lemma 5, Algorithm
2 gives a partial proper edge coloring of K (n, 2) with (t − 2)r colors and only one
perfect matching in each clique Ci remains uncolored. As a matching in two different
cliques share no vertices, we can color each uncolored perfect matching in each one of
the cliques Ci with only one new color. Therefore, we can properly color the edges of
K (n, 2) by using (t−2)r+1 = ( n2−2)(n−1)+1 = n2−5n

2 +3 = (n−2
2

) = �(K (n, 2))
colors.
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5 Concluding remarks

As a consequence of Baranyai’s theorem Baranyai 1973, the vertex set of the Kneser
graph K (n, s) can be partitioned into θn,s = (n

s

)
/� n

s 	 cliques of size ωn,s = � n
s 	,

when � n
s 	 divides

(n
s

)
. However, in order to generalize our results about total and edge

colorings of K (n, 2) to arbitrary values of s, a deeper structural analysis of the graph
B(n, s) induced by the cliques in the t-ordered clique decomposition of K (n, s) in
which the edges inside such cliques are removed is needed.

Concerning the chromatic index of K (n, 2), the only unsettled case is when n ≡ 1
mod 4. Notice that in this case, the number of vertices

(n
2

)
is even. However, n is

odd and we need to consider the cases when n is divisible by 3 or not. We need to
study how to color the uncolored edges of K (n, 2) after applying Algorithm 2. In fact,
notice that Algorithm 2 uses (t − 2)r = ( n−1

2 − 2)n = �(K (n, 2)) − 3 colors. Thus,
we must be able to color these edges by using precisely 3 new colors if we want a
�(K (n, 2))-edge coloring of K (n, 2). By using SageMath software, we have been
able to: (i) compute a 55-edge coloring for these edges of K (13, 2), which implies
that K (13, 2) is Class 1, and (ii) a 21-edge coloring of K (9, 2) which also implies
that this graph is Class 1. We believe that when n ≡ 1 mod 4 it is always possible to
edge-color K (n, 2) with �(K (n, 2)) colors and so, we conjecture the following.

Conjecture 1 For n ≥ 6, the Kneser graph K (n, 2) with n ≡ 1 mod 4 is Class 1.
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