
a book launch workshop for

Topics in Algorithmic Graph Theory

Chapter 3 ·Total colouring

by Celina M. H. de Figueiredo

26 July 2021



1 · Introduction

a 5-total coloring of C3 ⇥ C3



2 · Hilton’s condition

A graph satisfies Hilton’s condition if the subgraph induced by the closed

neighbourhood of a vertex of maximum degree is of type 2.

Graph class even � odd �

complete type 1 type 2 (Hilton’s condition)

universal vertex type 1 Hilton’s condition [1]

split type 1 open

indi↵erence type 1 open

split-indi↵erence type 1 Hilton’s condition [2]

3-clique graph type 1 open

classes with respect to Hilton’s condition on total colouring

[1] A. J. W. Hilton, A total-chromatic number analogue of Plantholt’s theorem, Discrete Math.

79 (1990)

[2] C. N. Campos, C. H. de Figueiredo, R. Machado and C. P. Mello, The total chromatic

number of split-indi↵erence graphs, Discrete Math. 312 (2012)



3 · Cubic graphs

a 4-total-coloring of a smallest a 4-total-coloring of a smallest

Loupekhine snark Goldberg snark



4 · Equitable total colourings

Question 4.1 Is there a cubic graph of type 1 with girth greater than 4

and equitable total chromatic number 5?

type 1 cubic graph of equitable total chromatic number 5



5 · Vertex-elimination ordersC.M.H. de Figueiredo et al. / Information Processing Letters 70 (1999) 147–152 151

5. Conclusions

Note that the proof of Theorem 6 above actually
shows that every maximum neighborhood order of a
graph G is a perfect elimination order of G2, i.e.,
every dually chordal graph G has G2 chordal [4].
Indeed, in order to show that vi is a simplicial vertex
of G2[v1, . . . , vi ], let ui be a maximum neighbor of
vi in G[v1, . . . , vi]. Now, given x and y neighbors
of vi in G2[v1, . . . , vi ], we have that x and y are
also neighbors of ui in G[v1, . . . , vi]. Hence, x and
y are adjacent in G2[v1, . . . , vi ]. We now discuss the
extension of Theorem 6 to two classes of graphs:
neighborhood-Helly graphs and chordal graphs. (The
extension of Theorem 6 to neighborhood-Helly graphs
was suggested to us by an anonymous referee.)
A family of sets satisfies the Helly property if any

subfamily of pairwise intersecting sets has nonempty
intersection. A graph is neighborhood-Helly when
the set {N(v): v ∈ V } satisfies the Helly property.
A characterization of dually chordal graphs says that
G is dually chordal if and only if G is neighborhood-
Helly and G2 is chordal [1].
Consider the class of graphs G satisfying the

following two properties:
(1) the cardinality of a maximum clique of G2 equals

the chromatic number of G2;
(2) for every maximum clique C of G2 there exists a

vertex v of G such that NG(v) = C.
These two properties are enough to imply that

χ(G2) = ∆ + 1. The first property is satisfied by
graphs G having G2 perfect; the second property is
satisfied by all neighborhood-Helly graphs. Thus, we
have the following extension of Theorem 6.

Corollary 8. Vizing’s total-color conjecture holds for
neighborhood-Helly graphsG such thatG2 is perfect.

Neighborhood-Helly graphs are not known to be
characterized by elimination orders. In order to get
an optimal vertex coloring for the perfect graph G2,
we may use the Grötschel–Lovász–Schrijver vertex-
coloring algorithm for perfect graphs [10]. Feodor
Dragan pointed out (personal communication) that the
validity of the Strong Perfect Graph Conjecture for
neighborhood-Helly graphs might provide an elim-
ination order characterization for this class. Derek
Corneil pointed out (personal communication) that the

Fig. 1. A chordal graph with χ(G2) > ∆(G) + 1.

class of neighborhood-Helly graphs is complete with
respect to the Strong Perfect Graph Conjecture.
Consider now the class of chordal graphs, and the

chordal graph G depicted in Fig. 1. This graph has
diameter 2; or in other words G2 = K7. Thus, we
need 7 colors for any vertex coloring of G2, that is
χ(G2) = 7. On the other hand, ∆(G) = 5. Therefore,
Theorem 6 does not generalize to arbitrary chordal
graphs.
Nevertheless, we were unable to find any evidence

that Corollary 7 does not hold for chordal graphs in
general. Although our pullback method does not apply
to the graph in Fig. 1, this odd maximum degree
chordal graph is Class 1.We conjecture that all chordal
graphs with odd maximum degree are in fact Class 1.
A more general question, which we leave open, is to
determine the largest graph class for which all its odd
maximum degree graphs are Class 1 and for which all
its even maximum degree graphs are Type 1.
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6 · Decomposition

FIG. 2. A decomposition tree with respect to clique 2-cutsets: B1, B2, B3, and B4 are the basic blocks of
decomposition.

constructed for graphs of larger degrees. This motivates us
to investigate under which conditions we can combine total-
colorings around a clique cutset. In the present work, we give
two applications of the decomposition by clique 2-cutsets to
the total-coloring problem.

As we have already mentioned, the goal of decomposing
a graph is to obtain a solution for a problem by combining
the solutions for the blocks of decomposition. Another way
of viewing this idea is recursively decomposing a graph until
obtaining a set of indecomposable graphs, which are called
basic (see Fig. 2). Once we can solve a problem for each
basic graph, we try to combine the solutions until we have a
solution for the original graph.

A decomposition is extremal if at least one of the blocks of
decomposition is basic. Having an extremal decomposition
is useful because one of the blocks is in the “restricted” set
of basic graphs (see an example of extremal decomposition
in Fig. 3). Lemma 1 proves that every nonbasic graph has an
extremal decomposition by clique 2-cutsets.

Lemma 1. Let G be a graph that has a clique 2-cutset.
Graph G has a clique 2-cutset such that at least one of the
blocks is basic.

Proof. Let X be a clique 2-cutset chosen over all clique
2-cutsets of G in such a way that one of the blocks of decom-
position, denoted H , has minimum size. Suppose H has a
clique 2-cutset Y and let H1, H2, . . . , Hp be the blocks of
decomposition of graph H by cutset Y . Then Y is also a clique

2-cutset of G and at least one of H1, H2, . . . , Hp is a block
of decomposition of graph G by cutset Y , contradicting the
minimality of H . !

In Sections 3 and 4, we study two classes whose sets of
basic graphs with respect to clique 2-cutset decompositions
have useful properties, which we describe next. In the case
of partial-grids of maximum degree at most 3 with bounded
size of maximum induced cycle, we prove that the set of
basic graphs is finite. This allows to prove that a specific
coloring property—which we define in Section 3—holds for
each basic graph by simply exhibiting this coloring prop-
erty in each of the basic graphs individually. In the case of
outerplanar graphs, the basic graphs with respect to clique
2-cutset decompositions are cycle-graphs. Although the set
of basic graphs is not finite, they compose a very structured
class, in such a way that we can prove a specific coloring
property—which we define in Section 4.

3. PARTIAL-GRIDS

A graph Gm×n, where m, n ≥ 1, with vertex set
V(Gm×n) = {1, . . . , m}×{1, . . . , n} and edge set E(Gm×n) =
{(i, j)(k, l) : |i − k| + |j − l| = 1, (i, j), (k, l) ∈ V(Gm×n)}, or
a graph isomorphic to Gm×n, is called a grid. A partial-grid
is an arbitrary subgraph of a grid. Partial-grids are harder
to work with than grids; for instance, recognition of grids
is polynomial [6], whereas the problem is NP-complete for
partial-grids [2,10]. The total-coloring of partial-grids proved
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a decomposition tree with respect to clique 2-cutsets



7 · Complexity separation

class \ problem edge-colouring total colouring

unichord-free NP-complete [1] NP-complete [2]

chordless polynomial [3] polynomial [3]

{square,unichord}-free NP-complete [1] polynomial [4]

bipartite unichord-free polynomial NP-complete [5]

the computational complexity of colouring problems

restricted to subclasses of unichord-free graphs
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8 · Concluding remarks and conjectures

Question 8.1 Are all partial grids with maximum degree 3 of type 1?

Question 8.2 Are all chordal graphs with even maximum degree of type 1?
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