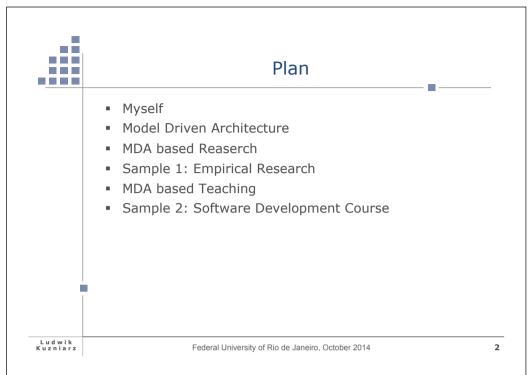


MDA-based Teaching and Research in Software Engineering

Ludwik Kuźniarz

Blekinge Institute of Technology School of Computing

Sweden


Ludwik.Kuzniarz@bth.se

Researh Overview

- Formal Methods
 - Formal verification of programs
 - Investigation of a specification language
 - Formalizations in MultiMedia
- Consistency in UML
 - Series of workshops on MoDELS
 - Classification framework
 - Consistency Issues in Modelling
- Didactics
 - Educators Symposium on MoDELS
 - Best Practices for Teaching UML Based Software: MoDELS 2004
- Software Development and Empirical Methods
 - Validation of stereotypes with experiments
 - Empirical assessment of using stereotypes to improve comprehension of UML models: A set of experiments

Federal University of Rio de Janeiro, October 2014

- Validation using survey
 - Empirical extension of a classification framework for addressing consistency in model based development

Researh Overview

- Formal Methods
 - Formal verification of programs
 - Hiding deadlocks in Lotos
 - Formalizations in MultiMedia
- Consistency in UML
 - Series of workshops on MoDELS
 - Classification framework
 - Consistency Issues in Modelling
- Didactics
 - Educators Symposium on MoDELS
 - Best Practices for Teaching UML Based Software: MoDELS 2004
- Software Development and Empirical Methods
 - Validation of stereotypes with experiments
 - Empirical assessment of using stereotypes to improve comprehension of UML models: A set of experiments
 - Validation with survey
 - Empirical extension of a classification framework for addressing consistency in model based development

Teaching Overview

- WUT
 - OO Software Development,
 - Formal methods in SE
- BIT
 - OO Software Development
 1st y BSc level
 - Product Line Architecture 2nd y MSc level
 - Master Thesis course
 2nd y MSc level
- Double Diploma BIT WUT
 - Research Methodology
- NUR National University of Rwanda
 - OO Software Development
 - Product Line Architecture
 - Master Thesis
- NU Newcastle University
 - Introduction to UML

Ludwik Kuzniarz

Federal University of Rio de Janeiro, October 2014

MDA

Teaching Overview

- WUT
 - OO Software Development,
 - Formal methods in SE
- BIT
 - OO Software Development
 1st v BSc level
 - Product Line Architecture 2nd y MSc level
 - Master Thesis course
 2nd y MSc level
- Double Diploma BIT WUT
 - Research Methodology
- NUR National University of Rwanda
 - OO Software Development
 - Product Line Architecture
 - Master Thesis
- NU Newcastle University
 - Introduction to UML

Ludwik Kuzniarz

Federal University of Rio de Janeiro, October 2014

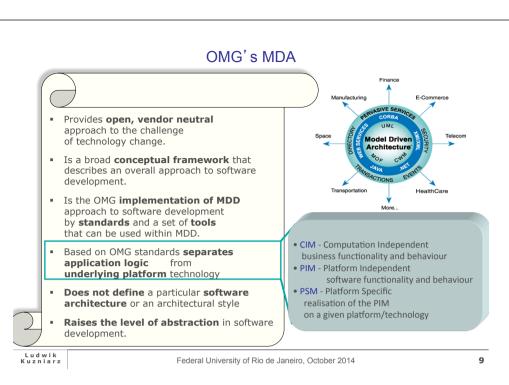
6

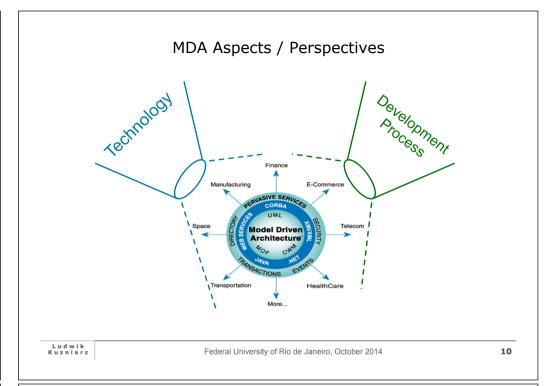
OMG's MDA

Object Management Group (OMG)

an open membership, not-for-profit consortium that produces and maintains computer industry specifications for interoperable enterprise applications.

• Bad news


There will never be a single OS, PL, Netwwork Architecture that replaces all that have passed


Good news

You can still manage to build systems economically in this environment

Remedy

A specific approach to software development – Model Driven Architecture (MDA)

MDA Core Standards - Technology Space

- MOF Meta-Object Facility
 - an abstract language and a framework for specifying, constructing, and managing technology neutral metamodels => languages
- · UML Unified Modeling Language
 - a graphical language for specifying, constructing, visualizing & documenting

the artifacts of distributed object oriented systems

- XMI XML Metadata Interchange
 - technology mappings from MOF metamodels conforming to XML DTDs and XML documents.
- Others still coming

UML
Model Driven
Architecture

Represents a collection of best engineering practices that have proven successful in modeling of large and complex systems.

11

MDA: Development Process Perspective

• MDA (Model-Driven Architecture)

is a type of

MDD (Model-Driven Development)

- Not a Software Architecture design
 - "Architecture" refers to a framework of concepts, tools etc.
- But a Development Paradigm

Approach to developing software

MDA: Development Process Perspective

- MDA = approach + tools for:
 - Specifying
 - platform-independent system application platforms
 - Choosing
 - a platform for the system
 - Transforming
 - the platform-independent specification into a platform-specific one
- Concepts
 - Application : the functionality being developed
 - Platform : technology that provides functionality

through interfaces and usage patterns (generic, standard, manufacturer)

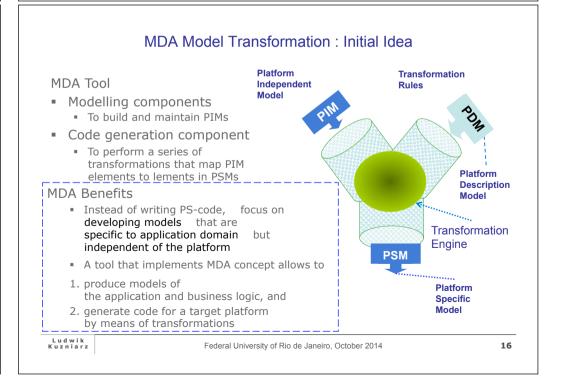
System : application(s) supported by platform(s)

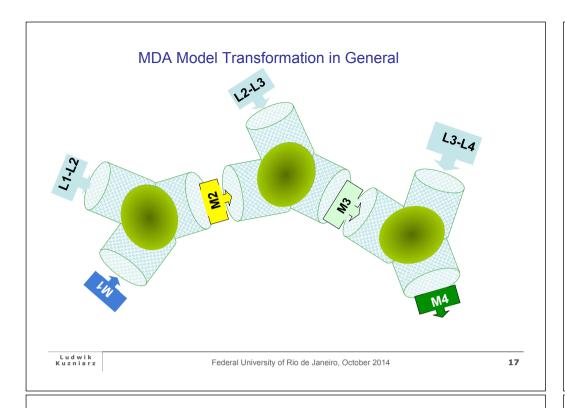
Ludwik Kuzniarz

Federal University of Rio de Janeiro, October 2014

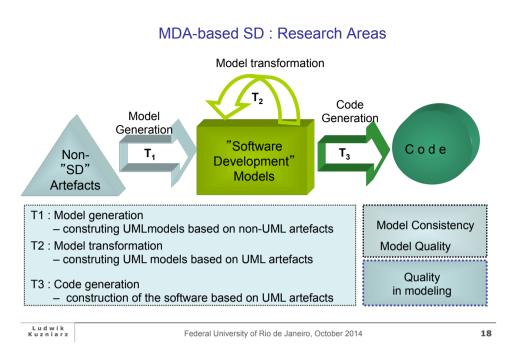
13

Categories of Models in MDA


- Computation Independent Model CIM
 - Does not show details of system structure
 - Independent of how the system will be implemented
 - "domain model" or "business model"
 - Bridges the gap between domain experts


and design/development experts

- Platform Independent Model PIM
 - Structure, functionality and behavior of the software system built using OMG standards
- Platform Specific Model PSM
 - Realization of the PIM on a given platform/technology


Ludwik
Kuzniarz Federal University of Rio de Janeiro, October 2014

Models Hierarchy: Four Layers Architecture conformsTo Language for defining languages MetaModel World - MOF conformsTo Modelling Modeling Language Model MetaModel Model Directions - UML Model conformsTo Models in UML Model Model Model Usage Real World Thing of the models Ludwik Kuzniarz Federal University of Rio de Janeiro, October 2014 14

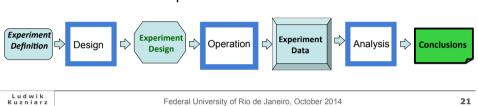
Reasearch

Empirical Methods in Engineering

- Confirmation of (more or less accepted) hypotheses.
 - For example: object-orientation is good for reuse.
- Evaluation of methods, models, languages and tools.
 - For example: whether Java produces higher quality code than C+
- Identification of relationships.
 - For example: find relationship between fault-prone components and design concepts.
- · Validation of models or measures.
 - For example: to validate a specific cost estimation model.
- · Understanding of methods, techniques and models.
 - For example: to understand relationship between inspections and test
- Guidance to help in management.

For example: for migration from one technology to another.

19


Experiment

Basic characteristic

- · carefully planned and fully controlled,
- · should be replicable.

Experiment Process

Experiment Design - Instrumentation

Experiment schema

	Round 1	Round 2
Group 1	Set A – S	Set B – N
Group 2	Set A – N	Set B - S

- · Four set of artefacts
 - Set A-S: stereotyped model A and description of stereotypes used
 - Set B-N: non-stereotyped model B,
 - Set A-N: non-stereotyped model A,
 - Set B-S: stereotyped model B and description of stereotypes.

The experiment

 Short Lecture Introduction to stereotypes Not to telecommunication profile

- Questionare

Pilot study

- 2 subject
- Results

Questionaires not at the same level

- Artifact set A-x describes a domain of radio transmissions.
 - a class diagram describing different types of existing objects (radio station, retransmission station, different types of antennas, etc)
 - a corresponding object diagram describing one of possible situations (like sending a news program across a country).
- · Artifact set B-x describes a domain of GSM telephony.
 - a class diagram describing different types of existing objects
 - (mobile phone, BTS station, connection to conventional telephone network, etc) and
 - a corresponding object diagram describing one of possible situations of using the network (like making phone calls in a given time).

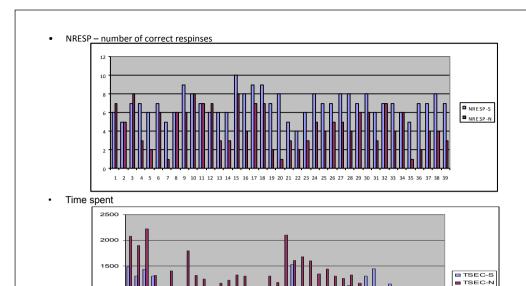
Ludwik Kuzniarz Federal University of Rio de Janeiro, October 2014

Sample Experiment Design

- Idead Behind Empirical Research
 Investigate how stereotypes influence
 understanding of UML encoded artefacts
- Method
 - Experiment
- Design
 - Pair comparison on design artefacts
 - Subjects: SE students of different background
 - Input / Objects: (4 sets of) design artefacts (with 6 stereotypes)
 - Instruments (initial): questionares (on 4 types) of diagrams
 - · Component Model & Collaboration Diagram
 - · non stereotypes and stereotyped
 - Output:
 - time
 - · level of understanding

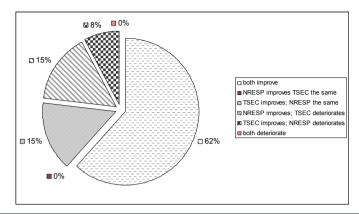
Ludwik Kuzniarz

Federal University of Rio de Janeiro, October 2014


22

Sample artefacts

Name	Icon	Description
< <sender>></sender>		*makes the class capable of sending messages to classes stereotyped < <receiver>> or <<transmitter>>, *allows the class to send messages without receiving them first, *prevents the class from receiving any message,</transmitter></receiver>
< <receiver>></receiver>		•makes the class capable of receiving messages from classes stereotyped < <sender>> or <<transmitter>>, •enables the class to receive a message without sending it further, •prevents the class from sending any messages to other classes,</transmitter></sender>
< <transmitter>></transmitter>		*makes the class capable of receiving messages from classes stereotyped < <sender>> or <<transmitter>> and sending the received messages to classes stereotyped <<receiver>> or <<transmitter>>, *any message that is sent from such a class must be preceded by receiving of the message by this class</transmitter></receiver></transmitter></sender>


Ludwik Kuzniarz

23

Education

· Overall improvement

- Follow Up
 - · Replication
 - · Categorization
 - Teaching

Ludwik Kuzniarz

Federal University of Rio de Janeiro, October 2014

26

Best Practices

- Tailoring of Development Process
 - Defined Artefacts and Creation Procedures
 - Effective Usage of Models and Modelling MDA conforment
- Consistency Awareness and Management
- Research elements
 - Participation Conducting Experiments During the Course
 - Passive nd Active
 - Transfer of Research Results
 - proper and effective usage of advanced UML elements for instance where and how introduce stereotypes, how they can help, what benefits can be obtained
 - · usage of capabilities included in modelling tools
- Industrial and Professional Relevance
- Constant Feedback from Participants

Ludwik Kuzniarz

Federal University of Rio de Janeiro, October 2014

1000

Ludwik Kuzniarz