NETWORK SURVIVABILITY AND POLYHEDRAL ANALYSIS

A. Ridha Mahjoub LAMSADE, Université Paris-Dauphine, Paris, France

Contents

1. Polyhedral techniques

- 1.1. Polyhedral Approach
- 1.2. Separation and Optimization
- 1.3. Cutting-plane method
- 1.4. Branch&Cut

2. Network survivability

1.1. Polyhedral Approach

A Combinatorial Optimization (C.O.) problem is a problem of the form

$$P=\max\{c(F)=\sum_{e\in F}c(e), F\in \mathbf{F}\}\$$

where **F** is the set of solutions of P, $\mathbf{F} \subset 2^E$ for a ground set E and c(F) is the weight of F.

With $F \in \mathbb{F}$, we associate a $\{0,1\}$ vector $x^F \in \mathbb{R}^E$, called the incidence vector of F given by

$$x^{F} = \begin{cases} & \text{if } i \in F \\ & \text{if } i \in E \setminus F \end{cases}$$

A C.O. problem can be formulated as a 0-1 program.

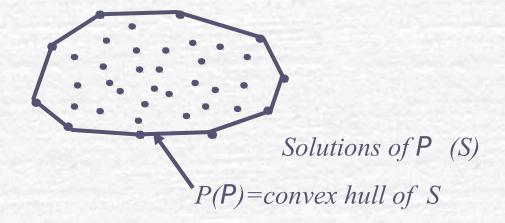
Idea: Reducing the problem to a linear program.

$$\operatorname{Max} \sum c_j x_j$$

Subject to:

$$\sum a_{ij} x_j \le b_i, i = 1,..., m$$

 $x_i \in \{0,1\}, i = 1,..., n$



0-1 Program

A C.O. problem can be formulated as a 0-1 program.

Idea: Reducing the problem to a linear program.

$$\max \sum c_j x_j$$

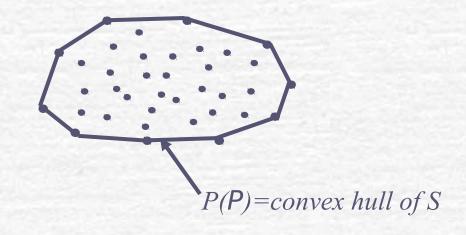
Subject to:

$$\sum a_{ij}x_{j} \leq b_{i}$$
, $i=1,...,m$

New Constraints

$$x_i \ge 0, i=1,...,n$$

Linear Program



$$P \iff \max\{cx, x \in P(P)\}$$

Polyhedral Approach:

Let P be a C.O. on a ground set E, |E|=n.

- . Represent the solutions of P as 0-1 vectors.
- Consider these vectors as points of \mathbb{R}^n , and define the convex hull P(P) of these points.
- . Characterize P(P) by a linear inequality system.
- . Apply linear programming for solving the problem.

This approach has been initiated by Edmonds in 1965 for the Matching Problem.

Step 3. is the most difficult.

- If the problem is polynomial, generally it is possible to characterize the associated polytope!
- If the problem is NP-complete, there is a very little hope to get such a description.

Question: How to solve the problem when it is NP-complete.

A further difficulty:

The number of (necessary) constraints may be exponential.

The Traveling Salesman Problem

For 120 cities, The number of (necessary) contraints is $\geq 10^{179}$ ($\approx 10^{100}$ times the number of atoms in the globe) (number of variables: 7140.)

To solve the TSP on 120 cities, (Grötschel 1977), used only 96 constraints among the 10¹⁷⁹ known constraints.

1. Polyhedral Techniques 1.2. Separation and Optimization

.2. Separation and Optimization

With a linear system

 $Ax \leq b$

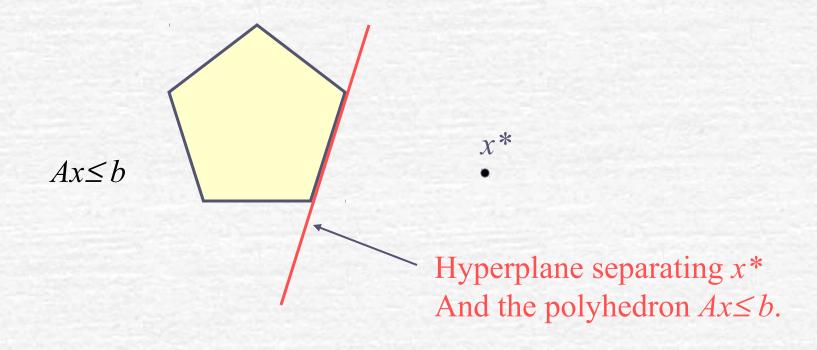
we associate the following problem:

Given a solution x^* , verify whether x^* satisfies $Ax \le b$, and if not, determine a constraint of $Ax \le b$ which is violated by x^* .

This problem is called the separation problem associated with $Ax \le b$.

1. Polyhedral Techniques 1.2. Separation and Optimization

If x^* does not verify system $Ax \le b$, then there is a hyperplane that separates x^* and the polyhedron $Ax \le b$.



1. Polyhedral Techniques 1.2. Separation and Optimization

Theorem: (Grötschel, Lovász, Schrijver, 1981)

Given a linear program

$$P=\max\{cx, Ax \leq b\},\$$

there is a polynomial time algorithm for P if and only if there is a polynomial time algorithm for the separation problem associated with $Ax \le b$.

1.3. Cutting-plane method

1. Consider a linear program with a raisonable number of constraints among the constraints of $Ax \le b$. Let

$$\mathsf{P}_1 = \max\{\mathsf{c} x, \, A_I x \leq b\}.$$

be this program.

2. Solve P_1 . Let x^*_I be the optimal solution of P_1 .

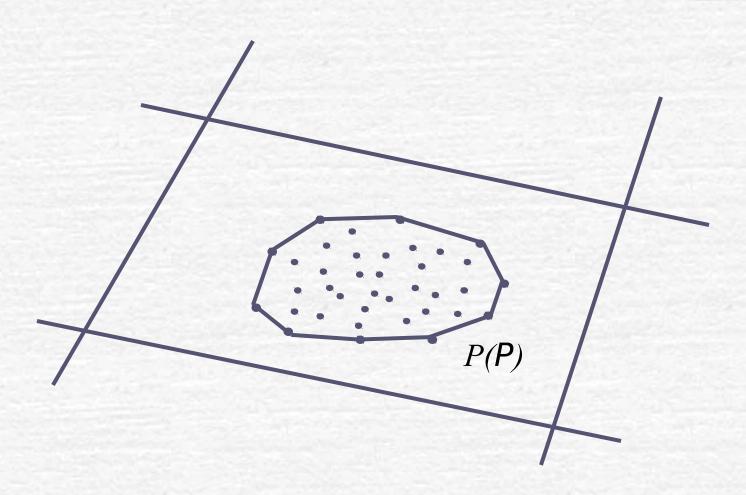
If x_I^* is solution of P (in 0-1), STOP, x_I^* is optimal solution of P.

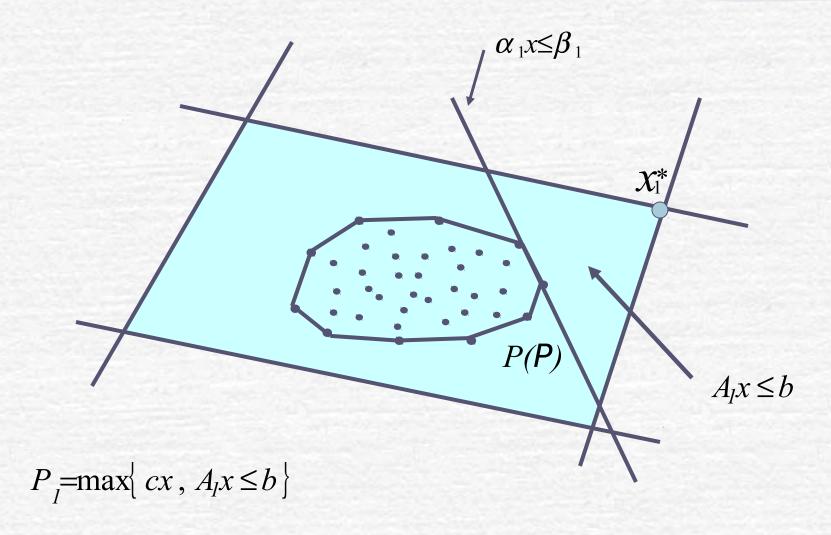
If not, solve the separation roblem associated with $Ax \le b$ and x_1^* . Let $\alpha_I x \le \beta_I$ be a constraint violated by x_I^* .

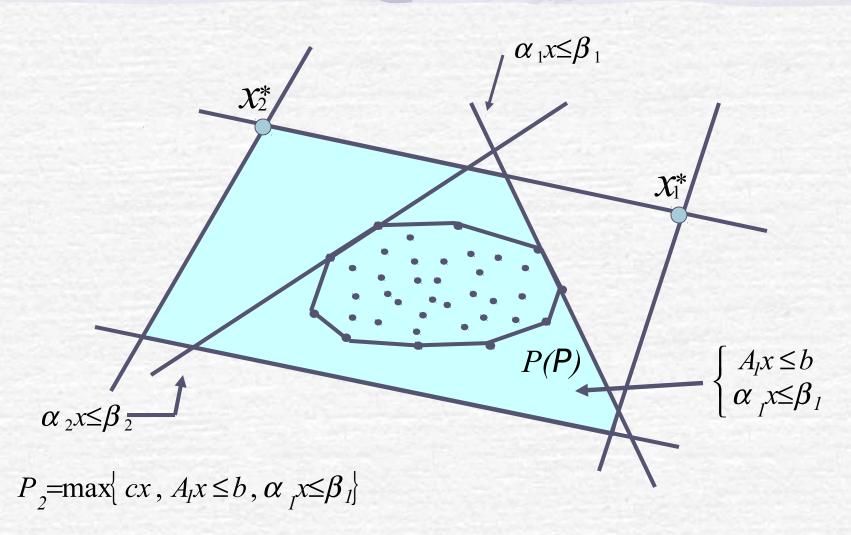
3. Add $\alpha_{1}x \leq \beta_{1}$ to P_{1} . Let

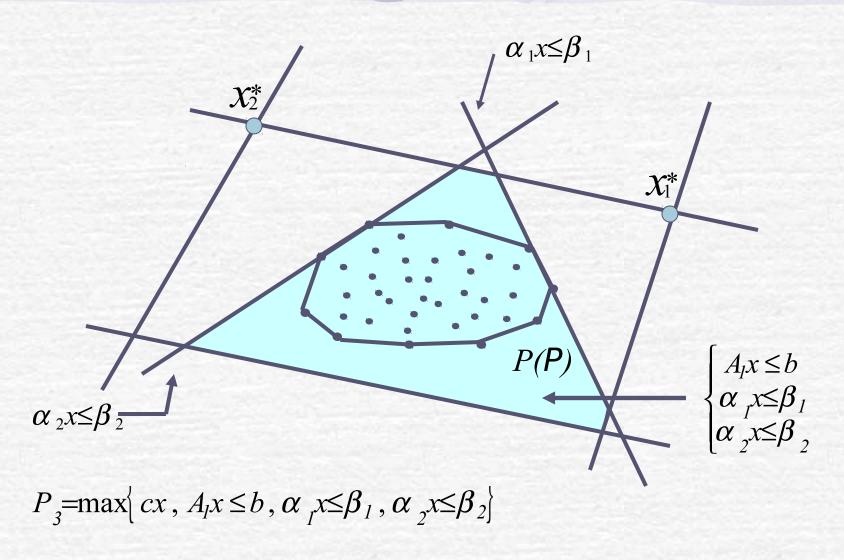
$$P_2 = \max\{cx, A_1 x \le b, \alpha_1 x \le \beta_1\}.$$

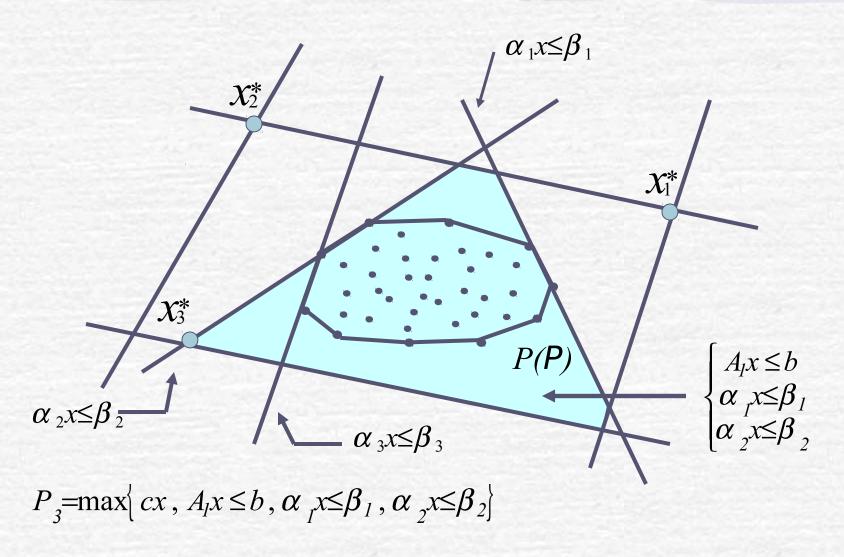
Solve P_2 . If x^* , is solution of P, STOP. If not, determine a contraint

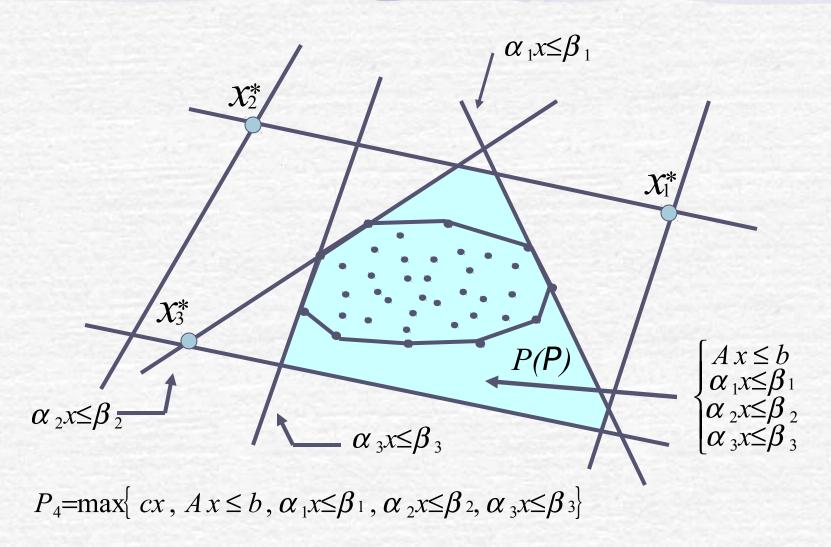












1. Polyhedral Techniques 1.4. Branch&Cut

1.4. Branch&Cut Method

- Combination of Branch&Bound and Cutting-planes.
- On each node of the tree we solve a linear relaxation of the problem by the cutting-plane method.
- 1) If an optimal solution is not still found, select a (pending) node of the tree and a fractional variable x_i . Consider two sub-problems by fixing x_i to 1 and x_i to 0 (branching phase).
- 2) Solve each sub-problem by generating new violated constraints (cutting phase).

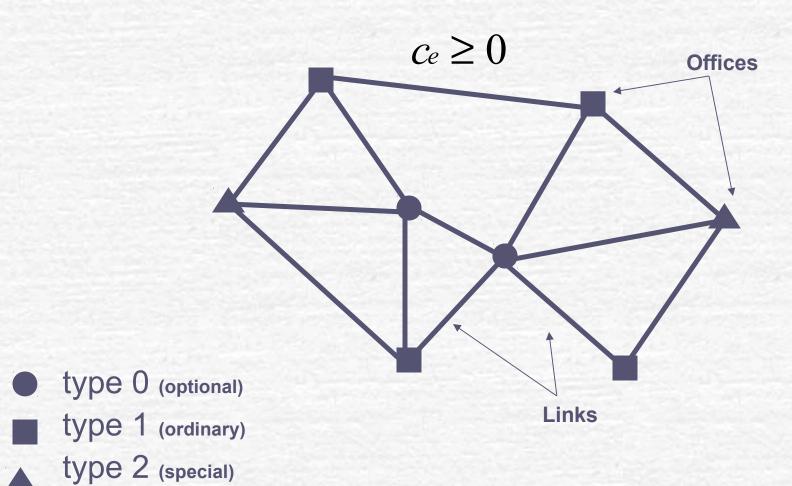
Go to 1).

Contents

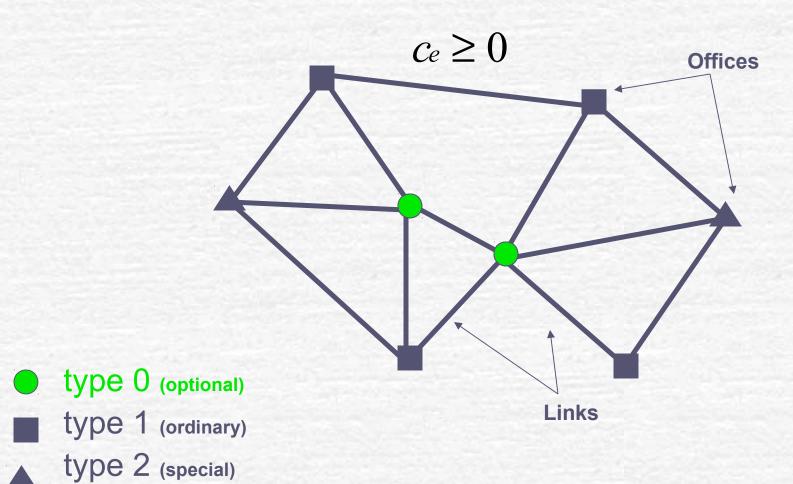
1. Polyhedral techniques

- 1.1. Introduction
- 1.2. Polyhedral Approach
- 1.3. Separation and Optimization
- 1.4. Cutting plane method
- 1.5. Branch&Cut

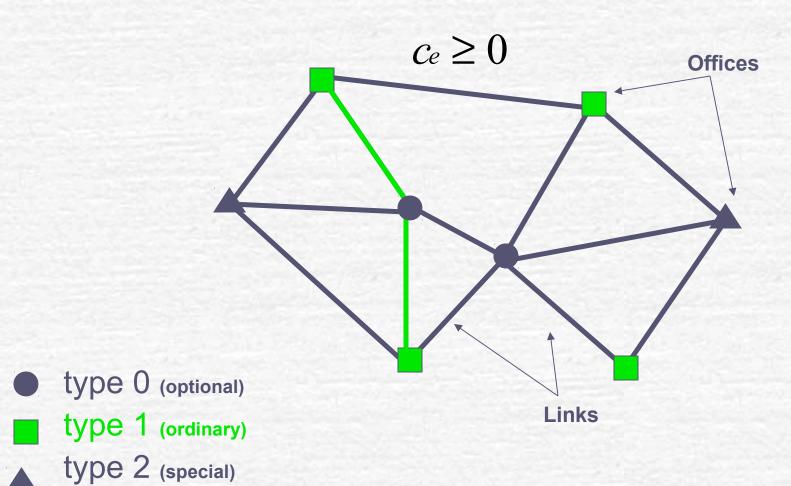
2. Networks survivability



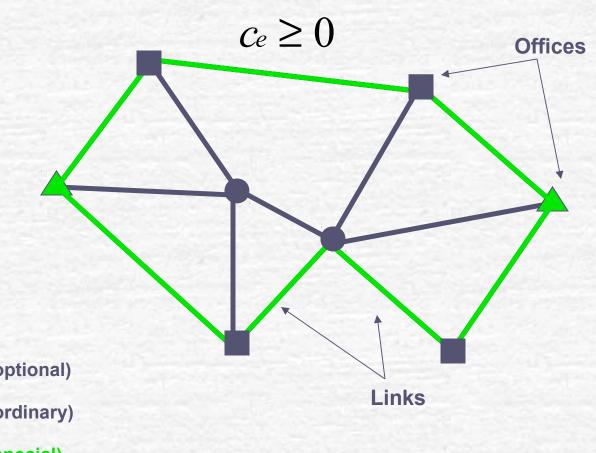
Seminar UF Rio de Janeiro, April 9, 2014



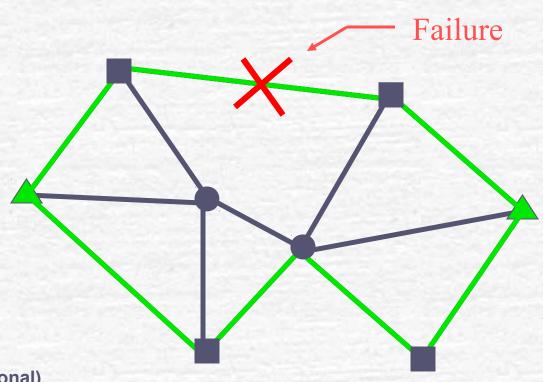
Seminar UF Rio de Janeiro, April 9, 2014



Seminar UF Rio de Janeiro, April 9, 2014



- type 0 (optional)
- type 1 (ordinary)
- type 2 (special)



- type 0 (optional)
- type 1 (ordinary)
- type 2 (special)

Survivability

The ability to restore network service in the event of a catastrophic failure.

Goal

Satisfy some connectivity requirements in the network.

Motivation

Design of optical communication networks.

Contents

2. Network survivability

- 2.1. A general model
- 2.2. Polyhedral results
- 2.3. Separation
- 2.4. Critical extreme points
- 2.5. Branch&Cut algorithm
- 2.6. Bounded paths

2.1. A General model

Let G=(V,E) be a graph. If s is a node of G, we associate with s a connectivity type $r(s) \in N$.

If s,t are two nodes, let

$$r(s,t)=min(r(s),r(t))$$

G is said to be survivable if for every pair of nodes s,t, there are at least r(s,t) edge (node)-disjoint paths between s and t.

(Grötschel, Monma, Stoer (1992))

The Survivable Network Design Problem (SNDP)

Given weights on the edges of G, find a minimum weight survivable subgraph of G.

The SNDP is also known as the generalized Steiner tree problem and the multiterminal synthesis problem.

Special cases:

- r(v)=1 for every v: the minimum spanning tree problem.
- r(v)=1 for two nodes s, t and 0 elsewhere: the shortest path problem between s and t.
- $r(v) \in \{0,1\}$ for every v: the Steiner tree problem.
- r(v)=k for every v (k fixed): the k-edge (k-node) connected subgraph problem .

The SNDP is NP-hard in general.

Formulation of the SNDP (edge case)



If $W \subset V$, $\emptyset \neq W \neq V$, let $r(W) = \max\{r(s) \mid s \in W\}$ $con(W) = \min\{r(W), r(V \mid W)\}$

r(W) is the connectivity type of W.

 $\delta(W)$ is called a *cut* of *G*.

$$\sum_{e \in \delta(W)} x(e) = x(\delta(W)) \ge con(W)$$

cut inequalities

The (edge) SNDP is equivalent to the following integer program

$$\min \sum_{e \in E} c(e) x(e)$$

Subject to

$$x(\delta(W)) \ge con(W)$$

for all $W \subset V$, $\emptyset \neq W \neq V$

$$0 \le x(e) \le 1$$

for all $e \in E$,

$$x(e) \in \{0,1\}$$

for all $e \in E$.

Follows from Menger's theorem (1927).

$$\min \sum_{e \in E} c(e)x(e)$$

Subject to

$$x(\delta(W)) \ge con(W)$$

for all $W \subset V$, $\emptyset \neq W \neq V$

$$0 \le x(e) \le 1$$

for all $e \in E$,

The linear relaxation can be solved in polynomial time (by the ellipsoid method).

2. Network survivability 2.2. Polyhedral results

2.2. Polyhedral Results

Let SNDP(G) be the convex hull of the solutions of SNDP, i.e.,

 $SNDP(G) = conv\{x \in R^E | x \text{ is a (an integer) solution of SNDP}\}.$

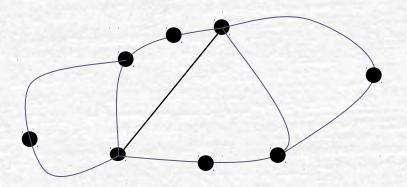
SNDP(G) is called the survivable network design polyhedron.

2. Network survivability 2.2. Polyhedral results

2.2.1. Restricted graphs

A graph is said to be series-parallel if it can be constructed from an edge by iterative application of the following operations:

- 1) Addition of parallel edges
- 2) Subdivision of edges



2. Network survivability 2.2. Polyhedral results

Theorem: (Kerivin & M. (2002))

If G is series-parallel and r(v) is even for every v, then SNDP(G) is given by the trivial and the cut inequalities.

Generalizes Cornuéjols, Fonlupt and Naddef (1995), Baïou & M. (1996), Didi-Biha & M. (1999).

Corollary:

If G is series-parallel and r(v) is even for every v, then SNDP can be solved in polynomial time.

General graphs

Low connectivity case: $r(v) \in \{0,1,2\}$

2.2.2. Valid inequalities:

Trivial inequalities:

$$0 \le x(e) \le 0$$
 for all $e \in E$

Cut inequalities:

$$x(\delta(W)) \ge con(W)$$
 for all $W \subset V$, $\emptyset \ne W \ne V$

Partition inequalities:

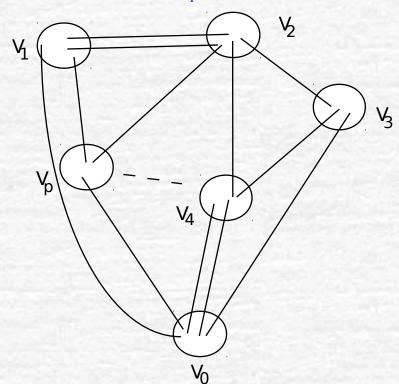
Let $V_1, ..., V_p$, $p \ge 2$, be a partition of V such that $con(V_i) \ge 1$ for all V_i . Then the following inequality is valid for SNDP(G).

$$x(\delta(V_1,...,V_p)) \ge p-1$$
, if $con(V_i)=1$ for all V_i $\ge p$, if not,

(Grötschel, Monma and Stoer (1992))

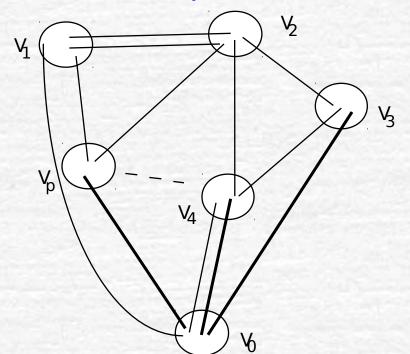
F-partition inequalities:

Let $V_0, V_1, ..., V_p$ be a partition of V such that $con(V_i)=2$ for all V_i



F-partition inequalities:

Let $V_0, V_1, ..., V_p$ be a partition of V such that $con(V_i) = 2$ for all V_i



Let F be a set of edges of $\delta(V_0)$ and |F| id odd.

$$x(\delta(V_i)) \ge 2, \quad i=1,...,p$$

$$-x(e) \ge -1, \qquad e \in F$$

$$x(e) \ge 0, \qquad e \in \delta(V_0) \setminus F$$

$$\implies 2x(\Delta) \ge 2p-|F|,$$

where $\Delta = \delta(V_0, V_1, ..., V_p) \backslash F$

--- Edges of F

Then

$$x(\Delta) \ge p - \frac{|F|-1}{2}$$

is valid for the SNDP(G).

These inequalities are called F-partition inequalities. (M. (1994))

Further valid inequalities related to the traveling salesman polytope have been given by Boyd & Hao (1994) for the 2-edge connected subgraph polytope. And general valid inequalities for the SNDP have been introduced by Grötschel, Monma and Stoer (1992) (generalizing the *F*-partition inequalities).

2. Network survivability2.3. Separation

2.3. Separation

Consider the constraints

$$x(\delta(V_1,...,V_p)) \ge p-1.$$

called multicut inequalities.

These arise as valid inequalities in many connectivity problems.

The separation problem for these inequalities reduce to |E| min cut problems Cunningham (1985).

It can also be reduced to |V| min cut problems Barahona (1992).

Both algorithms provide the *most violated* inequality if there is any.

2. Network survivability2.3. Separation

F-partition inequalities

(r(v) = 2 for all node v)

Theorem. (Barahona, Baïou & M.) If F is fixed, then the separation of F-partition inequalities can be solved in polynomial time.

Let G'=(V',E') be the graph obtained by deleting the edges of F. Hence the F-partition inequalities can be written as

$$x(\delta(V_0,...,V_p)) \ge p-(|F|-1)/2$$

where $(V_0,...,V_p)$ is a partition of V' such that for each edge $uv \in F$, $|\{u,v\} \cap (V_0)|=1$.

2. Network survivability2.3. Separation

There are $2^{|F|}$ possibilities for assigning these nodes.

For each possibility we contract the nodes that must be in V_0 and solve the separation problem for the inequalities.

$$x(\delta(V_0,...,V_p)) \ge p - (|F|-1)/2$$

where |F| is fixed. These are partition inequalities, and hence the separation can be done in polynomial time.

2.4. Critical extreme points of the 2-edge connected subgraph polytope

(Fonlupt & M. (2006))

We suppose r(v)=2 for all v.

Consider the linear relaxation of the problem:

$$\min \sum_{e \in E} c(e) x(e)$$

$$x(\delta(W)) \ge 2$$

for all
$$W \subset V$$
, $\emptyset \neq W \neq V$

$$0 \le x(e) \le 1$$

for all
$$e \in E$$
.

2.4. Critical extreme points of the 2-edge connected subgraph polytope

(Fonlupt & M. (2006))

We suppose r(v)=2 for all v.

Consider the linear relaxation of the problem:

$$\min \sum_{e \in E} c(e) x(e)$$

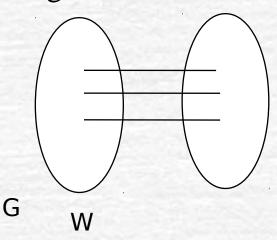
$$P(G) \qquad x(\delta(W)) \ge 2 \qquad \text{for all } W \subset V, \ \emptyset \ne W \ne V$$
$$0 \le x(e) \le 1 \qquad \text{for all } e \in E.$$

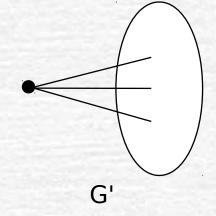
Reduction Operations

Let x be a fractional extreme point of P(G).

 O_1 : delete edge e such that x(e)=0,

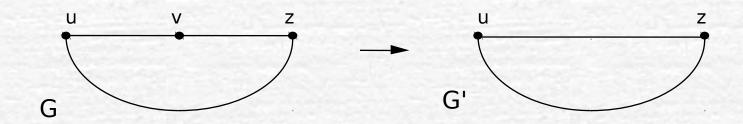
 O_2 : contract a node set W such that the subgraph induced by W, G(W) is 2-edge connected and x(e)=1 for every $e \in E(W)$.





G(W) is 2-edge connected and x(e)=1 for every $e \in E(W)$.

 O_3 : contract an edge having one of its endnodes of degree 2.



Lemma: Let x be an extreme point of P(G) and x' and G' obtained from x and G by applications of operations O_1 , O_2 , O_3 . Then x' is an extreme point of P(G'). Moreover if x violates a cut, a partition or an F-partition inequality, then x' so does.

Domination

Let x and y be fractional two extreme points of P(G). Let $F_x = \{e \in E \mid x(e) \text{ is fractional}\}\$ and $F_y = \{e \in E \mid y(e) \text{ is fractional}\}\$. We say that x dominates y if $F_y \subset F_x$.

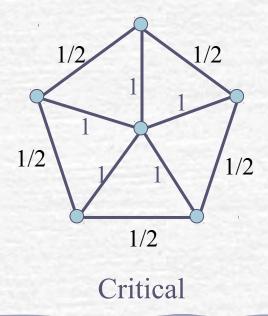
Question:

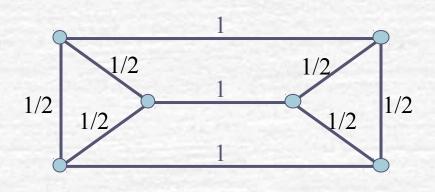
Characterise the minimal fractional extreme points.

<u>Definition</u>: A fractional extreme point x of P(G) is said to be *critical* if:

- 1) none of the operations O_1 , O_2 , O_3 can be applied for it,
- 2) it does not dominate any fractional extreme point of P(G).

Example:



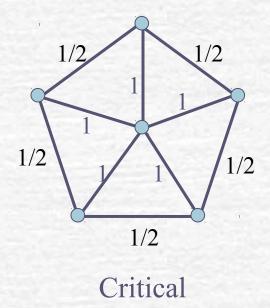


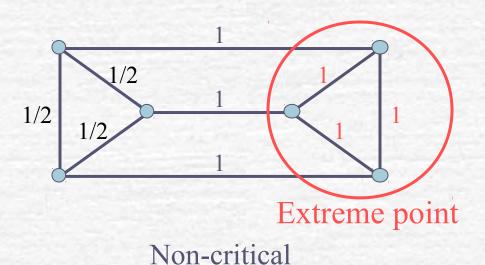
Non-critical

<u>Definition</u>: A fractional extreme point x of P(G) is said to be *critical* if:

- 1) none of the operations O_1 , O_2 , O_3 can be applied for it,
- 2) it does not domine any fractional extreme point of P(G).

Example:

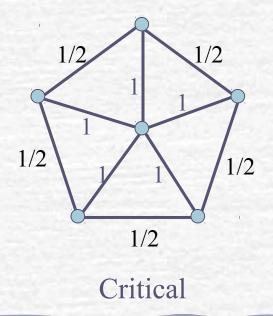


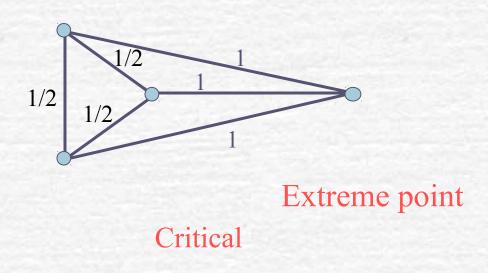


Definition: A fractional extreme point x of P(G) is said to be *critical* if

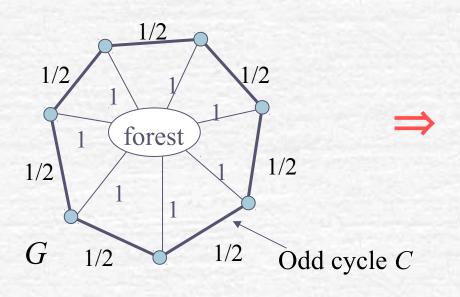
- 1) none of the operations O_1 , O_2 , O_3 can be applied for it,
- 2) it does not domine any fractional extreme point of P(G).

Example:





Theorem: An extreme point of P(G) is critical if and only if G and x are of the following form:



$$\sum_{e \in C} x(e) \ge \frac{|C|+1}{2}$$

is valid and defines a facet

(it is an *F*-partition inequality)

Theorem: If x is a critical extreme point of P(G), then x can be separated (in polynomial time) by an F-partition inequality.

The concept of critical extreme points has been extended (with respect to appropriate reduction operations) to 2-node connected graphs and (1,2)-survivable networks (Kerivin, M., Nocq (2001)), And to *k*-edge connected graphs (Didi Biha & M. (2004)).

2.5. Branch&Cut algorithm

(Kerivin, Nocq, M. (2003))

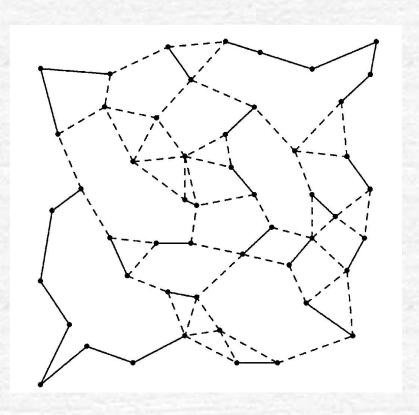
 $r(v) \in \{1,2\}$ for all v

Used constraints:

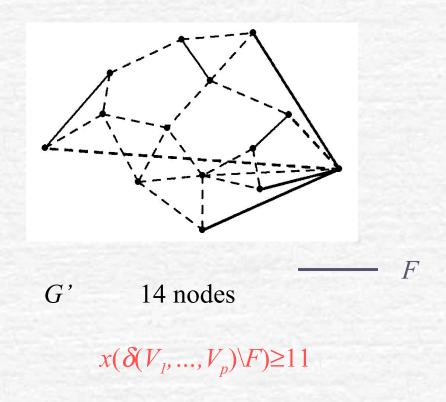
trivial inequalities
cut inequalities
F-partition inequalities
partition inequalities

If x is a fractional extreme point (critical or not), we apply the reduction operations. Let G' and x' be the graph and the solution thus obtained.

If a cut, a partition or an F-partition constraint is violated by x' for G', then it can be lifted to a constraint of the same type violated by x for G.



G 51 nodes



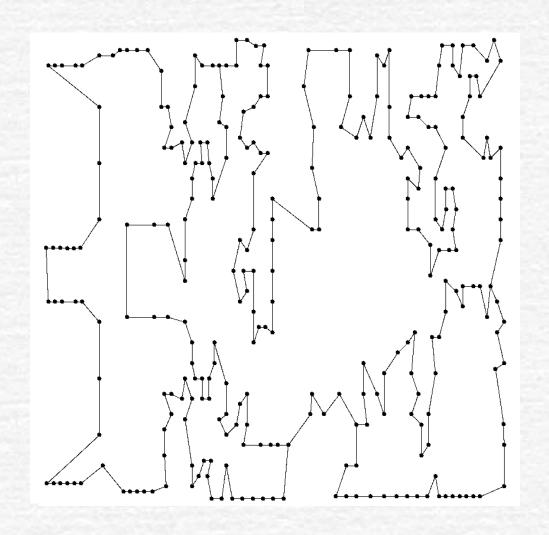
This contraint cuts the extreme point of G and that of G.

#nodes 299 (type 2)

#variables 44551

#constraints 357

CPU Time 142 sec

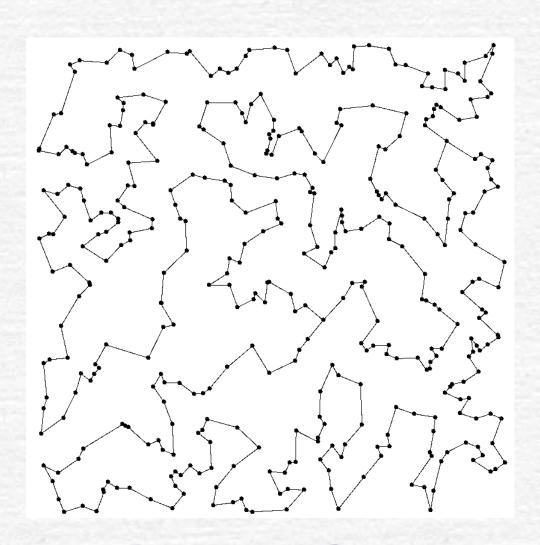


#nodes 400 (type 2) 2-node connected

#variables 79400

#constraints 1369

CPU Time 152 min



#nodes 48

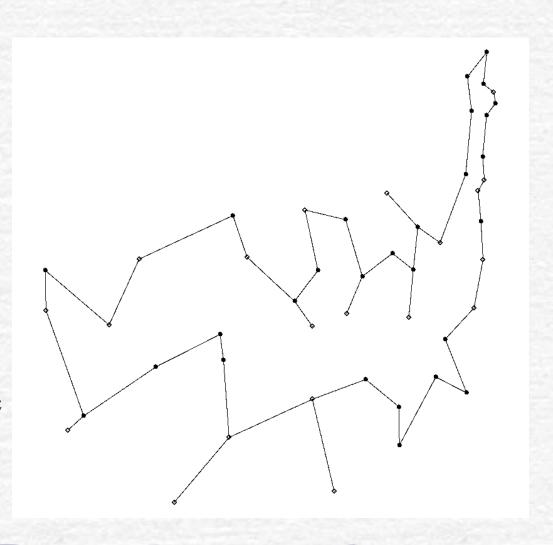
#type 1 20

#type 2 28

#variables 1 128

#constraints 428

CpuTime 202 sec



2.6. Survivable networks with length constraints

Motivation: to have effective routing cost

Local rerouting:

Each edge must belong to a bounded cycle (ring). SONET/SDH networks

End-to-end rerouting:

the paths between the terminals should not exceed a certain length (a certain number of hops) (hopconstrained paths).

ATM networks, INTERNET

The minimum hop-constrained path problem

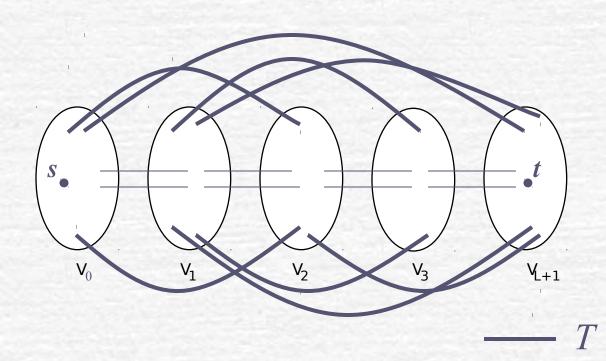
Determine a minimum path between two given nodes s and t, of length no more than L (L fixed).

Dahl & Gouveia (2001)

Formulation in the natural space of variables Valid inequalities
Description of the associated polytope when L=2,3.

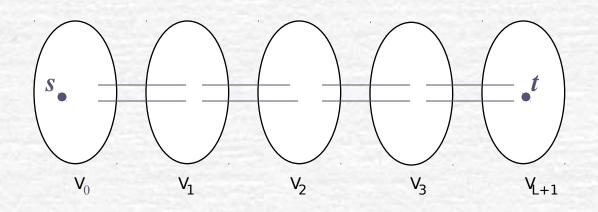
The *L*-path cut inequalities (Dahl (1999))

Let $V_0, V_1, ..., V_{L+1}$ be a partition of V such that $s \in V_0$ and $t \in V_{L+1}$.



The *L*-path cut inequalities (Dahl (1999))

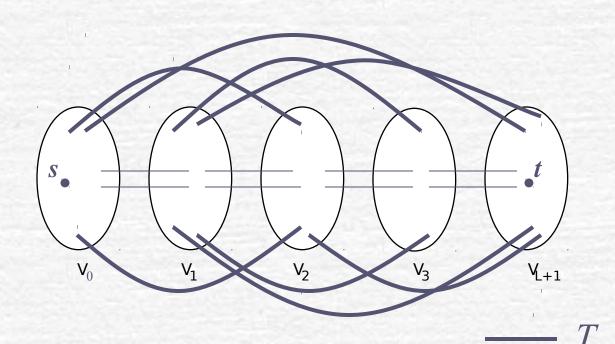
Let $V_0, V_1, ..., V_{L+1}$ be a partition of V such that $s \in V_0$ and $t \in V_{L+1}$.



The *L*-path cut inequalities

(Dahl (1999))

Let $V_0, V_1, ..., V_{L+1}$ be a partition of V such that $s \in V_0$ and $t \in V_{L+1}$.



$$x(T) \ge 1$$

(*L*-path cut inequalities)

Seminar UF Rio de Janeiro, April 9, 2014

If at least *K* paths are required between *s* and *t*, then

$$x(T) \ge K$$

is valid for the corresponding polytope.

The separation problem for the L-path cut inequalities can be solved in polynomial time, if $L \le 3$.

Fortz, M., McCormick, Pesneau (2003)

The hop-constrained network design problem (HCNDP):

Given a graph with weights on the edges, a set of terminalpairs (origines-destinations), two intgers K, L, find a minimum weight subgraph such that between each pair of terminals there are at least K paths of length no more than L.

Formulation for $L \le 3$

Theorem: (Huygens, M., Pesneau (2004))

For $L \le 3$, the problem is equivalent to the integer program:

$$\min \sum_{e \in E} c(e) x(e)$$

$$x(\delta(W)) \ge K$$
 for all st-cut $\delta(W)$
 $x(T) \ge K$ for all L-path cut T
 $0 \le x(e) \le 1$ for all $e \in E$,
 $x(e) \in \{0,1\}$ for all $e \in E$.

The linear relaxation of the program, when $L \le 3$, can be solved in polynomial time.

 $K=2, L \le 3$, and only one pair of terminals (s,t)

Théorem: (Huygens, M., Pesneau (2004))

The associated polytope is given by the inequalities

$$x(T) \ge 2$$
 for all L-path cut T ,
 $x(\delta(W)) \ge 2$ for all st-cut $\delta(W)$,
 $0 \le x(e) \le 1$ for all $e \in E$.

 \Rightarrow A polynomial time algorithm for the problem (when K=2, L=2,3) and only one pair of terminals.

Generalized for $L \leq 3$ and K arbitrary

Bendali, Diarrassouba, M. Mailfert (2010)

Conclusion

- Each combinatorial optimization problem needs a specific polyhedral investigation.
- A deep knowledge of the associated polyhedron is necessary for and efficient Branch&Cut algorithm.
- A Branch-and-Cut algorithm can be combined with a column generation technique (if the number of variables is big).
- -The polyhedral approches are the most powerful techniques for solving hard combinatorial optimization to optimality.

Conclusion

- The Survivable network design problems are difficult to solve (even special cases).
- The problems with length constraints remain the most complicated SNDP. A better knowledge of their facial structure would be usefull to establish efficient cutting plane techniques.
- Develop usefull cutting plane and column generation techniques for the more general model with length constraints, capacity assignment and routing.