
 J. J. Dongarra
 ACM Turing Award Recipient, 2021

 A Tribute by Alvaro Coutinho
If you don't measure it, you don't know it1

1My version of Peter Drucker’s: If you can’t measure it you can’t improve it

Contents

● Who is Jack Dongarra?
● What Dongarra has done to earn the ACM Turing Award?
● Why this is important?
● Discussion

Who is Jack Dongarra1

● Born in 1950 in Chicago, IL, USA, the oldest of three boys. All of his
grandparents were originally from Sicily, Italy. His father arrived in America as
a teenager. He attended a Catholic elementary school, Saint Daniel the
Prophet, for eight years. Most probably due to undiagnosed dyslexia, he was
not a good student, particularly in skills such as writing and reading.

● He went to a public high school, Kennedy High School, southwest Chicago,
where he discovered science! After high school he decided to become a high
school teacher. He then went to a Chicago college that produced many of the
teachers in the Chicago public school system: Chicago State University.

1Dongarra’s interview, SIAM, 2004, donated to the Archives of Computer History:
http://archive.computerhistory.org/resources/access/text/2013/12/102746788-05-01-acc.pdf

● At Chicago State he took science and math courses and decided to go on and
get a Master’s. However, his physics professor suggested him to apply for a
16-week undergrad position at the Appl Math Division at Argonne National
Lab.

● There he met Brian Smith, a scientist at the lab, and the unofficial head of the
EISPACK project. EISPACK is a collection of mathematical software that was
developed based on algorithms and ideas that had been through the
community mainly developed by Wilkinson and Reinsch, in the book “The
Handbook for Automatic Computation.” All algorithms in this book were in
ALGOL and the project translated them in FORTRAN.

● Eventually he got a bachelor’s degree in Mathematics from Chicago State in
1972.

Who is Jack Dongarra: the early years

● With that experience in Argonne, he decided to get a degree in Computer
Science and applied to the Illinois Institute of Technology and Chicago
University.

● He was accepted in both, but went to IIT, where he could get some financial
support. Also, during his undergrad years, he worked to support himself.

● At IIT, he took courses and really got immersed in computer science, and
some of the more theoretical aspects of the field. He tried to learn as much as
he could about numerical methods, about computing in general, and about
the hardware, software, and theory aspects of computing.

● He got his Master’s degree in Computer Science from IIT in 1973.

Who is Jack Dongarra: discovering computer science

● His masters’ project was on an out-of-core algorithm for reducing a large
banded matrix to tridiagonal form in preparation for finding the eigenvalues of
the matrix.

● After the Master’s he was invited to join Argonne, working on EISPACK, on an
IBM 360/75.

● Then, he went 1975 to The University of New Mexico, to work with Cleve
Moler, towards a PhD degree in Mathematics and working at Los Alamos Natl
Lab. He got his PhD degree in Appl. Mathematics from the University of New
Mexico in 1980.

● At Los Alamos he got in touch with the Cray 1, the first supercomputer, and
started a new project, LINPACK, the Linear Algebra Package. His PhD
dissertation was on improving the accuracy of eigenvalue computations.

Who is Jack Dongarra: got his PhD, ready to shine

Short Summary of Dongarra’s Career

● Citations Google Scholar: 115,267, h-index 132, i-10 index 922, MR Erdos Number = 3
● Contributions in numerical algorithms in linear algebra, parallel computing, the use of advanced-computer

architectures, programming methodology, and tools for parallel computers
● Open source software packages and systems: EISPACK, LINPACK, BLAS, LAPACK, ScaLAPACK, Netlib,

PVM, MPI, NetSolve, Top500, ATLAS, and PAPI
● Prizes and Awards:

○ IEEE Sid Fernbach Award (2004) for his contributions in the application of high performance computers using innovative approaches;
○ IEEE Medal of Excellence in Scalable Computing (2008)
○ SIAM Special Interest Group on Supercomputing's award for Career Achievement (2010)
○ IEEE Charles Babbage Award (2011)
○ ACM/IEEE Ken Kennedy Awar (2013) for his leadership in designing and promoting standards for mathematical software used to solve

numerical problems common to high performance computing
○ SIAM/ACM Prize in Computational Science and Engineering (2019)
○ IEEE Computer Pioneer Award (2020) for leadership in the area of high-performance mathematical software
○ ACM A.M. Turing Award (2022) for pioneering contributions to numerical algorithms and software that have driven decades of

extraordinary progress in computing performance and applications.
● He is a Fellow of the AAAS, ACM, IEEE, and SIAM and a Foreign Fellow of the British Royal Society and a

Member of the US National Academy of Engineering.

What Dongarra has done to earn the ACM Turing Award?

Who else can say this better than Dongarra himself?

https://youtu.be/Oe9LRKoE6L0

Packages of Mathematical Software

The Basic Linear Algebra Subprograms (BLAS)

● Set of standard, efficient and portable routines to compute vector-vector
(BLAS1), matrix-vector (BLAS2), and matrix-matrix (BLAS3) kernel operations

● BLAS1 designed in the late 70s for vector computers by Lawson & Henson
from JPL. It includes dot products, L2-norm computations, vector updates,
vector multiply & add (axpy). Uses scalar optimization and vectorization
techniques (e.g, loop unrolling).

● BLAS2 includes matrix-vector operations, matvec multiplication for various
matrix formats (dense, band, tridiagonal …), transpose, rank-1 updates, etc,

● BLAS3 supports matrix-matrix operations, such as matrix-matrix multiply and
add, etc

● BLAS2 & BLAS3 critical to gaining performance on machines that have a
memory hierarchy architecture

Dot product source code (blas/sdot.f)
*

* code for both increments equal to 1
*
*
* clean-up loop
*
 M = MOD(N,5)
 IF (M.NE.0) THEN
 DO I = 1,M
 STEMP = STEMP + SX(I)*SY(I)
 END DO
 IF (N.LT.5) THEN
 SDOT=STEMP
 RETURN
 END IF
 END IF
 MP1 = M + 1
 DO I = MP1,N,5
 STEMP = STEMP + SX(I)*SY(I) + SX(I+1)*SY(I+1) +
 $ SX(I+2)*SY(I+2) + SX(I+3)*SY(I+3) +
SX(I+4)*SY(I+4)
 END DO
 ELSE
*
* code for unequal increments or equal increments
* not equal to 1
*
 IX = 1
 IY = 1
 IF (INCX.LT.0) IX = (-N+1)*INCX + 1
 IF (INCY.LT.0) IY = (-N+1)*INCY + 1
 DO I = 1,N
 STEMP = STEMP + SX(IX)*SY(IY)
 IX = IX + INCX
 IY = IY + INCY
 END DO
 END IF
 SDOT = STEMP
 RETURN

*
* Definition:
* ===========
*
* REAL FUNCTION SDOT(N,SX,INCX,SY,INCY)
*
* .. Scalar Arguments ..
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* REAL SX(*),SY(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SDOT forms the dot product of two vectors.
*> uses unrolled loops for increments equal to one.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*
………………………………… comment comment comment ……...
** Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_blas_level1
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
> modified 12/3/93, array(1) declarations changed to array()
*> \endverbatim

The Cray 1 supercomputer

Today’s computers still can benefit from loop unrolling!

In the Cray 1 vector operations are one
instruction

Memory Hierarchy and BLAS2 & BLAS3
> \brief \b SGEMV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
* .. Scalar Arguments ..
* REAL ALPHA,BETA
* INTEGER INCX,INCY,LDA,M,N
* CHARACTER TRANS
* ..
* .. Array Arguments ..
* REAL A(LDA,*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGEMV performs one of the matrix-vector operations
*>
*> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
*>
*> where alpha and beta are scalars, x and y are vectors and A is an
*> m by n matrix.
*> \endverbatim

*> Level 2 Blas routine.
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim

The Linear Algebra Package - LINPACK
● A package of subroutines for solving systems of linear equations

(Ax=b) and linear least-square problems;

● The package solves linear systems whose matrices are general,
banded, symmetric indefinite, symmetric positive definite, triangular,
and tridiagonal square. In addition, the package computes the QR
and SVD of rectangular matrices and applies them to least-squares
problems. LINPACK uses column-oriented algorithms to increase
efficiency by preserving locality of references.

● All of the inner loops are done by calls to the BLAS

● In 1981, B. Parlett from UC Berkeley: “It may seem strange that SIAM
should publish and review a users' guide for a set of Fortran
programs. Yet history will show that SIAM is thereby helping to foster
a new aspect of technology which currently rejoices in a name
mathematical software. There is as yet no satisfying characterization
of this activity, but it certainly concerns the strong effect that a
computer system has on the efficiency of a program.”

Shared Memory Supercomputers: Cray YMP/IBM
3090/NEC SX
● The next step for vector computers were to evolve for multiple vector

processors sharing a single memory.
● The most powerful examples at the time were the Cray YMP, the IBM 3090,

and the NEC SX

The LAPACK Project

● The LAPACK was an effort to take EISPACK &
LINPACK to work in shared memory machines,
the most powerful computers in late 80s and
early 90s.

● LAPACK was structured on top of the BLAS. It
was focused whenever possible in terms of Level
3 BLAS, matrix-matrix operations, to expose the
high levels of performance that one can get out
through matrix multiplication and its related
operations.

● From the moment it was released it was the
standard for numerical software.

Q: Where you can find BLAS and LINPACK today?

A: Pretty much everywhere!

● Routines can be downloaded from netlib.org (FORTRAN, C)
● They are present in compilers: GNU, Intel (MKL), PGI, NVIDIA
● There are GPU versions: NVBLAS, cuBLAS
● TensorFlow wraps BLAS & LINPACK calls for optimizing its kernel
● They are in Python: scipy, numpy, scikit-learn
● They can be used in Matlab, Octave, R, Julia

Portability and performance guaranteed!

Message Passing Interface

Parallel Architectures Fundamentals

Finn’s classification

Shared memory

Distributed memory

SISD

Traditional Von
Neuman
Single CPU computer

MISD

Pipelined computers

SIMD

Vector Processors
Fine grained data
parallel computers

MIMD

Multicomputers
Multiprocessors

Instruction stream

D
at

a
st

re
am

Dongarra’s contributions to message passing

● In 1991, Dongarra & Demmel (UCB) got a DARPA grant that
led to ScaLAPACK, the Scalable Linear Algebra Package

● Idea was to take build an abstraction to EISPACK &
LINPACK, ensuring portability and efficiency in the new
distributed memory machines out there.

● ScaLAPACK uses parallel BLAS, a set of routines developed
using the message passing library MPI, which D. was a
developer.

● ScaLAPACK also used PVM, a library developed by D. and
his team at Oak Ridge, together with Emory and the
University of Tennessee.

● It turns out that MPI became today’s de facto industrial
standard (https://www.mpi-forum.org).

The LINPACK Benchmark and
the TOP500 list

LINPACK Benchmark Origins
● According to D., Luszczek & Petitet1, the LINPACK benchmark was originally designed to

assist users by providing information on the execution times required to solve a system of
linear equations of size N=100 by LU factorization using double precision (float64). The 1979
report contains data for 23 computers.

● The LINPACK has evolved to:

1Dongarra, Jack J., Piotr Luszczek, and Antoine Petitet. "The LINPACK benchmark: past, present and future." Concurrency and Computation:
practice and experience 15.9 (2003): 803-820.

The HPL benchmark rules
● The HPL benchmark has a set of rules:

○ Solve a nxn dense linear system of equations by LU factorization with partial pivoting in parallel
allowing the problem size n to vary, measure the the execution time. Ideally, the size n should be
made large enough so that asymptotic performance is observed.

○ Compute the floating-point execution rate using the #operations: 2n3/3 + 2n2

○ Compute and report solution residual as: ||Ax-b|| / (||A|| ||b||)

● Report the following quantities:
○ Rmax, the performance in Gflop/s for the largest problem run

○ Nmax, the size of the largest problem run

○ N1/2, the size where half Rmax was achieved

○ Rpeak, the theoretical peak performance in Gflop/s

What is a supercomputer (high performance computer)?

Definition (Dongarra et al, 1998):

Supercomputers are the fastest and
most powerful general purpose
scientific computing systems available
at any given time.

HPL outputs

Fastest: Rmax

Most powerful: largest n

The 2022 Breakthrough: we’re in the Exaflop era!
#1 Machine Oak Ridge Frontier, USA

Rmax 1,102.00 PFlop/s
Rpeak 1,685.65 PFlop/s
Nmax 24,440,832

Power 21,100.00 kW
#cores 8,730,112 AMD

https://youtu.be/etVzy1z_Ptg

1 EFlop/s = 1018 Flop/s =

1 000 000 000 000 000 000 Flop/s

The TOP500 list: a technological advancement indicator

Where are the TOP500 systems?

Brazil #11

In what the TOP500 systems are used?

Brazil in the TOP500: #11 in systems share

COPPE’s HPC Timeline

Apps Timeline

Lobo Carneiro Supercomputer

● NACAD: High Performance Computing Center
● NTT: Technology Transfer Center
● LAMCE: Laboratory of Computational Methods in Engineering
● LRAP: Advanced Petroleum Recovery Laboratory
● LPS: Signal Processing Laboratory
● SMT: Signals Laboratory, Multimedia and Telecommunications
● GSCAR: Simulation and Control Group in Automation and

Robotics
● Lab3D: Virtual Reality Lab
● Lab2M: Multidisciplinary Modeling Laboratory
● LENS: Software Engineering Laboratory
● LADES: Solutions for Process Control and Optimization Lab
● ERGOPROJ: Lab Ergonomics & Projects

COPPE Digital Hub

My recollections of J. Dongarra

● Introduced to D. by H. Simon at the SIAM Meeting on Parallel and Distributed
Computing, Minneapolis, March 15, 1997, when I was visiting the AHPRC, U.
Minneapolis. I presented a paper there.

● Meet him again in 1999, at the SIAM Conference on Parallel Processing for
Scientific Computing, March, San Antonio, TX, USA, where I also presented a
paper.

● He came to Brazil as an invited speaker at SBAC-PAD, in Vitoria/ES - Brazil -
October 28-30, 2002 (yet another paper!).

● We meet again in Brazil at the NUG workshop, Angra dos Reis, 2003.
● Since then we met regularly at SIAM and SC meetings. Last time we met

in-person was in 2019, at the SIAM CSE Meeting, Spokane, WA. At that time
he was awarded the SIAM/ACM Prize in Computational Science.

Two important moments

Receiving from D. the #1LA Supercomputer Award, SC2009,
Portland, OR, Galileu Supercomputer, COPPE

With L. Gesenhues, former student (with F. Rochinha)
who won the prestigious 2018 ACM-IEEE CS George
Michael Memorial HPC Fellowships, SC2017, Denver,
CO, USA (D. in the committee)

Discussion: back to where we began

● Who is Jack Dongarra?

One of the most important living computational scientists. His work helped to define the
field.

● What Dongarra has done to earn the ACM Turing Award?

Contributed to the fields of mathematical software, parallel computing and
supercomputing.

● Why this is important?

Supercomputers are everywhere! They are parallel machines, they need to exchange
messages. Mathematical kernels are pervasive in science and engineering.

 Congrats, Jack!

