J. J. Dongarra

ACM Turing Award Recipient, 2021
A Tribute by Alvaro Coutinho

If you don't measure it, you don't know it’

"My version of Peter Drucker’s: If you can’t measure it you can’t improve it

Contents

Who is Jack Dongarra?

What Dongarra has done to earn the ACM Turing Award?
Why this is important?

Discussion

Who is Jack Dongarra’

e Bornin 1950 in Chicago, IL, USA, the oldest of three boys. All of his
grandparents were originally from Sicily, Italy. His father arrived in America as
a teenager. He attended a Catholic elementary school, Saint Daniel the
Prophet, for eight years. Most probably due to undiagnosed dyslexia, he was
not a good student, particularly in skills such as writing and reading.

e He went to a public high school, Kennedy High School, southwest Chicago,
where he discovered science! After high school he decided to become a high
school teacher. He then went to a Chicago college that produced many of the
teachers in the Chicago public school system: Chicago State University.

'Dongarra’s interview, SIAM, 2004, donated to the Archives of Computer History:
http://archive.computerhistory.org/resources/access/text/2013/12/102746788-05-01-acc.pdf

Who is Jack Dongarra: the early years

At Chicago State he took science and math courses and decided to go on and
get a Master’s. However, his physics professor suggested him to apply for a
16-week undergrad position at the Appl Math Division at Argonne National
Lab.

There he met Brian Smith, a scientist at the lab, and the unofficial head of the
EISPACK project. EISPACK is a collection of mathematical software that was
developed based on algorithms and ideas that had been through the
community mainly developed by Wilkinson and Reinsch, in the book “The
Handbook for Automatic Computation.” All algorithms in this book were in
ALGOL and the project translated them in FORTRAN.

Eventually he got a bachelor’s degree in Mathematics from Chicago State in
1972.

Who is Jack Dongarra: discovering computer science

e \With that experience in Argonne, he decided to get a degree in Computer
Science and applied to the lllinois Institute of Technology and Chicago
University.

e He was accepted in both, but went to |IT, where he could get some financial
support. Also, during his undergrad years, he worked to support himself.

e AtIIT, he took courses and really got immersed in computer science, and
some of the more theoretical aspects of the field. He tried to learn as much as
he could about numerical methods, about computing in general, and about
the hardware, software, and theory aspects of computing.

e He got his Master’s degree in Computer Science from IIT in 1973.

Who is Jack Dongarra: got his PhD, ready to shine

e His masters’ project was on an out-of-core algorithm for reducing a large
banded matrix to tridiagonal form in preparation for finding the eigenvalues of
the matrix.

e After the Master’s he was invited to join Argonne, working on EISPACK, on an
IBM 360/75.

e Then, he went 1975 to The University of New Mexico, to work with Cleve
Moler, towards a PhD degree in Mathematics and working at Los Alamos Natl
Lab. He got his PhD degree in Appl. Mathematics from the University of New
Mexico in 1980.

e At Los Alamos he got in touch with the Cray 1, the first supercomputer, and
started a new project, LINPACK, the Linear Algebra Package. His PhD
dissertation was on improving the accuracy of eigenvalue computations.

Short Summary of Dongarra’s Career

e Citations Google Scholar: 115,267, h-index 132, i-10 index 922, MR Erdos Number = 3

e Contributions in numerical algorithms in linear algebra, parallel computing, the use of advanced-computer
architectures, programming methodology, and tools for parallel computers

e Open source software packages and systems: EISPACK, LINPACK, BLAS, LAPACK, ScaLAPACK, Netlib,
PVM, MPI, NetSolve, Top500, ATLAS, and PAPI

e Prizes and Awards:

(¢]

O O O O

e}

IEEE Sid Fernbach Award (2004) for his contributions in the application of high performance computers using innovative approaches;
IEEE Medal of Excellence in Scalable Computing (2008)

SIAM Special Interest Group on Supercomputing's award for Career Achievement (2010)

IEEE Charles Babbage Award (2011)

ACM/IEEE Ken Kennedy Awar (2013) for his leadership in designing and promoting standards for mathematical software used to solve
numerical problems common to high performance computing

SIAM/ACM Prize in Computational Science and Engineering (2019)

IEEE Computer Pioneer Award (2020) for leadership in the area of high-performance mathematical software

ACM A.M. Turing Award (2022) for pioneering contributions to numerical algorithms and software that have driven decades of
extraordinary progress in computing performance and applications.

e Heis a Fellow of the AAAS, ACM, IEEE, and SIAM and a Foreign Fellow of the British Royal Society and a
Member of the US National Academy of Engineering.

What Dongarra has done to earn the ACM Turing Award?

Who else can say this better than Dongarra himself?

https://youtu.be/Oe9LRKoEGLO

Packages of Mathematical Software

The Basic Linear Algebra Subprograms (BLAS)

e Set of standard, efficient and portable routines to compute vector-vector
(BLAS1), matrix-vector (BLAS2), and matrix-matrix (BLAS3) kernel operations

e BLAS1 designed in the late 70s for vector computers by Lawson & Henson
from JPL. It includes dot products, L2-norm computations, vector updates,
vector multiply & add (axpy). Uses scalar optimization and vectorization
techniques (e.g, loop unrolling).

e BLAS2 includes matrix-vector operations, matvec multiplication for various
matrix formats (dense, band, tridiagonal ...), transpose, rank-1 updates, etc,

e BLASS3 supports matrix-matrix operations, such as matrix-matrix multiply and
add, etc

e BLAS2 & BLASS critical to gaining performance on machines that have a
memory hierarchy architecture

Dot product source code (blas/sdot.f

. . . code for both increments equal to 1 The Cray 1 supercomputer

* *
* REAL FUNCTION SDOT (N, SX, INCX,SY, INCY) * clean-up loop
* *
* .. Scalar Arguments .. M = MOD(N,5)
* INTEGER INCX, INCY,N 4
N B IF (M.NE.O) THEN
* .. Array Arguments .. DO I = 1,M
* REAL SX(*),SY(*) STEMP = STEMP + SX(I)*SY(I)
* - END DO
: IF (N.LT.5) THEN
*> \par Purpose: SDOT=STEMP
* = —— RETURN
*> END IF
*> \verbatim END IF
*>
MPL = M + 1 H
> SDOT forms the dot product of two vectors. In the Cray 1 vector operations are one
*> uses unrolled loops for increments equal to one. DO I = MP1,N,5 InStI'UCtIOI"I
*> \endverbatim STEMP = STEMP + SX(I)*SY(I) + SX(I+1)*SY(I+1) +
* $ SX (I+2) *SY (I+2) + SX(I+3)*SY(I+3) +
* Rrguments: SX (I+4) *SY (I+4)
. - END DO
*> \param[in] N ELSE
. *
.. comment comment comment ... * code for unequal increments or equal increments
* not equal to 1
*
*
*> \author Univ. of Tennessee X =1
*> \author Univ. of California Berkeley Iy = 1
*> \author Univ. of Colorado Denver IF (INCX.LT.0) IX = (-N+1)*INCX + 1
> \author NAG Ltd. IF (INCY.LT.0) IY = (-N+1)*INCY + 1
N . DO I = 1,N
*> \ingroup single_blas_levell
* - - STEMP = STEMP + SX(IX)*SY(IY)
*> \par Further Details: IX = IX + INCX
*o= IY = IY + INCY
e END DO
*> \verbatim
- END IF
> jack dongarra, linpack, 3/11/78. SDOT = STEMP
> modified 12/3/93, array(l) declarations changed to array() RETURN

*> \endverbatim

Today’s computers still can benefit from loop unrolling!

Memory Hierarchy and BLAS2 & BLAS3

Computer Memory Hierarchy

small size
small capacity

processor registers
very fast, very expensive

power on

immediate term
small size
small capacity

processor cache
very fast, very expensive

medium size power on
medium capacity very short term

random access memory
fast, affordable

small size power off flash / USB memory
large capacity short term slower, cheap
large size power off hard drives
very large capacity mid term slow, very cheap
large size power off tape backup
very large capacity long term

very slow, affordable

4

>

\brief \b SGEMV

== DOCUMENTATION =

Online html documentation available at
http://www.netlib.org/lapack/explore-html/

Definition:

SUBROUTINE SGEMV (TRANS,M,N,ALPHA,A,LDA, X, INCX,BETA, Y, INCY)

Scalar Arguments
REAL ALPHA,BETA
INTEGER INCX, INCY,LDA,M,N

CHARACTER TRANS *> Level 2 Blas routine.

*> -- Written on 22-October-1986.
Array Arguments *> Jack Dongarra, Argonne National Lab.
REAL A (LDA, *), X (*), Y (*) *> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.

*> \endverbatim
\par Purpose:

\verbatim
SGEMV performs one of the matrix-vector operations

y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
where alpha and beta are scalars, x and y are vectors and A is an

m by n matrix.
\endverbatim

The Linear Algebra Package - LINPACK

A package of subroutines for solving systems of linear equations
(Ax=b) and linear least-square problems;

The package solves linear systems whose matrices are general,
banded, symmetric indefinite, symmetric positive definite, triangular,
and tridiagonal square. In addition, the package computes the QR
and SVD of rectangular matrices and applies them to least-squares
problems. LINPACK uses column-oriented algorithms to increase
efficiency by preserving locality of references.

All of the inner loops are done by calls to the BLAS

In 1981, B. Parlett from UC Berkeley: “It may seem strange that SIAM
should publish and review a users' guide for a set of Fortran
programs. Yet history will show that SIAM is thereby helping to foster
a new aspect of technology which currently rejoices in a name
mathematical software. There is as yet no satisfying characterization
of this activity, but it certainly concerns the strong effect that a
computer system has on the efficiency of a program.”

LINPACK
Users’ Guide

Sl—a—

J. J.Dongarra C. B. Moler

Argonne Natonal Laboratory Ureverssty of New Meno

J. R. Bunch G. W. Stewart

Urrarsty of Calomia, San Diege Univarsty of Marysno

Priadeiona 1979

Shared Memory Supercomputers: Cray YMP/IBM
3090/NEC SX

e The next step for vector computers were to evolve for multiple vector
processors sharing a single memory.

e The most powerful examples at the time were the Cray YMP, the IBM 3090,
and the NEC SX

1BM 3090
*ro

Processor Unit Models
120F, 1508, 180E, 200k, J00F, 400F and 600E

The LAPACK Project

The LAPACK was an effort to take EISPACK &
LINPACK to work in shared memory machines,
the most powerful computers in late 80s and
early 90s.

LAPACK was structured on top of the BLAS. It
was focused whenever possible in terms of Level
3 BLAS, matrix-matrix operations, to expose the
high levels of performance that one can get out
through matrix multiplication and its related
operations.

From the moment it was released it was the
standard for numerical software.

LA P A CK
L-A P-A C-K
L AP A-C-K
L-A P-A-CK
LA-P-A CK
L-A-P A C-K

Users’ Guide

Third Edition

E Ancenon, 7 e € ahol & Discond, J Doemed L Dongara,
4 Du e A Grosnomn, $ Hrmmaing, A MOeey ana O Samrsen

SOFTWARESENVIRONMENTS«TOOLS

Q: Where you can find BLAS and LINPACK today?

A: Pretty much everywhere!

Routines can be downloaded from netlib.org (FORTRAN, C)
They are present in compilers: GNU, Intel (MKL), PGI, NVIDIA
There are GPU versions: NVBLAS, cuBLAS

TensorFlow wraps BLAS & LINPACK calls for optimizing its kernel
They are in Python: scipy, numpy, scikit-learn

They can be used in Matlab, Octave, R, Julia

Portability and performance guaranteed!

Message Passing Interface

Parallel Architectures Fundamentals

Shared memory

Instruction stream

SISD MISD
Traditional Von Pipelined computers
% Neuman
o) Single CPU computer
»
% SIMD MIMD
0
Vector Processors Multicomputers
Fine grained data Multiprocessors
parallel computers

Network

Finn’s classification

Dongarra’s contributions to message passing

ScalLAPACK Users’ Guide

e 1In 1991, Dongarra & Demmel (UCB) got a DARPA grant that SO LR o £ s
led to ScaLAPACK, the Scalable Linear Algebra Package u NN B

e Idea was to take build an abstraction to EISPACK & g e £
LINPACK, ensuring portability and efficiency in the new
distributed memory machines out there.

e ScalLAPACK uses parallel BLAS, a set of routines developed
using the message passing library MPI, which D. was a
developer.

e ScalLAPACK also used PVM, a library developed by D. and
his team at Oak Ridge, together with Emory and the
University of Tennessee.

e |t turns out that MPI became today’s de facto industrial
standard (https://www.mpi-forum.org).

The Complete Reference

The LINPACK Benchmark and
the TOP500 list

LINPACK Benchmark Origins

e According to D., Luszczek & Petitet’, the LINPACK benchmark was originally designed to
assist users by providing information on the execution times required to solve a system of
linear equations of size N=100 by LU factorization using double precision (float64). The 1979
report contains data for 23 computers.

e The LINPACK has evolved to:

Table I. Overview of nomenclature and rules for the LINPACK suite of benchmarks. The LINPACK

1000 Benchmark is also known as Toward Peak Performance (TPP) or Best Effort. The Highly-

Parallel LINPACK (HPLinpack) Benchmark is also known as the N x N LINPACK Benchmark
or High Parallel Computing (HPC).

Matrix Optimizations

Benchmark name dimension allowed Parallel processing
LINPACK 100 100 Compiler Compiler parallelization possible
LINPACK 1000 1000 Manual Multiprocessor implementations allowed
LINPACK Parallel 1000 Manual Yes

HPLinpack Arbitrary Manual Yes

'Dongarra, Jack J., Piotr Luszczek, and Antoine Petitet. "The LINPACK benchmark: past, present and future." Concurrency and Computation:
practice and experience 15.9 (2003): 803-820.

The HPL benchmark rules

e The HPL benchmark has a set of rules:

o Solve a nxn dense linear system of equations by LU factorization with partial pivoting in parallel

allowing the problem size n to vary, measure the the execution time. Ideally, the size n should be
made large enough so that asymptotic performance is observed.

o Compute the floating-point execution rate using the #operations: 2n%/3 + 2n?

o Compute and report solution residual as: ||[4x-b|| / (||4]| ||5]])

e Report the following quantities:

o R__,the performance in Gflop/s for the largest problem run

max’

o N__.the size of the largest problem run

o N1/2, the size where half Rmax was achieved

o Rpeak, the theoretical peak performance in Gflop/s

What is a supercomputer (high performance computer)?

Projected Performance Development

Definition (Dongarra et al, 1998): 10 Ertopt s
A
1 EFlop/s 2P Fom
100 PFlop/s U WA
Supercomputers are the fastest and e
10 PFlop/s & ATk

most powerful general purpose — LW P

e , , = —
scientific computing systems available S oo T ',o" 2 e
at any given t|me § 10 TFlop/s “‘,"' =« ._;"'F
1 TFlop/s . 0" e ﬂg'/.f»'} !
Numerical | mn‘A :"J

Li Algeb 100 GFlop/s 2 - 7_‘_;_;;_’:_

madiearsll HPL outputs -~ w2500

High-Performance
Computers

10 GFlop/s >
& N The List.

Fastest: R 1 GFlople | —>2
ma.

X

100 MFlopl/s
1990 1995 2000 2005 2010 2015 2020 2025

Most powerful: largest n

Lists

® Sum A # = #500

The 2022 Breakthrough

#1 Machine Oak Ridge Frontier, USA

% ME R

@ EvERoY rkl‘(‘yjﬂ e
o P _ ‘._—_—...,
AMDA

Rmax 1,102.00 PFlop/s
Rpeak 1,685.65 PFlop/s
Nmax 24,440,832

Power 21,100.00 kW
#cores 8,730,112 AMD

https://youtu.be/etVzy1z_Ptg

. we're in the Exaflop eral

1 EFlop/s = 108 Flop/s =

1 000 000 000 000 000 000 Flop/s

The TOPSO0O0 list: a technological advancement indicator

Rmax Rpeak Power

Rank Site System Cores
Tflop/s Tflop/s kW
1 DOE/SC/Oak Ridge National Frontier - HPE Cray EX235a, AMD Optimized 3rd 8730112 1.102.00 1.685.65 21.100
Laboratory Generation EPYC 64C 2GHz, AMD Instinct MI250X, e ! ! !
United States Slingshot-11
2 RIKEN Center for Supercomputer Fugaku , A64FX 48C 2.2GHz, Tofu 7,630,848 442 .01 537.21 29,899
Computational Science interconnect D
Japan Fujitsu
3 EuroHPC/CSC LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation 1'110'144 151.90 214.35 2'942
Finland EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11
4 DOE/SC/Oak Ridge Summit - IBM Power System AC922, IBM POWERS 22C 2,414,592 148.60 200.79 10,096
National Laboratory 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
United States Infiniband
5 DOE/NNSA/LLNL Sierra - IBM Power System AC922, IBM POWER9 22C 1,572,480 94.64 125.71 7,438

United States

3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband

Where are the TOP500 systems?

Countries System Share

@ China

@ United States
Japan

@ Germany

® France

® Canada

@ United Kingdom

@ Russia

@ ltaly

@ Netherlands

@ Others

Brazil #11

Countries Performance Share

@ China

@ United States
) Japan

@ Germany

@ France

@ Canada

@ United Kingdom
@ Russia

@ italy

@ Netherlands
@ Others

In what the TOP500 systems are used?

Segments System Share

@ Industry

@ Research
@ Academic
@ Government
@ Vendor

@ Others

Segments Performance Share

@ Industry

@ Research
) Academic
@ Government
@ Vendor

@ Others

Brazil in the TOP500: #11 in systems share

Rank

System

Cores

Rmax
(Tflop/s)

Rpeak
(Tflop/s)

Power
(kw)

60

Dragdo - Supermicro SYS-4029GP-TVRT,
Xeon Gold 6230R 26C 2.1GHz, NVIDIA
Tesla V100, Infiniband EDR, Atos,
PETROBRAS

188,224

8.98

14.01

943

116

Atlas - Bull 4029GP-TVRT, Xeon Gold
6240 18C 2.6GHz, NVIDIA Tesla V100,
Infiniband EDR, Atos, PETROBRAS

91,936

4.38

8.85

547

137

IARA - NVIDIA DGX A100, AMD EPYC
7742 64C 2.25GHz, NVIDIA A100 SXM4
40 GB, Infiniband, Nvidia, SiDi

24,800

3.66

4.13

161

Fénix - Bull 4029GP-TVRT, Xeon Gold
5122 4C 3.6GHz, NVIDIA Tesla V100,
Infiniband EDR, Atos, PETROBRAS

60,480

3.16

5.37

390

352

A16A - ThinkSystem C0366, Xeon Gold
6252 24C 2.1GHz, 100G Ethernet,
Lenovo

Software Company MBZ

61,440

2.09

4.13

424

Santos Dumont - Bull Sequana X1000,
Xeon Gold 6252 24C 2.1GHz, Mellanox
InfiniBand EDR, NVIDIA Tesla V100 SXM2,
Atos, LNCC

33,856

1.85

2.73

COPPE’s HPC Timeline

Machines 65Tflops, 7K cores | &
A . | " N
SGIAltix ICE SN §l
IBM SP2
Cray J90
CORPENCP I, ntel ipSC
-;_—_

1st Brazilian supercomputer vendor
Year

3 640Mflops, 8 procs S
1988 1990 1995 1999 2005 2010

1st Supercomputer built in Brazil

Apps Timeline

App Complexity

A

0(107)

ParaView!Wiki -
SGl Altix ICE

SGI 35Q/450

IBM SP2
Cray J90

Year

>
1988 1990 1995 1999 2005 2010

PROJECTS

LN

S

= EMPRESA = U.INTERNACIONAL = U.NACIONAL = UFRJ

-
- computadar

L oo

Py
Y %

I i
|
|

%o UFRJ = ASTRONOMIA
COPPE’s machine: Lobo Carneiro « COPPE
253 Compute Nodes 6072 Cores (506 Processors s EQ
Intel Xeon Haswell E5-2670V3 12-Cores IBM
2.3GHz,16.192GB Mem DDR4, 193 Tflop/s uIF
3 —""-—gr"’ﬁ | bk =M
o Eladnci | S i SIMUIAGA0 =% o, -1
s SIS Sl S Bt
I z,mgﬁalséggngﬂb : '§.§ » NUMPEX-BIO
ng%ﬁ% i?ﬂﬂigg%gg%ggg : = OBS. VALONGO
bl i e — Since 2016: 150 projects, 400 users, 1M jobs
=

COPPE: 30 Projects directly related to Petrobras

COPPE Digital Hub hd hub digita

NACAD: High Performance Computing Center

NTT: Technology Transfer Center

LAMCE: Laboratory of Computational Methods in Engineering
LRAP: Advanced Petroleum Recovery Laboratory

LPS: Signal Processing Laboratory

SMT: Signals Laboratory, Multimedia and Telecommunications
GSCAR: Simulation and Control Group in Automation and
Robotics

Lab3D: Virtual Reality Lab

Lab2M: Multidisciplinary Modeling Laboratory

LENS: Software Engineering Laboratory

LADES: Solutions for Process Control and Optimization Lab
ERGOPROJ: Lab Ergonomics & Projects

My recollections of J. Dongarra

e Introduced to D. by H. Simon at the SIAM Meeting on Parallel and Distributed
Computing, Minneapolis, March 15, 1997, when | was visiting the AHPRC, U.
Minneapolis. | presented a paper there.

e Meet him again in 1999, at the SIAM Conference on Parallel Processing for
Scientific Computing, March, San Antonio, TX, USA, where | also presented a
paper.

e He came to Brazil as an invited speaker at SBAC-PAD, in Vitoria/ES - Brazil -
October 28-30, 2002 (yet another paper?!).

e \We meet again in Brazil at the NUG workshop, Angra dos Reis, 2003.

e Since then we met regularly at SIAM and SC meetings. Last time we met
in-person was in 2019, at the SIAM CSE Meeting, Spokane, WA. At that time
he was awarded the SIAM/ACM Prize in Computational Science.

Two important moments

TOP500 List published at the SC09 conference, November 17, 2009

Congratulations from The TOPs00 Editors

lack Dongacra Horst Simon

University of Tenoessee NERSC/Berkeley Lab

o | With L. Gesenhues, former student (with F. Rochinha)
Receiving from D. the #1LA Supercomputer Award, SC2009, who won the prestigious 2018 ACM-IEEE CS George

Portland, OR, Galileu Supercomputer, COPPE Michael Memorial HPC Fellowships, SC2017, Denver,
CO, USA (D. in the committee)

Discussion: back to where we began

e Who is Jack Dongarra?

One of the most important living computational scientists. His work helped to define the
field.

e What Dongarra has done to earn the ACM Turing Award?

Contributed to the fields of mathematical software, parallel computing and
supercomputing.

e Why this is important?

Supercomputers are everywhere! They are parallel machines, they need to exchange
messages. Mathematical kernels are pervasive in science and engineering.

Congrats, Jack!

