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Introduction Motivation

Motivation: Where are the intensive partial differential
equations (PDE)?

Significance
• Many physical phenomena are
fundamentally described by partial
differential equations:

• Quantum mechanics

• Particle physics
• Environmental science
• Fluid mechanics (Navier-Stokes

Equations)
• Astrophysics
• Biology, to cite a few.

F(u(z); q) = f(z) z ∈ Ω,

B(u(z)) = g(z) z ∈ ∂Ω, z = [x, t] (1)

• Source: https://www.youtube.com/watch?v=3YmeajE-TT8 a

• source: https://www.youtube.com/watch?v=XNzjjdoz52k

aCredit: Seung-Hoon Cha, Sergei Nayakshin
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Introduction Motivation

Turbulence from theory to applications

Turbulence Fundamental understanding

a

aF.X.Trias, A. Gorobets, and A. Oliva. "Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study",
Computers Fluids, 123:87–98, 2015.
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Introduction Motivation

Intensive PDE application: Climate Science

• Global atmospheric models for large
gap in spatial scales between
convection (100km) and global
motions (1× 104) km;

• We are on the way to Zettascale
computing. However, can
Zettascale be the solution?

• it is not enough - Simple aircraift
in cruise would take billions of
year!!

Prof. Fabio Santos (EPQB/UFRJ) How can a quantum computers solve PDEs? 5 / 55



Introduction Fundamental Question

Fundamental Answer: It is when quantum computing
(QC) enters!

Fundamental Questions:
1 Is it possible to identify algorithms for PDE solutions that QC can
perform effectively?

2 Can a current QC speed up the solution of these multi-scale nonlinear
partial differential equations, such as turbulent Navier-Stokes
Equations (NSE)?

3 Is it currently possible with noisy intermediate-scale quantum (NISQ)
architecture?

4 Can we really understand fundamental science with a QA for solving PDE?
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Introduction Fluid Mechanics and Physics

Navier-Stokes Equations

• Navier-Stokes equations (NSE)

∂ρ

∂t
+∇ · (ρv) = 0; (2)

∂ (ρv)
∂t

+∇ · (ρvv) = −∇p+∇ ·Ø + ρg; (3)

Remarks
• Continuum Hypothesis

• Non-linear coupled PDE system (can be intensive)
• Analytical solution existence and smoothness - unsolved problem
• Numerical Solution!!!
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Introduction Fluid Mechanics and Physics

Research Group Interest

Computational Fluid Dynamics

What is it?
• Simulation of phenomena involving

fluid flow;
1 Domain representation;

2 Mesh discretization (for numerical
methods that requires mesh);

3 Solution of the discrete equations;
4 Processing results (visualization)

https://www.pointwise.com/

Numerical Solution
• Sophisticated algorithms, such as:
Finite Elements, Finite Volume
and so on;

• CFD simulations can be expensive;
• To test, design and analysis,
several simulations can be needed;

• How to reduce computational
costs, without disobeying the
physics of problem?

• How Machine Learning can help?
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Introduction Fluid Mechanics and Physics

Neural Network: Brief description

Machine Learning and Computer science
• AI: Looking for human-level intelligence;
• ML: Learn parttens in a dataset and performs predictions;
• Data Science: Find insights from data;

”To make progress in ML in science it is crucial that we incorporate computational
models into the learning step.”
Prof. Amir Gholaminejad
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Introduction Fluid Mechanics and Physics

Types of PINNs

How to introduce physics into a neural network:
• Method 1; Where big data is available, but the governing physical law may

not be known;

• Method 2; On the other extreme, where little data is available (“small data
regime”), but the describing physics is known (included as a constraint);

• Method 3; No data is available but you know the physics

• PINN actually solves de physics

• Method 4; where the physics is partially known and several scattered
measurements are available (inverse problems) a

aKarniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Nat Rev Phys 3, 422–440 (2021)

Figure: Relation between physics and data
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Introduction Fluid Mechanics and Physics

Physics-informed by a large number of data

Model reduction by Machine Learning, Bhatnagar et 2019

Model reduction by Machine Learning
• Order reduction for aerodynamics;
• Convolutional neural network (ConvNet) with AutoEncoder;
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Introduction Fluid Mechanics and Physics

Physics-informed by a large number of data

Model reduction by Machine Learning, Ligang Lu and Kuochen Tsai (SHELL Oil
Company), 2019.

Model reduction by Machine Learning
• CFD model and predictions of oil water separation in horizontal pipelines;
• Convolutional neural network (CNN) model;
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Introduction Fluid Mechanics and Physics

Physics-informed by constraints

Symmetries and Invariance
• Impose some properties to the trainning, such as: Symmetries and Invarience;
• Symmetry in a shear stress tensor;
• Invariance related to a reference or even conservation laws;

Figure: Symetry and Invariance of reynolds stress tensor based on Invariance expansion;1

1Ling, J., Kurzawski, A., Templeton, J. (2016). Journal of Fluid Mechanics, 807, 155-166.
doi:10.1017/jfm.2016.615
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Introduction Fluid Mechanics and Physics

Physics-informed by constraints

Cyclone Separator,Caturwati Ni Ketut et
al, 2017

Number of samples
• 300 Simulations with different Re
numbers;

• Data extracted from the cell
centers of the mesh

Case Setup
• OpenFOAM (OF) simulation with
SimpleFOAM solver;

• κ− ε with curvature correction in
OF, Spalart-Shur, 2000;
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Introduction Fluid Mechanics and Physics

Physics-informed by constraints

Velocity streamlines Velocity profile versus experimental
data

Conservation Equation Table
RM,x RM,y RM,z ∇ ·U

V −4, 85 · 10−9 −2, 31 · 10−8 1, 65 · 10−8 −7, 2 · 10−7

max(V ) 2, 3 · 10−3 4, 9 · 10−5 1, 1 · 10−3 0, 047
min(V ) −1 · 10−3 −4, 10 · 10−5 −1, 8 · 10−3 −0, 04
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Introduction Fluid Mechanics and Physics

Physics-informed by constraints

Computational resource for simulation
• Intel Core i7, 12 cores; 32GB RAM;

Computational resource for PIDNN
• Intel Xeon® E5-2640 v4 2,4GHz
• Tesla P100 (Pascal), 3584 CUDA cores, 16GB VRAM;

Computational Time
1 CFD Simulation computational Time ≈ 1.6 h
2 Training time ≈ 3 h
3 PIDNN computation ≈ 1 s
4 Computational ”speedup“ ≈ 5000;a

aL.H. Queiroz, F.P. Santos, J.P. Oliveira, M.B. Souza, Digital Chemical
Engineering, Volume 1, 2021, 100002.
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Introduction Fluid Mechanics and Physics

Physics-informed Neural Network approximation

Flow through the aorta/carotid bifurcation of a healthy human subject:
Positions of acquired 4D flow MRI measurements in the aorta/carotid
bifurcation of a healthy volunteer.2

2G. Kissas, Y. Yang, E. Hwuang et al. / Computer Methods in Applied Mechanics and
Engineering 358 (2020) 112623 21
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Introduction Fluid Mechanics and Physics

Physics-informed Neural Network approximation

Comparison of the clinically acquired waveforms of blood velocity versus
the predictions of the proposed physics-informed neural networks, and of a
conventional Discontinuous Galerkin solver.3

3G. Kissas, Y. Yang, E. Hwuang et al. / Computer Methods in Applied Mechanics and
Engineering 358 (2020) 112623 21
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Introduction Fluid Mechanics and Physics

Physics-informed Neural Network approximation (inverse
problem)

A physics-informed deep learning method for solving direct and inverse
heat conduction problems of materials.4

Inverse problem Setup

ρ(u)Cp(u)∂u
∂t
− k(u)∂

2u

∂x2 = 0 in Ω, t ∈ [0, tmax] (4)

4Zhili He, Futao Ni, Weiguo Wang, Jian Zhang. Materials Today Communications, Volume
28, 2021, 102719.
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Theory of Physics-Informed Neural Networks (PINNs). Deep Neural Networks

Neural Network: Brief description

Neural Network
• Recognized as fundamental nonlinear function approximators. It can be

represented as: R(w, b) =
∫
L[y, φ(w,y,x, b)]p(y,x)dxdy

Figure: Deep neural network example

Deep Neural Network is actually a composition function!
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Theory of Physics-Informed Neural Networks (PINNs). Deep Neural Networks

Neural Network: Brief description

Supervised neural network
• Depends on what the focus is on....
• We want to find a neural net, φ(y,x; θ(w, b)), that maps x to y
• Minimizing R(w, b), where the data are equiprobable;

R(w, b) = 1
N

N∑
i=0

[yi − φ(yi,x,w, b)]2 (5)

being N the size of trainning data;
How we usually solve? Stochastic gradient decent

θk+1 = θk − αk
1
m

m∑
1
∇θ [yj − φ(yj ,x,w, b)]2 (6)
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Theory of Physics-Informed Neural Networks (PINNs). Deep Neural Networks

Deep Neural Network: Brief description

Let NL(x) : <din → <dout . Let us say the weight matrix of the lth layer and the
bias vector are Wl ∈ <Nl×Nl−1 and bl ∈ <Nl , respectively. Then, one can build
the deep neural network below:
• N0(x) = x ∈ <din

• N l(x) = σ
(
WlN l−1(x) + bl

)
∈ <Nl , 1 < l ≤ L− 1

• NL(x) = WLNL−1(x) + bL ∈ <dout

where φ is a composition function of N j(x), j = 0 · · ·L

u(x) ≈ u(x; θ) = φ(θ; x) (7)
where θ = [W,b]
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where φ is a composition function of N j(x), j = 0 · · ·L

u(x) ≈ u(x; θ) = φ(θ; x) (7)
where θ = [W,b]
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Theory of Physics-Informed Neural Networks (PINNs). Automatic Differentiation (AD)

Automatic Differentiation

How to calculate derivatives?
• hand-coded analytical derivative;

• finite difference or other numerical approximations;
• symbolic differentiation (used in software programs such as Mathematica,

Maxima, and Maple); and
• Automatic differentiation (the derivatives are evaluated using

backpropagation);

In PINNs, it is required to compute the derivatives of the network outputs
with respect to the network inputs
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Theory of Physics-Informed Neural Networks (PINNs). Automatic Differentiation (AD)

Automatic Differentiation

How to calculate derivatives?
• a compositional function, then AD applies the chain rule repeatedly to

compute the derivatives;
• There are two steps in AD: one forward pass to compute the values of all

variables, and one backward pass to compute the derivative

Consider a FNN with one hidden layer two inputs (x1, x2) and one output
(y);

v = −2x1 + 3x2 + 0.5 (8)

h = tahn(v) (9)

y = 2h− 1 (10)
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Theory of Physics-Informed Neural Networks (PINNs). Automatic Differentiation (AD)

Automatic Differentiation
To calculate the derivative of ∂y

∂x1
and ∂y

∂x2
at (2, 1):

Figure: AD calculation example

How to calculate derivatives?
• AD has two passes one forward pass and one backward;
• Any discretization derivative method has at least ;
• It can be used for n order derivative a;
aLu, Lu and Meng, Xuhui and Mao, Zhiping and Karniadakis, George Em. SIAM

Review, Volume 63,number 1, 208-228, 2021
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Theory of Physics-Informed Neural Networks (PINNs). Approximation for PINNs

Universal approximation theorem
Approximation: Loss→ 0 5;?

Let σ be any continuous sigmoidal function. The finite sum of the form:

G(x) =
N∑
j=1

αjσ (wjx+ bj) (11)

are dense in C(Id)

Theorem (Pinks, 1999)
Let mi ∈ Zd+, i = 1, · · · , s, and set m = maxi=1,···,s|mi|. Assume σ ∈ Cm(R)
and also is not a polynomial. Then the space of single hidden layer neural network:

M(σ) = σ (Wx + b) (12)

is dense in Cm1,···,ms(Rd) :=
⋂s
i=1 C

i(Rd).
5Kurt Hornik, Maxwell Stinchcombe, Halbert White, Multilayer feedforward networks are

universal approximators, Neural Networks, Volume 2, Issue 5, 1989, Pages 359-366.
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Theory of Physics-Informed Neural Networks (PINNs). Approximation for PINNs

Universal approximation theorem

Universal approximation theorem
For m = (m1, · · · ,md) ∈ Zd+, we set |m|:= m1 + · · ·+md and

Dm := ∂|m|

∂m1xd · · · ∂mdxd
(13)

We say f ∈ Cm(Rd) if Dkf ∈ Cd ∀ k ≤m, k ∈ Zd+, where Cd = {f : Rd → R}
is a space of continuous functions. We can recall the Pinkus’ Theorem and say:
For a any f ∈ Cm(Rd), any compact K ⊂ Rd, and any ε > 0, there exists a g ∈
M(σ) satisfying:

max|Dkf −Dkg|< ε, x ∈ K, (14)
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Theory of Physics-Informed Neural Networks (PINNs). Approximation for PINNs

Universal approximation theorem

Universal approximation theorem
• Each neuron can be seen as a basis function;
• MLP with non-linear activations are universal functions approximatorsa;
• However, it says that MLP can approximate but...
aKurt Hornik, Maxwell Stinchcombe, Halbert White, Multilayer feedforward

networks are universal approximators, Neural Networks, Volume 2, Issue 5, 1989, Pages
359-366.

Limitation
• Trainability;
Questions: Does the sequence of neural networks converge to the solution to

PDEs?
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Theory of Physics-Informed Neural Networks (PINNs). Approximation for PINNs

On convergence of PINN

Figure: Physics-informed machine learning for PDE solution;
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PINNs for Solving PDEs. PINNs formulation for PDEs.

Simple PINN-PDE example

Mathematical Formulationa

aI. Lagaris, A. Likas, D. Fotiadis. Artificial neural networks for solving ordinary and
partial differential, 1997.Mathematics, Physics, Computer Science, Medicine IEEE
transactions on neural networks

∂g

∂x
= h(x, g), g(0) = A (15)

• With NN representation;

g(x) ≈ g(x; θ) = A+ xNN(x; θ); (16)

L(θ) =
∫

ΩX

[
∂g(x; θ)
∂x

− h(x, g(x; θ))
]2
dx (17)
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PINNs for Solving PDEs. PINNs formulation for PDEs.

Simple PINN-PDE solution

• In a Riemman point of view, we have:

L(θ) = lim
N→∞

N∑
i=0

[
∂g(xi; θ)
∂x

− h(xi, g(xi; θ))
]2

(18)

• Solving the problem with Stochastic gradient descent

θk+1 = θk − αk
1
N

N∑
1
∇θ
[
∂g(xi; θ)
∂x

− h(xi, g(xi; θ))
]2

(19)

Finally,

g(x; θ) = A+ xNN(x; θ); (20)
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PINNs for Solving PDEs. PINNs formulation for PDEs.

Forward PINN-PDE

Generalization PINN-PDE
• Extension for General PDEsa

aM Raissi, P Perdikaris, GE Karniadakis Journal of Computational Physics 378,
686-707, 2017

PDE general form
Consider the general system PDE as:

f(x; ∂u1

∂x1
, · · · , ∂2um

∂x1∂xd
, · · · ;λ) = 0, x ∈ Ω, (21)

with boundary conditions:

B(x,u) = 0 on ∂Ω (22)
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PINNs for Solving PDEs. PINNs formulation for PDEs.

Forward Generalization PINN-PDE

Generalization PINN-PDE

=(θ, τ) = ωf=f (θ, τf ) + ωb=b(θ, τb) (23)
where,

=f (θ, τf ) = 1
|τf |

∑
x∈τf

||f(x; ∂û1

∂x1
, · · · , ∂2ûm

∂x1∂xd
, · · · ;λ)||22 (24)

and

=b(θ, τb) = 1
|τb|

∑
x∈τb

||B(x,u)||22 (25)
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PINNs for Solving PDEs. PINNs formulation for PDEs.

Forward Generalization PINN-PDE

Generalization PINN-PDE
• PINN algorithma;
aLu, Lu and Meng, Xuhui and Mao, Zhiping and Karniadakis, George Em. DeepXDE: A deep learning library for solving differential

equations.SIAM Review .volume 63, number 1, 208-228, 2021

Figure: Physics-informed machine learning for PDE solution;
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Quantum CFD Quantum Computing

Quantum State Representation
States: Finite Hilbert space representation....

States
• States are vectors;
• Operations are matrices;

1 |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)

2 Qubit - Superposition |ψ〉 = α0|0〉+ α1|1〉 =
(
α0
α1

)
∈ C2 - (ket

representation) and 〈ψ| dual Hilbert Space (bra representation)
3 〈ψ|φ〉 inner product and 〉ψ|φ〈 outer product, where |φ〉 = β0|0〉+ β1|1〉

4 |φ|ψ〉 =


α0β0
α0β1
α1β0
α1β1

 - This means that 2n states if n qubits.

5 n-Qubit state: |ψ〉 =
∑
k∈[0,1]n αk|k〉 ∈ C2n

6 The quantum state |ψ〉, one measures the probability of the state |k〉 as |αk|2
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Quantum CFD Quantum Computing

Quantum State Operations

Operations: Logic Gates

Circuit
• Classical Boolean circuit (AND, OR and NOT gates on an n-bit.
• Quantum circuit uses unitary quantum gates

1 NOT-gates
NOT =

(
0 1
1 0

)
2 Hadamard

H = 1√
2

(
1 1
1 −1

)
3 Interference:

1√
2

(
1 −1
1 1

)
1√
2

(|0〉+ |1〉) = 1
2 (|0〉+ |1〉 − |0〉+ |1〉)
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Quantum CFD Quantum Computing

Quantum Circuit

Bloch Sphere: Graph representation

Figure: Graph representation6

|ψ〉 = cos(θ/2)|0〉 − eiφsin(θ/2)|1〉 (26)
where 0 < θ ≤ 2π and 0 < φ ≤ π

6Moreno-Pineda, Eufemio et al. Molecular spin qudits for quantum algorithms Chemical
Society Reviews, 47. 2018.
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Quantum CFD Quantum Computing

Quantum Circuit
Quantum Circuit: A set of Gates operations

Figure: Quantum Circuit Example7

7Moreno-Pineda, Eufemio et al. Molecular spin qudits for quantum algorithms Chemical
Society Reviews, 47. 2018.
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Quantum CFD Quantum Computing

Quantum computer steps

1 Start with all qubits with preparable state (init with all |0〉)

2 Run a circuit that produces the desireble interference: Output should
interfere constructively or destructively

3 Measurement of final state that gives classical output

Quantum parallelism

• Suppose a classical computation f : [0, 1]n → [0, 1]m

• Convert this to quantum circuit U : |x〉|0〉 → |x〉|f(x)〉

U

(
1

2n/2
∑
|x〉|0〉

)
= 1√

2n
∑
|x〉|f(x)〉 (27)

• This has all 2m function values!
• However it produces one random |x〉|f(x)〉: Means that all will be lost!
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Quantum CFD Quantum Computing

General discretization by finite volume

Let’s say:

U = [ρ, ρv1, ρv2, ρv3, εT ]T , F = [ρv1, τ1,1, τ1,2, τ1,1, ε1]T

B = [ρv2, τ2,1, τ2,2, τ2,1, ε2]T , C = [ρv3, τ3,1, τ3,2, τ3,1, ε3]T , J = 0

In this sense, the N-S equations can be writen as:

∂U
∂t

+ ∂F
∂x1

+ ∂B
∂x2

+ ∂C
∂x3

= J (28)
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Quantum CFD Quantum Computing

General discretization by finite volume

For example:
∂F
∂x1

≈ FI+1 − FI
∆x1

(29)

• one billion of nodes! Means
billions degrees of freedom (At
least)
• Lets says around 30 qubits!!

Figure: Volume discretization (mesh)
https://www.pointwise.com/

It can lead to linear system of equation:

Ay = b (30)
Most of the quantum algorithm are based on the solution of this linear system of
equations.
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Quantum CFD Quantum Computing

Current work applied to fluid dynamics

In this two case, the PDEs are discretized8. The system of equations produzed is
solved either by HHL or a Variational Quantum algorithms9.

8René Steijl, George N. Barakos, Computers & Fluids, Volume 173, 2018, Pages 22-28.
9Gaitan, F. npj Quantum Inf 6, 61 (2020)

Prof. Fabio Santos (EPQB/UFRJ) How can a quantum computers solve PDEs? 42 / 55



Quantum CFD Quantum Computing

Current work applied to fluid dynamics

Adiabatic annealing-based quantum computers (quenching Ising type
model)10

10N. Ray, T. Banerjee, B. Nadiga, S. Karra, “Towards Solving the Navier-Stokes Equation on Quantum Computers,” arXiv:1904.09033v1 [cs.NA] 16
Apr 2019 (hardware specific)
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Quantum CFD HHL Algorithm

Harrow-Hassidim-Lloy Quantum Linear Solver

Harrow-Hassidim-Lloy Algorithm a

aPhys. Rev. Lett. 103.15 (2009), p. 150502

1 A|y〉 = |b〉

2 A =
∑N−1
j=0 λj |uj〉〈uj |, λj ∈ <

3 U = eiAt =
∑N−1
j=0 eiλjt|uj〉〈uj |

4 A−1 =
∑N−1
j=0 λ−1

j |uj〉〈uj |

5 |y〉 = A−1|b〉 =
∑N−1
j=0 λ−1

j bj |uj〉
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Quantum CFD Quantum Variational Approach

Variational Quantum Linear Solver

Variational Quantum Linear Solver (VQLS)
• Tested with problem size of 1024 × 1024.a;
• The input to VQLS is a matrix A written as a linear combination of unitaries

A and a short-depth quantum circuit U which prepares the state |b〉
• The hybrid quantum-classical optimization loop until the cost is below a

user-specified threshold
• When the loop terminates, one obtains |y〉 = y/||y||2
aCarlos Bravo-Prieto et al. 2020.
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Quantum CFD Quantum Annealing

Quantum Annealing Linear Solver

Quantum Annealing Linear Solver
• Transform in a binary matrix;
• Quadratic unconstrained binary optimization (QUBO) specific for DWave

QPU

∂ux
∂t

= −1
ρ

∂ρ

∂x
+ µ

∂2ux
∂x2 (31)

After discretization:

Ay = b, yj =
np∑
j=1

2j0−jqj , Aqq = b

q̄ = min||Aqq − b||22 (32)

f(q) =
∑
i

µiqi+
∑
i<j

ωi,jqiqj , µi =
∑
i

Aqi,j(A
q
i,j−2bi), ωi,k = 2

∑
i

Aqi,jA
q
i,k
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Quantum CFD Quantum Annealing

How about Neural network can help?

How about Neural network in quantum computer?
This raises another question: how Neural network can help ?
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Hypothesis Project

Methodologies
Quantum Physics-informed Neural Networks Description11:

  

11Figure adapt from Chen and Niu, and Cuomo et al.
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Hypothesis Quantum Neural Network

Quantum Neural Network description

QNN and NN similarities
• Input data for trainning and testing

- Can be classical or quantum
dataa.

• Struture - Input Layer, Hidden
layers and output layers - Similar
for QNN

ahttps://www.tensorflow.org/quantum

QNN and NN similarities
• Based on θ - Similar for QNN
• Non-linearity and optimization -
Hybrid step - Quantum and
classical

• Backpropagation - Hybrid step -
Quantum and classical
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Hypothesis Quantum Neural Network

Quantum Neural Network description

Quantum neural network
• General form QNN(x, θ):

Quantum circuit
• Quantum circuit representationa:
aAbbas, A., Sutter, D., Zoufal, C. et al. The power of quantum neural networks. Nat Comput Sci 1, 403–409 (2021).

https://doi.org/10.1038/s43588-021-00084-1
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Hypothesis Quantum Neural Network

Quantum PINN formulation

PDE general form
Consider the general system PDE as:

f(x; ∂u1

∂x1
, · · · , ∂2um

∂x1∂xd
, · · · ;λ) = 0, x ∈ Ω, (34)

with boundary conditions:

B(x,u) = 0 on ∂Ω (35)

I(x,u, λ), for x ∈ τj (36)

Can we formulate a Quantum PINN based on Quantum Circuit?
• Let’s say:

u(x) ≈ QNN(x; θ) (37)
• We can rewrite the PDE general form as a fuction of the QC because we

could compute: ∂QNN(x;θ)
∂x - automatic shifted differentiation quantum

circuits
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Project Challenges Universal approximation for Quantum Neural Network

Universal approximation for Quantum Neural Network

Working Hypothesis: QNN can always be used as an universal approximation.

Tools
• QNN libraries against their classical counterpart for regression:

• TensorFlow Quantum (TFQ) based on Cirq.
• IBM QNN based on Qiskit.

• Implementation of a specialized Quantum Neural Networks:
• Quantum Convolutional Neural Networks (QCNN) with Bayesian Learning

Initialization (BLI).
• Avoid barren plateau (BP).

Measurement: (i) Memory capacity (ii) Generalization power (iii) Speed-up ? (iv)
Fisher information matrix.

Expected: A better understanding of QNN for regression and absence of barren
plateau.
Risk Assessment: Medium-high risk
Significance: Overcome the barren plateaus.
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Project Challenges A Quantum Physics-Informed Neural Network

A Quantum Physics-Informed Neural Network (QPINN)

Working Hypothesis: QPNN can solve different type of non-linear PDE.

Challenges
• Can it be done by QNN libraries based: TFQ and QNNQ.
• Specialized Quantum PINN:

• Quantum Convolutional Neural Networks (QCNN) with
Bayesian Learning Initialization (BLI).

• Avoid barren plateau (BP).

Expected: a PDE quantum solver.
Risk Assessment: Medium-high risk
Significance: This might help to solve several currently impossible problems to
answer that demand intensive computation.
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Project Challenges A Quantum Physics-Informed Neural Network

Global Risk

Global Risk
1 These algorithms depend on the
development of a more powerful
quantum processors.

Noise Intermediate Scale Quantum
(NISQ) era:
• Limitation of current quantum

computers:
1 Limitation of number of qubits;

2 Noise sources limit the number of
operations;

3 Problems of error correction;

• Google has already proved
quantum supremacy on a quantum
computer, and several countries,
companies, and research centers
are investigating this new scientific
paradigm.

IBM Q quantum computer.
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Questions? I have several questions!

Questions? I have several questions!12

12https://www.linuxfoundation.org/the-linux-mark/
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