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Introduction EISHVEIIL)

Motivation: Where are the intensive partial differential
equations (PDE)?

Significance

® Many physical phenomena are
fundamentally described by partial
differential equations:

® Quantum mechanics

® Source: https://www.youtube.com/watch?v=3YmeajE-TT8 ¢

Fl(u(z);q) =f(z) ze€Q,
B(u(z)) — g(z) z < 69, 7 = [X, t] (1) ®  source: https://www.youtube.com/watch?v:XszjdozSZkLABscFD

2Credit: Seung-Hoon Cha, Sergei Nayakshin
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Introduction EISHVEIIL)

Motivation: Where are the intensive partial differential
equations (PDE)?

Significance

® Many physical phenomena are
fundamentally described by partial
differential equations:

Quantum mechanics

Particle physics

Environmental science

Fluid mechanics (Navier-Stokes

Equations)

Astrophysics

® Biology, to cite a few.

® Source: https://www.youtube.com/watch?v=3YmeajE-TT8 ¢
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Introduction

Turbulence from theory to applications

Turbulence Fundamental understanding

T Flow Si ion at the
ities and ClI
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Robert Mosor (University of Texas at Austin)
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Abstract

This report details the findings and recommendations from the Turbulent Flow Simulation at
the Erascale: Opportunitics and Challenges Workshop. which was held August. 4 5. 2015
by the U.S. Department. of Enery (DOE) Offce of Advanced Scieatific Compr

- - A describe.
o e e i ot 0 onlesn en

for aceurate simulation of turbulent flows is cvident across the DOE applicd-
seience and engineering porifolios, incluing combstion, plasmn physics, melenr-rencior physis
eind enrzy, And atmosp) ence. The workshap brought together experts in turbulent-flow
Simulatior L and Building upon previous

aF.X.Tvias, A. Gorobets, and A. Oliva. "Turbulent flow around a square cylinder
Computers Fluids, 123:87-98, 2015.
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® Global atmospheric models for large
gap in spatial scales between
convection (100km) and global
motions (1 x 10%) km;

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 49224926, doi:10.1002/gel S0944, 2013

Deep moist i ion in a

global si

Yoshiaki Miyamoto,' Yoshiyuki Kajikawa,' Ryuji Yoshida,' Tsuyoshi Yamaura,"

Hisashi Yashiro,'* and Hirofumi Tomita'*

Reseived 19 Jly 2013, s 2013; published 20 Seprember 2013,

141 Decp moist smospheri comvection i  key clment of
the wealher and climate sysem for transportn

Tmomentum, and themmal energy. 1t has been challenging 10
simulate convection realistically in_global atmospheric
models because of the large gap in spatial scales between
comvection (10°km) and slobal mations (10'km). We

ment resolution
csentia chanige for convecto

rid spacing. The  convection' stcture, number of
convective sell. and distance o the neares convectve cell
dramatically changed at this resolution. The convection

(2013). Decp moist atmaspheric convection in a subkilometer global
simulaton, Geoplys. Res. Lt 40, 49224926, doi10.1002/grl 50944,

1. Introduction

eep moist convection plays an important role in
transporting energy in the troposphere. The temporal and spa-
il of the convection are 30min-1 hand 1-10km, re-
spectively [Emanuel, 1994; Houze, 1994]. Convection also

regions through meridional circulations. Furthermore, convee-

Prof. Fabio Santos (EPQB/UFRJ

called cumulus parameterization [Arakanwa, 2004 and refer-
ences therein]. Recentadvances in computer power and devel-
opment of a new type of model to solve fluid motions on
sphere have made it possible to conduct global simula-
tions without cumulus parameterizations [Tomita and

2004; Satoh et al, 2008]. Prvious stdis d
strated that eloudy atmospheric disturbay

Jated accurately using such a global model
2007; Sato et al.. 2009; Fudeyasu et ot zum Pt
Nasuno and Satoh, 2011 Kinter et al..

o However, it i pacings (overa Kometers are
still coarser than or comparable to the observed convection
Scale. It is essentially desired to conduct the simulations with
rsoluton higher han, the obierved convecion scle
Further though cral kilometers
will be widely e o g\oln] Simulitons in he nea fuure,
the resolution dependencies of convections simulated in
global models are not yet clear. Previous numerical studies
using a limited numerical domain, but without parameteriza-

have demonstrated the resolutiondependence of
convection features [Weisman et al., 1997; Bryan and
Frich, 002 Petch f ol 2002 Brvan cf o, 2003

[5] The elucidate statistcal features
of convecton n a lobal mdel and thei rontion depen
dence, by ting a series of high-resolution global simu-
latons with resolution a4 fine a5 subkdlometer hat i iner
than the convection scale. Section 2 introduces the simulation

Intensive PDE application: Climate

Science

® We are on the way to Zettascale

computing. However, can
Zettascale be the solution?

® it is not enough - Simple aircraift
in cruise would take billions of

year!!

um computers solve PDEs?
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Introduction

Fundamental Answer: It is when quantum computing
(QC) enters!

Fundamental Questions:

@ Is it possible to identify algorithms for PDE solutions that QC can
perform effectively?
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Fundamental Questions:
@ Is it possible to identify algorithms for PDE solutions that QC can
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® Can a current QC speed up the solution of these multi-scale nonlinear
partial differential equations, such as turbulent Navier-Stokes
Equations (NSE)?
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partial differential equations, such as turbulent Navier-Stokes
Equations (NSE)?

® Is it currently possible with noisy intermediate-scale quantum (NISQ)
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NI NEHOE  Fundamental Question

Fundamental Answer: It is when quantum computing
(QC) enters!

Fundamental Questions:

@ Is it possible to identify algorithms for PDE solutions that QC can
perform effectively?

® Can a current QC speed up the solution of these multi-scale nonlinear
partial differential equations, such as turbulent Navier-Stokes
Equations (NSE)?

® Is it currently possible with noisy intermediate-scale quantum (NISQ)
architecture?

O Can we really understand fundamental science with a QA for solving PDE?

v
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Navier-Stokes Equations

® Navier-Stokes equations (NSE)

ap '
L9 (v =0, 2)
d(pv)
ot

+ V- (pvv) =-Vp+ V-0 + pg; (3)

Remarks
® Continuum Hypothesis

LABSCFD

Prof. Fabio Santos (EPQB/UFRJ) How can a quantum computers solve PDEs?



Navier-Stokes Equations

® Navier-Stokes equations (NSE)

Op o
E+V-(pv)—0,
0
g)tv)+v-(pvv):—Vp+V-®+pg;

Remarks
® Continuum Hypothesis
® Non-linear coupled PDE system (can be intensive)

()

(3)
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® Continuum Hypothesis
® Non-linear coupled PDE system (can be intensive)
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Navier-Stokes Equations

® Navier-Stokes equations (NSE)

Op o

En +V-(pv)=0;

9 (pv)
ot

+ V- (pvv) =-Vp+ V. O+ pg;

Remarks
® Continuum Hypothesis
® Non-linear coupled PDE system (can be intensive)
® Analytical solution existence and smoothness - unsolved problem

® Numerical Solution!!!

()

(3)
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Research Group Interest

Computational Fluid Dynamics
Numerical Solution

o
What is it? ® Sophisticated algorithms, such as:
® Simulation of phenomena involving Finite Elements, Finite Volume

fluid flow;

and so on;

@ Domain representation;

LABSLFD

Prof. Fabio Santos (EPQB/UFRJ) How can a quantum computers solve PDEs? 8 /55




Research Group Interest

Computational Fluid Dynamics

What is it?

® Simulation of phenomena involving
fluid flow;
@ Domain representation;
® Mesh discretization (for numerical
methods that requires mesh);

Numerical Solution
® Sophisticated algorithms, such as:
Finite Elements, Finite Volume
and so on;
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Research Group Interest

Computational Fluid Dynamics

What is it?

® Simulation of phenomena involving
fluid flow;
@ Domain representation;
® Mesh discretization (for numerical
methods that requires mesh);
® Solution of the discrete equations;

Numerical Solution
® Sophisticated algorithms, such as:
Finite Elements, Finite Volume
and so on;
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Research Group Interest

Computational Fluid Dynamics
Numerical Solution

o
What is it? ® Sophisticated algorithms, such as:
® Simulation of phenomena involving Finite Elements, Finite Volume

fluid flow;

and so on;

@ Domain representation;

® Mesh discretization (for numerical
methods that requires mesh);

® Solution of the discrete equations;

O Processing results (visualization)
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Research Group Interest

Computational Fluid Dynamics
Numerical Solution

What is it? . .
® Sophisticated algorithms, such as:
® Simulation of phenomena involving Finite Elements, Finite Volume
fluid flow; and so on:
@ Domain representation; -
® Mesh discretization (for numerical ) ) )
methods that requires mesh); ® CFD simulations can be expensive;
® Solution of the discrete equations;
O Processing results (visualization)
%éﬂ%’
https://www.pointwis./ LABSCFD
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Research Group Interest

Computational Fluid Dynamics

What is it?

® Simulation of phenomena involving
fluid flow:;
@ Domain representation;
® Mesh discretization (for numerical
methods that requires mesh);
® Solution of the discrete equations;
O Processing results (visualization)

K]
F@Aﬁﬂ
Ay
7S

v
0%

https:/ /www.pointwise.com/

Numerical Solution
® Sophisticated algorithms, such as:
Finite Elements, Finite Volume
and so on;

® CFD simulations can be expensive;

® To test, design and analysis,
several simulations can be needed;
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Research Group Interest

Computational Fluid Dynamics

What is it?

® Simulation of phenomena involving
fluid flow:;
@ Domain representation;
® Mesh discretization (for numerical
methods that requires mesh);
® Solution of the discrete equations;
O Processing results (visualization)

https:/ /www.pointwise.com/

Numerical Solution
® Sophisticated algorithms, such as:
Finite Elements, Finite Volume
and so on;

® CFD simulations can be expensive;

® To test, design and analysis,
several simulations can be needed;

® How to reduce computational
costs, without disobeying the
physics of problem?
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Research Group Interest

Computational Fluid Dynamics
Numerical Solution

e
What is it? ® Sophisticated algorithms, such as:
® Simulation of phenomena involving Finite Elements, Finite Volume

fluid flow:; and so on;

@ Domain representation;
® Mesh discretization (for numerical

methods that requires mesh); ® CFD simulations can be expensive;
(3) Solution of the discrete equations; e To test, design and ana|ysisy
© Processing results (visualization) | several simulations can be needed;

® How to reduce computational
costs, without disobeying the
physics of problem?

® How Machine Learning can help?

https://www.pointwis./ LABSCFD
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Neural Network: Brief description

Machine Learning and Computer science
® Al: Looking for human-level intelligence;
® ML: Learn parttens in a dataset and performs predictions;

® Data Science: Find insights from data;

"To make progress in ML in science it is crucial that we incorporate computational
models into the learning step.”
Prof. Amir Gholaminejad

LABSCFD
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Types of PINNs

How to introduce physics into a neural network:

® Method 1; Where big data is available, but the governing physical law may
not be known;

aKarniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Nat Rev Phys 3, 422-440 (2021)

Small data Some data Big data

Data

Physics

LABSLFD

Lots of physics Some physics No physics

Prof. Fabio Santos (EPQB/UFRJ) How can a quantum computers solve PDEs?



Types of PINNs

How to introduce physics into a neural network:

® Method 1; Where big data is available, but the governing physical law may
not be known;

e Method 2; On the other extreme, where little data is available (“small data
regime”), but the describing physics is known (included as a constraint);

aKarniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Nat Rev Phys 3, 422-440 (2021)

Small data Some data Big data

<«

Lots of physics Some physics No physics

Data

Physics
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Types of PINNs

How to introduce physics into a neural network:
® Method 1; Where big data is available, but the governing physical law may
not be known;

e Method 2; On the other extreme, where little data is available (“small data
regime”), but the describing physics is known (included as a constraint);
® Method 3; No data is available but you know the physics
® PINN actually solves de physics

aKarniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Nat Rev Phys 3, 422-440 (2021)
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Physics

LABSCFD

Prof. Fabio Santos (EPQB/UFRJ) How can a quantum computers solve PDEs?



Types of PINNs

How to introduce physics into a neural network:
® Method 1; Where big data is available, but the governing physical law may
not be known;

e Method 2; On the other extreme, where little data is available (“small data
regime”), but the describing physics is known (included as a constraint);
® Method 3; No data is available but you know the physics
® PINN actually solves de physics
® Method 4; where the physics is partially known and several scattered
measurements are available (inverse problems) 2

aKarniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Nat Rev Phys 3, 422-440 (2021)

Small data Some data Big data

<

Lots of physics Some physics No physics

Data

Physics
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Introduction

Physics-informed by a large number of data

Model reduction by Machine Learning, Bhatnagar et 2019

becanvan oecomz0
i Eeegp——y
300,35

[ 50720 e 525
- v oo
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() Sharcd cncoder and decoder.

Model reduction by Machine Learning
® Order reduction for aerodynamics;

e Convolutional neural network (ConvNet) with AutoEncoder;
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Physics-informed by a large number of data

Model reduction by Machine Learning, Ligang Lu and Kuochen Tsai (SHELL Oil
Company), 2019.

0.03 0.03
0.02 0.02
0.01 0.01

0 o]
0.01 0.01
0.02 0.02
0.03 -0.03

-0.02 (o) 0.02 -0.02 (o) 0.02

Model reduction by Machine Learning
® CFD model and predictions of oil water separation in horizontal pipelines;
® Convolutional neural network (CNN) model;
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Physics-informed by constraints

Symmetries and Invariance
® |Impose some properties to the trainning, such as: Symmetries and Invarience;
® Symmetry in a shear stress tensor;

® |nvariance related to a reference or even conservation laws;

Fig. 2. Invariant, fully-connected (some connections are omitted for clrity), neural network architecture proposed by Ling et al. [17]. The circles indicate
scalar values and the rectangles represent 3 x 3 second-order tensors

Figure: Symetry and Invariance of reynolds stress tensor based on Invariance expansion;!

Ling, J., Kurzawski, A., Templeton, J. (2016). Journal of Fluid Mechanics, 807, 155-1663¢m
doi:10.1017/jfm.2016.615
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Physics-informed by constraints

Cyclone Separator,Caturwati Ni Ketut et
al, 2017

Tangential inlet Separation zone

Dust outlet ————

Prof. Fabio Santos (EPQB/UFRJ)

How can a quantum computers solve PDEs?

Number of samples

® 300 Simulations with different Re
numbers;

® Data extracted from the cell
centers of the mesh

Case Setup
® OpenFOAM (OF) simulation with
SimpleFOAM solver;

® x — ¢ with curvature correction in
OF, Spalart-Shur, 2000;

LABSCFD
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Physics-informed by constraints

Velocity streamlines

Conservation Equation Table

Velocity profile versus experimental
data

RM .« Ry Rm. V-U

vV —4,85-107° | —2,31-107% | 1,65-10% | —7,2-10"
max(V) | 2,3-1073 4,9.107° 1,1-1073 0,047
min(V') -1-107% | —4,10-107® | —1,8-1073 -0, 04

Prof. Fabio Santos (EPQB/UFRJ)
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Physics-informed by constraints

Computational resource for simulation
® |ntel Core i7, 12 cores; 32GB RAM;

Computational resource for PIDNN
® |ntel Xeon® E5-2640 v4 2,4GHz
® Tesla P100 (Pascal), 3584 CUDA cores, 16GB VRAM;

Computational Time
@® CFD Simulation computational Time ~ 1.6 h
® Training time =~ 3 h
© PIDNN computation =~ 1s
© Computational "speedup” =~ 5000;?

2L.H. Queiroz, F.P. Santos, J.P. Oliveira, M.B. Souza, Digital Chemical
Engineering, Volume 1, 2021, 100002.
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Physics-informed Neural Network approximation

Flow through the aorta/carotid bifurcation of a healthy human subject:
Positions of acquired 4D flow MRI measurements in the aorta/carotid
bifurcation of a healthy volunteer.?

Laft Comimon ©anctic
arvery
202, B

y

2G. Kissas, Y. Yang, E. Hwuang et al. / Computer Methods in Applied Mechanics and [ 13gr0
Engineering 358 (2020) 112623 21
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Physics-informed Neural Network approximation

Comparison of the clinically acquired waveforms of blood velocity versus
the predictions of the proposed physics-informed neural networks, and of a
conventional Discontinuous Galerkin solver.3

— Data

100

=== PINNs Prediction

=== DG Prediction

0.00

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.7

0.00 0.25 0.50 0.75

W

3G. Kissas, Y. Yang, E. Hwuang et al. / Computer Methods in Applied Mechanics and g0
Engineering 358 (2020) 112623 21
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Physics-informed Neural Network approximation (inverse
problem)

A physics-informed deep learning method for solving direct and inverse
heat conduction problems of materials.*

Inverse problem Setup

Llayers

p(u)Cp(u)— — k(u)w =0 in Qte0,tmazl (4)

4Zhili He, Futao Ni, Weiguo Wang, Jian Zhang. Materials Today Communications, Volumesgrn
28, 2021, 102719.
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Neural Network: Brief description

Neural Network

® Recognized as fundamental nonlinear function approximators. It can be
represented as: R(w,b) = [ Lly, ¢(w,y,x,b)|p(y,x)dxdy

Figure: Deep neural network example

Deep Neural Network is actually a composition function!

LABSCFD
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Decep Neursl Networks
Neural Network: Brief description

Supervised neural network
® Depends on what the focus is on....
® We want to find a neural net, ¢(y, x;60(w,b)), that maps x to y
® Minimizing R(w,b), where the data are equiprobable;

Mz

)= 3 Ll = bl ©5)

being N the size of trainning data;
How we usually solve? Stochastic gradient decent

1 2
Ori1 = O — a— > Vo [y — 6(y; %, w, b
k1 = Ok — ag 1 Vo [y — ¢(y;, %, w,b)] (6)

LABSLFD
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Decep Neursl Networks
Deep Neural Network: Brief description

Let N¥(x) : Rdin — Rout | Let us say the weight matrix of the I'* layer and the
bias vector are W' € RN N1 and bt € RN, respectively. Then, one can build
the deep neural network below:

e No(x)=x € Rdin

where ¢ is a composition function of N7(x), j=0---L

u(x) =~ u(x;0) = ¢(6; x) (7)
where 6 = [W, b]

LABSLFD
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Decep Neursl Networks
Deep Neural Network: Brief description

Let N¥(x) : Rdin — Rout | Let us say the weight matrix of the I'* layer and the
bias vector are W' € RN N1 and bt € RN, respectively. Then, one can build
the deep neural network below:

e No(x)=x € Rdin
* Ni(x) =0 (W!N'"}(x)+b) eRV, 1<i<L-1

where ¢ is a composition function of N7(x), j=0---L

u(x) =~ u(x;0) = ¢(6; x) (7)
where 6 = [W, b]
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Decep Neursl Networks
Deep Neural Network: Brief description

Let N¥(x) : Rdin — Rout | Let us say the weight matrix of the I'* layer and the
bias vector are W' € RN N1 and bt € RN, respectively. Then, one can build
the deep neural network below:

e N0(x)=x € Rdin
* Ni(x) =0 (W!N'"}(x)+b) eRV, 1<i<L-1
o NI(x) = WENE-L(x) + bE € Rbout

where ¢ is a composition function of N7(x), j=0---L

u(x) =~ u(x;0) = ¢(6; x) (7)
where 6 = [W, b]

LABSLFD
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Automatic Differentiation

How to calculate derivatives?

® hand-coded analytical derivative;

In PINNs, it is required to compute the derivatives of the network outputs
with respect to the network inputs

LABSCFD
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How to calculate derivatives?
® hand-coded analytical derivative;

® finite difference or other numerical approximations;

In PINNs, it is required to compute the derivatives of the network outputs
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Automatic Differentiation

How to calculate derivatives?
® hand-coded analytical derivative;
® finite difference or other numerical approximations;

® symbolic differentiation (used in software programs such as Mathematica,
Maxima, and Maple); and

V.

In PINNSs, it is required to compute the derivatives of the network outputs
with respect to the network inputs
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Automatic Differentiation

How to calculate derivatives?

hand-coded analytical derivative;

finite difference or other numerical approximations;

symbolic differentiation (used in software programs such as Mathematica,

Maxima, and Maple); and

Automatic differentiation (the derivatives are evaluated using

backpropagation);

V.

In PINNSs, it is required to compute the derivatives of the network outputs
with respect to the network inputs
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Automatic Differentiation

How to calculate derivatives?

® a3 compositional function, then AD applies the chain rule repeatedly to
compute the derivatives;

® There are two steps in AD: one forward pass to compute the values of all
variables, and one backward pass to compute the derivative

Consider a FNN with one hidden layer two inputs (z1, z3) and one output

(v);

v=—2x1 4+ 322+ 0.5 (8)
h = tahn(v) 9)
y=2h—-1 (10)

LABLFD
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Automatic Differentiation

To calculate the derivative of 2% and 2L at (2,1):
1 T2

Forward pass Backward pass
T =2 =1
za =1

v=—2z1 + 322 +0.5=—0.5
h = tanhv ~ —0.462
y=2h—1=-1.924

S—Zsechz (v) = 1.573
= —3.146

Figure: AD calculation example

How to calculate derivatives?
® AD has two passes one forward pass and one backward,;
® Any discretization derivative method has at least ;
® |t can be used for n order derivative ?;

?Lu, Lu and Meng, Xuhui and Mao, Zhiping and Karniadakis, George Em. SIAM
Review, Volume 63,number 1, 208-228, 2021
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QIR L VTS I Iy I N ETTETR N SIS (M INNE M Approximation for PINNs

Universal approximation theorem
Approximation: Loss — 0 %;?

Let o be any continuous sigmoidal function. The finite sum of the form:

N
G(z) = Zaja (wjx + bj) (11)
j=1
are dense in C(1y)
Theorem (Pinks, 1999)
Letm' € Z4,i=1,--- s, and set m = max;—.... sjm’|. Assume o € C™(R)

and also is not a polynomial. Then the space of single hidden layer neural network:
M(o) =0 (Wx +b) (12)

is dense in C™ m” (RY) .= (), C¥(RY).

V.

5Kurt Hornik, Maxwell Stinchcombe, Halbert White, Multilayer feedforward networks are| =g
universal approximators, Neural Networks, Volume 2, Issue 5, 1989, Pages 359-366.
YIS




Theory of Physics-Informed Neural Networks (PINNs). S nErt oINS

Universal approximation theorem

Universal approximation theorem

Form = (mi,---,mq) € Z%, we set |m|:= my + --- 4+ mq and

Hlml
T Omigy .- OMaxy
We say f € C™(RY) if DXf € C4Vk <m, k € Z%, where C4 = {f : RY — R}
is a space of continuous functions. We can recall the Pinkus' Theorem and say:

For a any f € C™(R?), any compact K C R%, and any e > 0, there exists a g €
M(o) satisfying:

D™ (13)

max|D¥f — D¥gl< e, €K, (14)

v

LABSCFD
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Theory of Physics-Informed Neural Networks (PINNs). S nErt oINS

Universal approximation theorem

Universal approximation theorem
® Each neuron can be seen as a basis function;
® MLP with non-linear activations are universal functions approximators?;

® However, it says that MLP can approximate but...

Kurt Hornik, Maxwell Stinchcombe, Halbert White, Multilayer feedforward

networks are universal approximators, Neural Networks, Volume 2, Issue 5, 1989, Pages
359-366.

Limitation
® Trainability;

Questions: Does the sequence of neural networks converge to the solution to
PDEs?

LABSCFD
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On convergence of PINN

On the convergence of physics informed neural networks
for linear second-order elliptic and parabolic type PDEs

Yeonjong Shin!, Jéréme Darbon!, and George Em Karniadakis!
1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

Abstract. Physics informed neural networks (PINNS) are deep learning based techniques for
solving partial differential equations (PDEs) encounted in computational science and engineer-
ing. Guided by data and physical laws, PINNs find a neural network that approximates the
solution to a system of PDEs. Such a neural network is obtained by minimizing a loss function
in which any prior knowledge of PDEs and data are encoded. Despite its remarkable empirical
success in one, two or three dimensional problems, there is little theoretical justification for
PINNs.

As the number of data grows, PINNs generate a sequence of minimizers which correspond
to a sequence of neural networks. We want to answer the question: Does the sequence of
minimizers converge to the solution to the PDE? We consider two classes of PDEs: linear
second-order elliptic and parabolic. By adapting the Schauder approach and the maximum
principle, we show that the sequence of minimizers strongly converges to the PDE solution
in CO. Furthermore, we show that if each minimizer satisfies the initial/boundary conditions,
the convergence mode becomes H!. Computational examples are provided to illustrate our
theoretical findings. To the best of our knowledge, this is the first theoretical work that shows
the consistency of PINNs.

AMS subject classifications: 65M12, 41A46, 35J25, 35K20

Key words: Physics Informed Neural Networks, Convergence, Holder Regularization, Elliptic and Parabolic
PDESs, Schauder approach
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Simple PINN-PDE example

Mathematical Formulation?

?]. Lagaris, A. Likas, D. Fotiadis. Artificial neural networks for solving ordinary and
partial differential, 1997.Mathematics, Physics, Computer Science, Medicine IEEE
transactions on neural networks

® With NN representation;

9(x) = g(x;0) = A+ xNN(z;0); (16)
. 2
20) = [ 2550 hagtasop)| as (17)
B LABSCFD
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Simple PINN-PDE solution

® In a Riemman point of view, we have:

L(0) = lim Y o

N—oc0

N
[M ~ A, gl 0))] 2 (18)

® Solving the problem with Stochastic gradient descent

0 9 L §va {—39(5”“9) h(zs, 9 0))}2 (19)
k1 =0k —ap— 0 = h(zs, g(w;
N T Ox
Finally,
g(x;0) = A+ NN (x;0); (20)

LABSCFD
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Forward PINN-PDE

Generalization PINN-PDE

® Extension for General PDEs?

M Raissi, P Perdikaris, GE Karniadakis Journal of Computational Physics 378,
686-707, 2017

PDE general form

Consider the general system PDE as:

5‘u1 82um
flx;— ., — ™ ..o N) =0 Q 21
(X7 83}'17 Y 6$1axd’ ’ ) Y X E ) ( )
with boundary conditions:
B(x,u)=0 on 09 (22)
LABSCFD
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Forward Generalization PINN-PDE

Generalization PINN-PDE

3(9,7’) wa%f(e,Tf) —I—wb%b(e,ﬂ,) (23)
where,
8u1 82’0,7” 2
97—f XEZT” xlf"ﬂmv'”a)‘)lb (24)
and
Sp(0, 1) = Z||Bxu||2 (25)
xGTb
LABSSCFD
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Forward Generalization PINN-PDE

Generalization PINN-PDE
® PINN algorithm?;

aLu, Lu and Meng, Xuhui and Mao, Zhiping and Karniadakis, George Em. DeepXDE: A deep learning library for solving differential
equations.SIAM Review .volume 63, number 1, 208-228, 2021

Procedure 2.1 The PINN algorithm for solving differential equations.

Step 1 Construct a neural network @(x; @) with parameters 6.

Step 2 Specify the two training sets Ty and T, for the equation and boundary /initial
conditions.

Step 3 Specify a loss function by summing the weighted L2 norm of both the PDE
equation and boundary condition residuals.

Step 4 Train the neural network to find the best parameters 8* by minimizing the
loss function £(8; 7).

Figure: Physics-informed machine learning for PDE solution;
LABSCFD
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Quantum State Representation

States: Finite Hilbert space representation....

States
® States are vectors;

® QOperations are matrices;

0 0= () and 0= (})

LABSCFD
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(CIIETNAT NEEPAN  Quantum Computing

Quantum State Representation

States: Finite Hilbert space representation....

States
® States are vectors;

® QOperations are matrices;

0 0= () and 0= (})

® Qubit - Superposition |¢) = ap|0) + a1 |1) = (ZO> € C? - (ket
1

representation) and (| dual Hilbert Space (bra representation)

LABSCFD
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Quantum State Representation

States: Finite Hilbert space representation....

States
® States are vectors;

® QOperations are matrices;

0 0= () and 0= (})

® Qubit - Superposition |¢) = ap|0) + a1 |1) = (ZO> € C? - (ket
1

representation) and (| dual Hilbert Space (bra representation)
® (¢|®) inner product and )1)|¢( outer product, where |¢) = 5y|0) + S1|1)
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(CIIETNAT NEEPAN  Quantum Computing

Quantum State Representation

States: Finite Hilbert space representation....

States
® States are vectors;

® QOperations are matrices;

0 0= () and 0= (})

® Qubit - Superposition |¢) = ap|0) + a1 |1) = (ZO> € C? - (ket
1

representation) and (| dual Hilbert Space (bra representation)

® (1|¢) inner product and )1|¢( outer product, where |¢) = 5o]|0) + B1]1)
oo

o |9lY) = Z?g; - This means that 2™ states if n qubits.

a1 3

LABSLFD
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Quantum State Representation

States: Finite Hilbert space representation....

States
® States are vectors;

® QOperations are matrices;

0 0= () and 0= (})

® Qubit - Superposition |¢) = ap|0) + a1 |1) = (ZO> € C? - (ket
1

representation) and (| dual Hilbert Space (bra representation)
® (¢|®) inner product and )1)|¢( outer product, where |¢) = 5y|0) + S1|1)
oo
0 (oY) = aofu | This means that 2" states if n qubits.
a1
a1

© n-Qubit state: [V) =37, (o 10 k|k) € c?"
LABLFD
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Quantum State Representation

States: Finite Hilbert space representation....

States
® States are vectors;

® QOperations are matrices;

0 0= () and 0= (})

® Qubit - Superposition |¢) = ap|0) + a1 |1) = (ZO> € C? - (ket
1

representation) and (| dual Hilbert Space (bra representation)

® (¢|®) inner product and )1)|¢( outer product, where |¢) = 5y|0) + S1|1)
apfBo

o |9lY) = aofu | This means that 2" states if n qubits.
a1
1P

© n-Qubit state: [V) =37, (o 10 k|k) € c?"

® The quantum state |t)), one measures the probability of the state |k) as |/
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Quantum State Operations
Operations: Logic Gates

Circuit
® Classical Boolean circuit (AND, OR and NOT gates on an n-bit.

® Quantum circuit uses unitary quantum gates

® NOT-gates
NOT = 01
“\1 0

® Hadamard

© Interference:
(10) + 1) — 10) + 1))

N —

1 /1 -1\ 1
(3 7)mmem-
LABSSCFD

A1)l
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Quantum Circuit

Bloch Sphere: Graph representation

(a) Superposition of States (b} One Qubit Hadamard Gate

=10y 411}
| vz

) = a0 + a1y
la,)* + la,I' = m A=-L[11
VZ|1 -1
10)
S
A =10- 1
) vz

Figure: Graph representation®

[) = cos(6/2)]0) — ei¢sin(9/2)|1> (26)
where 0 <@ <2mand0< ¢ <7

6Moreno-Pineda, Eufemio et al. Molecular spin qudits for quantum algorithms Chemical | 3¢
Society Reviews, 47. 2018.
Y
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Quantum Circuit

Quantum Circuit: A set of Gates operations

One-qubit Two-qubit
operation operation Measurement

10) B
[0} ey

e
3
-

-4
~}-
-y

(===
l
—_——
o =00
- o oo
l
—-—o oo

0010

10
0001 01

Gx®1= 1000 CNOT = 00
00

0100

Figure: Quantum Circuit Example”

"Moreno-Pineda, Eufemio et al. Molecular spin qudits for quantum algorithms Chemical [13=gr
Society Reviews, 47. 2018.
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Quantum computer steps

@ Start with all qubits with preparable state (init with all |0))

Quantum parallelism

U (3 20910 ) = = Slals(e) 7

® This has all 2™ function values!

® However it produces one random |z)|f(x)): Means that all will be lost!
LABSEFD
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Quantum computer steps

@ Start with all qubits with preparable state (init with all |0))

® Run a circuit that produces the desireble interference: Output should
interfere constructively or destructively

Quantum parallelism

U (3 20910 ) = = Slals(e) 7

® This has all 2™ function values!

® However it produces one random |z)|f(x)): Means that all will be lost!
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Quantum computer steps

@ Start with all qubits with preparable state (init with all |0))

® Run a circuit that produces the desireble interference: Output should
interfere constructively or destructively

©® Measurement of final state that gives classical output

Quantum parallelism

U (3 lli0)) = <= Sl 7

® This has all 2™ function values!

® However it produces one random |z)|f(x)): Means that all will be lost!
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Quantum computer steps

@ Start with all qubits with preparable state (init with all |0))

® Run a circuit that produces the desireble interference: Output should
interfere constructively or destructively

©® Measurement of final state that gives classical output

Quantum parallelism

® Suppose a classical computation f : [0,1]™ — [0, 1]™

U (7 Xol0)) = = Ykalsa)

® This has all 2™ function values!

® However it produces one random |z)|f(x)): Means that all will be lost!
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Quantum computer steps

@ Start with all qubits with preparable state (init with all |0))

® Run a circuit that produces the desireble interference: Output should
interfere constructively or destructively

©® Measurement of final state that gives classical output

Quantum parallelism
® Suppose a classical computation f : [0,1]™ — [0, 1]™
e Convert this to quantum circuit U : |2)|0) — |z)|f(z))

U (3 Slali0)) = <= Sl 7

® This has all 2™ function values!

® However it produces one random |z)|f(x)): Means that all will be lost!
LABLFD
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General discretization by finite volume

Let's say:

T T
U= [P, /7’01,/01127/?’03,@] , F= [P01771,1,71,2,T1,1761]

T T
B = [pv2, 721,722,721, €2, C = [pv3,731,732,73,1,€3)", T =0

In this sense, the N-S equations can be writen as:

gU O9F 9B  9C

ou  OF 0B _ 2
ot " omy o, Tow (28)

LABSCFD
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General discretization by finite volume

For example:
OF  Fr—Fy
—~ 29
(91‘1 AZEl ( )

® one billion of nodes! Means

billions degrees of freedom (At
least)

® |ets says around 30 qubits!!

Figure: Volume discretization (mesh)

https://www.pointwise.com,/

It can lead to linear system of equation:

Ay =b (30)

Most of the quantum algorithm are based on the solution of this linear system of
equations. LABSCFD
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Current work applied to fluid dynamics

Nnpj | Quantum Information ewnature cominpial Campuers o s 173 20wy 2223

Contants s avilable st ScianceDirect

ARTICLE  OPEN ) cnnroones Computers and Fluids
Finding flows of a Navier—Stokes fluid through quantum : Journal hamepoe: wwelssviarsomocstascmplkid
computing

———
© Parallel evaluation of quantum algorithms for computational fluid
dynamics

reat interest in using quantum computers to efficiently simulate a quantum system’s dynamics as existing classical =
computerscannot o ths. Lt atenton, howeve, s been gen to auantum simuaton of & clascal noninear continum X
wiscous fud even Son s René Steijl'*. George N. Barakos®
il ifrntal o, vhor st centl 0 sespce It s (ecin, s mgnei. [N AT S —————
rocmamic, a0 sttophyic e we present 3 quanum ot {1 SoNing e NaverSoke equatons. Wa et the
Sl b g 012 o he norse when a
e oo “andor cisca
R T e e s e o o st of g oo S compsions 104 s <
S e e e e b e s
engineered-plasma technologi o an chample where the. Qi Fourie Traplor s wed 1o bl 3 Poron sot Computationsh
0 uartum Iformaton (20200651 htps/140org/10038541534-020.00291:0
p’ ¢ M " o ing an analysis of the required data exchanges for a distributed-memory paraliclization using mes IK
%00 w inevicable noise and. 1 be periormed
P e e S, s e
INTRODUCTION \m l:xluvds 10 a general quan\um a\qu»mv vov ;o\vmq PDEs. To Quantum computing R sented
in e of the earst papers mottig the deuelopment of v igortom, rescy e Howee, <o
Feyman pomed ok = ] ot o i 3 gt s Vi R R
< beter suted t simuate the dynamics of 3 quantum system P —
hanonisting sl Qg computes. This s becoue sl 107 wnmw Tight and mnm 5 i ange of fows, flom
oo e complatona e vt s e sccelecaton fom 5 Superionic spee. o the
U-‘IV with the size of the simulated quantum system, while 1. Introduction ‘putational mm dynamics applications.
Qo computers G0 o 15 widly expectd that quantum e Qantin e 5 Scle parae smuscons on par-
1 ecnt gers the ed of quantum computing () (1] bas 91t CAS COMPUIES ¢ TeTared i devlopn S >
o ompuing. e O T S8 SN Gt fed o e S50 g TS £ S v s e
 ntm systems ae ot unique i being dificut o smulte s s e e i Ding e compes o3 elted compToTy ERsNe s of he SV 31

s v Ben 6 n\\l:memedzs ntum ciruis,
couple mny deree of feedem ver kil et e . " e

N, e i i
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i e 1 s compu
o T3 i ot o Tows St e NSk s P o ko o S coma)
P o e Probles o sesospess  many aconomicaly imortant problems. The auantum aigorihm e s guanum parleom, b
i vei des, westherloecoin, roins he i y
o trbuence and Geteminig e m;ém‘iw.yg.wy.,!'m, "5 Quantum algonih for cllpic POFS . a . Gt i an Qo et
o wience snd G e ‘ S o i st St
e e ok s e don o i
ot N ke sasions T S ke RESULTS

In this two case, the PDEs are discretized®. The system of equations produzed
solved either by HHL or a Variational Quantum algorithms®

8René Steijl, George N. Barakos, Computers & Fluids, Volume 173, 2018, Pages 22-28. LAB SCFD
gGaitan, F. npj Quantum Inf 6, 61 (2020)
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Current work applied to fluid dynamics

Towards Solving the Navier-Stokes Equation on Quantumn

Computers

N. Ray,!'; T. Banerjee?, B. Nadiga®S. Karra®
ICowputer, Corputerional and Statistical Sciences (CCS-7)
*Computational Earth Science Group (EES-16)
*Corputational Physics and Methods (CCS-2)

Los Alamos National Laboratory, Los Alamos, NM 87543

April 22, 2019

abstract

we explore the suitability of upcoming novel computing tecknologies, in partienlar adibatic
t form a critical component of

ell-studied flow properties,

In this paper,
aunealing based quantum compiters, to solve fd dynan
and exginecring applications, We start with simple flows with v

s problems

several scien

and provi

es well as the sensitivities

d quantitativel

the solutions obtained both qua

aezlers,

of the varions solution selection schemes on the ob: d solution.

keywords: Quantum computing - quantim anneales — fuic dynamics - turbilence ~ fivear spstens.

Adiabatic annealing-based quantum computers (quenching Ising type

model)*°

10
Apr 2019 (hardware specific)
Prof. Fabio Santos (EPQ

=
N. Ray, T. Banerjee, B. Nadiga, S. Karra, “Towards Solving the Navier-Stokes Equation on Quantum Computers,” arXiv:1904.09033v1 [CSNMBNBFD
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Harrow-Hassidim-Lloy Quantum Linear Solver

Harrow-Hassidim-Lloy Algorithm 2

aPhys. Rev. Lett. 103.15 (2009), p. 150502
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Harrow-Hassidim-Lloy Quantum Linear Solver

Harrow-Hassidim-Lloy Algorithm 2

aPhys. Rev. Lett. 103.15 (2009), p. 150502
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Harrow-Hassidim-Lloy Quantum Linear Solver

Harrow-Hassidim-Lloy Algorithm 2

ZPhys. Rev. Lett. 103.15 (2009), p. 150502
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Harrow-Hassidim-Lloy Quantum Linear Solver

Harrow-Hassidim-Lloy Algorithm 2

aPhys. Rev. Lett. 103.15 (2009), p. 150502
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Harrow-Hassidim-Lloy Quantum Linear Solver

a

Harrow-Hassidim-Lloy Algorithm

ZPhys. Rev. Lett. 103.15 (2009), p. 150502

© Aly) = |b)

© A=3100 Nlu)(ul, A eR
© U=ceAt =Y et fuy) (u,
© A1 =30 ) (uy

0 y) = A7l b) = 100 A bsuy)
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Quantum CFD Quantum Variational Approach

Variational Quantum Linear Solver

Variational Quantum Linear Solver (VQLS)
® Tested with problem size of 1024 x 1024.%;

® The input to VQLS is a matrix A written as a linear combination of unitaries
A and a short-depth quantum circuit U which prepares the state |b)

® The hybrid quantum-classical optimization loop until the cost is below a
user-specified threshold

® When the loop terminates, one obtains |y) = y/||yl|2

?Carlos Bravo-Prieto et al. 2020.

Quantum computer Classical computer

ifC>y

minC(a)

ifc<y

LABSLFD
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Quantum CFD Quantum Annealing
Quantum Annealing Linear Solver

Quantum Annealing Linear Solver

® Transform in a binary matrix;
® Quadratic unconstrained binary optimization (QUBO) specific for DWave

QPU

2
Ouy 19p 0%uy (31)

ot p Oz ey

After discretization:

np
Ay=b, y;=)» 2°Jg, Alq=b
j=1
q = min||A%q — b||3 (32)

Zﬂqu-i-zwm%%a Hi = ZA (A7 —2bi) wlk_QZAq i

i<j

(2)
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How about Neural network can help?

How about Neural network in quantum computer? J

This raises another question: how Neural network can help 7

LABSLFD
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Hypothesis

Methodologies

Quantum Physics-informed Neural Networks Description!:

N(x,t,0)

Residual on PDE Equations:

Feedback Mechanism

LABSLFD

1 Figure adapt from Chen and Niu, and Cuomo et al.
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[ ESE Quantum Neural Network

Quantum Neural Network description

QNN and NN similarities QNN and NN similarities
® Input data for trainning and testing ® Based on 6 - Similar for QNN
- Can be classical or quantum ® Non-linearity and optimization -
a -
data’. Hybrid step - Quantum and
® Struture - Input Layer, Hidden classical
layers and output layers - Similar e Backpropagation - Hybrid step -
for QNN Quantum and classical
v
ahttps://www.tensorflow.org/quantum
ol Evaluate Gradients &
Update Parameters
T lgorithm
clo quantum
( Moo
CQ f/z W (0, W 1 | Evaluate
3 I_JH._J' R Cost
s | = _JrNi } Function
ER A2l U(%,) :_h : |
“ilac ot WS
- Prepare Evaluate Eva\uarte
Quantum Dataset ~ Quantum Cl ] S
uantum Datase Vodel N?;Sd\;a AB\‘,‘BFD
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Quantum Neural Network description

Quantum neural network Quantum circuit
® General form QNN (z, 6): ® Quantum circuit representation?:
i aAbbas, A., Sutter, D., Zoufal, C. et al. The power of quantum neura
Quantum Classical https://doi.org/10.1038 /s43588-021-00084-1
e Y
I [N
i I ] !
| State I : :
| preparation ! f )
| 4 Ul HA Cost !
L 1ol I Vi) A N )
) L Ll_/l
| - [ p— A
| : : Update :
: [ !
]
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[ ESE Quantum Neural Network

Quantum PINN formulation

PDE general form

Consider the general system PDE as:
Oouy 0%uy,
f YA Ty A A :Oa EQ, 34
(X Bxl Bxlf)xd ) x ( )
with boundary conditions:
B(x,u)=0 on 09 (35)
I(x,u,X), for xerT; (36)

Can we formulate a Quantum PINN based on Quantum Circuit?
® |et's say:
u(x) =~ QNN (x;6) (37)
® We can rewrite the PDE general form as a fuction of the QC because we
could compute: %ﬁ(x;m - automatic shifted differentiation quantum  L8str
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Universal approximation for Quantum Neural Network
Universal approximation for Quantum Neural Network

Working Hypothesis: QNN can always be used as an universal approximation.

Tools
® QNN libraries against their classical counterpart for regression:
® TensorFlow Quantum (TFQ) based on Cirq.
® IBM QNN based on Qiskit.
® |Implementation of a specialized Quantum Neural Networks:
® Quantum Convolutional Neural Networks (QCNN) with Bayesian Learning
Initialization (BLI).
® Avoid barren plateau (BP).
Measurement: (i) Memory capacity (ii) Generalization power (iii) Speed-up ? (iv)
Fisher information matrix. )

Expected: A better understanding of QNN for regression and absence of barren

plateau.
Risk Assessment: Medium-high risk
Significance: Overcome the barren plateaus. LABSERD

Prof. Fabio Santos (EPQB/UFRJ) How can a quantum computers solve PDEs? 52 / 55



TGN ECIECSS A Quantum Physics-Informed Neural Network

A Quantum Physics-Informed Neural Network (QPINN)

Working Hypothesis: QPNN can solve different type of non-linear PDE.

Challenges

® Can it be done by QNN libraries based: TFQ and QNNQ.
® Specialized Quantum PINN:

:jj~ NNO

® Quantum Convolutional Neural Networks (QCNN) with g 2 4
Bayesian Learning Initialization (BLI). o & ©
® Avoid barren plateau (BP). <
D Z
Q
3
=
=z

Expected: a PDE quantum solver.
Risk Assessment: Medium-high risk

Significance: This might help to solve several currently impossible problems to

answer that demand intensive computation. -
LABSCFD
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OGBS A Quantum Physics-Informed Neural Network

Global Risk

Global Risk

@ These algorithms depend on the
development of a more powerful
quantum processors.

Noise Intermediate Scale Quantum
(NISQ) era:
® |imitation of current quantum
computers:
@ Limitation of number of qubits;

® Google has already proved

quantum supremacy on a quantum
computer, and several countries,
companies, and research centers
are investigating this new scientific
paradigm.

Prof. Fabio Santos (EPQB/UFRJ)
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@ These algorithms depend on the
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quantum processors.
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(NISQ) era:

® |imitation of current quantum
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@ Limitation of number of qubits;
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operations;
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OGBS A Quantum Physics-Informed Neural Network

Global Risk

Global Risk

@ These algorithms depend on the
development of a more powerful
quantum processors.

Noise Intermediate Scale Quantum

(NISQ) era:

® |imitation of current quantum
computers:
@ Limitation of number of qubits;
® Noise sources limit the number of
operations;
©® Problems of error correction;

® Google has already proved

quantum supremacy on a quantum
computer, and several countries,
companies, and research centers
are investigating this new scientific
paradigm.

IBM Q quantum computer. U-\B\\:[:FD
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Questions? I have several questions!

Questions? | have several questions!*?

22?9

LABSLFD

2https:/ /www.linuxfoundation.org/the-linux-mark/

Prof. Fabio Santos (EPQB/UFRJ) How can a quantum computers solve PDEs? 55 / 55



	Introduction
	Motivation
	Fundamental Question
	Fluid Mechanics and Physics

	Theory of Physics-Informed Neural Networks (PINNs).
	Deep Neural Networks
	Automatic Differentiation (AD)
	Approximation for PINNs

	PINNs for Solving PDEs.
	PINNs formulation for PDEs.

	Quantum CFD
	Quantum Computing
	HHL Algorithm
	Quantum Variational Approach
	Quantum Annealing

	Hypothesis
	Project
	Quantum Neural Network

	Project Challenges
	Universal approximation for Quantum Neural Network
	A Quantum Physics-Informed Neural Network

	Questions?
	I have several questions!


