Blockchain 2.0

Opportunities and Risks

Patrick Valduriez
The Hype

Bitcoin is the 'mother of all scams' and blockchain is most hyped tech ever, Roubini tells Congress

- One of the few economists who predicted the 2008 financial crisis warns U.S. senators of the pernicious side of cryptocurrencies.
- He also criticized bitcoin's underlying technology, blockchain, calling it the most "over-hyped — and least useful — technology in human history."
- "Crypto is the mother or father of all scams and bubbles," Roubini told the U.S. Senate Committee on Banking, Housing and Community Affairs at a hearing Thursday.

Kate Rooney | @Kr00ney
Published 5:21 PM ET Thu, 11 Oct 2018 | Updated 3:09 PM ET Fri, 12 Oct 2018
Bitcoin

• **Bitcoin: A Peer-to-Peer Electronic Cash System**
 - Satoshi Nakamoto (pseudo), Oct. 31, 2008 (Halloween)
 - Cryptocurrency and payment system
 - Blockchain is the infrastructure

• **Since then**
 - Many blockchains: Etherum in 2013, Ripple in 2014, etc.
 - Increasing use for high-risk investment
 - Initial Coin Offerings
 - But also in fraudulent or illegal activities!
 - Scam, purchase on the dark web, money laundering, tax evasion, ...

• Warnings from market authorities and beginning of regulation (China, South Korea, Japan, EU, ...)
The Currency of Tomorrow?

• **Pros**
 - Low transaction fee (set by the sender to speed up processing)
 - Fewer risks for merchants (no fraudulent chargebacks)
 - Security and control (protection from identity theft)
 - Trust through the blockchain

• **Cons**
 - Unstable: no backing by a state or fed bank (unlike $ and €)
 - Unrelated to real economy, e.g. GPD: fosters speculation
 - High volatility, e.g. between 6K and 7K$ in 3 hours
 - Small user base: 20 million bitcoin wallets
 - Versus billions of users of e-payment systems like AliPay and Paypal

• **The Crypto Bubble (2017)**
 - Bitcoin price increased from $1k to 10K, then peaked almost at $20K in December 2017 to collapse 4 months later to below $6k (down 70% from the peak), and close to $6k since then

* Testimony for the Hearing of the US Senate Committee on Banking, Housing and Community Affairs On “Exploring the Cryptocurrency and Blockchain Ecosystem”. Nouriel Roubini (NYU), October 2018.
Outline

- Trust with blockchain
- Consensus protocols
- How the blockchain works
- Blockchain 2.0
- Use cases
- Opportunities and risks
- Issues
Trust in a Modern Economy

• **Context**
 • How to exchange assets safely between two parties?

• **Centralized ledger**
 • An account book that records all transactions
 • Controlled by a trusted central authority
 • E.g. a clearing house
Problems with Central Authority

• Single point of failure
 • And easy target for attackers

• Favors concentration of actors
 • Banks
 • Exploit our money to make big money
 • Web giants (GAFAM) and other intermediaries (Uber, etc.)
 • Exploit our data to make big money
Trust with Blockchain

- **A distributed ledger**
 - Shared by all participants
 - Replicated
 - Decentralized
 - Append-only
 - No update, no delete
 - Distributed transaction validation
 - Consensus
 - Unfalsiable, verifiable
Blockchain Promises

• **Increased trust in value exchange**
 • Trust the data, not the participants

• **No single point of failure**
 • Increased security

• **Efficient, consistent transactions between participants**
 • Faster and cheaper than relying on a long chain of intermediaries, with incompatible systems and rules
Public versus Private Blockchain

- **Public blockchain**
 - Open P2P network
 - Participants can join and leave without notification
 - Anonymous, untrusted participants
 - Large-scale distributed ledger

- **Private blockchain**
 - Closed permissioned network
 - Identified, trusted participants
 - Regulated control
 - Small to medium-scale distributed ledger
Background on Consensus Protocols
Consensus

- **Critical applications**
 - Replication, transaction validation, identity verification, etc.

- **Major problem of distributed systems**
 - How to reach a consensus, i.e. agree on the same value, in the presence of a number of faulty processes?

- **Problem statement: given** n **processes and one leader, how to reach:**
 - Agreement: all correct processes agree on the same value
 - Validity: if initiator does not fail, all correct processes agree on its value

- **Types of failures**
 - Crash: the easy case
 - Malicious (also called Byzantine)
 - The process gives different values to different observers

- **FLP (Fischer, Lynch, Paterson) impossibility result**
 - With only one crash failure, termination is not guaranteed
 - Example: coordinator failure in 2PC
The Byzantine Agreement Problem

• Suppose an army of the Byzantine Empire
 • Generals can only communicate by messengers and must establish a common plan to attack the enemy or retreat
 • A number of these generals may be traitors and vote selectively
 • Example with 5 generals: 2 support the attack and 2 are in favor of retreat; the 5th can send an attack vote to the first two and a retreat vote to the other two and then ...

• Problem formulation
 • Find an algorithm (consensus) to ensure that loyal generals can agree on a common battle plan

Paxos Algorithm

• **The basis for a family of protocols**
 - [Lamport 1999, ACM Turing Award 2013]
 - Used to manage large-scale distributed data
 - Google Spanner & Megastore
 - IBM SAN Volume Controller
 - Microsoft Autopilot Cluster Mgr
 - Ceph (distributed file system)
 - Neo4J (NoSQL graph DBMS)

• **Inspired by the functioning of the Parliament of the Paxos Island**
 - The Parliament did work, despite the regular absence of legislators and messages loss
Paxos Algorithm

- **Principle (simplified)**
 - Initialization: a leader is elected by a majority quorum
 - Replication: leader replicates new updates to the majority quorum
 - Leader failure: if the leader fails, a new leader is elected
 - To make progress, at least 1/2 of the participants should be alive

- **Limitations**
 - Permissioned settings: all participants should be known a priori
 - Not appropriate for public blockchain
 - Tolerates only crash failures
 - Does not deal with malicious nodes
 - Progress is not guaranteed (FLP impossibility)
Practical Byzantine Fault Tolerance (PBFT)

- **A three-phase protocol [Castro & Liskov 1999]**
 1. Pre-prepare: a leader broadcasts a value to be committed by other nodes
 2. Prepare: the nodes broadcast the values they are about to commit
 3. Commit: confirms the committed value when more than 2/3 of the nodes agree in the previous phase

- **Assessment**
 - Tolerates Byzantine failures
 - Permissioned settings
How the Blockchain Works
Blockchain Concepts

- **Blockchain**
 - An *immutable* distributed database, i.e. a log of blocks, which are linked and replicated on *full nodes*

- **A block**
 - Digital container for transactions, contracts, property titles, etc.
 - Transactions are secured using public key encryption

- **The code of each new block is built on that of the preceding block**
 - Guarantees that it cannot be changed or tampered

- **The blockchain is viewed by all participants**
 - Enables validating the entries in the blocks
 - Privacy: users are pseudonymized
Blockchain Protocol (Nakamoto 2008)

0. Initialization (of a full node)
 • Synchronization with the network to obtain the blockchain (185 GB on Q3, 2018)

1. Two users agree on a transaction
 • Information exchange: wallet addresses, public keys, ...

2. Grouping with other transactions in a block and validation of the block (and of the transactions)
 • Consensus using "mining"

3. Addition of the validated block in the blockchain and replication in the P2P network

4. Transaction confirmation
The coin owner signs the transaction by:

1. Creating a hash value of:
 - The previous transaction
 - And the public key (PK) of the next owner
2. Signing it with its secret key (SK)
Block Management

- Transactions are placed into blocks, validated (by checking inputs/outputs, etc.) and linked by their addresses
- Size of a bitcoin block = 1 Megabyte

Result of mining
Validation by the Network

• Each block is validated by network nodes, the miners, by a consensus protocol (see next)

• Problem: accidental fork
 • As different blocks are validated in parallel, one node can see several candidate chains at any time
 • Solution: longest chain rule

Transactions in a validated block are provisionally validated; confirmation must be awaited
Intentional Fork

- **Main reasons**
 - To add new features to the blockchain (protocol changes) => new software
 - To reverse the effects of hacking or catastrophic bugs

- **Soft versus hard fork**
 - Soft fork: backward compatible
 - The old software recognizes blocks created with new rules as valid
 - Makes it easy for attackers
 - Hard fork
 - The old software recognizes blocks created with new rules as invalid
 - Example: the battle between (new) Ethereum and Ethereum Classic
 - In 2016, after an attack against the Decentralized Autonomous Organization (DAO), a complex smart contract for venture capital, the blockchain forked but without momentum
 - Battle is more philosophical and ethical than technical
Consensus Protocol: *mining*

- **Why not Paxos?**
 - Remember: participants are unknown

- **To validate a block, miner nodes compete (as in a lottery) to produce a *nonce* (number used once)**
 - One of the first competing solutions is selected, e.g. the one that includes the largest number of transactions
 - The winner miner is paid, e.g. 12.5 bitcoins today (originally 50)
 - This increases the money supply

- **Mining is designed to be difficult**
 - The more mining power the network has, the harder it is to compute the nonce
 - This allows controlling the injection of new blocks ("inflation") in the system, on avg. 1 block every 10mn
 - Advantages powerful nodes
Mining Difficulty: Proof of Work (PoW)

- **PoW**
 - A piece of data that is difficult to calculate but easy to verify
 - First proposed to prevent DoS attacks

- **Hashcash PoW**
 - Computed by each miner to produce the nonce

- **Goal: produce a value v such that $h(v) < T$ where**
 - h is a hash function (SHA-256)
 - T is a target value which is shared by all nodes and reflects the size of the network
 - v is a 256-bit number starting with n zero bits
 - Low probability of success: $1/2^n$
The 51% Attack

- **Also called Goldfinger attack**
 - Enables the attacker to invalidate valid transactions and double spend funds

- **How**
 - By holding more than 50% of the total computing power for mining
 - Miners coalition
 - It then becomes possible to modify a received chain (e.g. by removing a transaction) and produce a longer chain that will be selected by the majority

- **Solution: monitoring by the community**
 - In January 2014, Ghash.io reached 42%, then dropped to 9% after the Bitcoin community alert
Transaction Confirmation

- A provisionally validated transaction in a candidate block ensures that it has been verified and is viable.
- Each new block accepted in the chain after the validation of the transaction is considered as a confirmation.
 - A transaction is considered mature after 6 confirmations (1 hour on average).
 - New bitcoins (mining products) are only valid after 120 confirmations, to avoid the 51% attack.
Public Blockchain Limitations

- **Complexity and low scalability**
 - Difficult evolution of operating rules
 - Increasing chain size
 - Low number of transactions per second (TPS)
 - 5-7 TPS for Bitcoin versus 25K TPS for VISA
 - Unpredictable duration of transactions, from minutes to days

- **Cost**
 - High energy consumption
 - Favors concentration of miners

- **Users are pseudonymized, not anonymized**
 - Making a transaction with a user reveals all its other transactions

- **Lack of control and regulation**
 - Hard for states to watch and tax transactions
Blockchain 2.0
Evolution of Paradigm
Evolution of Paradigm

• **Beyond Bitcoin and other cryptocurrencies**
 • Recording and exchange of assets without powerful intermediaries
 • Example: smart contracts

• **Positioning in the internet**
 • TCP/IP: the communication protocol
 • Blockchain: the value-exchange protocol?
Blockchain 2.0 Technology

- **Programmable blockchain, e.g. Etherum**
 - Allows application developers to build APIs on the Blockchain protocol
 - APIs to allocate digital resources (bandwidth, storage, etc.) to the connected devices, e.g. FileCoin
 - Micropayment APIs tailored to the type of transaction (e.g. tipping a blog versus tipping a car share driver)

- **Private blockchain**
 - Efficient transaction validation since participants are trusted
 - No need to produce a PoW
 - Efficient management, e.g. in the cloud
Blockchain 2.0 Development

• Support from all major industry players
 • Finance services: Mastercard, VISA, ...
 • Audit firms: EY, KPMG, PwC, Deloitte
 • Consulting firms: Accenture, Capgemini,
 • Web giants: Amazon, Google
 • Software suppliers: IBM, Oracle, Microsoft, SAP
 • Technology platform companies: Cisco, Fujitsu, IBM, Intel, NEC, Red Hat, VMware

• New blockchain ISVs
 • Blockchain, ConsenSys, Digital Asset, R3, Onchain
Smart Contracts

• "Code is law", Lawrence Lessig, Harvard Law School
• Smart contract (Nick Szabo, 1993)
 • Self-executing contract, with code that embeds the terms and conditions of a contract
 • Early application: digital rights management schemes
• Deployment in the blockchain 2.0 (e.g. Etherum)
 • Participants can be unknown to each other
 • Contracts can be with many third parties, e.g. IoT devices, at low cost
• Challenges
 • Bug-free code, which requires code certification
 • Compliance with mandatory regulation, which requires collaboration between programmers and lawyers
Hyperledger Project (Linux Foundation)

- Started in 2015 (IBM, Intel, Cisco, ...)
- Open source blockchains and related tools
- Major frameworks
 - Hyperledger Fabric (IBM, digital Asset): a permissioned blockchain infrastructure
 - Smart contracts, configurable consensus (PBFT, ...) and membership services
 - Sawtooth (Intel): a new consensus "Proof of Elapsed Time" that builds on trusted execution environments
 - Hyperledger Iroha (Soramitsu): based on Hyperledger Fabric, with a focus on mobile applications
Blockchain Use Cases
Blockchain 2.0 Apps

- Critical characteristics of the applications
 - Asset and value are exchanged (transactions)
 - Multiple participants, unknown to each other
 - Trust is critical

- Top use cases
 - Financial services, micropayments
 - Digital rights using smart contracts
 - Digital identity
 - Supply chain management
 - Internet of Things (IoT)

- POCs in many industries
 - Publishing, retail, music, healthcare, rental, real estate, government, energy, agriculture, etc.
Diamond Supply Chain Management

• Problems
 • How to trace diamonds, in an era of “blood diamonds”?
 • Complex and multi-tiered diamond and jewelry supply chain

• Objective of TrustChain
 • Provide trusted products with documented authenticity, guaranteeing quality and environmental responsibility

• Solution (IBM Hyperledger)
 • A permissioned blockchain that establishes a single shared view of information without compromising detail, privacy, or confidentiality
Opportunities and Risks
Opportunities

• **Disruptive technology**
 - For recording transactions and verifying records
 - The ability to program applications and business logic in the blockchain opens up many possibilities for developers
 - E.g. smart contracts

• **Disruptive power**
 - The goal of cypherpunk activists
 - It may establish a sense of democracy and equality for individuals and small businesses in countries with non-transparent, unsecure jurisdictions
Risks

• **Market disruption**
 • Massive disintermediation of the current system, replacing all procedures that deal with transactions with a system where participants trade directly

• **Public blockchain**
 • Consumer protection: significant volatility of Bitcoin and other cryptocurrencies (no government backup)
 • Increasing use for fraudulent or illegal activities
 • Security concerns: if a private key is lost or stolen, an individual has no recourse
 • Lack of control and regulation, and hard for states to agree on what to do
Research Issues

- **Scalability of the public blockchain**
 - Alternatives to PoW: proof of stake, proof of hold, proof of use, proof of stake/time, ...
 - New generation blockchains, e.g. Bitcoin-NG [Usenix 2016]

- **Smart contracts**
 - Code certification and verification

- **Blockchain interoperability**
 - Blockchain Interoperability Alliance (BIA), to promote cross-blockchain transactions

- **Blockchain and big data**
 - Blockchain-generated data analysis, e.g. fraud prevention based on real-time transactions
 - Blockchain-based DBMS, e.g. BigchainDB
Ethical Issues

- Blockchain can have strong (good or bad) impact on the world
 - People, society, economy, environment, ...
 - Remember: the public blockchain is great for crooks and criminals
- This raises ethical issues that we cannot simply ignore
 - See the recent panel: A Debate on Data and Algorithmic Ethics (VLDB 2018)
About Trust Again

Whoever is careless with the truth in small matters cannot be trusted with important matters.

Albert Einstein