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Abstract

An active XML (AXML) document contains special tags
that represent calls to Web services. Retrieving its contents
consists inmaterializingits data elements by invoking all its
embedded service calls in a P2P network. In this process,
the results of some service calls are often used as inputs
to other calls. Also, usually several peers provide each re-
quested Web service, and peers can collaborate to invoke
these services. This implies many equivalent materializa-
tion alternatives, with different performance.

Optimizing the AXML materialization process is a hard
problem, which often involves searching a huge space of
solutions. Current techniques for workflow scheduling and
distributed query processing are insufficient for this prob-
lem, since in AXML materialization: (i) the set of partic-
ipating peers is not known in advance; (ii) service calls
in the result of other calls forbid a simple “optimize-then-
execute” strategy; and (iii) due to the peer volatility in the
network, a plan computed by the optimizer may become in-
valid at the moment of its execution. Moreover, most of the
current optimizers are based on centralized coordination.

We propose adynamic, cost-based optimization strategy
to efficiently materialize AXML documents considering the
volatility of a P2P scenario. We formalize the problem from
a performance-oriented perspective, and present an opti-
mization strategy that incrementally generates and executes
materialization plans. This enables the optimizer to reduce
the size of the search space, get more up-to-date informa-
tion on the status of the peers, and deliver partial results
earlier. Our strategy can handle arbitrarily complex AXML
documents, and exploits decentralization in many levels.

We also present a service-oriented optimization architec-
ture calledXCraft. We evaluated our approach in an XCraft
prototype for the ActiveXML system, an open-source P2P
platform. Our results show promising performance gains
compared to centralized, static materialization strategies.
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1 Introduction

Data management techniques for peer-to-peer (P2P) sys-
tems have been extensively exploited in the last years. Two
technologies have been crucial in this scenario: the XML
format, as the universal media for data exchange; and Web
services, as the standard for program and data interoper-
ation. Web services are described as independent, self-
contained programs whose interfaces can be published, dis-
covered and invoked throughout the Web [60]. They encap-
sulate heterogeneous business processes, and their related
standards [49, 52, 62] are a practical and effective underpin-
ning for reconciling disparate systems. Thecombination of
XML and Web serviceshas enabled new models to express
powerful distributed computations, raising a new class of
active XML documents[5]. These documents consist of a
highly-adaptive media for distributed information. Hence,
solutions to efficiently support them can significantly con-
tribute towards Web computing.

Besides regular XML data, active XML (AXML, for
short) documents contain special XML elements which rep-
resent calls to Web services. These embedded service calls
can be invoked automatically or on-demand; once a service
call is invoked, its result is gathered and merged (according
to some predefined criteria) into the corresponding XML
document. Invoking embedded calls can be thought of as
materializing some intensional dataof the AXML docu-
ment. Therefore, to retrieve the contents of a document,
all of its service calls need to be materialized. Notice this is
a quite common scenario in Web applications, where deliv-
ering XML documents usually requires materializing their
contents first. We are interested in the efficient materializa-
tion of AXML documents in a P2P system.

Materializing AXML documents is quite similar to ex-
ecuting workflows: embedded service calls are tasks to be
performed, which are often related to each other, causing
some invocation constraints and data flows. For example,
invocation dependenciesoccur when service calls takes the
result of other calls as input parameters. In this case, nested
service calls must be invoked first to provide input for their
respective outer service calls. These dependencies enforce
some precedence constraints on the materialization process,
and they often imply somedata flowsbetween service invo-
cations. Some of these invocation results are required to
embody the final materialized document, while others are
intermediate results that do not need to be kept to the end of
the materialization. There may also existinvocation con-
sequencesin an AXML document, when materializing a
service call should automatically trigger another call. In-
vocation constraints of embedded service calls correspond
to some basic control flow patterns, namely sequence, par-
allel split, and synchronization [54]. However, AXML ma-
terialization always involves some data flows towards the

peer that is gathering the document contents (calledmaster
peer). Hence, an AXML document can be incrementally
composed and consumed, while partial results are seldom
meaningful in workflow systems.

Another issue in materializing AXML documents comes
from intensional answers. Namely, in AXML-enabled sys-
tems,service calls may return other service callsas the re-
sult of their invocation. This means the problem specifi-
cation (the actual document to materialize) may evolveat
runtime. This is very different from traditional distributed
query optimization settings: a query can be optimized ei-
ther statically or dynamically [16, 22], but the query spec-
ification itself does not change during optimization (except
for parameterized queries). With AXML documents, the
system must be able to dynamically update materialization
plans accordingly. Also, ideally the system should reduce
the scope of impact of these changes in the planning pro-
cess, thus avoiding excessive reoptimizations.

Basically, the intensional nodes of an AXML document
point to specific service references, including the service
URL and other parameters that are required to invoke a Web
service (as defined in the SOAP and WSDL standards [59]).
In a more flexible approach, Web services can be addressed
by abstract references,e.g., based in some ontology of ser-
vices, as in OWL-S [41]. This approach is very convenient
to describe AXML data, specially because locating the best
resources to execute service requests in a P2P system is of-
ten burdensome for users. Considering abstract service ref-
erences, an AXML document can be materialized by many
alternative strategies [44]. Regardless of the services invo-
cation order, these strategies may differ in the choice of: (i)
the peer thatexecuteseach service call; and (ii) the peer
that invokeseach service call. Observe that possibly several
peers can invoke a service call, even if it refers to a specific
Web service endpoint. This means that the master peer can
delegate the invocation of a Web service to another peer.
Such a decentralized approach adheres to a typical P2P ex-
ecution model, and it can reduce communication costs since
it avoids transfering intermediary results to the master peer.

Efficiently materializing an AXML document concerns
both determining which peer invokes and/or executes each
service call (by taking into account,e.g., their communi-
cation costs), and ordering the invocation of relevant ser-
vice calls (by exploiting possible parallel executions). This
problem is complicated by themembership fluctuationsof
a P2P system, where peers can join or leave the community
at any time. Therefore, the optimizer cannot afford to spend
much effort to generate plans that may be no longer valid at
runtime. In fact, unpredictability is endemic in large-scale
systems, andpeers are not required to generate complete
materialization plans before starting their evaluation. In-
stead, partial plans can be generated and executed (possibly
in parallel). This approach has several advantages. First, the
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optimizer can accessup-to-date knowledgeabout the sys-
tem, which increases both the quality of the plan statistics
and the plan validity. Going further,much of the decision
process can be deferreduntil the system is better informed
on service statistics and/or service location.

Contributions. In this paper, we show that dynamic tech-
niques are vital for efficiently materializing AXML docu-
ments. As a consequence, we propose a dynamic optimiza-
tion strategy that addresses Web service invocations along
with the volatility of a heterogeneous P2P environment. We
make the following contributions:

• A canonical model to represent service invocation
constraints of AXML documents. We capture rele-
vant issues related to the invocation dependencies and
consequences between service calls into a DAG-based
representation, and we define the necessary criteria to
check its validity (w.r.t. deadlock and execution termi-
nation) and to eliminate redundancy. Furthermore, we
propose efficient techniques to update the graph of an
AXML document at runtime with intensional answers;

• A P2P enactment model for AXML materialization
with abstract service references. We characterize the
main participants of the AXML materialization pro-
cess, and their possible interactions in a P2P scenario.
We use this enactment model to define the search space
of materialization alternatives for AXML documents,
and to formalize the corresponding optimization prob-
lem;

• A dynamic algorithm to generate and evaluate
AXML materialization alternatives. We propose an
optimization algorithm that can handle arbitrarily com-
plex AXML documents. This algorithm splits the ma-
terialization problem into smaller parts, and then inter-
leaves planning and execution, thus enabling the sys-
tem to yield partial materialization plans and deliver
partial results earlier. Plans are encoded with opera-
tors of a materialization algebra, which we introduce
to properly evaluate embedded service calls;

• A cost model to evaluate AXML materialization al-
ternatives.We devise a cost-based strategy which rep-
resents typical characteristics of P2P systems, such as
replicated Web services, heterogeneous machines and
communication links, parallel execution, and the dele-
gation of materialization tasks; and

• An AXML optimizer architecture and prototype.We
outline a decentralized, service-oriented optimizer ar-
chitecture, calledXCraft , to support the proposed
techniques. We implemented an XCraft prototype
upon the ActiveXML system [13], an open-source P2P

platform to manage AXML documents. We describe
an experimental evaluation of its effectiveness.

Although the proposed strategy can benefit AXML ma-
terialization in general, it is specially targeted at AXML
documents containing calls todata-intensive Web services,
involving large input or output transfers within a heteroge-
neous P2P network. Despite the great improvements that
we have witnessed in communication speed, data trans-
fers through Web services protocols remain costly due to
operations such as packing/unpacking and parsing XML
data [44]. Moreover, in such a scenario the main opti-
mization goal is not to find best plans, but mostly toavoid
the worst ones(which may become unfeasible on critical
performance). Also, materialization plans may fail due to
many reasons, such as security restrictions and hardware
errors. Yet, we believe a dynamic strategy contributes to
improve system recovery, since smaller tasks can be better
monitored to enable early error detection and fixing.

Paper outline. This paper is organized as follows. We de-
scribe in Section 2 an application to motivate the need of op-
timization for AXML materialization, and in Section 3 we
present some basic concepts in AXML documents. We de-
fine the canonical formalism to represent service invocation
constraints in Section 4. Section 5 describes the P2P enact-
ment model for AXML materialization, and states the opti-
mization problem addressed in this paper. Our optimization
strategy is proposed in Section 6, including its dynamic al-
gorithm and the algebra to encode materialization plans. In
Section 7, we detail the cost model used to analyze alter-
native materialization plans. We describe the XCraft opti-
mizer architecture in Section 8. Experimental results ob-
tained with an XCraft prototype are analyzed in Section 9.
Section 10 discusses related work, and Section 11 closes
with some conclusions and perspectives.

2 Running application

There are many interesting applications for AXML doc-
uments [6], such as RSS news syndication [2] and manage-
ment of eletronic patient records [1]. In the Acware sys-
tem [10], AXML documents are explored to buildactive
content warehouses, which help biologists to continuously
integrate and transform information for food risk assess-
ment. Abiteboulet al. [9] describe an application based
on AXML documents to manage the production and dis-
tribution of Open Source software, in theeDosEuropean
project. In [44], AXML documents are used as a practical
framework for a financial application, to support a loan pro-
gram for farming activities. In this paper, we illustrate the
main AXML materialization issues with a financial applica-
tion for foreign exchange swap, namedCurrencySwap.
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(a)

Service Providers

CheckSwapStatus P2,P3,P4
GetCurrentSwaps P4,P5
GetSwapLimit P2,P3,P4
GetContractPrincipal P4,P5
CalculateDebt P2,P3,P4,P5
GetContractSwaps P4,P5
GetExchangeRate P2,P3,P4,P5
GetLocalDate P1,P2,P3,P4,P5
GetContractPDF P4,P5
ExtractExcerpt P1,P4,P5

(b)

Figure 1. The CurrencySwapapplication (a) in a
P2P setting, and (b) its Web services.

Basically, currency swap operations rely on exchanging
debts made in a specific currency against either another for-
eign currency or a fixed interest rate. For example, suppose
a Brazilian company has a contract for a loan in US dollars.
As a security against adverse exchange rate movement, this
company can negotiate with afunding bankto swap its debt
currency against a fixed interest rate. This debt is converted
into BrazilianReaisaccording to the exchange rate of the
swap operation date. On the contract settlement date, if US
dollars have become more expensive, then the company will
only have to pay the converted debt plus the interest rate,
and the funding bank will provide the remaining difference.

An interesting fact about most of the financial appli-
cations is that performance is just as important as other
tradicionally-critical issues, such as security and reliability.
For instance, stock trading systems operate in near-realtime.
Hence, optimization is a strong requirement of these sys-
tems in distributed settings.

CurrencySwapsetting. Figure 1(a) shows theCurren-
cySwapapplication in a P2P setting. Companies interact
with the system throughbrokers. The central player is
the Brazilian Mercantile&Future Exchange (BMF), which
manages all the swap operations coming from brokers.
Swap contracts are negociated with BNDES, the major
Brazilian funding bank. In turn, BNDES limits the amount
of debt subject to swapping for each company, to reduce
its financial risk. In Figure 1(a), dotted lines indicate peers
in the same intranet (e.g., peersP3 andP4 in the BMF in-
tranet). We assume data transfers in an intranet are 50 times
faster than through an Internet connection. Information on

<current contract><number> 12345 </number>
<company><name>XTechno Acme Ltd</name>

<can swap><sc id=“1” service=“CheckSwapStatus ”>
<param name=“swaps”>

<sc id=“2” service=“GetCurrentSwaps ”>
<xpath>//company/name</xpath></sc></param>

<param name=“current limit”>
<sc id=“3” service=“GetSwapLimit ”>

<param name=“company”>
<xpath>//company/name</xpath></param>

<param name=“date”>
<xpath>/current contract/today</xpath></param>

</sc></param></sc></can swap></company>
<principal><sc id=“4” service=“GetContractPrincipal ”>

<xpath>/current contract/number</xpath></sc></principal>
<swap debt><sc id=“5” service=“CalculateDebt ” followed by=“1”>

<param name=“principal”>
<xpath>/current contract/principal/amount</xpath></param>

<param name=“swaps”>
<sc id=“6” service=“GetContractSwaps ”>

<xpath>/current contract/number</xpath></sc></param>
<param name=“rate”><sc id=“7” service=“GetExchangeRate ”>

<param name=“foreign currency”>
<xpath>/current contract/principal/currency</xpath>
</param>

<param name=“date”><xpath>/current contract/today
</xpath></param></sc></param>

</sc></swap debt>
<today><sc id=“8” service=“GetLocalDate ”/></today>
<contract excerpt><sc id=“9” service=“ExtractExcerpt ”>

<param name=“text”>
<sc id=“10” service=“GetContractPDF ”/></param>

<param name=“input format”>PDF</param>
<param name=“output format”>XML</param>

</sc></contract excerpt></current contract>
(a)

<current contract><number> 12345 </number>
<company><name>XTechno Acme Ltd</name>

<can swap>yes</can swap></company>
<principal><amount>75000</amount>

<currency>USD</currency>
<due>06/20/2006</due></principal>

<swap debt>
<amount>196500</amount><flow>-15720</flow>
<currency>BRR</currency></swap debt>

<today>04/15/2005</today>
<contract excerpt> . . . </contract excerpt>

</current contract>
(b)

Figure 2. SwapWorkspacedocument at P1, (a)
before and (b) after the materialization of sc5.

swap contracts and financial indices are published through
Web services; Figure 1(b) lists the main Web services pro-
vided by each peer. Peers can gather Web services descrip-
tions either directly from service providers or from catalogs
available on the network, such as UDDI servers [52].

During business negotiations, brokers can follow swap
information for relevant contracts in aSwapWorkspacedoc-
ument, such as the one in Figure 2(a) (in a simplified AXML
notation). Basically, theSwapWorkspacedocument con-
tains the contract number, the company name and its swap
status at BNDES, the debt principal in foreign currency,
the corresponding converted amount (due to swap opera-
tions), the current date, and an excerpt of the contract settle-
ment. The contents of theSwapWorkspacedocument must
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be gathered from Web services by the invocation of embed-
ded calls, which are represented by the “sc” elements. We
denote a service call element asscX, whereX is the value
of its “id” attribute. In our example, the broker just need
to set the contract number and the company name, and then
to request (either on-demand or periodically) the system to
refresh the workspace contents. A materialized version of
theSwapWorkspacedocument is shown in Figure 2(b).

Materializing AXML data. The “sc” elements of the
SwapWorkspacedocument refer to Web services that are
provided by several different peers (see Figure 1(b)). When
a service call is invoked at a peer, the system can lookup for
its possible service providers, and then choose the best peer
to execute the call. To materialize an entire AXML docu-
ment, such a decision is usually influenced by the invoca-
tion of other service calls in the document, specially when
some input parameters contain other “sc” elements. A peer
may decide to delegate some related calls to be invoked at
another peer, gathering only the results that are necessary to
build the AXML document. For example,sc9 takes as input
the result ofsc10 in Figure 2(a), but only the result ofsc9
is required to buildSwapWorkspace.

Figure 3 illustrates three alternatives to materializesc9
andsc10. The left-most alternative represents a centralized
strategy (P1 invokes both service calls), whereas in the two
othersP1 delegates service invocations to eitherP4 (on the
center) orP5 (on the right). Delegation strategies are partic-
ularly interesting to evaluate nested service calls when the
respective executors can communicate through a link faster
than the link to the master peer.

Optimization opportunities. Many different evaluation
strategies can be used to materialize theSwapWorkspace
document, considering all the invocation possibilities of
each embedded service call. The materialization perfor-
mance may vary a lot for each strategy. For example, if
transfering the result ofsc10 through an Internet connec-
tion costs50s (e.g., from P5 to P1), then it would cost only
1s by intranet transfers. For large data transfers and many
service calls, such a difference can be much more impor-
tant. Thus, a naive materialization strategy may lead to an
unacceptable execution time.

On the other hand, optimizing the materialization of
AXML documents raises a hard problem: the number of
alternatives grows dramatically even for restricted scenar-
ios. For instance, in our simpleCurrencySwapexample,
there are at least1.898 × 1016 alternative materialization
plans1 for the SwapWorkspacedocument. Suppose each
plan is generated and analyzed in0.5ms (a quite reasonable
measure for modern PCs). An exhaustive search would last
more than305 thousand years (sic!) to find the best plan.

1Considering only the possible combinations of peers for service exe-
cutions and invocations.

Figure 3. Some alternatives for AXML materi-
alization.

Some heuristics can significantly reduce this search space.
In our example, we can apply theDivide&Conquer(D&C)
heuristic [44], which partitions the document materializa-
tion into independent tasks. This would reduce the search
space to approximately1.265×1014 alternative plans. Still,
this means more than2 thousand years only to choose the
best plan, to actually start materializing the document. De-
spite the great improvement, the time spent in optimization
remains critical. Notice that our example has only5 distinct
peers; if this number raises to10 peers, the search space be-
comes4096 times larger (with the D&C heuristic). In Sec-
tion 5.4, we provide some formula to estimate the number
of AXML materialization alternatives.

Clearly, such optimization delays are not acceptable
when materializing an AXML document. Exhaustive and
optimal search methods are often unfeasible in AXML set-
tings. Therefore, it is imperative to reduce the search space
of materialization alternatives to a manageable size, regard-
less of the size of the problem. Greedy and opportunis-
tic approaches are typical solutions for complex workflow
planning. Nonetheless, they are insufficient for AXML ma-
terializarion since they are based on local decisions, which
cannot explore delegation to reduce communication costs.
In this paper, we present a cost-based strategy to enumerate
and rank AXML materialization plans, based on a hibrid
metaheuristic. The core of our strategy is a dynamic algo-
rithm that progressively generates and evaluates these plans,
thus avoiding to explore complete search spaces, while still
considering relevant performance properties.

3 AXML Basics

A typical AXML environment involves a P2P system,
whose peers can execute and/or invoke Web services, and
an AXML document model that combines XML data and
service calls. In this section, we present the system archi-
tecture and the document model (borrowed from [3, 5, 39])
defined for the ActiveXML framework [13], an open-source
P2P platform that supports AXML documents.

5



Figure 4. Outline of an ActiveXML peer.

System architecture. The architecture of an ActiveXML
peer is depicted in Figure 4. Basically, a peer holds a repos-
itory to store local AXML documents, and a catalog of Web
service descriptions. The XML query engine provides ac-
cess to the AXML documents repository, and (when neces-
sary) can request the AXML evaluator to materialize some
AXML content. In turn, the AXML evaluator triggers em-
bedded service calls, and updates the corresponding AXML
documents accordingly. The invocation of triggered service
calls is handled by the Web service execution engine. Ob-
serve that each ActiveXML peer can act both: as aserver,
by providing Web services; and as aclient, when invok-
ing service calls that are embedded in local documents. In
particular, an ActiveXML peer can provide a distinguished
class of Web services, calleddeclarative services, which
consist of parameterized queries over local documents.

AXML document model. An AXML document is mod-
eled as a labelled tree with two types of nodes: (i) data
nodes, or regular XML nodes, which can be labelled with
either element names or data values (only for leaf nodes);
and (ii) service call nodes. The latters can encode all the
information required to access a Web service (URL, opera-
tion name, etc.). When a service call is activated, this infor-
mation is used by the ActiveXML peer to actually invoke
the service. Consider the following disjoint infinite sets of
labels: D of data values,E of element names, andS of
service names. More formally, an AXML documentd is
denoted by the expression〈τ, λ, <〉, whereτ is an ordered
tree with a finite setN of nodes and a distinguished node
root, λ : N → E ∪ D ∪ S is a labelling function for
nodes inN , such that only leaf nodes are mapped toD, and
< associates with each node inN a total order on its chil-
dren. An important subset ofN is that of all the service call
nodes ofd, calledSCd; for every nodev in N , if λ(v) → S,
thenv ∈ SCd.

The children of a service call node stand as itsinput
parameters; in the example of Figure 2(a), they are rep-
resented by “param” elements (we omit this element if the
service call has only one parameter, such as insc2). When
a service call node is invoked, its respective subtrees are
passed to the Web service, and the invocation result replaces
the call node in the document. Strictly speaking, service

call nodes are not eliminated from the AXML document,
but kept for possible further invocations [4]. Nonetheless,
our analysis focuses on a set of service calls to be evaluated
at a given moment in timein order to materialize an AXML
document. Therefore, without loss of generality, we can
ignore the fact that service call nodes may remain in the
document after their invocation, as long as they do not need
to be invoked again during the materialization process. Fig-
ure 2 shows theSwapWorkspacedocument: (a) before and
(b) after the invocation of the service callsc5. Furthermore,
elements resulting from new service invocations have a spe-
cial timestampattribute to indicate the current snapshot of
the document contents. Thereby, users may choose to con-
sider either all the previous results in the document or only
the last invocation results for feeding the new service re-
quests (namely, which data elements are going to be used
as service inputs).

Notice that both service input parameters and results
may be AXML data (i.e. contain service call nodes). More-
over, the input parameters of a service call may be either
explicitly provided by nested AXML elements or specified
by XPath expressions [65], such as the “company” parame-
ter of sc3 in Figure 2(a). An input parameter defined by an
XPath expression represents a query on the elements of the
AXML document; such a query is evaluated whenever the
service call is invoked and its result is passed in the service
request as subtrees of the parameter element.

Materialization strategies in ActiveXML. The material-
ization of some AXML data can be either explicitly re-
quested by the user or implicitly triggered by queries that
requires the (materialized) content of a document. The ma-
terialization process always starts at the peer that hosts the
corresponding document, which we call themaster peer
(e.g., peerP1 for the SwapWorkspacedocument in Fig-
ure 1). Currently, ActiveXML peers consider neither flexi-
ble service execution (with abstract service references) nor
system performance to reason about possible evaluation
strategies for AXML materialization. Instead, peers can
adopt only atype-driven strategy[39], which is defined by
the user and derived from the analysis of the input and out-
put types of the requested Web services.

For example, to materialize the service callsc9 in Fig-
ure 2(a), the user may specify an expected schema for its
result, stating thatP1 accepts only regular XML data for an
answer tosc9. Then, the user has to askP1 to invokesc9
(and its entire subtree) at eitherP4 or P5, for instance. That
is, P4 (or P5) would have to invoke bothsc9 andsc10, thus
sending back toP1 only the result ofsc9. Observe, how-
ever, that the user has to determine exactly which peers are
going to participate in the materialization process, and how
they should exchange AXML data. In fact, the work of [39]
makes room for a performance-based approach to guide the
materialization process.
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For query processing with AXML documents, selection
predicates can be used to avoid the execution of irrelevant
service calls, as proposed in [3]. In this case, the goal is
to materialize only the intensional elements that contribute
to the query result. Furthermore, when declarative services
are used, some selection predicates can bepushedto be pro-
cessed at the service providers.

4 Service Invocation Constraints in AXML

The relationships between the service calls of an AXML
document encode someexplicit and implicit constraints on
the invocation of its service call nodes. These constraints
are mostly derived from producer-consumer relationships
between service calls, and they cannot be properly repre-
sented in the AXML document tree since they rather form a
complex graph. In this Section, we present a canonical for-
malism to represent the invocation constraints of an AXML
document intodependency graphs, which are the basis of
our optimization strategy.

An important type of constraint is expressed byinvoca-
tion dependencies, which occur when a service call takes
other calls as input parameters. These aredata dependen-
cies; there may also existservice dependencies[44], namely
when some information about the Web service pointed by
a call is determined by the result of another call. We fo-
cus here on data dependencies, which are defined in Sec-
tion 4.1. AXML documents may also containinvocation
consequences, introduced in Section 4.2. We use these dif-
ferent types of constraints to define thedependency graph
of an AXML document in Section 4.3, where we also ana-
lyze issues related to validity and redundancy of these con-
straints. Going further, we define in Section 4.4 efficient
mechanisms to update the dependency graph with inten-
sional answers at runtime.

4.1 Precedence Constraints

Invocation dependencies represent precedence con-
straints on the materialization of some AXML data.
Namely, one can determine that some service calls must
be invokedbeforea given call, because the latter consumes
their results. There are two types of such parameters:con-
creteandnon-concrete, which are defined in the following.

Concrete parameters. A first class of AXML invocation
dependencies is attained bynesting a service call in a pa-
rameter of another service call– namely, by specifying a
concrete parameter. For example, in Figure 2(a), service
calls sc2 and sc3 are nested as input parameters ofsc1.
Such a node nesting entails that the call toCheckSwap-
Status depends onboth the call toGetCurrentSwaps and
GetSwapLimit. Next, we define this relationship.

DEFINITION 1 Let d be an AXML document, andvi be a
node inSCd. A nodevj is aconcrete parameterof vi iff:

• vj ∈ SCd andvj is a descendant node ofvi in d; and

• there is no nodevx ∈ SCd such thatvx is both a de-
scendant ofvi and an ancestor ofvj in d.

We refer to the set of all the concrete parameters ofvi as
∇(vi), where∇(vi) ⊆ SCd.

Furthermore, we use the notation|A| for the cardinality
of setA; thus, the number of nodes ofSCd is denoted by
|SCd|. Checking whether a service call node is a concrete
parameter of another call is rather trivial, and it can be done
in advance by a static analysis, when the document is loaded
and/or updated by an ActiveXML peer.

Non-concrete paramenters.Users may also specify input
parameters that are provided by XPath queries, such as the
“ foreign currency” parameter ofsc7 in Figure 2(a). In this
case,sc4 is not explicitly nested insc7; it has actually no
ancestor relationship withsc7. Yet, materializingsc7 de-
pends on the invocation ofsc4, sincesc4 contributes to the
input of sc7. This yields another class of invocation depen-
dencies, as follows.

DEFINITION 2 Let d be an AXML document,vi a node in
SCd, andQ an XPath expression within an input parameter
of vi. A nodevj is a non-concrete parameterof vi iff:

• vj is in the result ofΦ(Q), whereΦ(Q) is a function
that returns the set of all the service calls that con-
tribute toQ in d, such thatΦ(Q) ⊆ SCd; and

• vj 6= vi and there is no nodevx in Φ(Q) such thatvx

is an ancestor ofvj in d.

The term~∇(vi) denotes the set of all the non-concrete pa-
rameters ofvi, where~∇(vi) ⊆ Φ(Q).

Conversely to concrete parameters, a sophisticated anal-
ysis may be necessary to compute the set of service calls
that contribute to a given XPath expression, such as in [3].
Notice that the XPath expression has to be evaluated first
in order to obtain concrete inputs, and then invoke the ser-
vice. Namely, non-concrete parameters can only be deter-
minedafter their respective query is evaluated. Also, they
may imply dependency cycles, possibly leading to an in-
vocation deadlock. To detect this problem, we define in
Section 4.3 some validity criteria for the dependency graph
of an AXML document. When these cycles are detected,
we assume they are either broken prior to our optimization
analysis, as in [3], or the materialization process is aborted.

Transitive dependencies. In Definition 2, we disregard
some redundant dependencies that may occur in the same
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attribute. Basically, such a redundancy happens when some
service calls inΦ(Q) are nested in the AXML document.
For example, suppose the “text” and “input format” param-
eters ofsc9 in Figure 2(a) are rewritten as:

<param name=“text”><xpath> // </xpath></param>

<param name=“input format”>XML</param>

Then, potentially all the other service calls in the docu-
ment can contribute to the result of the XPath expression
in “ text” (assuming that self-dependencies and cycles are
properly eliminated). In particular, bothsc1 andsc2 are in
Φ(//). However, according to Definition 2, onlysc1 is a
non-concrete parameter ofsc9, sincesc2 is nested insc1.
The rationale behind this simplification is that the redun-
dant parameter no longer exists (in its active form) after its
first execution, which is triggered by the dependencies of its
closest outer service call. In Section 4.3, we use this princi-
ple to reduce redundancy of an entire AXML document.

Redundant dependencies are essentially related to the
transitivity of service call parameters, which we define next.

DEFINITION 3 Given two service call nodesvi andvj , we
say thatvj is an intensional parameterof vi, denoted by
vj → vi, iff vj ∈ ∇(vi) ∪ ~∇(vi). The termfanIn(vi)
represents the number of intensional parameters ofvi,
which corresponds to|∇(vi) ∪ ~∇(vi)|. Similarly, the term
fanOut(vj) denotes the number of nodes which havevj as
an intensional parameter.

DEFINITION 4 Given two service call nodesvi and vj of
an AXML documentd, the nodevj is a transitive parameter
of vi, denoted byvj

∗→ vi, iff there is a path of the form
vj → vx1 → . . . → vxn → vi in d, with n ≥ 1.

The transitive parameter with the largest path length de-
termines theabstract critical pathof an AXML document,
that is the longest path of sequential service invocations.
Notice we are considering only the number of service call
nodes in the path. When materializing a document, another
important path is that with the longest execution time.

4.2 Consequence Constraints

Another way to express invocation constraints in AXML
documents is specifying a “followed-by” attribute in the ser-
vice call elements. For example, in Figure 2(a), this clause
constrains the invocation of the service callsc1 with respect
to sc5. Namely, oncesc5 is invoked, an invocation ofsc1
must be triggeredimmediately after(as a consequence of)
the invocation ofsc5. However, invokingsc1 should not
disturbsc5.

Notice the semantics of consequence constraints differs
significantly from that of invocation dependencies. While
these dependencies are intrinsicaly associated to data flows

to feed Web service inputs, consequence constraints denote
an invocation sequencing of service calls that do not neces-
sarily have data dependencies between each other.

DEFINITION 5 An AXML document with collateral calls is
of the form〈d, ↪→〉, whered is a regular AXML document
and ↪→ is an one-to-one partial mapping of nodes inSCd

to nodes inSCd. Given two service call nodesvi and vj ,
vi 6= vj , if vi ↪→ vj , then each invocation ofvi automati-
cally triggers an invocation ofvj , which is referred to as a
collateral callof vi.

For simplicity, we assume that a service call may be as-
sociated with only one collateral call. Observe that collat-
eral calls may trigger other calls, which in turn may have
their own collateral calls, and so on. Hence, the invocation
consequences of an AXML document may determine tran-
sitive constraints, as defined next.

DEFINITION 6 Let vi andvj be two service call nodes of
an AXML document〈d, ↪→〉. The nodevj is a transitive

collateral callof vi, denoted byvi
∗

↪→ vj , iff there is a path
of the formvi ↪→ vx1 ↪→ . . . ↪→ vxn ↪→ vj in d, withn ≥ 1.

It is worth mentioning that one cannot express collateral
calls by using only invocation dependencies. Invoking an
outer call always implies the previous materialization of its
dependencies. On the contrary, executing nodes that are
collateral calls should not disturb their respective counter-
parts. In general, the distinction between process depen-
dencies and consequences can be also found in workflow
specifications, such as theprecedeandenableconstructs
of the ActivityFlow language [34]. This is also similar to
theenabling flowsof the Vortex system [30].

The invocation constraints of an AXML document cor-
respond to some basic workflow patterns [54]. More pre-
cisely, invocation dependencies can be mapped to thesyn-
chronizationcontrol pattern. In particular, shared depen-
dencies can also produceparallel splits. On the other hand,
collateral calls correspond to thesequencecontrol pattern.
Additionally, they calls allows multiple instances of ser-
vices calls without synchronization, which corresponds to
the structural pattern 12 of the classification in [54].

Observe that, when optimizing the materialization of
an AXML document, intensional parameters represent es-
sentially some clustering criteria to reduce communication
costs. Conversely, collateral calls correspond to the sequen-
tial invocation of new service calls possibly without implicit
data flows.

4.3 Dependency Graph

We present here a formalism based ondirected acyclic
graphs(DAG) to express the invocation constraints of an
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Figure 5. Statechart of service call nodes.

AXML document. We use this abstract representation
rather than the AXML tree mainly because non-concrete
parameters and collateral calls result into dependencies that
can be arbitrarily complex. Such relationships cannot be
naturally expressed by tree structures. Furthermore, reason-
ing about invocation constraints, such as verifying shared
dependencies and non-concrete (or collateral) transitivity,
is done at this level.

In our analysis of invocation dependencies, we consider
that most of the Web services do not understand AXML
data, and thus cannot process correctly intensional (concrete
and non-concrete) parameters. For regular Web services,
these parameters must be invoked before executing the ser-
vice call. On the other hand, such a invocation might be un-
necessary, or even incorrect, for AXML-enabled services.
Thus, the user has to specify whether intensional parameters
must be invokeda priori. In practice, we do not distinguish
AXML-enabled Web services, and the execution of inten-
sional parameters is enabled by setting an attribute of their
respective “sc” elements. Hence, our analysis is focused on
intensional parameters that are always invokeda priori.

Figure 5 shows the possible states of a service call node
during AXML materialization; the states “inactive” and
“ failed” are shown with double rectangles because they are
terminal (i.e., when nodes become stable). Service call
nodes start with either state “active” or “ inactive”. A node
may be initially set as “inactive” due to many reasons, such
as bad AXML specification, user selection, or because some
preliminary analysis has considered the invocation of this
node unnecessary for the document materialization, as in
[3]. On the other hand, an active node becomes “ready”
when all of its intensional parameters are “inactive”. If
ready, a node can be invoked, and then it reaches either the
“ inactive” state or the “failed” state, according to the suc-
cess or fail, respectively, of its invocation. Also, a node
moves to the “failed” state if the invocation of some of its
dependencies fails.

First-level service calls. Some service call nodes play a
distinguished role in the AXML materialization process be-
cause the results of their invocation constitute the contents
of the AXML document. These results must be kept in the
document after its materialization finishes. This is opposed

to the results obtained from nested calls, which are often
temporary and only needed to invoke their dependant calls.
Service call nodes with persistent results are defined next.

DEFINITION 7 A nodevi is a first-level service callof an
AXML documentd iff vi ∈ SCd and for any nodevx in d, if
vx is an ancestor ofvi, thenvx /∈ SCd. We denote byξ the
set of all the first-level service calls ofd, such thatξ ⊆ SCd.

First-level calls can be found statically by a straightfor-
ward procedure. In Figure 2(a), the nodessc1, sc4, sc5,
sc8, andsc9 are first-level service calls. Such a distinction
is relevant for the optimizer to assess the costs of delegating
parts of a document to be materialized by other peers.

Dependency graphs defined. We are now able to for-
mally define thedependency graphof an AXML document.
This graph concisely represents all the synchronization con-
straints that must be enforced on the service calls within the
document. It is a central input to our optimization effort.
Although this graph explicitly refers to invocation depen-
dencies, it also encompasses collateral calls. Our emphasis
is on intensional parameters because they reflect essential
aspects of the AXML document, while collateral calls come
from optional annotations on the service call nodes.

Basically, a dependency graph can be obtained by static
analysis. Since users may specify AXML documents with
cyclic dependencies and infinite execution loops, first we in-
troduce a general definition for the dependency graph. Af-
ter that, we restrict the valid dependency graphs to acyclic
instances. However, we have to consider a particular defini-
tion of cycles in a dependency graph, since invocation de-
pendencies and collateral calls represent distinguished types
of edges between nodes, and they can contribute in a tricky
way to form cycles.

DEFINITION 8 Thedependency graph∆ of an AXML doc-

ument〈d, ↪→〉 is denoted by the expression
〈
G,⊗,

↪→
E, ε

〉
,

whereG is a directed graph with a setV of nodes,V =
SCd, and a setE of edges. The setV has a distinguished
subset⊗ of persistent nodes, such that a nodevi is in ⊗
iff either vi ∈ ξ or fanOut(vi) > 1. Edges inE are ei-
ther simpleor collateral. For any two nodesvi andvj in V ,
there is a simple edgevj → vi in E iff vj is a intensional

parameter ofvi in d. The subset
↪→
E denotes the collateral

edges ofE; there is an edgevi ↪→ vj in
↪→
E iff vi ↪→ vj in d.

The termε denotes a state function that maps each node in
|V | into {active, ready, inactive, failed}.

Notice that a dependency graph encodes apartial order
on the service calls of the respective AXML document. Fig-
ure 6 depicts the graph derived from theSwapWorkspace
document in Figure 2(a). Nodes are represented by circles
labelled with service call IDs, where double-line circles are
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Figure 6. Dependency graph of the Swap-
Workspacedocument.

persistent nodes. Dashed arrows indicate collateral edges.
We assume all nodes are in the “active” state.

Graph validity. Users may specify AXML documents with
arbitrary dependency graphs, possibly containinginvoca-
tion deadlocksand infinite execution loops. We consider
that such documents are invalid, since they cannot be prop-
erly materialized.

Figure 7 shows the basic invalid combinations of invoca-
tion constraints between service call nodes (illustrated with
“scX”, “ scY”, “ scW”, and “scZ”). Loosely speaking, the
subgraph of simple edges of a valid graph must be acyclic,
to avoid dependency cycles such as in Figure 7(a). Also,
the subgraph of collateral edges should be acyclic, thus pre-
venting the pattern of Figure 7(b). Moreover, an infinite
execution loop occurs if either a node is a collateral call of
some of its dependencies (Figure 7(c)) or an alternate se-
quence of simple and collateral edges converge to a cycle,
as shown in Figure 7(d). Notice the forbiden patterns of
Figure 7 also apply for transitive constraints; for example,
if vx

∗→ vy, then we cannot havevy
∗→ vx in the graph.

In summary, about the interactions between simple and
collateral edges, we have that:

• they do not concurr to form deadlock cycles, since col-
lateral calls do not involve data dependencies; but

• their combination may contribute to form infinite exe-
cution loops, as shown in Figures 7(c) and 7(d). Hence,
to check a dependency graph for execution termina-
tion, we have to consider collateral edges as simple
edges with opposite direction.

From the above, let thesequencing componentof a de-
pendency graph be the graph resulting from replacing all
the collateral edges by inverted simple edges. Then, we can
summarize these validity criteria in the following.

DEFINITION 9 A dependency graph∆ is valid iff:

• the subgraph with all the simple edges of∆ is an
acyclic digraph; and

• the sequencing component of∆ is an acyclic digraph.

(a) (b)

(c) (d)

Figure 7. Basic invalid invocation constraints
of a dependency graph.

The first bullet of Definition 9 avoids invocation dead-
locks, while the second addresses infinite executions. We
clearly distinguish between deadlock and termination de-
tection because we consider the user may need a relaxed
notion of graph validity, where termination is guaranteed
by some pre-determined fixpoint.

Graph validity can be checked when documents are cre-
ated or altered by the user. However, such a verification
may also be required during AXML materialization, at run-
time, in case of intensional answers. Checking for validity
can be done inO(|V |3), based on the time complexity of
computing the transitive closure of the graph using the well-
known Warshall’s algorithm [11]. For AXML optimization,
we consider only valid graphs.

Redundant dependencies.An AXML document may de-
rive a dependency graph with redundant dependencies. No-
tice that we can suppress the edgesc4→sc5 in Figure 6,
sincesc4

∗→sc5 (from sc4→sc7 andsc7→sc5) makes it re-
dundant. The resulting reduced graph is shown in Figure 8.
Previously, we eliminated redundancy of non-concrete pa-
rameters within the same input parameter of a service call.
We extend this idea to the entire document.

Following [50], we say that two graphs are equivalent if
they arebisimilar. However, here we also consider node
labels, and we focus bisimulation on redundant invocation
dependencies, as stated next.

DEFINITION 10 A dependency graph∆a subsumesan-
other dependency graph∆b, denoted by∆a ⊂ ∆b, iff:

• Va = Vb, ⊗a = ⊗b,
↪→
Ea=

↪→
Eb, εa = εb, andEa ⊂ Eb;

and

• for some nodesvi andvj in Vb (or Va), if bothvi → vj

andvi
∗→ vj are inEb, thenvi → vj is not inEa. The

edgevi → vj is said aredundant dependencyof ∆b.

Theminimum reduced graphof ∆a is a graph∆MR
a such

that ∆MR
a ⊂ ∆a and∆MR

a has no redundant dependency.

10



Figure 8. Reduced version of the dependency
graph of Figure 6.

Moreover, we say that the graphs∆a and∆b are bisimilar
if ∆a ⊂ ∆b or ∆b ⊂ ∆a.

Several redundant dependencies may occur in an AXML
document, and their reduction is important to avoid unnec-
essary optimization efforts. Notice bisimulation is a formal
basis for the elimination of redundant AXML dependencies.
Therefore, the minimum reduced graph is acanonical rep-
resentationof the invocation constraints of an AXML doc-
ument, as follows.

PROPOSITION 1 Let ∆ be a dependency graph with re-
dundant dependencies. There is at least one reduced graph
∆R which is equivalent to∆ and at most one minimum re-
duced graph∆MR.

Proof: By definition of graph bisimulation, if∆ has redun-
dant dependencies of the formvi → vj andvi

∗→ vj , then
we can eliminate at least onevj → vi, and the reduced
graph∆R remains equivalent to∆. Furthermore, one can
always reduce∆ by applying a sequence of one-edge elim-
inations, such that if∆R cannot be further reduced, then
∆R = ∆MR. The ultimate set of eliminated edges is the
same regardless of the order of the eliminations steps, and
therefore there is only one possible∆MR.

A dependency graph with only concrete parameters is re-
duced by definition, since redundancy is intrinsically related
to shared dependencies (which occur due to non-concrete
parameters). On the other hand, for non-concrete parame-
ters, graph reduction has time complexityO(|V |3), based
on the transitive closure of the graph. However, only nodes
with fanOut ≥ 1 can be origin of redundant edges, and
the tight bound is actuallyO(|⊗| × |V |2). Notice that non-
concrete parameters are, in general, quite expensive to be
handled in AXML materialization.

Unless stated otherwise, hereafter we will use the terms
dependency graph and minimum reduced graph inter-
changeably.

Exit points. Nodes that do not have outgoing simple edges
(i.e., with fanOut = 0) are particularly important for the
materialization of a dependency graph; they are said theexit
points of the graph. They can be used to unfold a graph

into spanning trees, thus enabling the optimizer to break the
materialization problem into smaller parts and thereby to
reduce the overall complexity. Also, they represent points
where the materialization process finishes (i.e., after mate-
rializing them and properly triggering their collateral calls,
the materialization process should stop). For example, the
nodessc1, sc5, andsc9 are the exit points of the graph in
Figure 6.

L EMMA 1 Every valid non-null dependency graph∆ has
at least one exit point.

Proof: The crux here is that, although collateral edges may
concur with invocation dependencies to cause cycles, they
have no influence on exit points (to determine thefanOut
of a node). Thus, only simple edges must be considered.
First, suppose∆ is a singleton, namelyV = {v}. Then,
fanOut(v) = 0 by definition, andv is an exit point. Con-
sider now that∆ has|V | nodes, with|V | > 1, such that
each node has at least one simple outgoing edge. Pick any
nodev1 in ∆; sincefanOut(v1) > 0, there is a nodev2

such thatv1 → v2. In turn, v2 also has an outgoing edge
v2 → v3, and so forth. The nodes in∆ are finite, and
this path cannot continue forever. At some point, this path
leads to repeated nodes, thus constituting a cycle. Since∆
is valid, hence an acyclic digraph w.r.t. simple edges, this
is a contradiction. Therefore, there must exist at least one
node without outgoing simple edges for∆ to be valid.

Lemma 1 is important because it guarantees that, despite
the complexity of the shared dependencies and collateral
calls, the optimizer has always an exit point to start evaluat-
ing a valid dependency graph. Furthermore, assuming ser-
vice executions always stop after some period of time, valid
graphs are termination-safe, as shown in the following.

PROPOSITION 2 In a valid dependency graph∆, given
any nodev, eitherv is an exit point of∆ or there is a fi-
nite path betweenv and some exit pointve of ∆, such that
v

∗→ ve. Moreover, all the transitive collateral calls that
originate directly or indirectly from nodes inv

∗→ ve (in-
cludingv andve) have a finite path.

Proof: If ∆ is a singleton, thenv is an exit point by defini-
tion. On the other hand, consider∆ has|V | nodes, with
|V | > 1, such that each node has an arbitrary number
of both simple and collateral outgoing edges. First, from
Lemma 1, we have that∆ has at least one exit point. Fur-
thermore, picking any nodev in ∆, if fanOut(v) = 0, then
v is an exit point. Otherwise, there is at least one nodevx

such thatv → vx. In turn, eithervx is an exit point or it
also has an outgoing edgevx → vy, and so forth. Since∆
is cycle-free w.r.t. simple edges, by induction this path has
to lead to some exit pointve. Moreover,|V | is finite, hence
the lenght of the transitive dependencyv

∗→ ve is also finite.

11



Consider now the sequencing component of∆. Any collat-
eral call that is triggered (directly or not) by some node in
v

∗→ ve, includingv andve, must be in a sequencing path
that leads tove (recall collateral edges are inverted in the
sequencing component). Notice that such a path does not
end withve if this node has a collateral call. However, the
sequencing component of∆ is an acyclic digraph with a
finite number of nodes, and therefore all of its sequencing
paths are finite.

Notice Proposition 2 concerns thesnapshot semanticsof
a dependency graph. That is, it does not consider the effects
of occasional intensional answers, but rather the current
graph topology. Next, we discuss how graphs can evolve.

4.4 Dynamic Graph Updates

An AXML-enabled system may allow Web services to
return service calls in their results. This artifice can be very
useful in many scenarios. For instance, suppose a Web ser-
vice does not have a certain information that was requested
by the user, but it knows which Web services can provide it.
In this case, the service may return other calls (to alternative
providers), and let the user decide whether to pursue the re-
quest through other Web services. In this way, the material-
ization of AXML data can bedynamically distributed, thus
providing peers with great flexibility for collaboration [32].

In theCurrencySwapexample (Figures 1 and 2), suppose
the repository of PDF files atP4 is down, and invoking the
service callsc10 atP4 returns the following result:

<sc id=“11” service=“Ps2Pdf”>
<sc id=“12” service=“GetContractPS”/></sc>

Then, to materialize theSwapWorkspacedocument, the
master peer has now to invoke bothsc11 andsc12, to gather
input data for the “text” parameter ofsc9. Moreover, this
may require discovering information about the peers that
provide the Web services referred bysc11 andsc12.

Intensional aswers may significantly change the AXML
document – indeed they raise several tough problems for
AXML optimization:

• as these answers arrive, the dependency graph has to
be updated (at runtime) with the new service calls to
allow checking for validity;

• it may be necessary to refresh the service directory
with information about the requested Web services.
Also, optimizing the newcomers may involve gather-
ing some statistics and costs parameters;

• since the specification of the AXML document is al-
tered, involving new data flows and possibly other ser-
vice providers, previous optimization choices may be
contradicted; and

• some Web services might return undesirable or infinite
intensional answers.

To guarantee a correct AXML materialization (in terms
of data types) and to ensure its termination, the ActiveXML
system implements a powerful typing mechanism for ser-
vice call results [39]. Intensional results are recursivelly
materialized until either the document satisfies a specific
type or a fixpoint is reached. In this paper, we rather an-
alyze intensional answers from a performance-oriented per-
spective. Hence, we consider issues related to dynamically
updating dependency graphs with these answers, and their
impact on the optimization process.

Connecting intensional answers.The idea behind inten-
sional answers is that the AXML document may “evolve”
during the materialization process. Consequently, each in-
tensional answer requires an update operation on the depen-
dency graph. Recall that intensional nodes remain either in-
active or failed after invoked. A dependency graph update
is defined as follows.

DEFINITION 11 Let d be an AXML document,∆ its de-
pendency graph andvi a node of∆. Supposedu is the
AXML data returned by the invocation ofvi, which is used
to updated. If the graph∆u obtained fromdu is not null,
then∆u is said anintensional answerof vi.

DEFINITION 12 An update operationu is a triple
〈∆, vi, ∆u〉, where∆ is a dependency graph containing the
nodevi, and ∆u is an intensional answer ofvi to be in-
serted into∆. The operationu transforms∆ into a graph

∆′ =
〈
G′,⊗′,

↪→
E′, ε′

〉
according to theUpdate function in

Figure 9(a). The nodevi is said theorigin of u.

To update the dependency graph, intensional answers
must be properly connected to it, such that invocation con-
straints and their transitive relationships are preserved. In
general, propagating these constraints may be very costly.
Fortunately, in practice, we find some heuristics that are
particularly handy in this context. Based on some proper-
ties of the AXML document model, we make the following
assumptions:

(i) New service call nodes are not affected by the collat-
eral relationships of the AXML document. The intu-
ition is that collateral calls point to specific service
calls references. Also, they represent new instances
of service invocations, regardless of previous execu-
tion results. Therefore, the newcomers neither inherit
the collateral relationships of their origin node nor are
referred by pre-existing nodes;
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1 functionUpdate(∆, vi, ∆u): ∆′

2 {Update∆ at nodevi with ∆u.}
3 begin
4 let V ′ = V ∪ Vu

5 let E′ = E ∪ Eu and
↪→
E′=

↪→
E ∪

↪→
Eu

6 if vi ∈ ξ then{first-level call}
7 ξ′ = ξ ∪ ξu

8 elseξ′ = ξ
9 end if

10 if fanOut(vi) > 1 then{shared dependency}
11 ⊗′ = ⊗ ∪⊗u ∪ ξu

12 else⊗′ = ⊗ ∪⊗u

13 end if
14 ConnectSubGraph(∆u, vi, ∆′)
15 Re-evaluate non-concrete parameters of∆′

16 for eachvx in V ′ do
17 setε′(vx) according toε(vx) or εu(vx)
18 end for
19 setε′(vi) = inactive
20 return∆′

21 end

21 procedureConnectSubgraph(∆u, vi, ∆′)
22 {Connect the subgraph∆u to ∆′ according to

vi’s dependencies.}
23 begin
24 let Out be the set of outgoing “→” edges ofvi,

such that|Out| = fanOut(vi)
25 for eachvx in ξu do
26 for eachvi → vy in Out do
27 Add vx → vy to E′

28 end for
29 end for
30 end

(a)

1 procedureConnectSubgraphWithPipe(∆u, vi, ∆′)
2 {Connect the subgraph∆u to ∆′ according to

vi’s dependencies, using apipe node.}
3 begin
4 Add a new nodepipe to V ′

5 for eachvx in ξu do
6 Add vx → pipe to E′

7 end for
8 for eachvi → vy in E do
9 Add pipe → vy to E′

10 end for
11 if vi ∈ ξ then
12 Add pipe to ξ′

13 end if
14 if fanOut(vi) > 1 then
15 Add pipe to⊗′
16 end if
17 end

(b)

Figure 9. Algorithm to ( a) update ∆ and (b)
connect ∆u through a pipe node.

(ii) Intensional answers do not contain non-concrete pa-
rameters refering to nodes from other parts of the
AXML document, because Web services are not nec-
essarily aware of the document contents, and these pa-
rameters involve context-dependant specification;

(iii) Analogously, the collateral calls of intensional an-
swers refer only to newcomers; and

(iv) New nodes do not depend on the intensional param-
eters of the origin call, since invocation results either
replace the entire subtree of their origin node or are
placed as their siblings in the document tree.

From these points, we can consider that intensional
answers areloosely coupledwith the dependency graph.
Therefore, only the outgoing simple edges of the origin
service call are used to connect intensional answers, as en-
coded in the algorithms of Figure 9.

We show an example of connecting intensional answers
to a dependency graph in Figure 10. In this example, a ser-
vice call node “scX” is invoked and returns some arbitrary
intensional answer represented by∆u (Figure 10(a)). Then,
for each outgoing edge of “scX”, we connect each first-level
service call of∆u to the respective target node. Namely, to
the node depending on “scX”, as illustred in Figure 10(b).

Pipelined graphs.Despite these simplifications, updating a
dependency graph may involve creating many edges to link
the new nodes. The first-level calls of the intensional answer
must be joined to the service calls that depend on the origin
node (see the double loop in lines 25 and 26 of Figure 9(a)).
To improve the performance of this procedure, we introduce
a special service call node in the resulting graph. This node
refers to a very simple Web service called “pipe”, which is a
generic service – that is, it can be executed by (potentially)
any peer of the system.

The semantics of thepipe service is fairly simple: it
receives the results from its invocation dependencies, and
passes them to its dependant nodes.Pipe nodes are trans-
parent with respect to the contents of their inputs; they nei-
ther produce new AXML data or eliminate any node. Their
goal is to simplify the changes that are necessary to update
a dependency graph.

DEFINITION 13 Given a dependency graph∆ and an up-
date operationu, the pipelined graph∆p is the graph re-
sulting fromu such that apipe node is used to connect∆u

into ∆, according to the algorithm of Figure 9(b).

Notice in Figure 10(c) that apipe node concentrates the
edges that connect an intensional answer, thus reducing the
memory requirements of the resulting graph. If new nodes
are connected directly to the dependency graph, then this
number is given by:

fanOut(vi)× |ξu| . (1)
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(a) (b) (c)

Figure 10. (a) The invocation of node “ scX” returns an intensional answer ∆u; (b) connecting ∆u to
the dependency graph with the Updatealgorithm; and (c) using a pipenode.

On the other hand, withpipe nodes, the number of edges to
link the intensional answer∆u of a nodevi is bound to:

fanOut(vi) + |ξu| . (2)

Pipelined graphs are particularly useful when the fan-out
of the origin call is greater than 1. Also, they are helpful if it
is necessary to relax the loosely-coupling assumption. That
is, they can be used to “centralize” properties inherited by
the new nodes from their origin. For instance, if one con-
siders that intensional answers should inherit the collateral
calls of their origin node. Furthermore, it can be proved
that the graph∆p is equivalent (according to Definition 10)
to ∆′ augmented with thepipe node and its edges. Pipe
nodes are inspired on the use of “epsilon edges”, which are
introduced in [50].

Update validity. Updating a dependency graph requires
checking whether the intensional answers lead to deadlocks
or infinite collateral loops. Therefore, we state the follow-
ing criterion.

DEFINITION 14 An update operationu = 〈∆, vi, ∆u〉 is
correctiff its resulting graph∆′ is valid.

Observe that our approach allows to verify the validity
of the resulting document before applying the changes to it,
by reasoning based on dependency graphs. The heuristics
used to update the graph also contribute to restrict such a
verification to only the intensional answers. This is possi-
ble because we consider that new intensional nodes are not
tightly connected to the AXML document.

PROPOSITION 3 Let ∆ be a valid dependency graph and
u = 〈∆, vi, ∆u〉 be an update operation. If∆u is valid,
thenu is correct.

Proof Sketch:By definition (according tothe Updatealgo-
rithm), an update operation connects new nodes such that:
they do not depend on existing service calls; and they do
not trigger (or are triggered by) collateral calls of the origi-
nal graph. Therefore, the newcomers can contribute to form
neither invocation deadlocks nor collateral cycles with ex-
isting nodes. Since the graph is valid before the update, only
its new portion needs to be checked. Hence, the validity of
∆′ is determined by∆u.

Lenient updates. Another performance issue of handling
intensional answers can be found at line 15 of theUpdate
algorithm, in Figure 9(a). Whenever the AXML document
changes, the input queries of non-concrete parameters may
need to be re-evaluated. This approach is often quite time
consuming. A less expensive alternative to do that con-
sists in performing alenient analysis: the re-evaluation is
triggered only after a certain number of service call invoca-
tions (or intensional answers), thus allowing the document
to evolve freely meanwhile. To proper formalize this idea,
we first define the high-level semantics of instantiating an
AXML materialization process as follows.

DEFINITION 15 Let d be an AXML document, and sup-
pose the dynamic sequenceItimeline = [v1, . . . , vn] is ob-
tained by successively picking a ready node ofSCd and in-
voking it, until all nodes inSCd are stable, wherevn is the
last node invoked. Amaterialization phaseφ of d during
Itimeline is an expression〈∆0, ℘, IT, U, β〉, where:

• ∆0 is the dependency graph ofd beforev1 is invoked;

• ℘ is the duration criterionof φ, which is a boolean
predicate defined on some properties ofd andφ, such
as the maximum number of invoked service calls. The
duration criterion is evaluated for eachvx in Itimeline,
1 ≤ x ≤ n, until it becomes true;
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• IT is theinvocation trailof φ, which consists of a se-
quence[v1, . . . , v`] of service calls invoked until℘ is
evaluated to true, such thatIT ⊆ Itimeline. The num-
ber ` is said thedurationof φ, where1 ≤ ` ≤ n;

• U is a sequence of update operations caused by the
service invocations ofIT on∆0; and

• β denotes thebacklogof φ, namely a surjection from
nodes inIT to new service call nodes inSCd, such
that β(vx) returns the set of all the active nodes that
were added toSCd by intensional answers from the
invocation ofv1 tovx, withvx included and1 ≤ x ≤ `.

We denote by∆x thesnapshot graphof d after the invoca-
tion ofvx, 1 ≤ x ≤ `. The phaseφ is incompletewhile℘ is
false andSCd has active nodes; otherwise,φ is complete.

The semantics of a materialization phase is a period,
measured in number of service call invocations, while the
contents of an AXML document evolve. NoticeItimeline

may be infinite. For example, suppose the AXML docu-
ment contains a service call that always returns another call
to the same service. Also, the duration criterion may be
defined on physical properties of the materialization phase,
such as the total time spent in the execution of the service
calls. Furthermore, only active nodes are accounted in the
backlog of a phase, since some new intensional nodes may
become inactive (by being invoked) before a phase finishes.

DEFINITION 16 A materialization phaseφ of length` is
admissibleiff the snapshot graph∆` is valid. We say that
φ is x-admissibleiff ∆` is invalid and there is a numberx,
1 ≤ x < `, which is the maximum value for that∆x is
valid.

COROLLARY 1 Given any phaseφ with a valid∆0, if all
the update operations inU are correct, thenφ is admissible.

Based on materialization phases, we can determine
checkpoints for the re-evaluation of non-concrete param-
eters, thereby deferring this analysis to a “reasonable”
amount of changes. To perform such an analysis, we con-
sider alenient update operationby excluding line 15 from
theUpdate algorithm (Figure 9(a)), and we extend Defini-
tion 15 as follows.

DEFINITION 17 A lenient materialization phaseis denoted
byφlen =

〈
∆0, ℘, IT, U len, β, len

〉
, where:

• The terms∆0, ℘, IT , andβ are defined as forφ;

• U len is a sequence of lenient update operations caused
by the service invocations ofIT on∆0; and

• len is the leniency criterionof φ, which is a boolean
combination of predicates of the form “|A| op a”, such
thata is an integer, the termop is in {=, >, <,≤,≥},
and the setA is in {SCd, IT, U len, β}. At eachvx

in IT , 1 ≤ x < `, this criterion is checked, and the
re-evaluation of the non-concrete parameters of∆x is
triggered iflen is true.

Additionally, the re-evaluation is always triggered afterv`.

Conversely to℘, we restrict the definition oflen, since
a lenient re-evaluation analysis focuses rather on amounts
of service calls (invoked or not). An interesting property of
φlen is that, at each re-evaluation point, the analysis has to
consider only the nodes in the backlog in order to insert new
non-concrete dependencies into the graph.

Furthermore, recall the XPath expression of an input pa-
rameter is always evaluated when the respective service call
is invoked. If some intensional nodes contribute to this
query, then they are considered non-concrete parameters
and the results of their invocation are passed to the outer ser-
vice call. Hence, although the dependency graph may miss
some non-concrete edges in a lenient analysis, these depen-
dencies are always enforced during the materialization. Ob-
serve that Proposition 1 also applies to lenient phases. The
major drawback of a lenient analysis is that peers cannot
attempt to optimize in advancesomeof the data transfers
related to service calls in the backlog.

Final remarks. Representing service invocation con-
straints is an important issue in the materialization of
AXML documents. In particular, because it enables the sys-
tem to check relevant properties of a document, and to con-
trol its evolution during the materialization process. In spite
of that, it is worth mentioning that the canonical model and
update techniques that we propose in this Section are not a
requirement of the XCraft optimization strategy. They ac-
tually provide a formal underpinning that can be explored
by any systematic approach to AXML verification and/or
optimization. Nonetheless, since our proposal relies on a
very popular structure for components dependencies (i.e.,
graphs), the cornerstone ideas of our optimization strategy
can be applied on a general context, regardless of the tech-
niques presented in this Section.

In the next Section, we formalize the problem of deter-
mining an efficient configuration of service executors and
service callers to materialize an AXML document.

5 Materializing AXML Documents

A basic way to write an AXML document consists in
hard-wiring a specific address for each embedded service
call, including the service URL. Namely, the user has to
locate a peer to execute each service call. This approach is
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quite cumbersome, specially because P2P systems are often
complex, highly-dynamic arrangements of many peers. In
a more flexible approach, one can use abstract references to
identify Web services, based in some ontology of services,
such as in OWL-S [41]. These references correspond to
entries in a service directory, as in a UDDI repository [52],
where they are mapped to the peers that actually provide the
services. Since a Web service may be provided by several
peers, ideally users can rely on the system to choose the
best provider (in terms of performance, or another set of
properties) to execute each service call.

Notice that even if specific service addresses are used,
peers can collaborate to materialize a document by delegat-
ing some service calls to be invoked at other peers. In this
case, peers need some strategy to distribute the materializa-
tion process. Also, since such a collaboration allows many
different materialization alternatives, an automatic strategy
requires metrics to reason about delegation.

In this Section, before enumerating these alternatives and
pointing appropriate metrics, we describe the main partici-
pants of the AXML materialization process, how they can
collaborate in a P2P scenario, and their necessary bind-
ings for Web service invocation. Then, in Section 5.4, we
characterize the problem of optimizing AXML materializa-
tion: we determine some bounds for the search space, intro-
duce the notion of materialization plans for AXML docu-
ments, and discuss important issues on generating and rank-
ing these plans. We close this discussion in Section 5.5 with
an analysis of the impact of the dependency graph shape on
optimization strategies for AXML materialization. In the
sequel, we assume an infinite setP of peer names in the
system. Furthermore, each peer keeps a list ofneighbors
(denoted byN , such thatN ⊆ P), namely the peers it can
collaborate for AXML materialization.

5.1 Equivalent, Replicated and Generic Services

The evolution of the Semantic Web has fostered services
orchestration in several distributed scenarios, such as P2P
systems [8, 17, 26] and grid computing [14, 21, 29, 57, 66].
An atractive property of semantic-enabled systems is that
distributed applications can be defined byabstract specifi-
cations, and then instantiated on an execution environment
based uponequivalent Web services. A catalog of services
and some matchmaking mechanism are required to enable
service selection [19, 23, 36]. This approach has many ad-
vantages, and has been widely explored. In P2P systems,
several peers are expected to provide the same Web service.

To materialize an AXML document with abstract service
references, it is important to determine which peers shall be
considered to participate in the process, since the Web ser-
vice requested by each service call node may be provided
by several peers. A simple case of service equivalence is

whenWeb services are arbitrarily replicatedin the system.
Replication of data and/or Web services is typically em-
ployed in distributed scenarios to increase throughput and
reliability [12, 14]. In the ActiveXML framework, service
replication is particularly easy fordeclarative Web services,
which are defined by XML queries:anypeer can evaluate
a query (and thus become a service provider), as soon as
it has the data on which the query applies. A mechanism
for declarative service replication in ActiveXML has been
developed in [7]. Another class of services likely to be de-
ployed on several peers consists ofgeneric services, such
as encryption and data compression services. Usually, these
services do not change the contents of the data they operate
on, but act on some orthogonal aspects, such as its size and
its encryption status.

The AXML optimizer may be free todynamically de-
ploydeclarative or generic services to some peers during the
materialization process, if this allows to improve the over-
all materialization performance. However, dynamic service
replication may significantly increase the number of AXML
materialization alternatives. Hence, the optimizer must con-
sider whether enlarging the search space with these possi-
bilities makes the problem too complex.

We extend the basic AXML document model to allow
service call nodes to mention the symbol “any” as the
servers providing a given Web service. The semantics is
that the user does not impose any specific provider for this
invocation; any server that the optimizer may find is consid-
ered good. For simplicity, we assume thatany ∈ N . Also,
we consider the symbol “unknown”, which indicates that
the optimizer does not hold information about a requested
service, but can lookup for it in the P2P system. We also as-
sume Web services are organized into classes of equivalent
services, and peers can gather information about the distri-
bution of these services on the network (as in [8]). Such an
information does not necessarily represent the global status
of the system, but only the system visibility from a given
peer. A basic capability of an AXML-enabled peer is to
identify the providers of a service call node, as follows.

DEFINITION 18 Given a service call nodev, its execution
scopeLE

v represents the peers that can execute the Web ser-
vice ofv, such thatLE

v = any | unknown | {P1, . . . , Pn},
whereany indicates that all the peers inN can execute
v, the symbolunknown denotes thatLE

v is undefined, and
{P1, . . . , Pn} is a finite set of peers inP which provide the
service requested byv, with n ≥ 0.

Observe thatLE
v = {} means that the optimizer did not

discover any information about peers providing the service
of v. Since peers can join or leave the system randomly,
the execution scope of a peer is rather a snapshot of the
system status. Because of that, ifLE

v is empty, the peer can
either retry to locate the service afterwards (hoping for some
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change in the system) or ask other peers to try to fill in the
execution scope of the node. The execution scope may also
be determined by the user, through explicit peer addressing.
It is worth noting that a service provider does not have to be
a neighbor. For example, suppose the neighbors of peerP1

in Figure 1(a) areNP1 = {P2, P4, P5}. Still, according to
Figure 1(b), peerP3 is among the providers ofsc1 on the
SwapWorkspacedocument atP1. Next, we discuss ways for
peers to collaborate in AXML materialization.

5.2 Exploring P2P Collaboration in AXML

Distributed computing is inherent in AXML materializa-
tion, since service executions usually take place in different
peers. Going further, many other aspects can also be dis-
tributed, such as:

• peers can collaborate tolocate service providers;

• peers candelegate parts of the materializationof a
document to other peers; and

• similarly, peers can ask other peers togenerate parts
of a materialization planfor an AXML document.

Basically, AXML materialization can be orchestrated in a
P2P system by some message exchanges between peers. In
this scenario, the basis of peers interaction is themateri-
alization plan, which is the fundamental element used to
control the AXML materialization process. Such a plan de-
termines how each service call node is going to be material-
ized; it can be split, and distributed among peers. Moreover,
peers can revise some optimization decisions of a plan, and
then choose to re-split it among other peers. Thereby, the
materialization process can be spread across the system in
a decentralized manner. Materialization plans are formally
defined in Section 5.4.

Locating service providers is the simplest type of P2P
collaboration. If a peer cannot find information about the
execution scope of some service call nodes, then it may de-
cide to send a partially-specified plan to another peer, along
with a request to properly annotate such an information on
the plan. On the other hand, delegating AXML materializa-
tion requires more sophisticated control mechanisms. First,
recall that the start point of the materialization process is
always at the master peer of the AXML document. Then,
the master peer decides whether other peers will be invited
to collaborate or not. Delegating the invocation of a service
call nodev consists in setting anothercaller for v, which is
different from the master peer. In particular, the master peer
sends adelegation plan, which containsv (or more nodes),
its input parameters (possibly including its invocation de-
pendencies, ifv is not ready), and its collateral call to the
caller. In turn, the caller is in charge of triggering the in-
vocation ofv (and of its dependencies and collateral calls,

Figure 11. AXML delegation in a P2P system.

if necessary), and gathering its result. The caller must send
back the result ofv to the master peer, as well as the result
of all the persistent nodes that were sent withv. The master
peer may also choose to evaluate some of the dependencies
of a delegated node before requesting its remote material-
ization. These interactions are illustrated in Figure 11.

Notice that a delegated part of an AXML document does
not necessarily correspond to a subtree, but to some parti-
tion of its dependency graph. Reasoning about AXML del-
egation has to consider the performance impact of changing
the caller of each node of the dependency graph. Such a de-
cision is mainly oriented by the data flows between service
call nodes. For example, delegation may be beneficial to
materialize nodessc9 andsc10 of theSwapWorkspacedoc-
ument, in Figure 3, since it enables to exploit a fast com-
munication link between peersP4 and P5. Nevertheless,
there may exist constraints on the invocation of a service
call node, such as secutity and price policies. Thus, users
may also choose to specify exactly which peers are allowed
to invoke some service calls.

DEFINITION 19 Given a service call nodev, the delega-
tion scopeLC

v denotes the peers that can invokev, such
thatLC

v = any | {P1, . . . , Pn}, whereany indicates that all
the peers inN can invokev, and{P1, . . . , Pn} is a finite
set of peers inP, n ≥ 1. At least the master peer of the
document containingv is in LC

v .

In principle, the optimizer may consider any peer in the
system to delegate some AXML materialization, accepting
that such a peer is allowed to invoke the corresponding ser-
vice calls. However, this can rapidly make the optimization
problem intractable, as we discuss in Section 5.4. There-
fore, we assume asmall-world P2P scenario, where the op-
timizer may restrict the delegation scope to the set of ser-
vice providers that are involved in the document material-
ization. To further limit this, it may also apply theContext
heuristic[44], such that only selected executors are used to
determine the delegation scope. Also, several P2P systems
consider the need of some specialized peers, which are more
able than others to perform some tasks, such as query rout-
ing and data location [40]. Similarly, some peers may be
tailored for some AXML materialization tasks, such as lo-
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cating the execution scope of nodes or executing delegated
plans (e.g., due to their high connectivity with other peers
in the system). Therefore, the optimizer may keep a list of
such peers, and include them in the delegation scope even if
they are not involved in the execution scope, to improve the
materialization performance.

A major motivation of AXML delegation is similar to
the idea of theedge-zeroingalgorithms for parallel schedul-
ing [33]. In a dependency graph, these algorithms analyze
the edges with high communication cost, and attempt to de-
fine clusters of tasks to be run at the same processor. Ini-
tially, each node of the graph represents a cluster. Then,
at each step of the algorithm, the edge with the largest
communication cost is found, and the two clusters inci-
dent by this edge are merged if such a merging does not
increase the overall performance. However, the constraints
on both the execution and delegation scope of each service
call node of an AXML document do not allow to arbitrarily
assign service executions to peers. Moreover, communica-
tion costs are not zeroed if two connected service executions
occur in the same peer (though they are really reduced),
since SOAP messaging usually involves some additional
time-consuming operations, such as parsing and packing
the transfered data [44]. Hence, deciding about delegation
mostly relies on comparing materialization alternatives.

We assume peers are autonomous, thus the master peer
cannot enforce transitive delegation to other peers. Namely,
the result of each delegated plan is always sent to the mas-
ter peer. Considering otherwise would increase significantly
an already huge space of AXML materilization alternatives.
However, since peers have different perspectives of the sys-
tem, a peer may decide to reoptimize a delegated plan, pos-
sibly by delegating parts of it. Moreover, peers may return a
delegated plan intact or partially materialized. In this case,
the master peer either reoptimizes the plan, trying to find
another peer to delegate the plan, or evaluates it itself. Nev-
ertheless, if a peer decides to reoptimize a plan, then it can-
not include the original master peer in the delegation scope
of the respective service call nodes. Also, to avoid end-
less delegations, the original optimizer can determine some
limits for plan reoptimizations. These limits and the plan
provenance are encoded in the materialization plan.

Distributing the optimization of AXML documents is
analogous to delegating materialization tasks, and it can
help peers to handle requests overload and insufficient sup-
port information. If a materialization problem is too large,
the master peer may split the dependency graph without
making any considerations about either execution scope
or performance, and then send parts of the problem to be
solved by other peers. To support P2P collaborations in
ActiveXML, we assume each peer has to provide the basic
Web services shown in Table 1.

Table 1. Services for P2P collaboration.
Web service Description

locate Accepts requests to discover the execution
scope for some materialization plan. It returns
a (possibly partially-)annotated plan.

optimize Accepts requests to find an efficient materiali-
zation plan for some dependency graph. It
returns a (possibly partially-specified) materi-
alization plan.

submit Receives requests to execute some materi-
alization plan, by possibly re-optimizing it.
It returns the plan and its persistent results.

5.3 Enacting AXML Materialization

In the AXML universe, the basic elements of a P2P set-
ting are peers, Web services and AXML documents. Es-
sentially, peers are uniquely-identified agents connected
through a network, andservicesare operations that peers
can perform. A service may require input parameters that
are instantiated at runtime. It also has a termination sta-
tus, such as “success” and “fail”. The invocationof a Web
service is an event, namely a compact occurence that en-
ables: 1) the flow of input parameters to the peer that is
going to execute the service; 2) the service execution; and
3) the transfer of the results to the peer that requested the
service. By default, a service call node is invoked by the
master peer of its respective document, but this invocation
can be delegated to another peer. To be invoked, a service
call must have all the necessary information to identify the
requested Web service (as defined in the SOAP and WSDL
standards [59]). In particular, it must have the address of
the peer that is going to execute the service, as stated next.

DEFINITION 20 Given a service call nodev held by peer
Pv, an invocation I of v is denoted by the expression〈
v, PE , PC , status

〉
, where:

• PE and PC are, respectively, theexecutorand the
callerof v, such thatPE ∈LE

v andPC ∈(Pv ∪ LC
v );

• neither LE
v is empty nor it contains the symbol

“ unknown”; and

• the status of I is determined by the termination sta-
tus of the service requested byv, such thatstatus in
{success, fail}.

For example, in Figure 3 (center), we have
〈sc10, P5, P4, success〉 and 〈sc9, P4, P4, success〉,
assuming both invocations are successifuly executed.

For simplicity, when considering materialization phases,
we omitted in Definition 15 the information about callers
and executors of each service call invocation. Now, we can
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ground an invocation sequenceItimeline to a specific loca-
tion context, as follows.

DEFINITION 21 Given an AXML documentd, a grounded
invocation sequenceItimeline = [I1, . . . , In] is a dynamic
sequence obtained by successively picking a ready nodevx

in SCd, setting anIx =
〈
vx, PE

x , PC
x , statusx

〉
and invok-

ing it, until eitherSCd = {} or SCd has no ready node,
such that1 ≤ x ≤ n. Moreover, ifvi ↪→ vj in d, thenIj

is a successor ofIi in Itimeline, and the only invocations
betweenIj andIi are the dependencies ofvi and their col-
lateral calls. Agrounded invocation trackIT of Itimeline is
of the formIT = [I1, . . . , I`], with ` ≤ n.

Observe that nodes are invoked in proper order in
Itimeline (ready nodes first with subsequent collateral calls),
and invocation constraints are enforced accordingly. Here-
after, we assume bothItimeline andIT to be grounded, un-
less stated otherwised.

Materializing an AXML document consists in invoking
all of its embedded service calls, as well as the occasional
intensional answers. This process yields a new version of
the document, as defined next.

DEFINITION 22 Let d be an AXML document andφ be a
(grounded) materialization phase ofd with length`. A ma-
terialized versionof d is another AXML documentd′ ob-
tained by the service invocations ofφ. We say thatd′ is
completeiff all the nodes in∆` are inactive; otherwise,d′

is partial. Moreover, the materialization ofd into d′ is suc-
cessfuliff it is complete andstatusi = “success′′ for each
invocationIi in IT of φ, 1 ≤ i ≤ `.

If some invocations fail, their dependant calls are not in-
voked (since they cannot become ready) and the respective
failures are reported to the user. Still, we consider that all
the remaining service calls are invoked, if possible. Also,
we assume that the user is not interested inundoingservice
calls when some of them fail in the materialization of an
AXML document. That is, the document does not represent
a transaction unit.

The master peer receives document requests and starts
their materialization, possibly by delegating parts of the
service invocations. After peers finish their materialization
tasks, they must send all the persistent service results back
to the master peer. In our AXML settings, we assume com-
munication links between peers may have different band-
width.

5.4 The AXML Optimization Problem

The diversity of Web services providers, P2P collabo-
ration opportunities, peers capabilities, and invocation de-
pendencies allows the materialization of an AXML docu-
ment to be performed through many different alternatives,

with different performance. Themakespanof a material-
ization alternative is the time from the materialization starts
until the last service call invocation is completed and the re-
quired results are returned to the master peer. We adopt this
performance metric because it is based onresponse time,
which has tipically a significant perceived impact on the
user [20, 43].

Optimizing the materialization performance of an
AXML document consists in minimizing its makespan.
This involves two main issues: (i) planning resource se-
lection, that is determining a caller and an executor for each
service call, such that both service execution and communi-
cation costs are minimized; and (ii) scheduling service call
invocations, to exploit parallelism and thereby minimize the
makespan. Clearly, these issues are inter-related; efficiently
assigning service executions to peers depends on balancing
their load, and vice-versa. We use the termAXML planning
in a general sense, to indicate both tasks (i) and (ii).

AXML planning is essentially characterized by schedul-
ing a complex DAG to heterogeneous machines, which
is an NP-complete problem [15, 33]. Because of such
a complexity bound, we focus our optimization analysis
on finding suboptimal solutions in reasonable time. Fur-
thermore, as discussed in Section 4.4, intensional answers
changes the specification of a materialization problem at
runtime. Since usually peers cannot foresee these re-
sults, we assume AXML planning is initially restricted to
the dependency graph obtained before the materialization
starts, and occasional intensional answers trigger some re-
optimization procedures. However, in our approach, such a
re-optimization is localized to specific subgraphs whenever
this is possible. We address this problem in Section 6.

Search space of materialization alternatives.Thus far we
have considered materialization phases as totally-ordered
sequences of service call invocations. Nonetheless, the de-
pendency graph of an AXML document does not impose a
total order on these invocations. Hence, many different in-
vocation sequences can be used to materialize a document.
For example, in the dependency graph of Figure 8, we may
have invocation sequences starting withsc2, sc4, sc6, sc8
or sc10. Also, some service calls may be invoked in paral-
lel. In our example, for instance, nodessc4 andsc6 can be
invoked independently.

There are several techniques to allocate resources from a
pool of available machines for job scheduling [15, 18, 33,
55]. However, planning resource selection for AXML ma-
terialization is a different problem due to several reasons.
In particular, in an AXML document each service call node
has its own execution and delegation scopes, and a good re-
source configuration has to conciliate the diverse execution
and data flows possibilities in a highly-dynamic scenario.
Based on the combinations of callers and executors of each
service call, the number of possible configurations of a de-
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pendency graph∆ is given by:

#locationConfigs(∆) =
x=1..|V ∗|∏

|LE
x | × (|LC

x |+ 1) ,

(3)
whereV ∗ is the set of all nodes inV plus the new node
instances triggered by collateral calls. Now, if we con-
sider also the possible invocation sequences, the number of
AXML materialization alternatives is bounded to:

#plans(∆) = |V ∗|! × #locationConfigs(∆) . (4)

In the worst case, when any peer is both a provider and a
caller candidate for every service call node, this number be-
comes|V ∗|! × n2|V ∗|, wheren is the number of distinct
peers. Even for simple scenarios,#plans(∆) tends to be
large due to the exponential nature of the problem.

To reason about these possibilities, we introduce a cen-
tral element of AXML planning: amaterialization plan,
which is derived from the dependency graph of an AXML
document. However, instead of a complex graph, we use
trees to represent a plan. More precisely, we consider the
minimum forest of spanning treesof a dependency graph;
namely, the minimum set of trees containing all the nodes
and edges of the graph. Also, in a materialization plan,
these tree nodes are labelled by operators of an algebra,
which represent adequate materialization alternatives. We
use the symbolA to indicate a finite set of algebraic op-
erators. In Section 6, we present a formal definition for
the minimum forest of spanning trees of an AXML docu-
ment, and describe how such a forest is generated and con-
verted into materialization plans. It should be noted that
a tree-based representation is interesting for several rea-
sons, specially because it enables the optimizer to reduce
the complexity of AXML planning by partitioning the prob-
lem into simpler and possibly independent tasks (using the
Divide&Conquer heuristic [44]). Basically, AXML plan-
ning is encoded in the following structures.

DEFINITION 23 Given a service call nodev held by peer
Pv, an invocation planIPv is an expression

〈
PE , PC

〉
,

wherePE andPC are peers thatcaninvoke and executev,
respectively, such thatPE ∈ LE

v andPC ∈ (LC
v ∪Pv). The

term ÎPv denotes the set of all possible invocation plans of
v, according toLC

v andLE
v .

DEFINITION 24 Let ∆ be a dependency graph. Amate-
rialization planM for ∆ is of the form〈Λ,O,L,Â, Pm〉,
where:

• Λ is the minimum forest of spanning trees of∆;

• O is a labelling function that associates every node in
Λ with an operator inA;

• L is a mapping from each nodev in Λ to invocation
plans inÎPv;

• Â associates with each node inΛ a total order on its
children; and

• Pm is themaster peerofM, namely the peer that holds
M and where its persistent results must arrive.

We say thatL andÂ are, respectively, thelocation scope
and theinvocation scheduleofM. Moreover,M is physical
if bothL is total and it maps each node inΛ to exactly one
invocation plan; otherwise,M is abstract.

In a materialization plan, theheightof a node indicates
the size of the longest path from the node to a leaf node.
This property can be:simple(denoted byh), if it considers
only simple edges;collateral (ch), when it is based on paths
that start with a collateral edge of the node and that may
include transitive collateral calls; orabsolute(ah), which
is the highest value betweenh andch. A variation of this
property is theleast heightof a node, which is the size of the
shortest path from the node to a leaf. We prefix the height
with “ l” to indicate such a variation (e.g., lh denotes the
least simple height). We assume the size of a path is given
by the number of nodes on it, including the origin and the
destination, and leaf nodes of the plan haveh = 1. Unless
stated otherwise, hereafter we refer to the simple height of
the nodes by default.

Observe that the evaluation of a physical plan corre-
sponds to a grounded invocation track of a materialization
phase. This correspondence is important because it enables
the optimizer to control the plan evolution, namely to cor-
rectly make the necessary updates to the plan during its
evaluation. It is also worth noting that one can determine a
materialization plan for some subset of service call nodes of
a document, based on the corresponding dependency graph.
In this case, we have asubplanof the document.

Performance metric outline. Comparing alternative ma-
terialization plans requires estimating their makespan. To
calculate this metric, it is necessary to consider the sequen-
tial computations of the plan, as well as its peer assignment
load. In workflow systems, the makespan of a physical
plan is typically estimated by itscritical path [18, 33, 63],
namely the path of sequential executions with the larger
completion time. Similarly, in AXML planning, sequential
executions are mostly determined by invocation constraints.
We can estimate thestatic critical pathof each spanning
tree of a physical plan by calculating the costs of both ser-
vice execution and data transfers of its nodes (which is done
recursively, from the leaves). Such a path is said “static” be-
cause the load of service executions of the involved peers is
disregarded. On the other hand, thedynamic critical path
accounts the sequential processing of service executions as-
signed to each peer. We describe the basic formula to es-
timate the costs of Web service invocations in [44], which
are compounded with other costs, such as delegation costs,
in the model presented in Section 7. We consider both
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execution and communication costs may be weighted, to
calibrate the cost model according to thecomputation-to-
communication ratio(CCR) [33] of the AXML setting.

An issue in estimating the makespan of a materialization
plan is thatdelegating AXML materialization implies in a
non-deterministic execution scenario. Due to P2P collabo-
ration, it is impossible to know the exact position of the ser-
vice call invocations of an AXML document on the execu-
tion queue of each peer involved in the materialization pro-
cess. Consequently, we cannot determine precisely the dy-
namic critical path of a dependency graph. This represents
an important restriction on the invocation scheduling prob-
lem, since it prevents the direct use of current algorithms
to schedule workflows tasks onto heterogeneous machines,
such as proposed in [15, 18, 33, 46, 47, 63, 66]. These algo-
rithms are usually based on estimates such as the “earliest
start time” and the “latest start time” of a task on a ma-
chine, which cannot be obtained with exactitude in AXML
settings. The main reason is that peers are not dedicated
resources and some parts of the dependency graph may be
evaluated in parallel without global synchronization of ser-
vice invocations. Nevertheless, ignoring current invocation
assignments during the optimization may yield schedules
similar to those based on the “Minimum Execution Time”
(MET) heuristic [18], which may cause significant load im-
balance across peers. For example, if a peer outperforms the
others in many services, a load-blind optimizer may exhaust
such a peer with excessive assignments. Worst, this would
also stretch the makespan with massive sequential process-
ing. To take into account service assignment load during
AXML planning, our cost model (presented in Section 7)
defines theenergy factorof a peer in a materialization plan,
which is used to dynamically weight the costs of plan nodes.

Optimization strategies. Many different strategies can be
used to generate and compare alternative materialization
plans (based on makespan estimates) of an AXML docu-
ment. Each strategy is determined by an algorithm to pro-
duce these plans, and by a method used to compute their
makespan, as follows.

DEFINITION 25 Let MS be an objective function that es-
timates the makespan of materialization plans. Anopti-
mization strategyis an expression〈Υ,MS, ceil〉, whereΥ
is an algorithm that finds a planM for a given depen-
dency graph∆, andceil is a performance ceiling such that
MS(M) ≤ ceil. The optimization algorithmΥ is optimal
if MS(M) is minimal for any∆ and for all possible plans
of ∆. Moreover, we say thatΥ is completeif M is physical
whenever such a plan exists for∆.

A straightforward optimal strategy to find materializa-
tion plans is to adopt an exhaustive search, which yields
all possible combinations of callers and executors, and of
invocation sequences. However, such a strategy is often un-

feasible due to its high time complexity (see Equations 3
and 4), and heuristic approaches are necessary to prune the
search space. For instance, the optimizer can use theDi-
vide&Conquer(D&C) heuristic to split the problem into
smaller disjoint parts [44], which correspond to the con-
nected subgraphs of the dependency graph. Thereby, the
total complexity is reduced from a product to a sum of the
complexity of the problem parts. Suppose there aren con-
nected subgraphs in a dependency graph∆, then the number
of alternative physical plans is given by:

#plansD&C(∆) =
i=1..n∑

#plans(∆i) , (5)

where#plans(∆i) denotes the number of alternative plans
of each subgraph∆i. Since each subgraph is evaluated in-
dependently, the D&C strategy is optimal only if there is
no interference between the enactment of the subgraphs.
Namely, if the corresponding materialization plans involve
distinct location scopes. Otherwise, some optimization de-
cisions of a materialization plan might disregard the per-
formance penalties resulting from the evaluation of other
plans. Nonetheless, the main problem of the D&C strategy
is that shared dependencies and collateral calls often im-
ply graphs with a few, yet complex connected subgraphs.
Hence, in these cases, the optimizer cannot explore signif-
icant complexity reductions. In Section 6, we propose an
algorithm that maximizes the number of subgraphs of an
AXML document by virtually replicating shared nodes.

Another class of heuristic strategies consists in setting ar-
bitrary plan configurations. For example, the optimizer can
systematically: set the master peer as the caller of the ser-
vice invocations; and choose each service executor from the
best provider w.r.t. execution time (namely, using the MET
heuristic). We call this particular strategy MMET, refer-
ing to “Master caller and MET heuristic”. In this case, the
number of plan configurations that are analyzed for a de-
pendency graph∆ is bound to:

#locationConfigsMMET (∆) =
x=1..|V ∗|∑

|LE
x | . (6)

Although the MMET strategy may save significant opti-
mization time, it does not explore P2P collaboration. More-
over, the MET heuristic ignores the invocation schedul-
ing, and usually produces poor makespans [18]. Notice the
MMET strategy is clearly suboptimal.

An important aspect of AXML planning is that, in gen-
eral,cost functions for makespan estimation are not mono-
tonic, in the sense defined in [25]. Namely, optimizing a
subproblem may increase the overall makespan, as well as
increasing the cost of a subproblem may lead to a better
overall solution. For that reason, materialization plans need
to be entirely specified to be properly compared. However,
AXML settings are highly-dynamic scenarios, thus gener-
ating complete materialization plans may produce solutions
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with
collateral calls (v) (vi) (vii) (viii)

Figure 12. Main topologies of dependency graphs.

that are invalid at runtime. We propose an optimization
strategy that interleaves AXML planning and materializa-
tion. We first identify independent tasks (spanning trees) of
the graph, and then evaluate them separately. For each tree,
we incrementally generate the corresponding plan based on
the topological order of the service invocation nodes. The
plan evaluation algorithm basically consists in climbing up
a (partial) plan, from the leaf nodes to the root, consider-
ing subtrees of fixed heights. For each subtree, we ana-
lyze its materialization possibilities and generate a subplan,
which is executed before resuming the AXML planning and
materialization. It is worth mentioning that our strategy is
based on a meta-heuristic that can be combined with other
approaches to find efficient solutions for the subplans.

5.5 Main Problem Topologies

The shape of a dependency graph determines most of the
opportunities for P2P collaboration, as well as the require-
ments of scheduling service invocations. To get a better
understanding of the issues behind AXML materialization,
we analyze the main graph topologies. We highlight three
dimensions: (1) the length of paths of sequential data trans-
fers with temporary nodes, which is related to the paths of
invocation dependencies on the graph; (2) the shared depen-
dencies of the graph, namely the nodes withfanOut > 1;
and (3) the sequential collateral invocationsof service call
nodes. We say that a dependency graph isdeepif it has long
paths of invocation dependencies with few persistent nodes,
andshallowotherwise.

Based on these criteria, we have the graph topologies of
Figure 12. Considering shallow graphs, the simplest topol-
ogy is an empty dependency graph, shown in item (i); it
consists essentially of abag-of-tasks, without data trans-
fers between service call nodes. Optimizing such a graph
concerns mostly load balancing. A variant of this topology
including collateral calls is illustrated by item (v), where

the optimizer has to schedule parallel sequences of service
invocations without data transfers between service execu-
tions. Also in this case, service execution costs are the per-
formance yardstick. Notice that with shared dependencies
and/or some data flows between service invocations (i.e.,
topologies (ii) and (vi)), the optimization goal remains load
balancing, since only persistent nodes are handled. Yet, if
persistent nodes do not represent large data transfers, then
AXML delegation can be explored to improve parallelism
in shallow graphs, thereby reducing their makespan.

Observe that shallow topologies are not expected to be
frequent in AXML documents, because they do not encom-
pass intensional parameters. Another class of problems is
represented by deep graphs, which are more usual in AXML
materialization. For these graphs, the optimizer can try to
find fast links between the participating peers in order to re-
duce communication costs related to temporary nodes. The
typical case is topology (iii), where the exit points of the
graph denote independent materialization tasks with few re-
quired data transfers to the master peer. Interestingly, these
tasks remain independent in topology (vii), despite the col-
lateral edges connecting them. The reason is that collateral
calls represent new instances of service invocations, which
are “clones” of the referred nodes. On the other hand, the
shared dependencies in topology (iv) determine some syn-
chronization points between materizalization tasks, which
are not independent from each other.

The first attempt of our optimization strategy is to sim-
plify the dependency graph by transforming it into a forest
of (possibly deep) independent tasks. The resulting graph
is close to the topology in (iii), which can be more easily
evaluated by the optimizer. Such a topology favours par-
allel execution, along with the reduction of communication
costs. Next, we present the proposed optimization strategy.
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6 Optimizing AXML Materialization

Currently, the ActiveXML platform lacks a
performance-oriented approach to the optimization of
AXML documents with abstract service references. Basi-
cally, ActiveXML peers support only one materialization
strategy, which is uniquely determined by explicit ser-
vice call attributes and (possibly) typing control. In this
Section, we propose a cost-based optimization strategy to
improve AXML materialization by dynamically analyzing
alternative materialization plans. We describe the overall
optimization strategy in Section 6.1, and its main steps are
detailed as follows. Section 6.2 presents techniques based
on spanning trees to generate initial materialization plans
from arbitrarily-complex dependency graphs. These plans
are encoded with an algebra that enables the optimizer to
perform incremental and collaborative AXML materializa-
tion. In Section 6.3, we outline an algorithm to partition a
materialization plan into tasks, and a priority-based mecha-
nism to order these tasks. In particular, we explore both the
inter-task and the intra-task parallelism degree of a plan to
sort its tasks. Going further, we propose in Section 6.4 an
algorithm that scans a materialization plan in topological
order and dynamically generates “good” physical plans
based on cost metrics. Finally, we discuss task delegation
and collaborative optimization in Section 6.5.

The proposed strategy is dynamic in the sense it partially
materializes the plan before completing the optimization.
Moreover, resource allocation and planning are performed
at runtime. It is also adaptive, as defined in [28], since it
makes the optimizer choices sensitive to changes in the P2P
system at each step of the materialization process.

6.1 Dynamic Optimization Strategy

To materialize an AXML document, the optimizer has to
deal with two major issues: ahuge search spaceof material-
ization alternatives, and theunpredictabilityof the P2P set-
ting. In a static approach to generate materialization plans,
all the service calls, the interactions among them, their ser-
vice providers, and communication costs are assumed to be
known before the optimization starts. Clearly, this approach
is not suitable for AXML materialization. Ideally, the opti-
mizer should react to changes in the environment, and this
should not be based solely on plan reoptimization, which
is often quite expensive in an unstable setting. We propose
an optimization strategy that exploits dynamic techniques to
reduce complexity and to enable the system to adapt to both
system performance and membership fluctuations. In our
approach, materialization plans are not produced at once,
and reoptimization is triggered only when really necessary.
Not surprisingly, our techniques mostly rely onsplitting the
dependency graph into smaller pieces. However, the main
question here is how to partition the materialization prob-

1 procedureDynamicOptimize(∆, k)
2 {Efficiently materialize∆ based on dynamic plan

generation ofk-depth steps.}
3 begin
4 Generate an initial abstract planMi from ∆
5 Compute the setTi of materialization tasks ofMi

6 Order the tasks ofTi by priority level
7 for each taskt in Ti do
8 if t is to be delegated then

10 Pick a new master peerP ′m in N for t
11 Delegatet to P ′m
12 go to next task
13 end if
14 Split t into k-depth subplans
15 for each subplanMx in t in topological order do
16 Locate providers and executors forMx

17 Generate alternative physical plans ofMx

18 Rank physical plans and pick the bestMbest

19 ExecuteMbest

20 end for
21 Re-evaluate the order of tasks inTi

22 end for
23 end

Figure 13. Overall optimization algorithm.

lem such that important performance aspects, such as data
flows between service invocations, are preserved and con-
sidered by the optimizer.

Inspired on Web protocols, which present results as they
arrive (instead of waiting for complete documents), our op-
timization strategy also allows to minimize the time to ob-
tain thefirst resultsof the document materialization. We
interleave materialization planning and execution, thus the
peer optimizer can decide how to proceed after partial exe-
cutions, when it may have more up-to-date information on
the system status.

The basis of our optimization strategy is to work on the
materialization of an AXML document by using its depen-
dency graph, which explicitly shows all the invocation con-
straints of the embedded service calls. The optimizer un-
folds this graph into a simplified tree-based structure, and
then produces aninitial abstract plan, whose location scope
and invocation schedule are not determined. Such a plan is
partitioned into materialization tasks, which can be further
split into subplans of heightk according to the topological
order of the service call nodes. For each subplan, the opti-
mizer annotates the execution and delegation scopes of its
nodes, and then generates its alternative physical subplans.
These equivalent subplans are then ranked based on some
cost metrics, and the “best” (but not necessarily optimal) al-
ternative is picked and evaluated. This process is repeated
until all the tasks and their subplans are evaluated. Option-
ally, the optimizer can delegate some tasks to be completely
evaluated by other peers. The overall algorithm of our op-
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timization strategy is described in Figure 13. In the follow-
ing, we detail these optimization steps.

6.2 Extracting Materialization Plans

To generate a materialization plan, the optimizer has to
associate the service call nodes of the dependency graph
with adequate evaluation operators, which will actually pro-
cess each service request. For example, a service call may
be invoked locally (i.e., by the master peer) or delegated to
another peer; each of these cases require a different oper-
ator to handle the service call node. These operators are
interpreted by the optimizer, and their service call results
are inserted into the AXML document. Nevertheless, a
dependency graph is rather a complex structure to be di-
rectly processed by the optimizer, due mostly to shared de-
pendencies and collateral calls. Therefore, we first encode
the dependency graph using a simpler, tree-based struc-
ture that is more adequate for distributed evaluation. In
this transformation process, we also attempt to apply aDi-
vider&Conquerheuristic to reduce the problem complex-
ity. In particular, we extract thespanning treesof the de-
pendency graph, such that the optimizer can identify and
evaluate independent tasks. Then, we use an algebra of ma-
terialization operators to generate an initial plan from these
trees. Such a plan contains onlyabstract operators(which
lack location scope information) and its purpose is to enable
the optimizer to produce alternative physical plans.

Extracting spanning trees. Several classical algorithms
can be used to build spanning trees from an arbitrary graph.
For instance, the well-known Prim’s algorithm [11] has time
complexityO(|V |2) using an adjacency list as graph struc-
ture, andO(|V |log|V |+ |E|) for a heap-based graph. This
algorithm begins with a node of the graph as the current
tree, and then builds itsborder, that is a set of all the nodes
that can be reached from this start node. Each node in the
border is added to the current spanning tree and expanded
recursively. These steps are repeated until all the spanning
trees of the graph are obtained. The roots of these trees
are the seeds of the algorithm. In our case, only exit points
of the dependency graph are used as seeds. Moreover, the
border is built considering the opposite direction of simple
edges, as stated next.

DEFINITION 26 Let ∆ be a dependency graph andvx, vy

be two nodes in∆. The nodevy is reachable for spanning
from vx iff either vy → vx or vx ↪→ vy is in ∆. Further-
more, theborderof vx consists of the set of all the nodes in
∆ that are reachable for spanning fromvx.

If the dependency graph has only connected subgraphs
that represent trees, then we can easily identify and eval-
uate its independent tasks. However, an AXML document
usually involves shared dependencies and/or collateral calls,

which denote subgraphs that do not correspond to trees. To
handle this, we have to build a flat representation of the de-
pendency graph, where each node belongs to exactly one
tree. This is done bynode detachment– namely, by identi-
fying and separating subgraphs that are connected by some
service call (i.e., which have service calls in common). We
propose two special transformations to obtain such a repre-
sentation:

• node replication, that is to replace the node by a set of
exact copies of it, which represent the same instance
of the corresponding service call. This transformation
is applied to separate subgraphs connected by shared
dependencies; and

• node cloning, which consists of adding new instances
of a service call node to the dependency graph. It is
used to represent collateral calls.

Figure 14 shows the algorithm used to flatten a dependency
graph based on these two transformations. Basically, each
shared dependency (namely, a node withfanOut > 1)
is replaced byfanOut replicated nodes, such that each
replica inherits exactly one of the outgoing simple edges
of the original node, and all of its incoming simple edges.
For nodes that are pointed as collateral calls, we clone their
entire subtrees for each incoming collateral edge. Replicat-
ing shared nodes has time complexityO(⊗ × |E|), while
the bound for node cloning depends on the algorithm used
to unfold spanning trees.

From a flat dependency graph, we can expand the span-
ning tree of each exit point based on the border criteria of
Definition 26. The result of this process consists of the fol-
lowing set of (possibly related) trees.

DEFINITION 27 Let∆ be a dependency graph, andV exit

the set of exit points of∆, whereV exit ⊆ V . The expression
Λ = 〈ST, %, ↪→〉 represents theminimum forest of span-
ning trees(or MFST, for short) of∆, whereST is a set of
unordered trees ofΛ, such that:

• shared nodes of∆ are properly replicated inST ;

• collateral calls of∆ are properly cloned inST ; and

• for each nodevx in V exit there is a treestx in ST
that is rooted byvx and which results from recursively
expanding the border ofvx.

Furthermore, the function% associates replicated nodes in
Λ with their original node in∆, and ↪→ denotes a distin-
guished subset of edges inΛ, which correspond to the out-
going collateral edges of∆. The number of spanning trees
of Λ is denoted by|Λ|.

Observe thatST is equivalent to∆flat. We assume that
tree nodes keep their properties from the dependency graph,
such as the persistency flag and invocation status. Also,
since the edges of a spanning tree are not directed, collateral
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1 functionFlattenDependencyGraph(∆): ∆flat

2 {Transform shared nodes (due to shared dependencies
and collateral calls) to disconnect subgraphs of∆.}

3 begin
4 let ∆flat = ∆

5 for each nodev in ⊗flat

6 if fanOut(v) > 1 then{shared dependency}
7 Replicate(v, ∆flat)
8 end if
9 end for

10 for each edgevx ↪→ vy in
↪→
E

flat do {collateral call}
11 Clone(vy, vx ↪→ vy, ∆flat)
12 end for
13 return∆flat

14 end

15 procedureReplicate(v, ∆)
16 {Replicate nodev in dependency graph∆

according to its outgoing simple edges.}
17 begin
18 for eachv → vx in E do
19 let vrep be a newreplicaof v {an exact copy ofv}
20 Add vrep to V
21 Add vrep → vx to E
22 for eachvy → v in E do
23 Add vy → vrep to E
24 end for
25 for eachv ↪→ vz in

↪→
E do

26 Add vrep ↪→ vz to
↪→
E

27 end for
28 Deletev → vx from E
29 end for
30 end

31 procedureClone(vy, vx ↪→ vy, ∆)
32 {Clone subtree rooted at nodevy through the

collateral callvx ↪→ vy in graph∆.}
33 begin
34 let vclone be a newcloneof vy {a new instance ofvy}
35 Add vx ↪→ vclone to

↪→
E

36 Unfold the spanning tree rooted atvy into vclone

37 Deletevx ↪→ vy from
↪→
E

38 let IN be the set of incoming collateral edges ofvy

39 if |IN | = 0 then
40 Deletevy from ∆
41 end if
42 end

Figure 14. Algorithm to flatten (by node repli-
cation and/or cloning) a dependency graph.

edges require proper distinction for their particular “fire af-
ter” semantics. In fact, we consider that collateral calls are
not expanded as regular child nodes in the spanning trees,
but asannotationson the service call nodes.

DEFINITION 28 Given a MFSTΛ and two nodesvy and
vz in Λ, we say thatvy is a collateral annotationon vz iff
vz ↪→ vy in Λ.

Figure 15. MFST of the SwapWorkspacegraph.

Figure 15 shows the MFST obtained from the graph of
Figure 8; replicated nodes have underlined text, and col-
lateral annotations are denoted by dotted arrows. Cloned
nodes have distinct IDs, which we represent by “scX.Y”,
whereX is the ID of the original node, andY is the spe-
cific ID of the clone. Observe that the spanning trees of a
dependency graph may be grouped into (possibly overlay)
clusters, such that each cluster has all the trees with node
replicas of a service call. More precisely, a cluster repre-
sents some connected subgraph of the dependency graph.
For example, there is one cluster in the MFST of Figure 15,
which is indicated by a dotted rectangle. Although there are
not precendence constraints between the trees of a cluster,
they are not independent from each other: replicated nodes
express synchronization points in the evaluation of their re-
spective spanning trees. Yet, the trees of a cluster become
independent once one of the replicas is evaluated. We ad-
dress these issues in Section 6.3.

Algebra of materialization operators. Having computed
the MFST of a dependency graph, the optimizer has to turn
the resulting trees into a materialization plan. Basically, this
can be done by replacing tree nodes in the MFST by opera-
tors of an algebraA, whose main requirements are the sup-
port for Web services invocation and for P2P collaboration.
Also, such an algebra should allow the optimizer to incre-
mentally evaluate a materialization plan. Based on these
requirements, we propose the algebra described in Table 2.
We distinguish three groups of operators:

(i) the abstract operatorsµ andρ, which represent the
possible combinations of executors and callers of ser-
vice call nodes in a plan. These operators cannot be
interpreted as service executions since they lack spe-
cific invocation details, such as the Web service end-
point. For example, theµ operator has to be converted
into some physical operator (e.g., invoke) in order to
result into a service invocation;

(ii) the physical operatorsinvoke, fetch and δ, which
contain all the information required to invoke a Web
service. Observe thatδ does not point directly to ser-
vices that are requested in the AXML document. In-
stead, it represents the invocation of a basic Web ser-
vice for P2P collaboration, which is going to handle
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Table 2. Algebra of operators for dynamic and decentralized AXML materialization.

Operator Description
µ(v) Thematerializeoperator tells the optimizer to determine an invocation plan for the service call nodev. Namely,

to choose both a caller and an executor forv among the peers in its location scope (LC
v andLE

v , respectively).
Pre-conditions: LE

v is not empty; none of its descendant nodes in the plan is an auxiliary operator; and every
descendant node has at least one provider in its execution scope.

ρ(v) Theretrieveoperator is slightly different fromµ(v). Additionally, it informs the optimizer thatv is a shared
dependency. That is, it behaves likeµ(v) with the additional cache operation for future retrievals, unlessv is
already evaluated. Otherwise, it retrieves the invocation plan ofv from the cache.
Pre-conditions: either there is an entry forv in the cache or the same pre-conditions as forµ(v) hold.

invoke(v, IPv) This operator is interpreted during evaluation as an invocation ofv from peerP C to execute the requested Web
service at peerP E , such thatIPv =

〈
P E , P C

〉
is an invocation plan ofv.

Pre-conditions: all the dependencies ofv are inactive.
fetch(v) It informs the optimizer to look for previous invocation results ofv at the system cache before materializing it.

It corresponds to a physical version ofρ. In particular, it behaves asinvoke with the caching feature.
Pre-conditions: either there is a cache entry for the invocation result ofv (if v is not inactive), or there is an
invocation plan forv in the cache and all the dependencies ofv are inactive.

δ(v, IPv) Thedelegateoperator asks peerP C , from the invocation planIPv =
〈
P E , P C

〉
such thatP C ∈ LC

v , to
materialize (possibly with some further optimization) the subplan rooted atv, by solving itself all the necessary
intensional parameters and collateral calls.
Pre-conditions: all theδ operators in its subplan, as well as all theinvoke operators whose caller is the current
master peer, are evaluated. Also,P C must be a neighbor (that is,P C ∈ N ).

Θ(v) Theoptimizeoperator denotes a request for a remote peer (i.e., neighbor) to optimize the subplan rooted atv,
possibly including its materialization.
Pre-condition: at least one peer inN supportsΘ.

locate(v) This auxiliary operator denotes a request for a neighbor to discover the execution scope of both the Web service
of v and the services of all theµ operators in the subtree ofv that have an empty execution scope.
Pre-condition: at least one peer inN supportslocate.

pipe It is used to simplify updating the dependency graph with intensional answers, as explained in Section 4.4. This
operator represents a pipeline that gathers the results of its children and transmits them to its parent node in the
plan. Its Web service may be executed either locally or at some peer inN .
Pre-condition: all of its children are ready.

one or more service requests of the document; and

(iii) theauxiliary operatorsΘ, locateandpipe, which are
mainly used to decentralize the optimization process.
Similarly toδ, these operators point to some basic col-
laboration service. Initially, they may lack the target
peer, but the optimizer must set them to some spe-
cific neighbor (or locally, in case ofpipe) before their
evaluation.

Each algebraic operator inA is associated to a specific
set of actions, according to its goal. To be evaluated by the
optimizer (thus triggering its actions), the operator has to
satisfy some pre-conditions, as described in Table 2. The
semantics of evaluating an operator varies according to its
type. In general, the evaluation of abstract operators does
not trigger any service invocation, but only makes the op-
timizer to analyze their alternative physical plans in order
to choose the “best” options. Such an analysis usually
results in replacing the abstract operators by their physi-

cal counterparts. For auxiliary operators, evaluating them
means choosing a peer (neighbor) and then invoking the
corresponding Web service for P2P collaboration. Observe
that both abstract and auxiliary operators do not cause any
changes to the AXML document, except forΘ when it in-
cludes plan materialization (that is, the subplan evaluation
is completely delegated to other peer). On the other hand,
evaluating physical operators results in invoking some ser-
vice calls of the AXML document and updating its contents.

The optimizer uses these operators to compose mate-
rialization plans as follows. First, it generates an initial
plan with abstract operators. Then, this plan is successively
transformed by replacing, adding and/or consuming opera-
tors. Plan transformations may be due to either operators
evaluation or traditional rule-based optimization. Table 3
enumerates the possible transformations obtained by evalu-
ating algebraic operators. Notice all physical operators are
either consumed or replaced by an intensional answer. Also,
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Table 3. Evaluation of algebraic operators.
Original operator Resulting operator(s)

µ(v) eitherinvoke(v, IPv) or δ(v, IPv)
ρ(v) fetch(v) | cached plan ofv

invoke(v, IPv) none| intensional answer

fetch(v) none| intensional answer

δ(v, IPv) none| intensional answer

Θ(v) subplan forv | none| intens. answer

locate(v) subplan rooted withµ(v)

pipe none

theΘ operator may be consumed if it includes materializ-
ing its delegated subplan. Furthermore, we assume the op-
timizer can apply the following basic transformation rules:

1. it insertsΘ operators to partition the children of a node
if they are too numerous;

2. it replaces aµ operator bylocate if the subplan ofµ
has at least some pre-defined percentage of nodes miss-
ing the execution scope (if the peer failed to identify the
providers of these nodes); and

3. it replaces aninvoke operator byδ if its caller (i.e., PC)
is neither the master peer nor the caller of its parent node.

These rules are meant to be explored at the discretion of the
optimizer, in different phases of the optimization strategy.
For example, rule 1 is used in early optimization phases to
break the plan into pieces of reasonable size, while rule 3 is
used to determine delegation points when generating phys-
ical plans. Rule 2 is related tocontingency planning, which
we discuss in Section 6.4.

It is worth mentioning that our algebraic approach is ex-
tensible, since one can add other operators toA, as well as
new rules to handle these operators. For example, thein-
voke operator could be further specialized into other phys-
ical operators, such as a synchronous and an asynchronous
operator (for continuous Web services).

Generating initial plans. Although the MFST is a canoni-
cal representation, usually there are many different plan al-
ternatives for its trees, according to the algebraic operators
used to handle the service requests. Nevertheless, the op-
timizer can rely on abstract operators to rather perform a
simple (and fast!) analysis to generate initial plans. Such
an analysis assumes that each service call node yields either
a µ or aρ operator. (This last operator is used if the node
is a replica.) The initial plan is calledabstractbecause its
nodes consist essentially of abstract operators.

The GenerateInitialPlanalgorithm of Figure 16 shows
the steps to generate an initial abstract plan from a depen-
dency graph. After computing the MFST, an initial plan is
set as a carbon copy of if. Then, for each tree, nodes are la-
belled by abstract operators accordingly. Once all the nodes

1 functionGenerateInitialPlan(∆): Mi

2 begin
3 FlattenDependencyGraph(∆)
4 Compute the MFSTΛ of ∆
5 letMi such thatΛi = Λ
6 {Determine the labelling functionOi}
7 for each treest in Λi do
8 for each nodev in st do
9 if v is a replicated node then

10 Replacev by ρ(v)
11 else Replacev by µ(v)
12 end if
13 end for
14 if the master peer cannot evaluatest then
15 let vroot be the root ofst
16 Replacevroot by Θ(vroot)
17 end if
18 end for
19 {BothLi andÂi are left undetermined for now.}
20 returnMi

21 end

Figure 16. Algorithm to generate initial plans.

of a tree are associated with algebraic operators, the opti-
mizer decides (at 14) whether or not it is going to evaluate
the respective subplan. Notice the optimizer may choose to
delegate a subplan in many cases; for the initial plan, we
consider this happens when either the MFST has too many
trees or the master peer is overloaded. Also, for simplic-
ity, we assume delegated subplans do not contain replicated
nodes (to avoid problems due to data coupling). At this
phase, we neither set an invocation schedule (Â) nor deter-
mine the location scope (L) for the abstract plan, which will
be progressively defined during the optimization process.

Figure 17 depicts the initial abstract plan for the depen-
dency graph of Figure 8. Each node represents an algebraic
operator, which is specified in the node label. Nodes may
also have collateral annotations (the “cp” reference under
the label, in Figure 17). Additionally, the optimizer may
annotate nodes with some supportive information, such as
node height. Persistent nodes are denoted by double-line
rectangles. We divide the materialization plan into three ar-
eas. The central area is the “main plan”, which consists
of all the spanning trees of the materialization plan, such
that subplans rooted by replicated nodes are represented by
either aρ or a fetch operator. The subplans of replicated
nodes are kept in the “cached plans” area, and the “cp” ref-
erences point to subplans in the “collateral plans” area. The
master peer of our example isP1, according to Figure 1.

If the dependency graph does not change between subse-
quent materialization requests (or if changes are not signif-
icant), then the optimizer can store the initial abstract plan
of an AXML document for further reuse. Also, the opti-
mizer can propagate occasional updates on the graph to the
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Figure 17. Initial abstract plan for the Swap-
Workspacedocument.

plan according to the rules presented in Section 4.4, possi-
bly by usingpipe operators. For many changes, however,
re-computing the initial plan from scratch may be less ex-
pensive than applying the respective updates.

6.3 Determining Materialization Tasks

In our optimization strategy, instead of processing the
entire initial plan at once, the optimizer partitions it: first,
into materialization tasks, and then intok-depth subplans.
By materialization task, we consider a well-defined, self-
contained goal of a materialization plan. To determine the
tasks of a plan, we adopt an approach that focuses on its exit
points, which correspond to the roots of the MFST. Also,
for preliminary scheduling purpose, each task is associated
with some evaluation priority, as defined next. LetT be a
finite set of tasks identifiers.

DEFINITION 29 Given a planM, the expression〈T, π〉
denotes the set ofmaterialization tasksof M, whereT is
an injection of trees inM into tasks inT , andπ associates
each taskt of T with a priority level.

We consider that each tree of a materialization plan
yields a task. Our choice for this criterion is motivated
by two main reasons. Following Proposition 2, we know
the materialization process converges at the exit points of
a plan after a finite number of service invocations (assum-
ing a snapshot semantics). Therefore, these nodes enable
the optimizer to use an objective function to properly esti-
mate the makespan of each task. Besides that, exit points
are always first-level service calls, and they constitute the
ultimate contents of the document materialization.

Clustering tasks. Due to shared dependencies (i.e., nodes
labelled byρ or fetch operators), the trees of a material-
ization plan are not necessarily independent. That is, plan

1 functionIdentifyTaskClusters(M): Clusters
2 {Returns a collection of clusters indexed by shared

nodes (or root nodes, for independent trees).}
3 begin
4 let Clusters = ∅
5 for each treest inM do
6 let Rep be the set of replicated nodes ofst
7 if Rep = ∅ then {st is independent}
8 let vroot be the root ofst
9 CreateClusters[vroot]

10 Add st to Clusters[vroot]
11 else {st has some shared nodes}
12 for each nodev in Rep do
13 let nodevorigin such that%(v) = vorigin

14 if vorigin /∈ Clusters then
15 CreateClusters[vorigin]
16 end if
17 Add st to Clusters[vorigin]
18 end for
19 end if
20 end for
21 returnClusters
22 end

Figure 18. Algorithm to identify clusters of
materialization tasks.

trees can be grouped into overlay clusters, where the trees
of each cluster share some service call results. Identifying
the clusters of a plan can be done by a simple algorithm, as
shown in Figure 18. Such a data coupling usually restricts
(or, at least, complicates) the distributed processing of a ma-
terialization plan. Yet, once a replicated node is evaluated
and its result is passed to the other replica accordingly, its
corresponding cluster stops existing. Determining indepen-
dent tasks has many advantages. In particular, it enables
parallel execution and the decentralization of the optimiza-
tion process, which fit quite well in P2P systems. More-
over, partitioning the plan may significantly reduce its opti-
mization complexity, as discussed in Section 5.4. Hence, to
overcome the data-coupling problem, we try to find a tasks
evaluation order that would gradually increase theparal-
lelism potentialof the plan, thus allowing the optimizer to
effectively explore P2P collaboration. For simplicity, let us
assume each independent task of a plan is a cluster. Thus,
we can estimate the parallelism potential of a planM as:

parM = |Clusters| . (7)

whereClusters is the set of clusters ofM, including its
independent tasks. Figure 19 describes the clusters found
in the initial plan of Figure 17. Tasks in each cluster are
represented by their root nodes. In this example, we have
parM = 2. Observe this number may change after each
task evaluation, according to the affected clusters.
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Clusters[sc8.1] = {µ(sc1.1), µ(sc5)}
Clusters[sc9] = {µ(sc9)}

Figure 19. Clusters of the SwapWorkspaceplan.

Priority assignment. To rank the tasks of a materialization
plan, we consider the optimizer assigns priorities for them.
Such a metric can be determined based on (possibly a com-
bination of) several different task properties, such as:

• the number of service calls;

• the abstract critical path;

• the absolute height of the root node;

• the expected makespan, based on previous execution
times;

• the number related clusters; and

• the number of replicated nodes.

The first three criteria basically define the size of a task; the
optimizer can be configured to evaluated tasks following ei-
ther a “smallest-first” or a “biggest-first” policy, according
to the system requirements. Observe that to estimate the
size of a task, ideally the optimizer should consider the dy-
namic critical path of the plan. However, the plan operators
are rather abstract at this phase of the optimization strat-
egy, and this information is not available yet (trying to get
it would be very costly). Besides these size-based criteria,
more user-defined properties could also be used, such as the
presence of certain Web services requests.

The last two bullets are related to parallelism potential.
These clustering-based criteria reflect, respectively, the ex-
ternal and internal data coupling of a task. Notice that
both size- and clustering-based criteria are important to ef-
ficiently schedule materialization tasks. Therefore, lett be
a materialization task andClusterst be the set of clusters
that containt. We compute the priority levelπ of t as:

π(t) = πsize(t) +
∑

c∈Clusterst

πcluster(t, c) , (8)

whereπsize is the size-based priority oft, andπcluster is the
cluster priority oft (for each clusterc in Clusterst). We
assume thatπsize is estimated by some arbitrary function,
regarding some criteria such as those we enumerated. On
the other hand, the cluster priority of a task is given by:

πcluster(t, c) = ωinter × πinter(c) +
ωintra × πintra(t, c) . (9)

The termsωinter andωintra denote weights to adjust par-
allelism priority, for inter-cluster and intra-cluster paral-
lelism, respectively. These weights allow the optimizer to
adapt priority assignment to different performance require-
ments and problem topologies. Theinter-task parallelism
degreeπinter of a clusterc indicates the potential ofc for

parallel evaluation (i.e., if one of the tasks ofc is evaluated),
and it is given by:

πinter(c) = |c| − 1 , (10)

where |c| is the number of tasks onc. Analogously, the
intra-task parallelism degreeπintra of a taskt in a clusterc
represents the branches oft that could be parallelized once
c has been solved. This parameter is given by the number of
replicated nodes ofc in t, since two replicated nodes cannot
be in the same branch of a task.

Observe the optimizer has to start the plan evaluation by
distributing the tasks that were chosen to be delegated to
other peers. Hence, we consider the highest priority level
(denoted byπ∞) is assigned to delegated tasks by default.
Recall that we assume these tasks do not belong to any clus-
ter. Moreover, tasks with the same priority level can be fur-
ther ordered by some deciding criterion, such as task size.

Blocking versusnon-blocking tasks.In a regular peer (i.e.,
with only one processor), tasks are usually evaluated in a
blocking mode; namely, they are handled one-by-one, and
each task blocks the evaluation of the others. In this case,
using parallelism potential to compute priority can help the
optimizer to explore tasks delegation. On the other hand,
for parallel peers, the optimizer can directly explore the
clusters of a plan to speedup its evaluation, since each task
blocks the evaluation only within the scope of its clusters.
It is worth mentioning this can be simulated with a multi-
thread system in regular peers. Nevertheless, empirical re-
sults [37] have shown that managing several simultaneous
connections to Web services usually penalizes performance.
Notice that tasks delegation is a quite different technique,
since the optimizer can use asynchronous Web services for
collaboration, thus avoiding lasting open connections.

When parallelism is imperative, the optimizer may com-
pute dynamically the priority levels of materialization tasks,
since these parameters can significantly change after each
task evaluation.

6.4 Dynamic Plan Generation

As we saw in Section 5.4, the search space of alter-
native materialization plans is dramatically large even for
very small problem configurations. In general, exponential-
complexity search problems cannot be solved for any but
the smallest instances [45]. Also, breaking the optimization
problem into pieces fosters P2P collaboration. Although
materialization tasks are natural candidates as a plan split-
ting unit, usually they are not necessarily small enough to be
efficiently optimized. Hence, we further split materializa-
tion tasks into subplans, which are used to finally generate
and rank alternative physical plans.

Two main aspects rule generating physical plans in
AXML optimization: the location scope (L) of the re-
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quested Web services; and the invocation schedule (Â) of
the plan operators. Basically, the optimizer yields different
combinations of service providers and callers (according to
both the execution and delegation scopes of each service
call node), along with different invocations sequences, to
obtain alternative physical plans. Our optimization strat-
egy adopts a variation of theworkflow-based generation
approach[15] to produce these plans. This is opposed to
a task-based generation approach (which is quite popular in
grid systems [24, 51]), where the optimizer makes greedy
decisions for each plan operator. Notice a task in this con-
text is just a plan operator. Typically, a greedy optimization
algorithm processes a plan node-by-node, picking the best
alternative for each node according to some heuristics and
localized performance parameters. Its main advantages are
the reduced complexity and the adaptability to changes in
the system. Moreover, intermediate results can be shipped
as soon as possible. However, in the AXML setting, there is
a strong performance correlation between a plan node and
its dependencies, and greedy decisions are usually very in-
efficient. In a workflow-based approach, the whole problem
is considered to produce the search space. The analysis of
complete plans enables the optimizer to reason about overall
performance, but it is really inadequate for AXML materi-
alization due to the exponential nature of the problem. We
propose a new optimization strategy that combines advan-
tages from these two approaches.

Dynamically producing k-depth subplans.The main idea
of our strategy is to exploit a hybrid search technique, which
performs a greedy analysis onk-depth subtreesof each ma-
terialization task. Thek parameter determines the abso-
lute height of each subplan that is analyzed by the opti-
mizer. This parameter usually has a significant impact on
the problem complexity, thus we assumek is a small inte-
ger (say, chosen from 2 to 4 inclusive). For each subtree,
the optimizer generates and ranks alternative physical sub-
plans, considering the relationships between the operators
of the subtree (e.g., data transfers and invocation sequenc-
ing). Once a good physical subplan is selected, it is exe-
cuted before the optimization process is resumed. In Fig-
ure 13, the steps from line 14 to 20 describe the core of the
proposed strategy.

Observe that, through our dynamic strategy, the opti-
mizer can have a bird’s eye perspective of heightk of the
materialization plan. This way, it can still be sensitive to
overall performance issues, while keeping the plan com-
plexity manageable. Moreover, the optimizer is able to
adapt a plan to changes in the system, such as peers mem-
bership fluctuations. Also, it can handle incomplete prob-
lem specifications. For example, the optimizer does not
have to know the execution scope of all the plan operators
from the beginning of the optimization process. Instead,
it can try to increase its knwoledge of the problem gradu-

ally, as the plan is evaluated. Thek parameter can be either
determined by the peer administrator or inferred (based on
some heuristics) from the absolute height of the task root.

Computing split points. To partition a task, the optimizer
has to compute itssplit points, namely the nodes that root
thek-depth subplans of the task. The algorithm outline is
shown in Figure 20. Loosely speaking, the optimizer walks
the task in some arbitrary tree traversal (e.g., in pre-order or
in post-order); for each task operator, if its height is a mul-
tiple of k, then the optimizer sets it as a split point. The task
root is considered a split point by definition. Notice we have
to use the least height of the plan operators to properly split
the task. Themod (for modulus) function in lines33 and34
of Figure 20 returns the remainder of an integer division.

Furthermore, two node occurrences require special treat-
ment to determine the split points of a task. The first oc-
currence is of replicated nodes, which are essentially task
leaves that point to some cached plans. When consider-
ing a replicated node for task splitting, either its respective
cached plan is already evaluated or it is waiting for evalu-
ation. In the last case, the optimizer can partition the cor-
responding cached plan similarly to a task, except that the
root node of the cached plan (i.e., the shared node) is not
considered a split point unless its least height is a multiple
of k. The intuition is that a replicated node has to be re-
placed by its cached plan. However, since a task may have
several replicated nodes pointing to the same cached plan,
the optimizer has to choose exactly which replica is going
to be solved first (and be replaced by its cached plan). For
replicated nodes in different subplans, this is done follow-
ing the split points evaluation order. Within a subplan, the
optimizer can analyze the resulting subplan complexity for
each replica replacement (based on the formula presented in
Section 5.4), and choose the less-impacting change. Before
starting to split a task, the optimizer retrieves the unsolved
replicated nodes and copy their cached plans into the task
accordingly. If a cached plan is already evaluated, the op-
timizer just need to replace the replicated node by afetch
operator.

The second special occurence is of collateral annota-
tions. The optimizer deals with this occurrence according
to the size of the collateral plan. Small collateral plans can
be attached to the main plan, thus enabling the optimizer
to consider collateral annotations to determine an efficient
invocation schedule. When splitting a task, to assign node
heights, the root of an attached plan is handled as a child
node. If collateral plans are potentially large (more specifi-
cally, when the node hasch ≥ k), then the optimizer has to
handle them independently. This is because we assume the
entire collateral plan has to be executedafter the node that
triggers it. Since optimization and execution are interleaved
in our strategy, the optimizer can evaluate large collateral
plans (including determining their split points) only imme-
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diately after their origin nodes. In a more relaxed execution
environment, we can admit the optimizer processing both a
plan operator and the dependencies of its collateral call con-
currently. In such a scenario, all the collateral plans have to
be attached to the main plan. However, we limit plan at-
tachment to small collateral calls.

Figure 21 shows the split points of the task rooted by
operatorµ(sc5), from the initial plan in Figure 17. In
this example, we also include the collateral plan rooted by
µ(sc1.2). Nonetheless, we remark thatµ(sc1.2) is not at-
tached toµ(sc5). For simplicity, nodes are annotated with
ch only if they have a collateral annotation, and withlah
only if lah 6= h. Split points are indicated by large red ar-
rows. We assumeµ(sc5) is the first task to be evaluated,
thus the operatorρ(sc8.1) is replaced by its corresponding
cached plan. Moreover, we have thatk = 2, and the split
points are:µ(sc5), µ(sc7), µ(sc1.2), andµ(sc3.2). No-
tice that, if collateral dependencies can be evaluated con-
currently, then the split points of the task ofµ(sc5) are:
µ(sc5), µ(sc7), andµ(sc3.2). Although these points do
not seem to change much in this case, the optimization of
their subplans is quite different. This is mainly because the
optimizer will consider materialization alternatives for both
µ(sc5) andµ(sc1.2) before executing them. Also, the de-
scendants ofµ(sc1.2) may be executed beforeµ(sc5).

Scheduling subplans evaluation.Basically, the subplans
of a materialization task must be evaluated in topological or-
der from the leaf nodes, such that child nodes are inspected
first and collateral calls are properly triggered. This task
traversal usually can be easily followed. However, since an
abstract task does not enforce a total order on sibling oper-
ators, some subplans can be processed concurrently. There-
fore, the optimizer has to determine an invocation schedule
(Â) for the task. This schedule does not need to be com-
pletely specified, since only split points have to be consid-
ered at this moment.

To focus the scheduling analysis on split points, the op-
timizer summarizes a materialization task with asubplans
guide (or s-guide, for short), which is an access structure
that expresses the dependency relationships between sub-
plans. An s-guide contains only the split points of a task,
along with their descendant relationships. Notice that two
split points may be siblings in the s-guide even if their re-
spective operators do not have this relationship in the mate-
rialization task. We consider two basic approaches to sched-
ule the nodes of an s-guide. The first approach consists
in determining an evaluation order on the children of each
node of the s-guide. Such an order can be defined by some
size-based heuristic, such as “deepest first” (e.g., based on
the absolute height of subplan root in the task), similarly to
the size-based criteria used for tasks priority assignment in
Section 6.3. The second scheduling approach is based on
a “ready list”, which contains the subplans that can be im-

1 functionSplitTask(t, k): SplitPoints
2 {Returns the set ofk-depth split points of taskt.}
3 begin
4 let SplitPoints = ∅
5 {Handle replicated nodes}
6 for each clusterc in Clusterst do
7 let Rep be the set of replicated nodes ofc in t
8 if the cached plan ofc is evaluated then
9 for each nodev in Rep do

10 Replace the operator ofv by fetch
11 end for
12 else
13 Choose a nodevm in Rep as the master replica
14 Replacevm by the cached plan ofc
15 for each nodev in Rep do
16 if v 6= vm then
17 Replace the operator ofv by fetch
18 end if
19 end for
20 end if
21 {Handle collateral annotations}
22 let Colls be the set of nodes containing collateral

annotations int
23 for each nodev in Colls do
24 if chv < k then
25 let tcoll be the collateral plan ofv
26 Attachtcoll to v
27 end if
28 end for
30 for each nodev in t do {search for split points}
31 let remainder = 0
32 if v has an attached plan then
33 remainder = mod(lahv, k)
34 elseremainder = mod(hv, k)
35 end if
36 if remainder = 0 then
37 Add v to SplitPoints
38 end if
39 end for
40 let vroot be the root oft
41 if vroot /∈ SplitPoints then
42 Add vroot to SplitPoints
43 end if
44 returnSplitPoints
45 end

Figure 20. Algorithm to compute split points.

Figure 21. Split points of the materialization
task rooted by µ(sc5), assuming that k = 2.
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Figure 22. S-guide with evaluation order.

mediately evaluated. Initially, the ready list contains all the
leaf nodes of the s-guide. Once a subplan is evaluated, its
parent node in the s-guide is added to the ready list. The
optimizer makes scheduling decisions only for the subplans
on this list; to choose the next subplan to be evaluated, the
optimizer can apply some size-based heuristic on these sub-
plans. Although this approach relies on localized decisions,
since it ignores the overall task makespan, it can improve
intra-task parallelism and workload distribution.

Figure 22 shows the s-guide for the task rooted byµ(sc5)
of our running example, along with the collateral plan of
µ(sc5). Circled numbers indicate the subplans evaluation
order; nonetheless, only the topological order can be ob-
served in this example, since this task does not have con-
current subplans.

Locating Web services. In AXML documents, Web ser-
vices requests may be specified with abstract references,
which need to be converted into some concrete service end-
points in order to generate physical materialization plans.
The location scope of a plan is an essential input of our op-
timization problem. It determines a two-dimensional search
space, since: (i) abstract references may be converted into
many alternative addresses of Web service providers; and
(ii) peers can collaborate to materialize an AXML docu-
ment. Basically, the optimizer can retrieve this information
from an internal peer catalog, a catalog server in the net-
work (such as a UDDI server [52]), and from other peers.
The optimizer tries to annotate operators with their respec-
tive execution and delegation scopes, primarily accessing
the peer catalog and registered catalog servers. If some op-
erators miss this information, then the optimizer can explore
a dynamic discovery method, using thelocate operator to
gather the missing scopes from neighbors. This enables the
optimizer to perform basiccontingency planning. That is,
the optimizer can try to automatically recover from failing
in determining the providers of some Web services, by col-
laborating with other peers.

Since P2P systems are highly dynamic, the location
scope of a materialization plan should be preferably pro-
vided by late binding. In our optimization strategy, this is
done incrementally, for each subplan of a task, in some ar-
bitrary tree walk. By restricting the location scope to sub-
plans, we enable the optimizer to defer retrieving Web ser-
vices addresses until they are really necessary. Hence, the

Figure 23. Abstract subplan rooted by µ(sc7)
annotated with location scope.

optimizer can use more fresh (and reliable!) information.
When annotating the operators of a subplan with location

scope, the optimizer replaces everyµ operator that misses
this information by alocateoperator. After visiting the en-
tire subplan, it checks iflocate operators can be grouped
by subtrees. This analysis aims at reducing communication
costs. Moreover, the optimizer may decide to start evaluat-
ing another subplan (or other operators of the current sub-
plan) while it waits for the result of alocateoperator. Also,
if too many operators of a subplan miss the location scope,
it is quite likely that the optimizer will face difficulties eval-
uating the subplan, due to the lack of supportive information
(e.g., cost parameters and statistics). To solve this problem,
either peers may embed supportive information inlocate
results, or the optimizer may delegate the entire subplan to
another peer. In Figure 23, we show the subplan rooted by
µ(sc7) annotated with the location scope according to the
services distribution of Figure 1(b); we assume any peer
can invoke all the requested Web services.

Generating and ranking physical subplans.Having spec-
ified the location scope of an abstract subplan, the optimizer
is able to enumerate and analyze the costs of its physical al-
ternatives. This is a key phase of our optimization strategy,
and it mainly concerns reasoning about resource planning
and invocation scheduling.

Algorithms for job scheduling usually rely on aschedul-
ing list [33], which is essentially a sequence of nodes or-
dered by priority. To define the schedule, the first node is
removed from the list and allocated to some available re-
source, repeatedly until the list is empty. The scheduling
list can be eitherstaticor dynamic, according to whether the
optimizer recomputes the priorities of unscheduled nodes
after each allocation. Also, there are several different poli-
cies to assign priorities to nodes, most of them focused on
the critical path of a plan. Notice that defining an invocation
schedule depends on the available resources. Therefore, we
consider the optimizer first chooses the peers that are go-
ing to participate in the materialization process, and then
attacks the problem of finding a good invocation sequence
based on the critical path.

Nevertheless, resource planning is also affected by the
order in which physical operators are processed. For exam-
ple, if two concurrent operators are assigned to be executed
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Figure 24. Some alternative physical conver-
sions for the subplan rooted by µ(sc7).

at the same peer, they are probably going to be processed se-
quentially. Even if the peer offers the best execution cost for
each operator, the overall performance may be worst than
assigning one of the operators to another peer (and possibly
profiting from parallel execution). To tackle this problem
without having to previously define an invocation schedule,
we rely on a cost model that considers the workload of op-
erators assigned to peers (see Section 7 for further details).
In general, the optimizer performs the following steps:

1. Generate the search space ofpartial subplans, whose
nodes are set only with the execution scope;

2. For each partial subplan, generate the search space of
physical subplans by setting the delegation scope of
the algebraic operators; and

3. For each physical subplan, generate the search space
of alternative invocation schedules.

However, we are considering decentralized execution en-
vironments, where an invocation schedule cannot be glob-
ally enforced. Hence, we focus our strategy on resource
planning, assuming the optimizer chooses the “best” physi-
cal subplan and then determines a good invocation schedule
only for this subplan. Observe that, by starting with partial
plans based only on service providers, the optimizer is able
to make use of some heuristics (e.g., the “Context” heuris-
tic [44]) to prune the search space of physical subplans, as
in the eager enumeration approach presented next.

An abstract subplan works as a template for generat-
ing alternative physical subplans. A straightforward (and
mostly inefficient) approach to produce these subplans con-
sists in exhaustively enumerating the search space, such that
the optimizer yields all the possible combinations of loca-
tion scope and invocation schedule. To generate a physical
subplan, first the optimizer converts everyµ operator into
an invoke operator by picking a definite invocation plan for
the corresponding service call node from itŝIP . Once the

1 procedureEagerEnumeration(sp,X)
2 {Enumerates the search space of the abstract subplan

sp by applying a two-level cost analysis on its top
X partial plans.}

3 begin
4 let Phys = ∅ {set of physical subplans}
5 Generate all the partial subplans ofsp
6 Rank partial subplans by cost of potential transfers
7 let PP be the set of topX partial subplans ofsp
8 for each subplanp in PP do
9 Generate physical subplans ofp into Phys

10 end for
11 Rank subplans ofPhys by makespan
12 LetMbest be the best subplan inPhys
13 Generate an invocation schedule forMbest

14 end

Figure 25. Eager enumeration of alternative
physical plans.

location scope of the subplan is determined, the optimizer
applies a transformation rule that searches fordelegation
points, namely theinvoke operators whose caller is nei-
ther the master peer nor the caller of the parent node. This
rule replacesinvoke operators byδ accordingly. Figure 24
shows some alternative physical convertions for the subplan
rooted byµ(sc7). The optimizer uses a cost model to rank
these alternative physical subplans by their makespan.

Although exhaustive algorithms are often unfeasible for
complete materialization plans, they may become useful in
our optimization strategy, since the optimizer deals with
subplans of reduced size. Furthermore, with our dynamic
approach, the optimizer can use intermediary results to re-
duce error propagation in cost prediction, thereby improv-
ing the cost analysis of plan operators.

Another approach is based on aneager enumerationof
the search space, where the optimizer generates alternative
physical subplans only for the topX partial plans, as shown
in Figure 25. The optimizer relies on a two-levels cost
model. In the first level, only the execution scope of the op-
erators is considered, and the optimizer tries to reduce the
costs of transfering invocation results to the master peer,
based on the set of distinct peers of each partial subplan.
This selects subplans involving a few peers, which have a
fast link to the master peer. Although clearly suboptimal,
this heuristic may be efficient when communication costs
are predominant. Notice that other criteria could be used to
filter partial plans. In the second level, only the topX par-
tial subplans are used to generate physical subplans, which
are fully analyzed and ranked by their makespan. An eager
approach is interesting when the size of the search space is
critical even for low values ofk.

It is worth mentioning that many different algorithms can
be exploited to produce the search space of physical sub-
plans. Yet, our work rather puts emphasis on breaking the
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1 procedureEvaluatePhysicalSubplan(vroot)
2 {Evaluates subplan rooted byvroot operator.}
3 begin
4 let Children be the set of child nodes ofvroot

5 for each nodevchild in Children in order ofÂ do
6 EvaluatePhysicalSubplan(vchild)
7 end for
8 if P C

vroot
= Pm or O(vroot) ∈ {δ, Θ} then

9 Evaluatevroot

10 end if
11 end

Figure 26. Algorithm to evaluate subplans.

optimization problem to reduce the search space, based on
the structure of materialization plans. Still, most of these
algorithms can perform efficiently with our strategy, since
it enables them to handle smaller problems.

Evaluating physical subplans.An important feature of our
strategy is that planning and execution are interleaved dur-
ing the AXML materialization process. After selecting a
physical subplan, the optimizer evaluates its operators in
a bottom-up traversal, following the specified invocation
schedule, as described in the algorithm of Figure 26. Re-
call that we consider a decentralized execution model where
parts of a plan may be delegated to other peers. Therefore,
the optimizer actually evaluates only:
• local operators, namely those whose caller is the mas-

ter peer; and
• delegation points, which are represented by eitherδ or

Θ operators.
Moreover, although delegated points may be nested in a
subplan (e.g., theδ operators in Figure 24(b)), we assume
the optimizer does not reason about transitive delegation,
and all of these points are supposed to return their result to
the master peer. Nonetheless, it is worth mentioning that
this restriction does not prevent peers from deciding to del-
egate parts of a subplan coming from another peer.

Evaluating a plan operator involves the steps shown in
Figure 27. Basically, the optimizer builds the required in-
puts, invokes the corresponding service call, gathers the
result, and updates both the materialization plan and the
AXML document accordingly. Also, the optimizer has to
check on the result to verify whether or not it contains in-
tensional answers. If it is the case, the optimizer must up-
date the subplan with the new service call nodes. To sim-
plify the plan update, the optimizer can employpipe op-
erators based on the techniques presented in Section 4.4 for
pipelined graphs. Namely, the optimizer generates an initial
abstract plan for the intensional answer, and inserts each
task found in the answer into the current subplan by con-
necting the new task roots as children of apipe operator.

Notice that an intensional answer may significantly
change the subplan, specially its height and consequently

Figure 27. Steps of evaluating an operator of
a physical subplan.

its complexity. Hence, the optimizer may have to review the
subplan splitting to accommodate the new operators. More-
over, some optimization decisions may become wrong in
the presence of new plan operators, and the optimizer may
have to reconsider the chosen location scope and invoca-
tion schedule. Yet, in our strategy such an analysis does not
ripple to the whole materialization plan. When an operator
evaluation results in some intensional answer, the changes
affect only the subplan that is being evaluated since the rest
of the plan consists of abstract operators only. This avoids
unnecessary re-optimization.

If the result of an operator evaluation corresponds to
some shared node, then it has to be properly loaded into the
cache. To manage keeping these results in the cache, the op-
timizer maintains for each cached plan a counter ofhanging
references, which represent the non-evaluatedρ and fetch
operators of the main plan. Recall these operators stand for
the replicated nodes of the plan. Initially, each counter is set
with the number of respective replicated nodes. Whenever
a replicated node is evaluated, its corresponding counter is
decreased. The result of a shared node is kept in the cache
while its counter is not zeroed. Some additional checking
may also be applied to an operator result; for example, the
optimizer may want to validate the result against some ex-
pected datatypes before updating the materialization plan
and AXML document.

During an operator evaluation, the optimizer monitors
the performance of both service invocation and result trans-
fer. It may ask for subplan re-optimization in case the per-
formance significantly surpasses the expected costs. Alter-
natively, the optimizer may exploit some rescheduling tech-
nique, similarly to query scrambling [53], to hide evaluation
delays. Furthermore, if some error situation arises, the opti-
mizer may resubmit an operator for evaluation (considering
the user allows it). For example, an operator re-evaluation
may occur due to service execution error, communication
timeout, or insufficient/incorrect result (w.r.t. some prede-
fined criteria, such as expected datatypes).

Once an operator is successfully evaluated, the opti-
mizer must check if it has a collateral call to be triggered.
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Nonetheless, this is done only for local operators, since we
assume that delegating subplans includes processing their
collateral calls remotely.

Foreseeing intensional answers.An advantage of our op-
timization strategy is that intensional answers affect only
the current subplan evaluation. However, we consider that
the optimizer reacts to intensional answers just when they
occur. Namely, it does not try to foresee whether a Web
service may return AXML data, using this information for
performance prediction. An alternative for the optimizer
to encompass intensional answers in the physical subplans
enumeration is to look at the expected result type of the re-
quired Web services, as proposed in [3].

Our strategy can be extended to support this feature by
exploiting the idea of enabling condition behind collateral
calls. That is, likewise a collateral call, an intensional an-
swer represents service call nodes that have to be invoked
after their origin call. Thus, the optimizer may insert some
“special collateral calls” into the materialization plan to rep-
resent intensional answers. An additional enabling condi-
tion must be specified for these special calls, to guarantee
that they are going to be triggered only if they are actually
returned as the evaluation result of their origin node. Notice
this may significantly inflate in advance the size of a materi-
alization plan. Although our dynamic optimization strategy
is quite adequate for large plans, handling intensional an-
swersa priori is rather a complex subject, and we leave a
deeper analysis of this issue as future work.

6.5 Delegating AXML Optimization

The algebra proposed in Section 6.2 contains some op-
erators specially tailored for P2P collaboration. They repre-
sent different collaboration possibilities to process service
calls of an AXML document, namely of delegating: plan
optimization (Θ); plan evaluation (δ); and Web service lo-
cation (locate). These collaboration operators are executed
remotely by their target peers, and their results are prop-
erly merged into the materialization plan by the master peer.
Hrom the perspective of the master peer (Pm), evaluating
these operators involves three basic phases:

1. Target selection, that is whenPm identifies possible
collaborators, and selects a target peer among them to
handle the subplan rooted by the delegated operator;

2. Collaboration contracting, whenPm builds the dele-
gated subplan (including all the necessary input data),
and sends it to the chosen target peer; and

3. Result delivery, when the target peer sends the result
of the delegated subplan back toPm.

Next we discuss issues involved in each of these phases.

Selecting target peers.This phase focuses on providing an
execution scope for the collaboration operator. Observe that

both the execution and the delegation scope of a collabora-
tion operator may differ from those of its service call node.
By default, the caller of a collaboration operator is always
the master peer of its subplan, since we consider the master
peer cannot enforce transitive delegation (i.e., the delega-
tion scope is empty). That is, we assume:

LC
op = {Pm} , if op ∈ {δ,Θ, locate}. (11)

Here we denoted the delegation scopeLC
op of an operator

op similarly to the notation used for service call nodes, as
defined in Section 5.

Going further, collaboration operators request P2P-
specific Web services, which are provided by AXML-
enabled peers. Therefore, their execution scope is mostly
determined by the peers inN . A particular case is that of
δ operators, which is used mostly to reduce data transfer
costs. The executor of aδ operator is chosen essencially
from the delegation scope of its service call node, assum-
ing the corresponding peers support collaboration. Namely,
givenδ(v, IPv), we have that:

PC
δ = Pm and PE

δ = PC
v , (12)

wherePC
v ∈ (LC

v ∩N ).
For Θ and locateoperators, there is seldom a direct re-

lationship between the execution scope of the collaboration
operator and its service call node. Thus, the execution scope
is usually arbitrarily chosen by the master peer based on
some QoS metrics. For instance, the optimizer may use
SLA (Service-Level Agreement) specifications of the P2P-
collaboration Web services to prune target candidates, sim-
ilarly to the approach proposed in [35]. Target selection can
be either:static, if it is based on existing statistics and costs;
or dynamic, when the optimizer polls specialized servers on
the network for fresh information on target candidates. Dy-
namic selection may become necessary in scenarios such as
ad-hoc P2P systems. Nevertheless, it is usually quite ex-
pensive due to the communication costs of its required con-
trol flows, and it must be carefully explored (i.e., mostly in
case of missing or highly-outdated statistics). Although our
optimization strategy can support both static and dynamic
target selection, for simplicity we considered only the static
approach. Namely, we assumePm always chooses targets
fromN .

Since a materialization subplan may contain several col-
laboration operators, the optimizer can decide to set target
peers either for the entire subplan or just before evaluating
each operator. Furthermore, target selection may require
some P2P negotiation to ensure the chosen peer is available
(and willing!) to receive and process the delegated subplan.
This additional step consists basically in contacting the tar-
get peer to confirm its participation.

Collaboration contracting. Once a target peer is chosen,
the master peer has to properly build the delegated subplan.
That is, the optimizer has to produce a subplan containing:
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• the collaboration operator, along with all its (active)
descendant nodes in the materialization plan;

• the data elements that should be passed as input of ser-
vice call nodes. To retrieve these elements, the opti-
mizer may have to evaluate XPath expressions for non-
concrete parameters; and

• the collateral calls, along with their dependencies (if
any).

We assume all local nodes are evaluated before sending a
delegated subplan. That is, only their results are embedded
into the subplan. Furthermore, since usually there is a mis-
match between a materialization plan and the AXML tree of
its service call nodes, a delegated subplan follows the plan
structure shown in Figure 17. Such a structure organizes the
plan into three areas, and it aims at avoiding unnecessary
node replication. This is very important to reduce commu-
nication costs.

Also, some sideways information can be passed embed-
ded into a delegated subplan. For example, to avoid dele-
gated subplans to be endlessly forwarded, we assume ahops
countergoes along on each subplan. In this case, a hop rep-
resents each time a subplan (or a part of it) is delegated to
another peer. This information is related to thedelegation
trace of a subplan, which indicates all the peers that have
ever processed it.

Before sending a delegation subplan to its target peer,
the optimizer has to serialize it (in the AXML format) and
marshal the resulting AXML data into a SOAP envelope. A
serialized subplan contains both a header and a body sec-
tion. The subplan header keeps general properties of the
subplan, such as its delegation trace and some optimization
hints (e.g., previously estimated plan costs), whereas the
body encodes the plan operators and their input data. On
the target peer side, a subplan has to be unmarshaled and
parsed before resuming the materialization process. Notice
these operations incur processing costs which the optimizer
has to consider when analyzing materialization alternatives,
as described in Section 7.

Result Delivery. When the master peer receives the re-
sult of a delegated subplan, it has to parse the serialized
SOAP response, insert the embedded service results into the
AXML document (if necessary), and update the material-
ization plan accordingly. The materialized contents that are
embedded into the result of a subplan consists of a forest of
nodes. The master peer uses a “origin” parameter to identify
the respective service calls in the AXML document.

While the locate operator aims at retrieving only sup-
portive information for the delegated subplan, bothδ and
Θ operators may involve some AXML materialization. In
case the result contains materialized contents, it is basically
composed by the results of:

• the children nodes of the collaboration operator;

• the operators related to persistent service call nodes;
and

• all the collateral calls triggered in the subplan.

Recall that persistent nodes are essentially first-level ser-
vice calls and shared dependencies. Also, notice that al-
though temporary results are not required in the result of a
delegated subplan, we consider the results of their collateral
calls are sent back to the master peer.

Horizontal plan partitioning. The Split algorithm breaks
materialization tasks in depth, to attack the optimization
problem incrementally. However, if some plan operator has
too many children, such a technique is not effective. To
overcome this drawback, the optimizer may also partition a
materialization subplan horizontally by inserting some col-
laboration operators. In particular, theΘ operator enables
the master peer to descentralize the optimization of a plan.

InsertingΘ operators in a subplan is similar to proce-
dure used to update a dependency graph withpipe nodes.
The operators that are going to be remotely evaluated are
connected as children of theΘ operator.

To decide when horizontally partition a subplan, the opti-
mizer can either use the resulting complexity of the subplan
or some fixed horizontal splitting parameterkh. Futher-
more, instead of asking a target peer to return only one phys-
ical plan as the result of aΘ operator, the master peer may
consider getting a set of alternative solutions. Peers may
also agree in setting a limit for the maximum number of in-
spected alternatives for a delegated subplan, thus limiting
the expected optimization time.

7 Cost Analysis of AXML Materialization

Although heuristics are very usefull when dealing with
complex optimization problems, in order to compare the
performance of alternative materialization subplans, the op-
timizer requires objective metrics. In this Section, we
present a set cost formula to model the performance of
AXML materialization. The proposed cost model consid-
ers relevant aspects, such as:

• heterogeneous machines and communication links;

• equivalent Web services;

• subplans delegation;

• parallel execution;

• invocation dependencies and collateral calls; and

• processing workload of peers.

As we discussed in Section 5.4, the performance of al-
ternative physical plans is represented by their makespan.
This metric represents the clock-time spent from the start of
the materialization process to the moment when the master
peer gathers into the AXML document the results of all its
embedded service call nodes. Intuitively, the makespan is
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determined by accounting the costs of Web services invoca-
tions/executions, and of communication messages between
peers. To estimate the makespan of an entire plan, these
costs must be properly combined according to the plan op-
erators and their inter-relationships.

On the other hand, the optimization strategy of XCraft
is based on dynamic and incremental plan generation. The
optimizer has to analyze plans that contain abstract oper-
ators. To cope with this incremental approach, in XCraft
we adopt amulti-leveled cost analysisbased on three dis-
tinct cost models. In the first level, the optimizer estimates
the costs of a materialization plan in terms of its complex-
ity (i.e., the size of its search space). For this purpose, we
use the complexity bounds determined in Section 5.4. This
enables the optimizer to avoid processing plans with too ex-
pensive analysis.

With the second-level cost model, the optimizer can limit
the plans analysis by using some heuristic criteria. In par-
ticular, we assume it estimates costs for partial plans. In
this case, the optimizer considers only the execution scope
of plan operators. The idea is to emphasize the proximity
(in terms of communication costs) of peers that are candi-
dates to execute the requested Web services, with respect
to the master peer. This way, the optimizer can rank par-
tial plans before generating their physical alternatives. Fi-
nally, the third-level cost model consists of a comprehensive
response-time analysis of plan operators.

We describe in Section 7.1 basic cost ingredients. The
overall formula used in the second-level cost analysis is pre-
sented in Section 7.2, while Section 7.3 details the main
components of the third-level cost model.

7.1 Representing Heterogenous Scenarios

Traditional cost models usually take into account very
detailed information on the machines, such as I/O and CPU
operations costs. Since P2P systems are quite heteroge-
neous and with autonomous peers, gathering this informa-
tion is seldom possible. In [44], we modeled the basic costs
of invoking a Web service by focusing on the response time
of its major operations. According to [44], costs are com-
puted from the client viewpoint. The response time of a
service callv is denoted byccost(v, Pi, Pj), wherePi is
client peer andPj is the executor ofv.

We consider that costs are given in time units and that
peers may have different performance capabilities (CPU
clock, RAM memory, etc.). For simplicity, we assume they
are sequential machines, namely they can execute only one
service call at a time and requested service executions have
to join a queue at each peer. Theexecution queueof a peer
P is an ordered list of service executions denoted byqP . We
assume execution queues are infinite and work on a “first
arrived, first served” basis. The term|qP | represents the

lenght ofqP , that is the number of service executions wait-
ing in qP .

The proposed cost model is sensitive only tointer-
operator parallelism, such that a single service execution
cannot be split among peers. Also, service executions are
non-preemptive, namely they cannot be interrupted to be
resumed by another peer. We denote byET (v, P ) the av-
erage execution time of the service call nodev at peerP .
The termscallSize(v) andresSize(v) represent the size in
bytes of the input and output parameters ofv, respectively.

We expect peers interconnected through heterogeneous
links. Therefore, the costs of transferingX bytes of data
from peerPi to Pj costs is:

net(X, Pi, Pj) =
X

B(Pi, Pj)
, (13)

whereB(Pi, Pj) denotes the bandwidth of the link fromPi

toPj . Notice thatB(Pi, Pj) may be diffent fromB(Pj , Pi).
It is worth mentioning that both the input parameters and the
result of a service call may involve large data transfers. For
example, in Figure 2(a), the input parameter of the callsc9
is expected to be a PDF file with possibly a few Mega bytes,
though its result is only an excerpt of the input.

7.2 Heuristic Cost Analysis

This cost analysis points out materialization plans in-
volving fewer peers, as well as peers that are close (in
terms of communication costs) to the master peer. It is
worth noting this heuristic selection tends to stretch out
the makespace of the resulting physical plans. This hap-
pens because communication costs are more weighted, and
parallel executions may be ignored. Nonetheless, in very
large search spaces or in scenarios with high communica-
tion costs, this preliminary cost analysis can be helpfull.

Let be the set of distinct peers involved in a materializa-
tion planM. The heuristic cost ofM is:

hcost(M) =
∀Pi ∈ DPM∑

net(ARS,Pm, Pi) , (14)

where:

• DPM is the set of distinct peers in the execution scope
of M;

• Pm is the master peer ofM; and

• ARS is a constant for the average result size of service
calls inM.

Notice that usually the heuristic costs of an entire plan can
be quickly estimated.

This heuristic cost model is used to rank plans previously
to a detailed analysis. For instance, the optimizer may apply
this analysis first, and then calculate detailed costs only for
n best alternative plans.
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7.3 Costs of Plan Operators

Given a materialization planM, the cost of an operator
op ∈M is estimated as:

cost(op) = ccost(op) + dcost(op)

+
∀opcc, op ↪→ opcc∑

cost(opcc) , (15)

where:

• the termccost(op) is the client-side cost, as provided
in [44];

• the termdcost(op) is the cost of the dependencies of
op; and

• opcc indicates collateral calls.

Remember plan operators correspond to service call invoca-
tions, thus the cost analysis is uniform for different operator
types. Therefore, the overall cost of a materialization plan
M can be calculated recursively as:

overall cost(M) =
∀ri ∈ ROOTM∑

cost(ri) , (16)

whereROOTM is the set of root operators ofM.

Invocation dependencies. Since peers have processing
queues, if two service executions are mapped the same peer,
they run sequentially. Thus, to properly estimate the costs
of invocation dependencies, it is necessary to consider the
processing workload of peers. We restrict this analysis to
the children of each operator in a materialization plan.

Given a plan operatorop, we take the setDP ′op of dis-
tinct peers involved in the evaluation of its dependencies.
Notice DP ′op does not concern the location scope ofop.
Then, for each peerPi in DP ′op, we calculate its total pro-
cessing load as:

total load(Pi) =
∀opj ∈ Children(op,Pi)∑

cost(opj) , (17)

whereChildren(op, Pi) is the set of invocation dependen-
cies ofop that are executed byPi. From this result, we can
estimate the cost of the dependencies of the operatorop as:

dcost(op) =
∀Pi ∈ DP ′op

max (total load(Pi)) . (18)

It is worth noting that if operators run in blocking mode,
then we have:

dcost(op) =
∀opj ∈ Children(op)∑

cost(opj) , (19)

whereChildren(op) is the set of all the dependencies of
op. In this case, parallel executions are disregarded.

Peer energy factor. For P2P systems with low bandwith
rates, the optimizer may tend to sacrifice parallel execution

for the sake of avoiding data transfers. In this context, peers
may be overloaded with service assignments. Thus, for fair
costs ranking, the optimizer has to consider performance
penalties from peers workload. When estimating the costs
of a plan operatorop, we define the energy factor of a peer
Pi in DP ′op as:

ef(Pi) =
BogoPi

∀opj with Pi in IPopj∑
ET (opj , Pi)

, (20)

whereBogoP is the BogoMips [58] speed ofPi. The en-
ergy factor can be used to add some extra response time for
service executions atPi, which are due to its performance
penalties. Another (simpler and more imprecise) way to
estimate this factor would be computing the inverse of the
number of plan operators assigned to the peers.

Delegation costs.Delegating a subplan encompasses the
costs of: (i) sending the plan along with its input data; (ii)
evaluating the plan at the remote peer;(iii) returning the
plan along with its persistent results back to the master; and
(iv) updating the AXML document. This means the costs
of δ operators can be computed by Equation 15, with small
changes in the estimation of input and result sizes. In par-
ticular, the input size must take into account the results of
dependencies that were previously evaluated.

8 XCraft Architecture

We present a service-oriented optimizer architecture
called XCraft, which enables dynamic and decentralized
materialization of AXML documents, and supports the pro-
posed optimization strategy. XCraft works in a multi-thread
fashion, as a facade component of the ActiveXML peer; it
interacts with the AXML document repository, the services
and statistics catalogs, and the Service Call Handler.

Main XCraft modules. Figure 28 shows the main mod-
ules of the XCraft optimizer, which conducts AXML ma-
terialization as follows. When the contents of an AXML
document are requested, its master peer starts a new op-
timization task at XCraft. TheGraph Extractoranalyzes
the service calls embedded into the document and produces
its dependency graph (or retrieves it, if it is already avail-
able). This graph is used by theAbstract Plan Builderto
extract the corresponding MFST and to yield an initial ab-
stract plan. ThePlanner, a central XCraft module, takes the
initial plan, breaks it into materialization tasks and calcu-
lates their priority.

Materialization tasks are processed such that each task
is split into subplans, and each subplan is optimized and
completely evaluated before optimization is resumed. First,
the Planner asks theService Locatorto identify both the
execution and the delegation scope of the current subplan.
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Figure 28. System architecture of the XCraft optimizer.

According to the plan generation strategy, the Planner roves
the search space of alternative physical plans; it uses the
Plan Schedulerto determineÂ by applying some schedul-
ing heuristic. The Planner asks theCost Analyzerto es-
timate the makespan of physical subplans, registering the
subplan with the best makespan during the search. Then, it
sends the overall best subplan to thePlan Evaluator, which
executes it and returns the results, possibly along with in-
tensional answers.

As the evaluation proceeds, service call results are gath-
ered and merged into the AXML document. Furthermore,
the Performance Monitorwatches over operators evalua-
tion, and it can trigger subplan re-optimization if neces-
sary. Both the Planner and the Plan Evaluator may also get
plans coming from theExternal Handler, which processes
requests from other peers. These requests are received by
theCollaboration Service, which implements the interface
of the basic Web services for P2P collaboration. For col-
laboration requests, evaluation results are sent back to the
origin peer in the Collaboration Service reply.

For simplicity, we omitted in Figure 28 two modules of
the XCraft architecture: thePlan Cache, where the opti-
mizer keeps shared plans and their results; and theOpti-
mizer Profile Loader, which sets relevant properties to con-
figure the behavior of the XCraft internal modules (e.g., the
heuristic to be used by the Plan Scheduler).

Configurable optimizer profiles. There are many variables
to be considered by the XCraft optimizer when materializ-
ing an AXML document, such as:

• the subplans depth used by the splitting algorithm;

• the scheduling heuristic;

• if re-optimization is allowed;

• if peer can forward delegated subplans to other partic-
ipants; and

• the heuristic used to generate the search space of alter-
native physical subplans.

To handle all these options, XCraft uses the notion ofop-
timizer profile, that is a set of properties that control the
optimizer behavior. The profile is loaded at launch time,
but it can be updated during the peer life cycle. It provides
flexibility to adapt to different application requirements.

Basic optimization services.Cost parameters and statistics
are provided by some basic optimization services, which
are usually available at any ActiveXML peer. Although
the optimizer may collect some missing costs and statis-
tics at runtime, much of the supportive information that is
required during the optimization process must be gathered
in advance. Furthermore, plan operators such asΘ andδ
are implemented as basic Web services for collaboration,
thus enabling peers to exchange evaluation plans encoded
as AXML data.
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<serviceDefinition type="query"
axml:docName="UnionService"
xmlns:axml="http://www.activexml.net/AXML">

<parameters>
<param name="_documentIn"/>

</parameters>
<definition>

<query> <![CDATA[
{select e1

from e1 in SigmodRecord//articlesTuple}
union

{select e2
from e2 in {_documentIn}//articlesTuple};

]]> </query>
</definition>

</serviceDefinition>

Figure 29. Declarative Web service with union
operation.

9 Experimental Results

We have implemented and tested the proposed optimiza-
tion strategy in the ActiveXML system [13]. We extended
the ActiveXML peer (version 4-Beta) with the XCraft opti-
mizer components presented in Section 8. We used the Java
language and open-source software, such as Apache Tom-
cat 4.1.29, JDK 1.4.2, and Axis 1.1. To compute spanning
trees, we used a Java implementation of the Prim-Jarnik al-
gorithm [31].

In our tests, we deployed three ActiveXML peers ex-
tended with the XCraft optimizer and some basic collab-
oration Web services. At each peer, we also deployed
two declarative Web services, which perform respectively
a union and a join operation on documents derived from the
ACM SIGMOD Record articles database [48]. The speci-
fications of these declarative services are described in Fig-
ures 29 and 30. They take a single input parameter named
“ documentIn”, which is combined (either by a union or
a join operation) with a locally stored file. Notice the
“axml:docName” parameter (of the “serviceDefinition” el-
ement) indicates the name of the declarative service. In the
ActiveXML plataform, the query of declarative Web ser-
vices is written with the X-OQL language [64].

We used three heterogeneous machines under different
workloads, as described in Figure 31. Processing power
is represented by BogoMips [58].Master indicates the
master peer, which is connected through a 512Kbps Internet
link to the other two machines.Laptop1 andLaptop2 are
located in a 36Mbps local network. Figure 32 shows these
peers connections.

We generated sets of AXML documents with different
configurations of service call nodes by varying the height
and width of the document trees. Recall the height is de-
termined by invocation dependencies and the width corre-

<?xml version="1.0" encoding="UTF-8"?>
<serviceDefinition type="query"

axml:docName="JoinService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:axml="http://www.activexml.net/AXML">

<parameters>
<param name="_documentIn"/>

</parameters>
<definition>

<query> <![CDATA[
select e1
from e1 in SigmodRecord//articlesTuple,

e2 in {_documentIn}//articlesTuple
where e1/title/text() = e2/title/text();

]]> </query>
</definition>

</serviceDefinition>

Figure 30. Declarative Web service with join
operation.

Peer O.S. BogoMips RAM
Master Debian GNU/Linux 2957.31 512Mbytes
Laptop1 MS WindowsTMXP 1718.18 512Mbytes
Laptop2 Linux SuSeTM 1198, 77 512Mbytes

Figure 31. Hardware of deployed ActiveXML
peers.

sponds to the number of trees in the MFST of the AXML
document. Basically, in the experiments we used AXML
documents that contain sequences (i.e., batch pipelined
tasks) and parallel splits patterns from grid workflows [54].

We performed two basic analysis. First, we identified as-
pects that have relevant impact on the materialization com-
plexity (i.e., the number of alternative plans). We observe
the time spent in optimization with different plan generation
approaches, and compare these results with the XCraft dy-
namic strategy. In the second battery of tests, we evaluate
the gains achieved by subplan delegation. We focused on
delegation of service invocations, since both optimization
and service location operators are more related to contin-
gency planning and do not directly reflect performance im-
provement. These operators rather improve the adaptivity
capabilities of the optimizer.

It is also worth noting that, in P2P and grid systems,
the communication costs from transfering data between two
nodes that are delegated to the same peer are usually as-

Figure 32. P2P network used in experiments.
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Figure 33. Impact on the size of the search
space by varying the fanOut of service calls.

sumed to be zero. Nonetheless, this simplification is not
true for Web services, since they always involve heavy op-
erations for XML handling, as observed in [44].

9.1 Devising the Search Space

The time spent on the optimization process is a cru-
cial point when efficiently materializing AXML documents.
Since this represents an NP-complete problem, exahustive
search is usually prohibitive, making the use of heuristics
mandatory. Moreover, in P2P systems, the optimization
process itself cannot be time-consuming due to the dynamic
behavior of peers. Therefore, an important task of the op-
timizer is to analyze the size of the search space of a given
materialization plan.

The great improvements of hardware performance have
made possible to tackle several complex optimization prob-
lems. Nonetheless, we observed they are still insufficient
to solve the issues posed by AXML materialization, which
usually involves very large search spaces. To have a more
clear idea of the size of the search space of an AXML docu-
ment, we used the complexity formulas presented in Sec-
tion 5.4 to identify its relevant dimensions and estimate
their impact. For instance, in Figure 33 we varied the
fanOut of service call nodes for an AXML document with
heighth = 2 and four first-level service calls (i.e., width is
|Λ| = 4), considering three peers. Notice the axis of num-
ber of plans is in a logarithmic scale. Results corresponds
to the complexity of partial plans with only executors and to
the complete search space, assuming an exhaustive method.
Figure 34 shows the size of the search space by varying both
the fanOut and the document height. The search space
grows exponentially with respect to bothfanOut andh.
In fact, even for small documents, its size is significantly
large. In further analysis, we found this exponential behav-
ior stands the same for the number of peers involved in the

Figure 34. Search space analysis from vary-
ing both the document height and the fanOut.

Figure 35. Search space reduction in XCraft.

materialization process.
XCraft uses a dynamic optimization strategy to reduce

the number of inspected plans, yet taking into account rel-
evant properties such as communication costs. Basically,
XCraft breaks materialization plans according to a given
parameterk. We can observe in Figure 35 the impact of
our strategy on the number of inspected alternative plans.
We used an AXML document with four first-level service
calls of height fixed ath = 8. We assumed a very sim-
ple case, where thefanOut of each service call node is1
(namely, the document contains only32 service call nodes).
We estimated the number of inspected plans with our dy-
namic strategy for different values of thek parameter (i.e.,
the height of each subplan to be analyzed by the optimizer),
considering both the analysis of subplan delegation and
choosing only service executors. We also compare these re-
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Figure 36. Simulated optimization time.

sults with the exhaustive search strategy, and results of us-
ing the Divide&Conquer heuristic to identify independent
materialization tasks. Observe that even in this simple case,
the size of the search space prevents adopting the exhaustive
strategy. Our dynamic approach provides XCraft with flex-
ibility to deal with complex AXML scenarios, by allowing
it to scan search spaces with manageable sizes.

The size of the search space has a major impact on the
optimization time. We simulated this time by considering
the optimizer spends an average of0.5 seconds to gen-
erate and analyze an alternative plan. We came to this
value by observing experimental results obtained with small
AXML documents. Although larger documents tend to re-
quire more time to be generated and analyzed, this average
metric sets a good performance reference, as shown in Fig-
ure 36. We considered the same AXML document used in
Figure 35.

9.2 Plan Delegation Effects

While our dynamic strategy produces suboptimal solu-
tions, it allows the optimizer to exploit subplans delegation,
which usually results in significant performance gains. This
can be noted in Figure 37, where we evaluate the perfor-
mance achieved by delegating materialization subplans con-
taining service call nodes withfanOut = 1, and invocation
results with100Kbytes. We vary the height of nested ser-
vice calls in the document.

In this case, the master peer sends the physical sub-
plans to be evaluated remotely, and receives only service
results that compose the final document contents. We used
AXML documents that correspond to batch pipelined tasks
(i.e., with at most one dependency). For higher values of
fanOut, we expect the performance gains of plan delega-
tion tend to be even more expressive.

Figure 37. Performance gains obtained by
subplans delegation.

10 Related Work

Materializing AXML documents is quite similar to ex-
ecuting workflows: embedded service calls are tasks to be
performed, which are often related to each other, causing
some invocation constraints and data flows. These invo-
cation constraints correspond to some basic control flow
patterns, namely sequence, parallel split, and synchroniza-
tion [54]. However, AXML materialization always involves
some data flows towards the peer that is gathering the docu-
ment contents (calledmaster peer). Hence, an AXML doc-
ument can be incrementally composed and consumed, while
partial results are seldom meaningful in workflow systems.

We represent AXML invocation constraints in a formal-
ism based ondirected acyclic graphs(DAG), similarly to
models used for business processes orchestration in work-
flow systems [15, 33, 54]. As in scheduling workflow tasks
for grid computing [15, 38, 56], we are interested in deter-
mining an efficient assignment of tasks (Web service exe-
cutions) to distributed resources (peers). However, in grid
systems usually tasks are assigned tositeswhose infras-
tructure encapsulates many servers, aiming mainly for load
balance [15, 27, 42, 56]. Still, planning workflows in dis-
tributed heterogeneous systems is an NP-complete prob-
lem [33], which remains a research challenge. Likewise,
optimizing AXML materialization is a hard problem, with
additional complications from the volatility of a P2P sce-
nario.

Allocating resources and scheduling tasks to efficiently
execute workflows is indeed an important issue. Current
planners [15, 27, 42, 56, 61] are essencially concerned with
heuristics to schedule tasks and algorithms to improve lo-
cality of required data files. Nonetheless, tailored for grid
computing, these planners are often based on static analy-
sis [15, 27, 42, 61]. In AXML materialization, besides the
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performance and membership fluctuations of the system,
the optimizer has to be prepared for occasional changes in
the materialization plan due to intensional answers. On the
other hand, planners that are based on dynamic strategies do
either greedy [56] or opportunistic [38] resources selection.
Since they work with local decisions, they usually cannot
explore avoiding unnecessary data transfers. Even when
planners are dynamic or adaptive [27, 38, 42, 56], they
consider either centralized or hierarchical coordination, and
rely on re-optimizations to react to changes.

Notice that, although decentralization has become a key
feature in both P2P and grid computing, current systems do
not support a decentralized planner. Our results highlight
promising performance gains achieved by a decentralized
approach.

AXML documents are similar to decision flows [30]
in the sense that their materialization isattribute-centric,
namely it aims at determining the values of certain data ele-
ments. Yet, conversely to [30], our strategy is dynamic and
enables decentralized evaluation.

Previous work on AXML optimization mostly addressed
typing control [39], XML query processing [3], and data
and Web services replication [7]. Mechanisms to generate
alternative strategies for AXML materialization, including
basic cost formula for performance prediction, was first pre-
sented in [44]. XCraft is built upon these ideas, and fo-
cuses on the problem of efficiently producing and evalu-
ating materialization plans in dynamic P2P systems. Re-
cently, Abiteboulet. al [9] proposed an algebraic frame-
work to generate AXML materialization alternatives, with
emphasis on Web services that can be described by queries.
In XCraft, we consider issues related to handling search
complexity, resources heterogeneity and P2P membership
dynamics when generating materialization plans.

11 Conclusions

Materializing an AXML document corresponds to a gen-
eral case of finding an efficient assignment of inter-related
tasks to heterogeneous machines, which is an extremely
hard optimization problem. Nevertheless, this became a
current challenge for many information integration systems
based on Web services, such as P2P systems and grid com-
puting. In this paper, we presented an optimization strategy
for AXML materialization, which widely explores dynamic
techniques, thus scaling well for decentralized and ad-hoc
systems. We believe this work goes beyond the context of
AXML documents, and contributes to the efficient instan-
tiation of abstract workflows, specially in highly-dynamic
and heterogeneous systems. Also, with a descentralized ar-
chitecture for collaborative optimization, we highlighted an
important issue that has been neglected in most of the cur-
rent systems.

In XCraft, since we assumed the cost analysis of ma-
terialization subplans is exhaustive, the algorithm used to
generate these subplans is quite sensitive to the choice of
the height of the planning step (i.e., thek parameter). To di-
minish this shortcoming, we are currently developing meth-
ods based on stochastic algorithms and local search, such
as the techniques proposed in [63]. The overall idea is to
incrementally refine an arbitrary initial solution until some
condition is satisfied (e.g., some bounded period of time or
performance improvement percentage), while allowing the
optimizer to ramdomly move in the search space based on
some probability function for plan acceptance. As stated in
[45], these metaheuristics are usually very suited for search-
ing good solutions using non-monotonic cost functions (as
in AXML materialization).

There are many interesting paths to pursue the ideas
raised in this paper. We are considering to extend the op-
timization strategy to support contingency planning for ser-
vice call failures, that is to generate branching plans taking
some or all of the possible alternative evaluations into ac-
count, as presented in [23] for Web services composition.
Also, materialization plans are a very graphical and intu-
itive representation that can be explored to monitor AXML
materialization, possibly allowing the user to interfere in
the process “on the fly”. Finally, we have observed that
planning and scheduling Web service invocations are quite
affected by resources availability. Hence, an interesting
research perspective consists in investigating non-intrusive
techniques for resources provisioning in P2P systems.
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