XCraft: A Dynamic Optimizer for the Materialization of
Active XML Documents

Gabriela Ruberg, Marta Mattoso
Department of Computer Science — COPPE/UFRJ, Brazil

{gruberg, marta

}@cos.ufrj.br

Technical Report ES-709/07

May, 2007

Abstract

An active XML (AXML) document contains special tags
that represent calls to Web services. Retrieving its contentsl
consists imaterializingits data elements by invoking all its o
embedded service calls in a P2P network. In this process,
the results of some service calls are often used as inputs
to other calls. Also, usually several peers provide each re- 4
guested Web service, and peers can collaborate to invoke
these services. This implies many equivalent materializa-
tion alternatives, with different performance.

Optimizing the AXML materialization process is a hard
problem, which often involves searching a huge space of5
solutions. Current techniques for workflow scheduling and
distributed query processing are insufficient for this prob-
lem, since in AXML materialization:z) the set of partic-
ipating peers is not known in advanceij)(service calls
in the result of other calls forbid a simple “optimize-then-
execute” strategy; andi{i) due to the peer volatility in the
network, a plan computed by the optimizer may become in-6
valid at the moment of its execution. Moreover, most of the
current optimizers are based on centralized coordination.

We propose alynamic, cost-based optimization strategy
to efficiently materialize AXML documents considering the
volatility of a P2P scenario. We formalize the problem from
a performance-oriented perspective, and present an opti-
mization strategy that incrementally generates and executes
materialization plans. This enables the optimizer to reduce
the size of the search space, get more up-to-date informa-
tion on the status of the peers, and deliver partial results
earlier. Our strategy can handle arbitrarily complex AXML 8
documents, and exploits decentralization in many levels.

We also present a service-oriented optimization architec-
ture calledXCraft. We evaluated our approach in an XCraft
prototype for the ActiveXML system, an open-source P2P

platform. Our results show promising performance gains 10 Related Work

compared to centralized, static materialization strategies.

Contents

Introduction 2
Running application 3
AXML Basics 5
Service Invocation Constraints in AXML 7

4.1 Precedence Constraints 7
4.2 Consequence Constraints 8
4.3 Dependency Graph 8
4.4 Dynamic Graph Updates 12
Materializing AXML Documents 15

5.1 Equivalent, Replicated and Generic Servicd$
5.2 Exploring P2P Collaboration in AXML . . 17
5.3 Enacting AXML Materialization 18
5.4 The AXML Optimization Problem 19
5.5 Main Problem Topologies. 22
Optimizing AXML Materialization 23
6.1 Dynamic Optimization Strategy 23
6.2 Extracting Materialization Plans 24
6.3 Determining Materialization Tasks 28
6.4 Dynamic Plan Generation. 29
6.5 Delegating AXML Optimization 35
Cost Analysis of AXML Materialization 36
7.1 Representing Heterogenous Scenarios . 37
7.2 Heuristic CostAnalysis 37
7.3 Costsof PlanOperators 38
XCraft Architecture 38
Experimental Results 40
9.1 Devising the Search Space 41
9.2 Plan Delegation Effects 42
42
11 Conclusions 43

1 Introduction peer that is gathering the document contents (caliadter
peen. Hence, an AXML document can be incrementally

Data management techniques for peer-to-peer (P2P) Sysg:omp(_)sed qnd consumed, while partial results are seldom
tems have been extensively exploited in the last years. TWOmeamngfuI in workflow systems.
technologies have been crucial in this scenario: the XML Another issue in materializing AXML documents comes
format, as the universal media for data exchange; and Webfom intensional answersNamely, in AXML-enabled sys-
services, as the standard for program and data interoperieéms,service calls may return other service cadis the re-
ation. Web services are described as independent, selfSult of their invocation. This means the problem specifi-
contained programs whose interfaces can be published, discation (the actual document to materialize) may evalve
covered and invoked throughout the Web [60]. They encap_runtime This is very different from traditional distributed
sulate heterogeneous business processes, and their relaté§i€ry optimization settings: a query can be optimized ei-
standards [49, 52, 62] are a practical and effective underpin-ther statically or dynamically [16, 22], but the query spec-
ning for reconciling disparate systems. T¢wmbination of ification itself does not change during optimization (except
XML and Web servicesas enabled new models to express for parameterized queries). With AXML documents, the
powerful distributed computations, raising a new class of System must be able to dynamically update materialization
active XML documentf5]. These documents consist of a plans accordingly. Also, ideally the system should reduce
highly-adaptive media for distributed information. Hence, the scope of impact of these changes in the planning pro-
solutions to efficiently support them can significantly con- €€sS, thus avoiding excessive reoptimizations.
tribute towards Web computing. Basically, the intensional nodes of an AXML document

Besides regular XML data, active XML (AXML, for point to specific service references, including the service
short) documents contain special XML elements which rep- URL and other parameters that are required to invoke a Web
resent calls to Web services. These embedded service callservice (as defined in the SOAP and WSDL standards [59]).
can be invoked automatically or on-demand; once a serviceln @ more flexible approach, Web services can be addressed
call is invoked, its result is gathered and merged (accordingby abstract references,g, based in some ontology of ser-
to some predefined criteria) into the corresponding XML Vices, as in OWL-S [41]. This approach is very convenient
document. Invoking embedded calls can be thought of asto describe AXML data, specially because locating the best
materializing some intensional dat the AXML docu- resources to execute service requests in a P2P system is of-
ment. Therefore, to retrieve the contents of a document,ten burdensome for users. Considering abstract service ref-
all of its service calls need to be materialized. Notice this is erences, an AXML document can be materialized by many
a quite common scenario in Web applications, where deliv- alternative strategies [44]. Regardless of the services invo-
ering XML documents usually requires materializing their cation order, these strategies may differ in the choice:df: (
contents first. We are interested in the efficient materializa-the peer thaexecutesach service call; andif the peer
tion of AXML documents in a P2P system. thatinvokeseach service call. Observe that possibly several

Materializing AXML documents is quite similar to ex- P€ers can invoke a service call, even if it refers to a specific
ecuting workflows: embedded service calls are tasks to beWWeb service endpoint. This means that the master peer can
performed, which are often related to each other, causingdelegate the invocation of a Web service to another peer.
some invocation constraints and data flows. For example,Such a decentralized approach adheres to a typical P2P ex-
invocation dependencimcur When Service Ca”s takes the ecution mOdel, and it can reduce communication costs since
result of other calls as input parameters. In this case, nestedf avoids transfering intermediary results to the master peer.
service calls must be invoked first to provide input for their Efficiently materializing an AXML document concerns
respective outer service calls. These dependencies enforcboth determining which peer invokes and/or executes each
some precedence constraints on the materialization processervice call (by taking into accoung.g, their communi-
and they often imply somaata flowshetween service invo- cation costs), and ordering the invocation of relevant ser-
cations. Some of these invocation results are required tovice calls (by exploiting possible parallel executions). This
embody the final materialized document, while others are problem is complicated by th@embership fluctuationsf
intermediate results that do not need to be kept to the end ofa P2P system, where peers can join or leave the community
the materialization There may also exishvocation con- at any time. Therefore, the optimizer cannot afford to spend
sequencedn an AXML document, when materializing a much effort to generate plans that may be no longer valid at
service call should automatically trigger another call. In- runtime. In fact, unpredictability is endemic in large-scale
vocation constraints of embedded service calls correspondsystems, angbeers are not required to generate complete
to some basic control flow patterns, namely sequence, parmaterialization plans before starting their evaluatioin-
allel split, and synchronization [54]. However, AXML ma- stead, partial plans can be generated and executed (possibly
terialization always involves some data flows towards the in parallel). This approach has several advantages. First, the

optimizer can accessgp-to-date knowledgabout the sys-
tem, which increases both the quality of the plan statistics
and the plan validity. Going furthemuch of the decision
process can be deferrahtil the system is better informed
on service statistics and/or service location.

Contributions. In this paper, we show that dynamic tech-
niques are vital for efficiently materializing AXML docu-

with the volatility of a heterogeneous P2P environment. We
make the following contributions:

e A canonical model to represent service invocation
constraints of AXML documents We capture rele-

platform to manage AXML documents. We describe
an experimental evaluation of its effectiveness.

Although the proposed strategy can benefit AXML ma-
terialization in general, it is specially targeted at AXML
documents containing calls ttata-intensive Web services
involving large input or output transfers within a heteroge-
neous P2P network. Despite the great improvements that
we have witnessed in communication speed, data trans-

Yers through Web services protocols remain costly due to

operations such as packing/unpacking and parsing XML
data [44]. Moreover, in such a scenario the main opti-
mization goal is not to find best plans, but mostlyatmid

the worst onegwhich may become unfeasible on critical

vant issues related to the invocation dependencies and€'formance). Also, materialization plans may fail due to

consequences between service calls into a DAG-base

representation, and we define the necessary criteria tg

check its validity (w.r.t. deadlock and execution termi-
nation) and to eliminate redundancy. Furthermore, we

dnany reasons, such as security restrictions and hardware

errors. Yet, we believe a dynamic strategy contributes to
improve system recovery, since smaller tasks can be better
monitored to enable early error detection and fixing.

propose efficient techniques to update the graph of anpaper outline. This paper is organized as follows. We de-

AXML document at runtime with intensional answers;

A P2P enactment model for AXML materialization
with abstract service referencedVe characterize the
main participants of the AXML materialization pro-
cess, and their possible interactions in a P2P scenario
We use this enactment model to define the search spac
of materialization alternatives for AXML documents,
and to formalize the corresponding optimization prob-
lem;

A dynamic algorithm to generate and evaluate
AXML materialization alternatives. We propose an
optimization algorithm that can handle arbitrarily com-
plex AXML documents. This algorithm splits the ma-
terialization problem into smaller parts, and then inter-

scribe in Section 2 an application to motivate the need of op-
timization for AXML materialization, and in Section 3 we
present some basic concepts in AXML documents. We de-
fine the canonical formalism to represent service invocation
constraints in Section 4. Section 5 describes the P2P enact-
ment model for AXML materialization, and states the opti-

nization problem addressed in this paper. Our optimization

strategy is proposed in Section 6, including its dynamic al-
gorithm and the algebra to encode materialization plans. In
Section 7, we detail the cost model used to analyze alter-
native materialization plans. We describe the XCraft opti-
mizer architecture in Section 8. Experimental results ob-
tained with an XCraft prototype are analyzed in Section 9.
Section 10 discusses related work, and Section 11 closes
with some conclusions and perspectives.

leaves planning and execution, thus enabling the sys-

tem to yield partial materialization plans and deliver
partial results earlier. Plans are encoded with opera-
tors of a materialization algebra, which we introduce
to properly evaluate embedded service calls;

A cost model to evaluate AXML materialization al-

2 Running application

There are many interesting applications for AXML doc-
uments [6], such as RSS news syndication [2] and manage-
ment of eletronic patient records [1]. In the Acware sys-

ternatives.We devise a cost-based strategy which rep- tem [10], AXML documents are explored to buiattive
resents typical characteristics of P2P systems, such agontent warehousesvhich help biologists to continuously
replicated Web services, heterogeneous machines andntegrate and transform information for food risk assess-

communication links, parallel execution, and the dele- ment. Abiteboulet al. [9] describe an application based
gation of materialization tasks; and on AXML documents to manage the production and dis-

tribution of Open Source software, in tle®osEuropean
An AXML optimizer architecture and prototypeWe project. In [44], AXML documents are used as a practical
outline a decentralized, service-oriented optimizer ar- framework for a financial application, to support a loan pro-
chitecture, calledXCraft, to support the proposed gram for farming activities. In this paper, we illustrate the
techniques. We implemented an XCraft prototype main AXML materialization issues with a financial applica-
upon the ActiveXML system [13], an open-source P2P tion for foreign exchange swapamedCurrencySwap

e <current_contract><number> 12345 </number>

p <company > <name>XTechno Acme Ltd</name>

. <can_swap><sc id="1" service="CheckSwapStatus ">
I : <param name="swaps”>

Swap
Workspace

B

-

<sc id="2" service="GetCurrentSwaps ">
<xpath>//company/name </xpath> </sc> </param>
< param name="current_limit">

broker, broker, ___“_:_2 _____ f?;___, __f‘_‘ _____ 55____ <sc id="3" service="GetSwapLimit ">
BNDES BMF <param name="“company” >
<xpath>//company/name </xpath> </param>
@) < param name="date”>
<xpath>/current_contract/today </xpath> </param>
Service Providers </Isc></param> </sc></can_swap> </company>
<principal><sc id="4" service="GetContractPrincipal ">
CheckSwapStatus P>,P3,P, <xpath>/current_contract/number</xpath> </sc> </principal >
GetCurrentSwaps Py,Ps <swap-debt><sc id="5" service="CalculateDebt " followed_by="1">
GetSwapLimit P5,P3,Py <param name="principal”>
GetContractPrincipal | Pu,Ps <xpath>/current_contract/principal/amount</xpath> </param>
CalculateDebt P3,P5,P4,P5 <param name="“swaps”>
GetContractSwaps Py,Ps <sc id="6" service="GetContractSwaps ">
GetExchangeRate P5,P3,Py,Ps <xpath>/current_contract/number </xpath> </sc> </param>
GetlLocalDate Py,P5,P3,Py,Ps5 <param name="rate”><sc id="7" service="GetExchangeRate ">
GetContractPDF Py, Ps <param name="foreign_currency”>
ExtractExcerpt Py,Py,Ps <xpath>/current_contract/principal/currency </xpath>
(b) <Iparam>

< param name="date” > <xpath>/current_contract/today
. . . . </Ixpath> </param> </sc> </param>
Figure 1. The CurrencySwagpplication (a) in a <ésc></sw%p,d;bt> cetlocalbate oo fod
. ; . <today><sc id="8" service="GetLocalDate "/> </today >
P2pP Settmg' and (b) its Web services. <contract_excerpt><sc id="9" service="ExtractExcerpt ">
<param name="text">
<sc id="10" service="GetContractPDF "/> </param>
< param name="input_format”>PDF </param>
<param name="“output_format”>XML</param >

Basically, currency swap operations rely on exchanging <’S°><’°°”"a°‘*ex°erpt><’°”r(rae)’“*°°””a°t>
debts made in a specific currency against either another for-

. X . <current_contract><number> 12345 </number>
eign currency or a fixed interest rate. For example, SUPPOSE |~ company> <name>XTechno Acme Lid</name>

a Brazilian company has a contract for a loan in US dollars. <can_swap>yes</can_swap></company>
As a security against adverse exchange rate movement, this| =" qere = S3aim 2 o000 amount>
company can negotiate withfanding banko swap its debt <due>06/20/2006</due> </principal >
; : ; i : <swap_debt>
currency against a fixed interest rate. This debt is converted — amount> 196500 < /amount < flow-15720 < /flow
into Brazilian Reaisaccording to the exchange rate of the <currency>BRR</currency> </swap-_debt>

. . tod 04/15/2005</tod
swap operation date. On the contract settlement date, if US | o tact excorpts. -« < /sontract.excerpts

dollars have become more expensive, then the company will | </current_contract>
only have to pay the converted debt plus the interest rate, ®)
and the funding bank will provide the remaining difference.

An interesting fact about most of the financial appli-
cations is that performance is just as important as other
tradicionally-critical issues, such as security and reliability.
For instance, stock trading systems operate in near-realtime.
Hence, optimization is a strong requirement of these sys-
tems in distributed settings.

Figure 2. SwapWorkspaceocument at Py, (a)
before and (b) after the materialization of sc5.

swap contracts and financial indices are published through
Web services; Figure 1(b) lists the main Web services pro-
CurrencySwapsetting. Figure 1(a) shows th€urren- vided by each peer. Peers can gather Web services descrip-
cySwapapplication in a P2P setting. Companies interact tions either directly from service providers or from catalogs
with the system througibrokers The central player is available on the network, such as UDDI servers [52].

the Brazilian Mercantile&Future Exchange (BMF), which During business negotiations, brokers can follow swap
manages all the swap operations coming from brokers.information for relevant contracts in@wapWorkspacdoc-
Swap contracts are negociated with BNDES, the major ument, such as the one in Figure 2(a) (in a simplified AXML
Brazilian funding bank. In turn, BNDES limits the amount notation). Basically, th&SwapWorkspacedocument con-

of debt subject to swapping for each company, to reducetains the contract number, the company name and its swap
its financial risk. In Figure 1(a), dotted lines indicate peers status at BNDES, the debt principal in foreign currency,
in the same intranek(g, peersP; and P, in the BMF in- the corresponding converted amount (due to swap opera-
tranet). We assume data transfers in an intranet are 50 timesions), the current date, and an excerpt of the contract settle-
faster than through an Internet connection. Information on ment. The contents of th@wapWorkspacdocument must

be gathered from Web services by the invocation of embed-
ded calls, which are represented by tlse™

elements. We
denote a service call element X, whereX is the value
of its “id” attribute. In our example, the broker just need

@@<:5>@

to set the contract number and the company name, and thei

to request (either on-demand or periodically) the system to(1) invoke sc10 (1) delegate sc9(sc10) (1) delegate sc8{sc10)

refresh the workspace contents. A materialized version of (2) send resuttof scto (2) invoke sct0 (2) invoke sc10 locally
invoke sc9 @ send result of sc70 @ invoke sc9 locally

the SwapWorkspacgocument is shown in Figure 2(b).

@ send result of sc9 @ invoke sc9 locally @ send result of sc9(sc10)

Materializing AXML data. The “sc” elements of the (&) send resuit of sc8(sc10)

SwapWorkspacdocument refer to Web services that are
provided by several different peers (see Figure 1(b)). When
a service call is invoked at a peer, the system can lookup for
its possible service providers, and then choose the best peer

to execute the call. To materialize an entire AXML docu- some heuristics can significantly reduce this search space.
ment, such a decision is usually influenced by the invoca- |y our example, we can apply tiRivide&Conquer(D&C)
tion of other service calls in the document, specially when peyyristic [44], which partitions the document materializa-
some input parameters contain othec™elements. A peer o into independent tasks. This would reduce the search
may decide to delegate some related calls to be invoked a%pace to approximately.265 x 10 alternative plans. Still,
anpther peer, gathering only the results that are necessary tthis means more thahthousand years only to choose the
build the AXML document. For examplego takes asinput pest plan, to actually start materializing the document. De-
the result ofsc10 in Figure 2(a), but only the result 89 gpjte the great improvement, the time spent in optimization
is required to buildSwapWorkspace remains critical. Notice that our example has ohljistinct
Figure 3 illustrates three alternatives to materiatize peers; if this number raises 10 peers, the search space be-
andsc10. The left-most alternative represents a centralized comes1096 times larger (with the D&C heuristic). In Sec-
strategy {1 invokes both service calls), whereas in the two tjon 5.4, we provide some formula to estimate the number
othersP; delegates service invocations to eitligr(on the of AXML materialization alternatives.
center) orP; (on the right). Delegation strategies are partic- Clearly, such optimization delays are not acceptable
ularly interesting to evaluate nested service calls when thehen materializing an AXML document. Exhaustive and
respective executors can communicate through a link faSteroptimaI search methods are often unfeasible in AXML set-
than the link to the master peer. tings. Therefore, it is imperative to reduce the search space
Optimization opportunities. Many different evaluation ofmaterializgtion alternatives to a manageable size, rega_rd-
strategies can be used to materialize 8weapWorkspace €SS of the size of the problem. Greedy and opportunis-
document, considering all the invocation possibilities of tC approaches are typical solutions for complex workflow
each embedded service call. The materialization perfor-Planning. Nonetheless, they are insufficient for AXML ma-
mance may vary a lot for each strategy. For example, if terializarion since they are based on local dec!smps, which
transfering the result afc10 through an Internet connec- cannot explore delegation to reduce communication costs.
tion costss0s (e.g, from Ps to P;), then it would cost only [N this paper, we present a cost-based strategy to enumerate
1s by intranet transfers. For large data transfers and many@nd rank AXML materialization plans, based on a hibrid
service calls, such a difference can be much more impor-metaheuristic. The core of our strategy is a dynamic algo-
tant. Thus, a naive materialization strategy may lead to anfithm that progressively generates and evaluates these plans,
unacceptable execution time. thus gvo[dlng to explore complete search spaces, while still
On the other hand, optimizing the materialization of Considering relevant performance properties.
AXML documents raises a hard problem: the number of
alternatives grows dramatically even for restricted scenar-3 AXML Basics
ios. For instance, in our simpléurrencySwapexample,
there are at least.898 x 10! alternative materialization

1
plans for the SwapWorkspacdocument. Suppose each whose peers can execute and/or invoke Web services, and

plan is generated and analyzedifir.s (aqwte reasonable an AXML document model that combines XML data and
measure for modern PCs). An exhaustive search would last

.) service calls. In this section, we present the system archi-
|
more than305 thousand years (sic!) to find the best plan. tecture and the document model (borrowed from [3, 5, 39])

LConsidering only the possible combinations of peers for service exe- d€fined for the ActiveXML framework [13], an open-source
cutions and invocations. P2P platform that supports AXML documents.

Figure 3. Some alternatives for AXML materi-
alization.

A typical AXML environment involves a P2P system,

XML query . SOA“P ﬁ(m’ﬁ’ﬂl call nodes are nqt eliminateq from .the AXML document,
engine [*~_ [AXmL |2 wrapper j’ AXML peers \i but kept for possible further invocations [4]. Nonetheless,
evaluator \ /, / E%])\ our analysis focuses on a set of service calls to be evaluated
e - ¥ . & at a given moment in timiea order to materialize an AXML
e (oo e e \Websemces ¥ document. Therefore, without loss of generality, we can
BT e A et ignore the fact that service call nodes may remain in the
AXML peer Mo

document after their invocation, as long as they do not need
to be invoked again during the materialization process. Fig-
Figure 4. Outline of an ActiveXML peer. ure 2 shows th&wapWorkspacdocument: (a) before and

(b) after the invocation of the service cads. Furthermore,

elements resulting from new service invocations have a spe-
System architecture. The architecture of an ActiveXML cial timestampattribute to indicate the current snapshot of
peer is depicted in Figure 4. Basically, a peer holds a repos-the document contents. Thereby, users may choose to con-
itory to store local AXML documents, and a catalog of Web sider either all the previous results in the document or only
service descriptions. The XML query engine provides ac- the last invocation results for feeding the new service re-
cess to the AXML documents repository, and (when neces-quests (namely, which data elements are going to be used
sary) can request the AXML evaluator to materialize some as service inputs).
AXML content. In turn, the AXML evaluator triggers em- Notice that both service input parameters and results
bedded service calls, and updates the corresponding AXMLmay be AXML data (i.e. contain service call nodes). More-
documents accordingly. The invocation of triggered service over, the input parameters of a service call may be either
calls is handled by the Web service execution engine. Ob-explicitly provided by nested AXML elements or specified
serve that each ActiveXML peer can act both: aeaver by XPath expressions [65], such as tleertipany” parame-
by providing Web services; and asclent, when invok- ter of sc3 in Figure 2(a). An input parameter defined by an
ing service calls that are embedded in local documents. InXPath expression represents a query on the elements of the
particular, an ActiveXML peer can provide a distinguished AXML document; such a query is evaluated whenever the
class of Web services, calladeclarative serviceswhich service call is invoked and its result is passed in the service
consist of parameterized queries over local documents. request as subtrees of the parameter element.

AXML document model. An AXML document is mod- Materialization strategies in ActiveXML. The material-
eled as a labelled tree with two types of noded: data ization of some AXML data can be either explicitly re-
nodes or regular XML nodes, which can be labelled with quested by the user or implicitly triggered by queries that
either element names or data values (only for leaf nodes);requires the (materialized) content of a document. The ma-
and () service call nodesThe latters can encode all the terialization process always starts at the peer that hosts the
information required to access a Web service (URL, opera-corresponding document, which we call theaster peer
tion name, etc.). When a service call is activated, this infor- (e.g, peer P, for the SwapWorkspacelocument in Fig-
mation is used by the ActiveXML peer to actually invoke ure 1). Currently, ActiveXML peers consider neither flexi-
the service. Consider the following disjoint infinite sets of ble service execution (with abstract service references) nor
labels: D of data values¢ of element names, anf of system performance to reason about possible evaluation
service names. More formally, an AXML documehis strategies for AXML materialization. Instead, peers can
denoted by the expressidn, \, <), wherer is an ordered adopt only aype-driven strategj39], which is defined by
tree with a finite sefV of nodes and a distinguished node the user and derived from the analysis of the input and out-
root, \ : N — & U D U S§is a labelling function for put types of the requested Web services.

nodes inV, such that only leaf nodes are mappe®taand For example, to materialize the service cald in Fig-

< associates with each node Wi a total order on its chil- ure 2(a), the user may specify an expected schema for its

dren. An important subset ¥ is that of all the service call result, stating thaP; accepts only regular XML data for an

nodes ofl, calledSCy; for every node in N, if A\(v) — S, answer tosc9. Then, the user has to agk to invokesc9

thenv € SCy. (and its entire subtree) at eithBf or Ps, for instance. That
The children of a service call node stand asilitgut is, P4 (or P5s) would have to invoke botkc9 andsc10, thus

parameters in the example of Figure 2(a), they are rep- sending back taP; only the result ofsc9. Observe, how-
resented by garam” elements (we omit this element if the ever, that the user has to determine exactly which peers are
service call has only one parameter, such as#). When going to participate in the materialization process, and how
a service call node is invoked, its respective subtrees arethey should exchange AXML data. In fact, the work of [39]
passed to the Web service, and the invocation result replacesakes room for a performance-based approach to guide the
the call node in the document. Strictly speaking, service materialization process.

For query processing with AXML documents, selection DEFINITION 1 Letd be an AXML document, and be a
predicates can be used to avoid the execution of irrelevaninode inSCy. A nodev; is aconcrete paramete v; iff:
service calls, as proposed in [3]. In this case, the goal is
to materialize only the intensional elements that contribute
to the query result. Furthermore, when declarative services inere is no node, € SC, such thatv, is both a de-

are used, some se!ectlon predlcates cguusdedo be pro- scendant of; and an ancestor of; in d.
cessed at the service providers.

e v; € SCy andv; is a descendant node of in d; and

We refer to the set of all the concrete parameters,;ods

4 Service Invocation Constraints in AXML V(v;), whereV(v;) € SCq.

Furthermore, we use the notatipa| for the cardinality

The relationships between the service calls of an AXML of set A4; thus, the number of nodes 61, is denoted by
document encode sonegplicit and implicit constraints on | SC,|. Checking whether a service call node is a concrete
the invocation of its service call nodeJhese constraints parameter of another call is rather trivial, and it can be done
are mostly derived from producer-consumer relationshipsin advance by a static analysis, when the document is loaded
between service calls, and they cannot be properly repre-and/or updated by an ActiveXML peer.

sented in the AXML document tree since they rather form a N U | -
complex graph. In this Section, we present a canonical for- on-concrete paramenters.Users may also specify input

malism to represent the invocation constraints of an AXML parameters that are provided by XPath queries, such as the

document intadependency graphsvhich are the basis of fore|gn,cgrrency pa_ra_1meter Otc? n Flgure 2(a). In this

our optimization strategy. case,sc4 is no_t expl_|C|tIy_ nested irsc7; it ha_s gctually no
An important type of constraint is expressedibyoca- anczstor rtilat_lonshlg W'tbg: vet, mjterlath_zt;n?sc?t d?h_

tion dependenciesvhich occur when a service call takes pents ;)n ; grlr?voqakljon s t,hsmclesc c,}o.n n utgs % €

other calls as input parameters. Thesedat dependen- 'dnprl: io s¢ 'f ”'Sva/'e S another class ot invocation depen-

cies there may also existervice dependencig#4], namely encies, as foflows.

when some information about the Web service pointed byDEFINITION 2 Letd be an AXML document, a node in

a calr: IS dete;mmedd by tge result off].aﬂotherdc?ll. (;/\(e fg- SC4, and@ an XPath expression within an input parameter
cus here on data dependencies, which are defined in Secst,,. A nodey; is anon-concrete parametef v; iff:

tion 4.1. AXML documents may also containvocation
consequencedtroduced in Section 4.2. We use these dif- e v, is in the result of®(Q), where®(Q) is a function
ferent types of constraints to define thependency graph that returns the set of all the service calls that con-
of an AXML document in Section 4.3, where we also ana- tribute toQ in d, such that®(Q) C SCy; and

lyze issues related to validity and redundancy of these con-
straints. Going further, we define in Section 4.4 efficient
mechanisms to update the dependency graph with inten-
sional answers at runtime.

e v; # v; and there is no node, in ®(Q) such thatv,
is an ancestor ob; in d.

The termV (v;) denotes the set of all the non-concrete pa-

. t fy;, whereV (v;) C ®(Q).
4.1 Precedence Constraints rameters ob;, whereV (v;) (@)

Conversely to concrete parameters, a sophisticated anal-
Invocation dependencies represent precedence conysis may be necessary to compute the set of service calls
straints on the materialization of some AXML data. that contribute to a given XPath expression, such as in [3].
Namely, one can determine that some service calls mustNotice that the XPath expression has to be evaluated first
be invokedbeforea given call, because the latter consumes in order to obtain concrete inputs, and then invoke the ser-
their results. There are two types of such parametws: vice. Namely, non-concrete parameters can only be deter-
creteandnon-concretewhich are defined in the following. minedafter their respective query is evaluatefliso, they
may imply dependency cycles, possibly leading to an in-
vocation deadlock. To detect this problem, we define in
. e ion 4. me validity criteria for th nden raph
rameter of another service call namely, by specifying a Section 4.3 some validity criteria for the dependency grap
A . of an AXML document. When these cycles are detected,
concrete parameter. For example, in Figure 2(a), service . . S
. we assume they are either broken prior to our optimization
calls sc2 and sc3 are nested as input parameterssof, analysis, as in [3], or the materialization process is aborted
Such a node nesting entails that the callCieeckSwap- ysIs, ' P '

Status depends orboth the call toGetCurrentSwaps and Transitive dependencies. In Definition 2, we disregard
GetSwapLimit. Next, we define this relationship. some redundant dependencies that may occur in the same

Concrete parameters. A first class of AXML invocation
dependencies is attained hgsting a service call in a pa-

attribute. Basically, such a redundancy happens when soméo feed Web service inputs, consequence constraints denote
service calls in®(Q) are nested in the AXML document. an invocation sequencing of service calls that do not neces-
For example, suppose thekt” and “input_format” param- sarily have data dependencies between each other.

eters ofsc9 in Figure 2(a) are rewritten as:
DEFINITION 5 An AXML document with collateral calls is

of the form(d, —), whered is a regular AXML document
and — is an one-to-one partial mapping of nodesSd’;
to nodes inSCy. Given two service call nodes and v,
v; # vj, if v; — v;, then each invocation af; automati-
cally triggers an invocation of;, which is referred to as a
collateral callof v;.

<param name="text"><xpath> // </xpath></param>
<param name="input_format”>XML</param>
Then, potentially all the other service calls in the docu-
ment can contribute to the result of the XPath expression
in “text” (assuming that self-dependencies and cycles are
properly eliminated). In particular, botftl andsc2 are in
® (/). However, according to Definition 2, onkcl is a
non-concrete parameter e69, sincesc2 is nested irscl.
The rationale behind this S|r.an|f|.ca.t|on 'S that the redun- sociated with only one collateral call. Observe that collat-
dant parameter no longer exists (in its active form) after its

first i hich is tri dbvthe d denci fit eral calls may trigger other calls, which in turn may have
Irst execution, whichis triggered by the dependencies Ot v, i oy collateral calls, and so on. Hence, the invocation

cllostest (()juter se(rjwcz call. InfSectlotn 42),(v'\\//|«=|3_l:jse this p:lnm- consequences of an AXML document may determine tran-
pie to reduce redundancy ot an entire ocument. - sjtive constraints, as defined next.

Redundant dependencies are essentially related to the
transitivity of service call parameters, which we define next. periniTion 6 Letw; andw; be two service call nodes of
an AXML documentd,—). The nodey; is a transitive

collateral callof v;, denoted by, < vj, iff there is a path
of the formv; — vy1 — ... = vgy — v;ind, withn > 1.

For simplicity, we assume that a service call may be as-

DEFINITION 3 Given two service call nodeg andv;, we
say thatv; is an intensional parametesf v;, denoted by
v; — v, iff v, € V(vy;) U V(v;). The termfanin(v;)
represents the number of intensional parametersvof It is worth mentioning that one cannot express collateral
which corresponds tV(v;) U V(v;)|. Similarly, the term calls by using only invocation dependencies. Invoking an
fanOut(v;) denotes the number of nodes which hayas outer call always implies the previous materialization of its
an intensional parameter. dependencies. On the contrary, executing nodes that are
collateral calls should not disturb their respective counter-
DEFINITION 4 Given two service call nodes andv; of parts. In general, the distinction between process depen-
an AXML document, the nodey; is atransitive parameter gencies and consequences can be also found in workflow
of v;, denoted by; — v, iff there is a path of the form specifications, such as tiecedeand enable constructs
Vj = Vgl = ... = Vg — v; INd, Withn > 1. of the ActivityFlow language [34]. This is also similar to
theenabling flowsf the Vortex system [30].

The transitive parameter with the largest path length de- The invocation constraints of an AXML document cor-
termines theabstract critical pathof an AXML document, respond to some basic workflow patterns [54] More pre-
that is the longest path of sequential service invocations.cjsely, invocation dependencies can be mapped tsyhe
Notice we are considering only the number of service call chronizationcontrol pattern. In particular, shared depen-
nodes in the path. When materializing a document, anotherdencies can also produparallel splits On the other hand,

important path is that with the longest execution time. collateral calls correspond to tlsequenceontrol pattern.
Additionally, they calls allows multiple instances of ser-
4.2 Consequence Constraints vices calls without synchronization, which corresponds to

the structural pattern 12 of the classification in [54].

Another way to express invocation constraints in AXML ~ Observe that, when optimizing the materialization of
documents is specifying ddllowed-by” attribute in the ser- ~ an AXML document, intensional parameters represent es-
vice call elements. For example, in Figure 2(a), this clause sentially some clustering criteria to reduce communication
constrains the invocation of the service call with respect ~ costs. Conversely, collateral calls correspond to the sequen-
to sc5. Namely, oncescs is invoked, an invocation afcl tial invocation of new service calls possibly without implicit
must be triggeredmmediately aftefas a consequence of) data flows.
the invocation ofsc5. However, invokingscl should not
disturbscs. 4.3 Dependency Graph

Notice the semantics of consequence constraints differs
significantly from that of invocation dependencies. While We present here a formalism baseddirected acyclic
these dependencies are intrinsicaly associated to data flowgraphs (DAG) to express the invocation constraints of an

failed to the results obtained from nested calls, which are often
2 temporary and only needed to invoke their dependant calls.

invoketail] Service call nodes with persistent results are defined next.

active

DEFINITION 7 A nodev; is afirst-level service calbf an
AXML document iff v; € SCy and for any node,, in d, if
v, iS an ancestor of;, thenv, ¢ SC;. We denote by the
set of all the first-level service calls @fsuch that C SCj.

Figure 5. Statechart of service call nodes.]))
First-level calls can be found statically by a straightfor-

ward procedure. In Figure 2(a), the nodeg, sc4, sc5,

AXML document. We use this abstract representation sc8, andsc9 are first-level service calls. Such a distinction
rather than the AXML tree mainly because non-concrete is relevant for the optimizer to assess the costs of delegating

parameters and collateral calls result into dependencies thaparts of a document to be materialized by other peers.

can be arbitrarily complex. Such relationships cannot be Dependency graphs defined. We are now able to for-
naturally expressed by tree structures. Furthermore, reasonmally define thedependency grapf an AXML document.

ing about invocation constraints, such as verifying shared s graph concisely represents all the synchronization con-
dependencies and non-concrete (or collateral) transitivity, straints that must be enforced on the service calls within the
is done at this level. document. It is a central input to our optimization effort.

In our analysis of invocation dependencies, we consider Although this graph explicitly refers to invocation depen-
that most of the Web services do not understand AXML dencies, it also encompasses collateral calls. Our emphasis
data, and thus cannot process correctly intensional (concretgs on intensional parameters because they reflect essential
and non-concrete) parameters. For regular Web servicesaspects of the AXML document, while collateral calls come
these parameters must be invoked before executing the seffrom optional annotations on the service call nodes.
vice call. On the other hand, such a invocation mightbe un- Basically, a dependency graph can be obtained by static
necessary, or even incorrect, for AXML-enabled services. analysis. Since users may specify AXML documents with
Thus, the user has to specify whether intensional parametergyclic dependencies and infinite execution loops, first we in-
must be invokea priori. In practice, we do not distinguish troduce a general definition for the dependency graph. Af-
AXML-enabled Web services, and the execution of inten- ter that, we restrict the valid dependency graphs to acyclic
sional parameters is enabled by setting an attribute of theirinstances. However, we have to consider a particular defini-
respective 8c” elements. Hence, our analysis is focused on tion of cycles in a dependency graph, since invocation de-
intensional parameters that are always invokegmfiori. pendencies and collateral calls represent distinguished types

Figure 5 shows the possible states of a service call nodeof edges between nodes, and they can contribute in a tricky
during AXML materialization; the statesirfactive’ and way to form cycles.

“failed” are shown with double rectangles because they are

terminal {.e, when nodes become stable). Service call DEFINITION 8 Thedependency graph of an AX'VLL doc-
nodes start with either statactive’ or “inactive’. A node ument(d, —) is denoted by the expressic{@, ®, E,e>,
may be initially set asihactive’ due to many reasons, such \hereg is a directed graph with a sét’ of nodes,V =
as bad AXML specification, user selection, or because somegc, and a set® of edges. The séf has a distinguished
preliminary analysis has considered the invocation of this sypsets of persistent nodessuch that a node; is in ®
node unnecessary for the document materialization, as inf ejther »; € ¢ or fanOut(v;) > 1. Edges inE are ei-
[3]. On the other hand, an active node becomesdy ther simpleor collateral For any two nodes; andv; in V/,

when all of its intensional parameters aradctive’. If there is a simple edge; — v, in E iff v, is a intensional
ready, a node can be invoked, and then it reaches either the

“inactive’ state or the failed” state, according to the suc- P -
cess or fail, respectively, of its invocation. Also, a node edges ofZ; there is an edge; — v; in E iff v; — v; ind.
moves to the failed” state if the invocation of some of its ~ The terme denotes a state function that maps each node in
dependencies fails. |V | into {active, ready, inactive, failed}.

arameter ofy; in d. The subseE denotes the collateral

First-level service calls. Some service call nodes play a Notice that a dependency graph encodesdial order
distinguished role in the AXML materialization process be- on the service calls of the respective AXML document. Fig-
cause the results of their invocation constitute the contentsure 6 depicts the graph derived from tBevapWorkspace

of the AXML document. These results must be kept in the document in Figure 2(a). Nodes are represented by circles
document after its materialization finishes. This is opposedlabelled with service call IDs, where double-line circles are

DO

@ @

@

e’@

)__/

-2 /

Figure 6. Dependency graph of the Swap- @ @ H/
(©)

Workspacedocument.

b¥o
®®

D
o0
©-®

Figure 7. Basic invalid invocation constraints

persistent nodes. Dashed arrows indicate collateral edges. of a dependency graph.

We assume all nodes are in thactive’ state.

Graph validity. Users may specify AXML documents with
arbitrary dependency graphs, possibly contairiimgca-
tion deadlocksand infinite execution loops We consider
that such documents are invalid, since they cannot be prop-
erly materialized.

Figure 7 shows the basic invalid combinations of invoca-
tion constraints between service call nodes (illustrated with
“scX”, “scY”, “scW”, and “scz”). Loosely speaking, the
subgraph of simple edges of a valid graph must be acyclic,
to avoid dependency cycles such as in Figure 7(a). Also,
the subgraph of collateral edges should be acyclic, thus pre-
venting the pattern of Figure 7(b). Moreover, an infinite
execution loop occurs if either a node is a collateral call of
some of its dependencies (Figure 7(c)) or an alternate se-
guence of simple and collateral edges converge to a cycle,
as shown in Figure 7(d). Notice the forbiden patterns of Redundant dependenciesAn AXML document may de-
Figure 7 also apply for transitive constraints; for example, rive a dependency graph with redundant dependencies. No-

The first bullet of Definition 9 avoids invocation dead-
locks, while the second addresses infinite executions. We
clearly distinguish between deadlock and termination de-
tection because we consider the user may need a relaxed
notion of graph validity, where termination is guaranteed
by some pre-determined fixpoint.

Graph validity can be checked when documents are cre-
ated or altered by the user. However, such a verification
may also be required during AXML materialization, at run-
'time, in case of intensional answers. Checking for validity
can be done iD(|V|?), based on the time complexity of
computing the transitive closure of the graph using the well-
known Warshall's algorithm [11]. For AXML optimization,
we consider only valid graphs.

if v, — vy, then we cannot have, = v, in the graph. tice that we can suppress the edgd—sc5 in Figure 6,
In summary, about the interactions between simple andsincesc4—sc5 (from sc4—sc7 andsc7—sc5) makes it re-
collateral edges, we have that: dundant. The resulting reduced graph is shown in Figure 8.

Previously, we eliminated redundancy of non-concrete pa-
rameters within the same input parameter of a service call.
We extend this idea to the entire document.

Following [50], we say that two graphs are equivalent if
they arebisimilar. However, here we also consider node
labels, and we focus bisimulation on redundant invocation
dependencies, as stated next.

¢ they do not concurr to form deadlock cycles, since col-
lateral calls do not involve data dependencies; but

e their combination may contribute to form infinite exe-
cution loops, as shown in Figures 7(c) and 7(d). Hence,
to check a dependency graph for execution termina-
tion, we have to consider collateral edges as simple

edges with opposite direction. DEFINITION 10 A dependency graph\, subsumesan-

From the above, let theequencing componenf a de- other dependency graph,, denoted byA, C Ay, iff:
pendency graph be the graph resulting from replacing all N
the collateral edges by inverted simple edges. Then,wecan o V, =V}, ®, = ®p, E,=Ep, €a = €, aNd E, C Ey;
summarize these validity criteria in the following. and
DEFINITION 9 A dependency graph is valid iff: o for some nodes; andu; in V4 (or Vo), if bothv; — v;
andv; = v; are in By, thenv; — v; is notinE,. The
e the subgraph with all the simple edges Af is an edgev; — v; is said aredundant dependency A,.

acyclic digraph; and
Theminimum reduced grapbf A, is a graphAM# such
e the sequencing componentfis an acyclic digraph. that AM% < A, and AM? has no redundant dependency.

10

into spanning trees, thus enabling the optimizer to break the
<—@ materialization problem into smaller parts and thereby to
% P reduce the overall complexity. Also, they represent points

— where the materialization process finishies.(after mate-
@ rializing them and properly triggering their collateral calls,
the materialization process should stop). For example, the
nodesscl, sc5, andsc9 are the exit points of the graph in

Figure 8. Reduced version of the dependency Figure 6.
graph of Figure 6.

LEmMA 1 Every valid non-null dependency graph has
at least one exit point.

Moreover, we say that the graplis, and A, are bisimilar Proof: The crux here is that, although collateral edges may
if A, CApor Ay CA,. concur with invocation dependencies to cause cycles, they
have no influence on exit points (to determine fla@Out

of a node). Thus, only simple edges must be considered.
First, suppose\ is a singleton, namely” = {v}. Then,
fanOut(v) = 0 by definition, andv is an exit point. Con-
sider now thatA has|V'| nodes, with|V| > 1, such that
each node has at least one simple outgoing edge. Pick any
nodew; in A; since fanOut(v1) > 0, there is a node,

such thatv; — wvs. In turn, v9 also has an outgoing edge

PROPOSITION 1 Let A be a dependency graph with re- v2 — v3, and so forth. The nodes ia are finite, and

dundant dependencies. There is at least one reduced grapilis path cannot continue forever. At some point, this path
AT which is equivalent ta\ and at most one minimum re- leads to repeated nodes, thus constituting a cycle. Since
duced grapmAME, is valid, hence an acyclic digraph w.r.t. simple edges, this

is a contradiction. Therefore, there must exist at least one
Proof: By definition of graph bisimulation, ifA has redun- node without outgoing simple edges farto be valid.
dant dependencies of the formm — v; andv; N vj, then
we can eliminate at least ong — v;, and the reduced
graphAF remains equivalent té\. Furthermore, one can
always reducé\ by applying a sequence of one-edge elim-
inations, such that i\® cannot be further reduced, then
AR = AME_ The ultimate set of eliminated edges is the
same regardless of the order of the eliminations steps, an
therefore there is only one possilie" %, PROPOSITION 2 In a valid dependency graph, given

A dependency graph with only concrete parameters is re-&1Y nodev, eitherv is an exit point ofA or there is a fi-
duced by definition, since redundancy is intrinsically related Nt Path between an?l sr(])me exit point, I:)f A, Isucrl]l thﬁt
to shared dependencies (which occur due to non-concretd — Ve- Moreover, all the transitive collateral calls that
parameters). On the other hand, for non-concrete parame®'iginate directly or indirectly from nodes in — v, (in-
ters, graph reduction has time complexidf|V'|?), based ~ ¢ludingv andv) have afinite path.
on the transitive closure of the.graph. However, only nodes 0 ¢ 1t A is a singleton, then is an exit point by defini-
with fanOut = 1 can be origin of redundant edges, and i, o the other hand, consider has|V'| nodes, with
the tight bound is actually)(_|®| x [V]2). N_otlce that hon- V| > 1, such that each node has an arbitrary number
concrete parameters are, in general, quite expensive 10 bet hoiy simple and collateral outgoing edges. First, from

handl:ed n AXMdL mhaterlghza;lon. . " H Lemma 1, we have thak has at least one exit point. Fur-
Unless stated otherwise, hereafter we will use the termsy e oo "picking any nodein A, if fanOut(s) — 0, then

dependency graph and minimum reduced graph inter-v is an exit point. Otherwise, there is at least one node
changeably. such thatv — wv,. In turn, eitherv, is an exit point or it
Exit points. Nodes that do not have outgoing simple edges also has an outgoing edgg — v,, and so forth. Sincé
(i.e., with fanOut = 0) are particularly important for the is cycle-free w.r.t. simple edges, by induction this path has
materialization of a dependency graph; they are saigtite to lead to some exit point.. Moreover,|V| is finite, hence
points of the graph. They can be used to unfold a graph the lenght of the transitive dependency> v, is also finite.

Several redundant dependencies may occur in an AXML
document, and their reduction is important to avoid unnec-
essary optimization efforts. Notice bisimulation is a formal
basis for the elimination of redundant AXML dependencies.
Therefore, the minimum reduced graph isamonical rep-
resentatiorof the invocation constraints of an AXML doc-
ument, as follows.

Lemma 1 is important because it guarantees that, despite
the complexity of the shared dependencies and collateral
calls, the optimizer has always an exit point to start evaluat-
ing a valid dependency graph. Furthermore, assuming ser-
vice executions always stop after some period of time, valid

Ggraphs are termination-safe, as shown in the following.

11

e some Web services might return undesirable or infinite
intensional answers.

Consider now the sequencing componentofAny collat-
eral call that is triggered (directly or not) by some node in
v = v, includingv andwv,, must be in a sequencing path
that leads tov, (recall collateral edges are inverted in the ~ TO guarantee a correct AXML materialization (in terms
sequencing component). Notice that such a path does nofPf data types) and to ensure its termination, the ActiveXML
end withv, if this node has a collateral call. However, the SyStem implements a powerful typing mechanism for ser-
sequencing component & is an acyclic digraph with a vice call results [39]. Intensional results are recursivelly

paths are finite. type or a fixpoint is reached. In this paper, we rather an-

) N) alyze intensional answers from a performance-oriented per-
Notice Proposition 2 concerns teeapshot semanticd gpective. Hence, we consider issues related to dynamically
of occasional intensional answers, but rather the currentimpact on the optimization process.

graph topology. Next, we discuss how graphs can evolve.
Connecting intensional answers.The idea behind inten-

sional answers is that the AXML document may “evolve”

during the materialization process. Consequently, each in-

An AXML-enabled system may allow Web services to tensional answer requires an update operation on th(_a dep_en—
dency graph. Recall that intensional nodes remain either in-

return service calls in their results. This artifice can be very ~ . . .
. . : active or failed after invoked. A dependency graph update
useful in many scenarios. For instance, suppose a Web ser-

vice does not have a certain information that was requestedS defined as follows.
by the user, but it knows which Web services can provide it.)
In this case, the service may return other calls (to alternativePEFINITION 11 Letd be an AXML document its de-
providers), and let the user decide whether to pursue the reP€ndency graph and; a node ofA. Supposel, is the
quest through other Web services. In this way, the material-AXML data returned by the invocation of, which is used
ization of AXML data can balynamically distributedthus {0 Updated. If the graphA,, obtained fromy,, is not null,
providing peers with great flexibility for collaboration [32]. th€nA. is said anintensional answeof v;.

In theCurrencySwaxample (Figures 1 and 2), suppose
the repository of PDF files &, is down, and invoking the
service calkc10 at P4 returns the following result:

<sc id="11" service="Ps2Pdf">
<sc id="12" service="GetContractPS"/></sc>

Then, to materialize th&wapWorkspacelocument, the
master peer has now to invoke batil11 andsc12, to gather
input data for the text” parameter ofsc9. Moreover, this
may require discovering information about the peers that

provide the Web services referred 1 andsc12. To update the dependency graph, intensional answers

Intensional aswers may significantly change the AXML ot he properly connected to it, such that invocation con-
document_—_md_eed they raise several tough problems f0rgyaints and their transitive relationships are preserved. In
AXML optimization: general, propagating these constraints may be very costly.
tgortunately, in practice, we find some heuristics that are
particularly handy in this context. Based on some proper-
ties of the AXML document model, we make the following
assumptions:

4.4 Dynamic Graph Updates

DEFINITION 12 An update operationu is a triple
(A, v;, Ay,), whereA is a dependency graph containing the
nodewv;, and A, is an intensional answer aof; to be in-
serted intoA. The operation, transformsA into a graph

A = (G &' E. ¢) according to thd/pdate function in

Figure 9(a). The node; is said theorigin of v.

e as these answers arrive, the dependency graph has
be updated (at runtime) with the new service calls to
allow checking for validity;

e it may be necessary to refresh the service directory
with information about the requested Web services.
Also, optimizing the newcomers may involve gather-
ing some statistics and costs parameters;

(i) New service call nodes are not affected by the collat-
eral relationships of the AXML documerithe intu-
ition is that collateral calls point to specific service
calls references. Also, they represent new instances
of service invocations, regardless of previous execu-
tion results. Therefore, the newcomers neither inherit

e since the specification of the AXML document is al-
tered, involving new data flows and possibly other ser-

vice providers, previous optimization choices may be
contradicted; and

12

the collateral relationships of their origin node nor are
referred by pre-existing nodes;

O~NO O WN R

©

23

functionUpdatd A, v;, A,): A’
{UpdateA at nodev; with A,.}
begin
letV' =V UV, B,
letE' = EUE,andE'=FE UE,
if v; € ¢ then{first-level call}
"g/ ={U¢&,
else¢’ = ¢
end if
if fanOut(v;) > 1 then{shared dependengy
® =®UQuU&
else®’ = ® U ®.
end if
ConnectSubGrapbA.,, v;, A')
Re-evaluate non-concrete parameterao6f
for eachv, in V' do
sete’ (v,) according tos(vy,) or €, (vs)
end for
sete’(v;) = inactive
returnA’
end
procedureConnectSubgraptA.,, v;, A')
{Connect the subgraph, to A" according to
v;'s dependencies.
begin

24 let Out be the set of outgoing-" edges ofv;,
such thatOut| = fanOut(v;)
25 for eachv,. in &, do
26 for eachv; — v, in Out do
27 Add v, — v, to E’
28 end for
29 end for
30 | end
(@
1 | procedureConnectSubgraphWithPipg\,, v, A")
2 | {Connect the subgraph, to A’ according to
v;'s dependencies, usinguépe node}
3 | begin
4 Add a new nodeipe to V'
5 for eachv, in &, do
6 Add v, — pipeto E’
7 end for
8 for eachv; — v, in £ do
9 Add pipe — v, to E’
10 end for
11 if v; € £then
12 Add pipe to &’
13 end if
14 if fanOut(v;) > 1then
15 Add pipe to @’
16 end if
17 | end

Figure 9. Algorithm to (a) update A and (b)

(b)

connect A, through a pipe node.

13

(i7) Intensional answers do not contain non-concrete pa-
rameters refering to nodes from other parts of the
AXML documentbecause Web services are not nec-
essarily aware of the document contents, and these pa-
rameters involve context-dependant specification;

(7¢7) Analogously,the collateral calls of intensional an-
swers refer only to newcomeiand

(7v) New nodes do not depend on the intensional param-
eters of the origin callsince invocation results either
replace the entire subtree of their origin node or are
placed as their siblings in the document tree.

From these points, we can consider that intensional
answers ardoosely coupledwith the dependency graph.
Therefore, only the outgoing simple edges of the origin
service call are used to connect intensional answers, as en-
coded in the algorithms of Figure 9.

We show an example of connecting intensional answers
to a dependency graph in Figure 10. In this example, a ser-
vice call node ¥cX” is invoked and returns some arbitrary
intensional answer representedAy (Figure 10(a)). Then,
for each outgoing edge o§tX”, we connect each first-level
service call ofA,, to the respective target node. Namely, to
the node depending oséX”, as illustred in Figure 10(b).

Pipelined graphs.Despite these simplifications, updating a
dependency graph may involve creating many edges to link
the new nodes. The first-level calls of the intensional answer
must be joined to the service calls that depend on the origin
node (see the double loop in lines 25 and 26 of Figure 9(a)).
To improve the performance of this procedure, we introduce
a special service call node in the resulting graph. This node
refers to a very simple Web service callgdgpe”, which is a
generic service — that is, it can be executed by (potentially)
any peer of the system.

The semantics of theipe service is fairly simple: it
receives the results from its invocation dependencies, and
passes them to its dependant nodBgpe nodes are trans-
parent with respect to the contents of their inputs; they nei-
ther produce new AXML data or eliminate any node. Their
goal is to simplify the changes that are necessary to update
a dependency graph.

DEFINITION 13 Given a dependency grapk and an up-
date operationu, the pipelined graphA? is the graph re-
sulting fromu such that apipe node is used to connedt,,
into A, according to the algorithm of Figure 9(b).

Notice in Figure 10(c) that aipe node concentrates the
edges that connect an intensional answer, thus reducing the
memory requirements of the resulting graph. If new nodes
are connected directly to the dependency graph, then this
number is given by:

fanOut(vi) x |&u| - 1)

@ (b) (©

Figure 10. (a) The invocation of node “ scX” returns an intensional answer A,; (b) connecting A, to
the dependency graph with the Updatealgorithm; and (c) usinga pipenode.

On the other hand, withipe nodes, the number of edgesto Proof SketchBy definition (according tahe Updatealgo-

link the intensional answek,, of a nodev; is bound to: rithm), an update operation connects new nodes such that:
they do not depend on existing service calls; and they do
fanOut(v;) + |&u| - (2) not trigger (or are triggered by) collateral calls of the origi-

nal graph. Therefore, the newcomers can contribute to form

Pipelined graphs are particularly useful when the fan-out neither invocation deadlocks nor collateral cycles with ex-
of the origin call is greater than 1. Also, they are helpful if it isting nodes. Since the graph is valid before the update, only
is necessary to relax the loosely-coupling assumption. Thatits new portion needs to be checked. Hence, the validity of
is, they can be used to “centralize” properties inherited by A’ is determined by\,,.
the new nodes from their origin. For instance, if one con-
siders that intensional answers should inherit the collateralLenient updates. Another performance issue of handling
calls of their origin node. Furthermore, it can be proved intensional answers can be found at line 15 of tipelate
that the graph\? is equivalent (according to Definition 10) algorithm, in Figure 9(a). Whenever the AXML document
to A’ augmented with the@ipe node and its edges. Pipe changes, the input queries of non-concrete parameters may
nodes are inspired on the use epsilon edgé's which are need to be re-evaluated. This approach is often quite time
introduced in [50]. consuming. A less expensive alternative to do that con-
sists in performing denient analysis the re-evaluation is
triggered only after a certain number of service call invoca-
ions (or intensional answers), thus allowing the document
to evolve freely meanwhile. To proper formalize this idea,
we first define the high-level semantics of instantiating an
AXML materialization process as follows.

Update validity. Updating a dependency graph requires

checking whether the intensional answers lead to deadlock
or infinite collateral loops. Therefore, we state the follow-

ing criterion.

DEFINITION 14 An update operatiom = (A, v;, A,) is
correctiff its resulting graphA’ is valid. DEFINITION 15 Let d be an AXML document, and sup-
pose the dynamic sequentg,.ciine = [v1,- .., vy] IS Ob-
Observe that our approach allows to verify the validity tained by successively picking a ready nod&6f; and in-
of the resulting document before applying the changes to it, voking it, until all nodes in5C; are stable, where,, is the
by reasoning based on dependency graphs. The heuristickst node invoked. Anaterialization phase of d during
used to update the graph also contribute to restrict such altimeline IS @an expressiofAg, o, IT, U, 3), where:
verification to only the intensional answers. This is possi-

ble because we consider that new intensional nodes are not * Ao is the dependency graph ébeforev, is invoked;

tightly connected to the AXML document. e o is the duration criterionof ¢, which is a boolean

predicate defined on some propertiesiaind ¢, such
PropPoOsITION 3 Let A be a valid dependency graph and as the maximum number of invoked service calls. The
u = (A,v;,A,) be an update operation. W, is valid, duration criterion is evaluated for eaah. in Iy;meiines
thenu is correct. 1 < a < n, until it becomes true;

14

e [T is theinvocation trailof ¢, which consists of a se-
guencefvy, ..., v, of service calls invoked untjp is
evaluated to true, such thafl’ C I;;erine. The num-
ber/ is said thedurationof ¢, wherel < ¢ < n;

e len is theleniency criterionof ¢, which is a boolean
combination of predicates of the form4| op a”, such
thata is an integer, the termp is in {=, >, <, <, >},
and the setd is in {SCy, IT,U'", 3}. At eachu,
in IT, 1 < z < ¢, this criterion is checked, and the
re-evaluation of the non-concrete parameters\gfis
triggered iflen is true.

U is a sequence of update operations caused by the
service invocations afT" on Ay; and

3 denotes théacklogof ¢, namely a surjection from Additionally, the re-evaluation is always triggered aftgr
nodes inIT to new service call nodes i6C;, such
that 3(v,) returns the set of all the active nodes that ~ Conversely top, we restrict the definition ofen, since
were added toSC; by intensional answers from the @ lenient re-evaluation analysis focuses rather on amounts
invocation ofv; to v, withv,, included and. < x < /. of service calls (invoked or not). An interesting property of
¢'em is that, at each re-evaluation point, the analysis has to
consider only the nodes in the backlog in order to insert new
non-concrete dependencies into the graph.

Furthermore, recall the XPath expression of an input pa-
rameter is always evaluated when the respective service call

The semantics of a materialization phase is a period,is invoked. If some intensional nodes contribute to this
measured in number of service call invocations, while the query, then they are considered non-concrete parameters
contents of an AXML document evolve. Notidg,,ciine and the results of their invocation are passed to the outer ser-
may be infinite. For example, suppose the AXML docu- vice call. Hence, although the dependency graph may miss
ment contains a service call that always returns another callsome non-concrete edges in a lenient analysis, these depen-
to the same service. Also, the duration criterion may be dencies are always enforced during the materialization. Ob-
defined on physical properties of the materialization phase,serve that Proposition 1 also applies to lenient phases. The
such as the total time spent in the execution of the servicemajor drawback of a lenient analysis is that peers cannot
calls. Furthermore, only active nodes are accounted in theattempt to optimize in advanc®meof the data transfers
backlog of a phase, since some new intensional nodes mayelated to service calls in the backlog.
become inactive (by being invoked) before a phase finishes

We denote by\, the snapshot grapbf d after the invoca-
tion ofv,, 1 < a2 < /. The phase is incompletewhile p is
false andSC, has active nodes; otherwisg,is complete

Final remarks. Representing service invocation con-
straints is an important issue in the materialization of
AXML documents. In particular, because it enables the sys-
tem to check relevant properties of a document, and to con-
trol its evolution during the materialization process. In spite
of that, it is worth mentioning that the canonical model and
update techniques that we propose in this Section are not a
requirement of the XCraft optimization strategy. They ac-
tually provide a formal underpinning that can be explored
by any systematic approach to AXML verification and/or
optimization. Nonetheless, since our proposal relies on a

Based on materialization phases, we can determine\,ery popular structure for components dependendies (
checkpoints for the re-evaluation of non-concrete param-graphs), the cornerstone ideas of our optimization strategy
eters, thereby deferring this analysis to a “reasonable” can pe applied on a general context, regardless of the tech-
amount of changes. To perform such an analysis, we CoN-piques presented in this Section.

sider alenient update operatioby excluding line 15 from In the next Section, we formalize the problem of deter-

DEFINITION 16 A materialization phase of length/? is
admissibleiff the snapshot grapl\, is valid. We say that
¢ is z-admissibleff A, is invalid and there is a numberr,

1 < z < ¢, which is the maximum value for that, is
valid.

COROLLARY 1 Given any phase with a valid Ay, if all
the update operations ifi are correct, therp is admissible.

the Update algorithm (Figure 9(a)), and we extend Defini-
tion 15 as follows.

DEFINITION 17 Alenient materialization phasedenoted
by ¢'m = (Ao, p, IT, U'*™, 3, len), where:

e The termsA, p, IT, and are defined as foo;

mining an efficient configuration of service executors and
service callers to materialize an AXML document.

5 Materializing AXML Documents

A basic way to write an AXML document consists in
hard-wiring a specific address for each embedded service

e U'*" is a sequence of lenient update operations causedcall, including the service URL. Namely, the user has to

by the service invocations éf" on Ay; and

15

locate a peer to execute each service call. This approach is

quite cumbersome, specially because P2P systems are oftewhenWeb services are arbitrarily replicateid the system.
complex, highly-dynamic arrangements of many peers. In Replication of data and/or Web services is typically em-
a more flexible approach, one can use abstract references tployed in distributed scenarios to increase throughput and
identify Web services, based in some ontology of services,reliability [12, 14]. In the ActiveXML framework, service
such as in OWL-S [41]. These references correspond toreplication is particularly easy fateclarative Web services
entries in a service directory, as in a UDDI repository [52], which are defined by XML queriesany peer can evaluate
where they are mapped to the peers that actually provide thea query (and thus become a service provider), as soon as
services. Since a Web service may be provided by severalt has the data on which the query applies. A mechanism
peers, ideally users can rely on the system to choose thdor declarative service replication in ActiveXML has been
best provider (in terms of performance, or another set of developed in [7]. Another class of services likely to be de-
properties) to execute each service call. ployed on several peers consistsgaeric servicgssuch
Notice that even if specific service addresses are usedas encryption and data compression services. Usually, these
peers can collaborate to materialize a document by delegatservices do not change the contents of the data they operate
ing some service calls to be invoked at other peers. In thison, but act on some orthogonal aspects, such as its size and
case, peers need some strategy to distribute the materializats encryption status.
tion process. Also, since such a collaboration allows many The AXML optimizer may be free talynamically de-
different materialization alternatives, an automatic strategy ploy declarative or generic services to some peers during the
requires metrics to reason about delegation. materialization process, if this allows to improve the over-
In this Section, before enumerating these alternatives ancgll materialization performance. However, dynamic service
pointing appropriate metrics, we describe the main partici- replication may significantly increase the number of AXML
pants of the AXML materialization process, how they can materialization alternatives. Hence, the optimizer must con-
collaborate in a P2P scenario, and their necessary bind-sider whether enlarging the search space with these possi-
ings for Web service invocation. Then, in Section 5.4, we bilities makes the problem too complex.
characterize the problem of optimizing AXML materializa- ~ We extend the basic AXML document model to allow
tion: we determine some bounds for the search space, introservice call nodes to mention the symbainy” as the
duce the notion of materialization plans for AXML docu- servers providing a given Web service. The semantics is
ments, and discuss important issues on generating and rankhatthe user does not impose any specific provider for this
ing these plans. We close this discussion in Section 5.5 withinvocation any server that the optimizer may find is consid-
an analysis of the impact of the dependency graph shape orred good. For simplicity, we assume thay € V. Also,
optimization strategies for AXML materialization. In the Wwe consider the symboluhknown”, which indicates that
sequel, we assume an infinite $@tof peer names in the the optimizer does not hold information about a requested
system. Furthermore, each peer keeps a listedjhbors service, but can lookup for it in the P2P system. We also as-
(denoted byV, such that\" C P), namely the peers it can sume Web services are organized into classes of equivalent
collaborate for AXML materialization. services, and peers can gather information about the distri-
bution of these services on the network (as in [8]). Such an

5.1 Equivalent, Replicated and Generic Services information does not necessarily represent the global status
' of the system, but only the system visibility from a given

: . . __peer. A basic capability of an AXML-enabled peer is to
The evo_lutpn of the Sema.”“c Web has f_ostered SerV'Ces’lg')dentify the providers of a service call node, as follows.
orchestration in several distributed scenarios, such as P2

systems [8, 17, 26] and grid computing [14, 21, 29, 57, 66]. periniTION 18 Given a service call node, its execution

An atractive property of semantic-enabled systems is thatscoper,Z represents the peers that can execute the Web ser-

distributed applications can be defined diystract specifi- vjce ofv, such thatL? = any | unknown | {P;,..., P,},

cations and then instantiated on an execution environmenthere any indicates that all the peers iV can execute

based uporequivalent Web services\ catalog of services , the symbolinknown denotes thaf.Z is undefined, and

and some matchmaking mechanism are required to enablqpl, ..., P,} is afinite set of peers i which provide the

service selection [19, 23, 36]. This approach has many ad-service requested hy with n > 0.

vantages, and has been widely explored. In P2P systems,

several peers are expected to provide the same Web service Observe thal.” = {} means that the optimizer did not
To materialize an AXML document with abstract service discover any information about peers providing the service

references, itis important to determine which peers shall beof v. Since peers can join or leave the system randomly,

considered to participate in the process, since the Web serthe execution scope of a peer is rather a snapshot of the

vice requested by each service call node may be providedsystem status. Because of thatlif is empty, the peer can

by several peers. A simple case of service equivalence iseither retry to locate the service afterwards (hoping for some

16

change in the system) or ask other peers to try to fill in the invoke scyfresult
execution scope of the node. The execution scope may also

be determined by the user, through explicit peer addressing. delegate plan
It is worth noting that a service provider does not have to be =

—_— :
. . de
a neighbor. For example, suppose the neighbors of peer [E_—1%esutting plan + E— 293te subpiap,
cafler Tesultip,

I
in Figure 1(a) are\’p, = { P, Py, P5}. Still, according to master persistent results ult

Persjss 2 SUbpi; =

. . . Stent , N+

Figure 1(b), peerP; is among the providers afcl on the Ssults
SwapWorkspacgocument af?; . Next, we discuss ways for

peers to collaborate in AXML materialization. Figure 11. AXML delegation in a P2P system.

5.2 Exploring P2P Collaboration in AXML
if necessary), and gathering its result. The caller must send

Distributed computing is inherentin AXML materializa- Pack the result ob to the master peer, as well as the result

tion, since service executions usually take place in different Of all the persistent nodes that were sent witThe master
peers. Going further, many other aspects can also be disP€er may also choose to evaluate some of the dependencies
tributed. such as: of a delegated node before requesting its remote material-

ization. These interactions are illustrated in Figure 11.
e peers can collaborate tocate service providers Notice that a delegated part of an AXML document does
not necessarily correspond to a subtree, but to some parti-
tion of its dependency graph. Reasoning about AXML del-
egation has to consider the performance impact of changing
e similarly, peers can ask other peersgenerate parts the caller of each node of the dependency graph. Such a de-
of a materialization plarfor an AXML document. cision is mainly oriented by the data flows between service
call nodes. For example, delegation may be beneficial to
Basically, AXML materialization can be orchestrated in a materialize nodesc9 andsc10 of the SwapWorkspacgoc-
P2P system by some message exchanges between peers. lighent, in Figure 3, since it enables to exploit a fast com-
this scenario, the basis of peers interaction is rtiseri- munication link between peet®; and P5. Nevertheless,
alization plan which is the fundamental element used to there may exist constraints on the invocation of a service
control the AXML materialization process. Such a plan de- ca|| node, such as secutity and price policies. Thus, users

termines how each service call node is going to be material-may also choose to specify exactly which peers are allowed
ized; it can be split, and distributed among peers. Moreover,iq invoke some service calls.

peers can revise some optimization decisions of a plan, and
then choose to re-split it among other peers. Thereby, theDeriniTION 19 Given a service call node, the delega-
materialization process can be spread across the system iflon scopeLE denotes the peers that can invokesuch
a decentralized manner. Materialization plans are formally that L = any | { P}, ..., P}, whereany indicates that all
defined in Section 5.4. the peers in\ can invokev, and{Py,..., P,} is a finite
Locating service providers is the simplest type of P2P set of peers ifP, n > 1. At least the master peer of the
collaboration. If a peer cannot find information about the document containing is in LS.
execution scope of some service call nodes, then it may de-
cide to send a partially-specified plan to another peer, along In principle, the optimizer may consider any peer in the
with a request to properly annotate such an information onsystem to delegate some AXML materialization, accepting
the plan. On the other hand, delegating AXML materializa- that such a peer is allowed to invoke the corresponding ser-
tion requires more sophisticated control mechanisms. First,vice calls. However, this can rapidly make the optimization
recall that the start point of the materialization process is problem intractable, as we discuss in Section 5.4. There-
always at the master peer of the AXML document. Then, fore, we assume small-world P2P scenariovhere the op-
the master peer decides whether other peers will be invitedtimizer may restrict the delegation scope to the set of ser-
to collaborate or not. Delegating the invocation of a service vice providers that are involved in the document material-
call nodev consists in setting anothealler for v, which is ization. To further limit this, it may also apply th@ontext
different from the master peer. In particular, the master peerheuristic[44], such that only selected executors are used to
sends alelegation planwhich containg (or more nodes), determine the delegation scope. Also, several P2P systems
its input parameters (possibly including its invocation de- consider the need of some specialized peers, which are more
pendencies, i is not ready), and its collateral call to the able than others to perform some tasks, such as query rout-
caller. In turn, the caller is in charge of triggering the in- ing and data location [40]. Similarly, some peers may be
vocation ofv (and of its dependencies and collateral calls, tailored for some AXML materialization tasks, such as lo-

e peers cardelegate parts of the materializaticof a
document to other peers; and

17

cating the execution scope of nodes or executing delegated
plans €.g, due to their high connectivity with other peers
in the system). Therefore, the optimizer may keep a list of | Web service | Description

such peers, and include them in the delegation scope even if ~locate Accepts requests to discover the execution

they are not involved in the execution scope, to improve the scope for some materialization plan. It returps
materialization performance. a (possibly partially-)annotated plan.
optimize Accepts requests to find an efficient materiali-

Table 1. Services for P2P collaboration.

A major motivation of AXML delegation is similar to zation plan for some dependency graph. It
the idea of thedge-zeroinglgorithms for parallel schedul- returns a (possibly partially-specified) mateti-
ing [33]. In a dependency graph, these algorithms analyze _ alization plan. _
the edges with high communication cost, and attempt to de- ~ Submit | Receives requests to execute some materi-

alization plan, by possibly re-optimizing it.

fine clusters of tasks to be run at the same processor. Ini-) :
It returns the plan and its persistent results.

tially, each node of the graph represents a cluster. Then,
at each step of the algorithm, the edge with the largest
communication cost is found, and the two clusters inci- g 3 Enacting AXML Materialization
dent by this edge are merged if such a merging does not
increase the overall performance. However, the constraints

on both the execution and delegation scope of each s:ervicqing are peers, Web services and AXML documents. Es-

call node of an AXML document do not allow to arbitrarily sentially, peers are uniquely-identified agents connected
assign service execuuon; to peers. M°re°"ef’ Commun.'ca_through a network, andervicesare operations that peers
tion co;ts are not zeroed if two connected service executions. , perform. A service may require input parameters that
occur in the same peer (though they are really reduced)

. SOAP ; v invol qditi I’are instantiated at runtime. It also has a termination sta-
;lnce _messagmg usually INvolves §°me a 'tlor.'a tus, such assuccessand “fail”. The invocationof a Web
time-consuming operations, such as parsing and packin

I et) ers,Gein 4 g s . 25 TR e o
mostly relies on comparing materialization alternatives. going to execute the service; 2) the service execution: and
We assume peers are autonomous, thus the master pe&) the transfer of the results to the peer that requested the
cannot enforce transitive delegation to other peers. Namelyservice. By default, a service call node is invoked by the
the result of each delegated plan is always sent to the masmaster peer of its respective document, but this invocation
ter peer. Considering otherwise would increase significantly can be delegated to another peer. To be invoked, a service
an already huge space of AXML materilization alternatives. call must have all the necessary information to identify the
However, since peers have different perspectives of the sysfequested Web service (as defined in the SOAP and WSDL
tem, a peer may decide to reoptimize a delegated plan, posstandards [59]). In particular, it must have the address of
sibly by delegating parts of it. Moreover, peers may return a the peer that is going to execute the service, as stated next.
delegated plan intact or partially materialized. In this case,]]
the master peer either reoptimizes the plan, trying to find DEFINITION 20 Given a service call node held by peer
another peer to delegate the plan, or evaluates it itself. Nev-{v» ab[‘ mgocanonz of v is denoted by the expression
ertheless, if a peer decides to reoptimize a plan, then it can<v: £ P , status), where:
not include the original master peer in the delegation scope
of the respective service call nodes. Also, to avoid end-
less delegations, the original optimizer can determine some
limits for plan reoptimizations. These limits and the plan e neither LZ is empty nor it contains the symbol
provenance are encoded in the materialization plan. “unknown”; and

In the AXML universe, the basic elements of a P2P set-

e PP and P are, respectively, thexecutorand the
callerof v, such thatP” € LF and P € (P, U LS);

Distributing the optimization of AXML documents is e the status of Z is determined by the termination sta-

analogous to delegating materialization tasks, and it can tus of the service requested bysuch thatstatus in
help peers to handle requests overload and insufficient sup- {success, fail}.

port information. If a materialization problem is too large,

the master peer may split the dependency graph without For example, in Figure 3 (center), we have
making any considerations about either execution scope(scl0, Ps, Py, success) and (sc9, Py, Py, success),

or performance, and then send parts of the problem to beassuming both invocations are successifuly executed.
solved by other peers. To support P2P collaborations in For simplicity, when considering materialization phases,
ActiveXML, we assume each peer has to provide the basicwe omitted in Definition 15 the information about callers
Web services shown in Table 1. and executors of each service call invocation. Now, we can

18

ground an invocation sequenég,,.iin. 10 a specific loca-
tion context, as follows.

DEFINITION 21 Given an AXML documeimt a grounded
invocation sequencg;ciine = [Z1,---,Z,) is @ dynamic
sequence obtained by successively picking a ready npde
in SCy, setting arZ, = (v,, PP, PS, status,) and invok-
ing it, until either SC; = {} or SC; has no ready node,
such thatl < z < n. Moreover, ifv; — v; in d, thenZ;

is a successor df; in Iy;merine, and the only invocations
betweer¥; andZ; are the dependencies ofand their col-
lateral calls. Agrounded invocation trackl’ of I+;peiine IS

of the formIT = [Z4,...,Z], with£ < n.

with different performance. Themakesparof a material-
ization alternative is the time from the materialization starts
until the last service call invocation is completed and the re-
quired results are returned to the master peer. We adopt this
performance metric because it is basedresponse time
which has tipically a significant perceived impact on the
user [20, 43].

Optimizing the materialization performance of an
AXML document consists in minimizing its makespan.
This involves two main issues:)(planning resource se-
lection, that is determining a caller and an executor for each
service call, such that both service execution and communi-
cation costs are minimized; and)scheduling service call

Observe that nodes are invoked in proper order in invocationsto exploit parallelism and thereby minimize the

Iiimetine (ready nodes first with subsequent collateral calls),
and invocation constraints are enforced accordingly. Here-

after, we assume both;,,c1in. andIT to be grounded, un-
less stated otherwised.
Materializing an AXML document consists in invoking

makespan. Clearly, these issues are inter-related; efficiently
assigning service executions to peers depends on balancing
their load, and vice-versa. We use the te&kXIML planning
in a general sense, to indicate both tagka(d ¢:).

AXML planning is essentially characterized by schedul-

all of its embedded service calls, as well as the occasionali"d @ complex DAG to heterogeneous machines, which
intensional answers. This process yields a new version ofiS @ah NP-complete problem [15, 33]. Because of such

the document, as defined next.

DEFINITION 22 Letd be an AXML document and be a
(grounded) materialization phase @fwith length?. Ama-
terialized versiorof d is another AXML document’ ob-
tained by the service invocations ¢f We say that!’ is
completeiff all the nodes inA, are inactive; otherwiseq’
is partial. Moreover, the materialization @finto d’ is suc-
cessfuliff it is complete andsitatus; = “success’” for each
invocationZ; in IT of ¢, 1 < i < /.

If some invocations fail, their dependant calls are not in-

a complexity bound, we focus our optimization analysis
on finding suboptimal solutions in reasonable timEur-
thermore, as discussed in Section 4.4, intensional answers
changes the specification of a materialization problem at
runtime. Since usually peers cannot foresee these re-
sults, we assume AXML planning is initially restricted to
the dependency graph obtained before the materialization
starts, and occasional intensional answers trigger some re-
optimization procedures. However, in our approach, such a
re-optimization is localized to specific subgraphs whenever
this is possible. We address this problem in Section 6.

voked (since they cannot become ready) and the respectivéSearch space of materialization alternativesThus far we

failures are reported to the user. Still, we consider that all have considered materialization phases as totally-ordered
the remaining service calls are invoked, if possible. Also, sequences of service call invocations. Nonetheless, the de-
we assume that the user is not interestedridoingservice pendency graph of an AXML document does not impose a
calls when some of them fail in the materialization of an total order on these invocations. Hence, many different in-
AXML document. That is, the document does not representvocation sequences can be used to materialize a document.
a transaction unit. For example, in the dependency graph of Figure 8, we may
The master peer receives document requests and startisave invocation sequences starting wit2, sc4, sc6, sc8
their materialization, possibly by delegating parts of the orscl10. Also, some service calls may be invoked in paral-
service invocations. After peers finish their materialization lel. In our example, for instance, node=t andscé can be
tasks, they must send all the persistent service results backnvoked independently.
to the master peer. In our AXML settings, we assume com- There are several techniques to allocate resources from a
munication links between peers may have different band- pool of available machines for job scheduling [15, 18, 33,
width. 55]. However, planning resource selection for AXML ma-
terialization is a different problem due to several reasons.
In particular, in an AXML document each service call node
has its own execution and delegation scopes, and a good re-
The diversity of Web services providers, P2P collabo- source configuration has to conciliate the diverse execution
ration opportunities, peers capabilities, and invocation de-and data flows possibilities in a highly-dynamic scenario.
pendencies allows the materialization of an AXML docu- Based on the combinations of callers and executors of each
ment to be performed through many different alternatives, service call, the number of possible configurations of a de-

5.4 The AXML Optimization Problem

19

pendency graph is given by: e > associates with each node ina total order on its

z=1.|V"| children; and
#locationCon figs(A) = H ILE| x (LS| +1) e P, isthemaster peenf M, namely the peer that holds
3) M and where its persistent results must arrive.

where V" is the set of all nodes i plus the new node we say thaiC and - are, respectively, théocation scope
instances tl’lggered by collateral calls. NOW, if we con- and theinvocation schedulef M. MoreoverM is physica'

sider also the possible invocation sequences, the number off hoth £ is total and it maps each node into exactly one
AXML materialization alternatives is bounded to: invocation plan; otherwiseM is abstract

#plans(A) = [VF[! x #locationConfigs(A) . (4) In a materialization plan, theeightof a node indicates

In the worst case, when any peer is both a provider and athe size of the longest path from the node to a leaf node.

caller candidate for every service call node, this number be- TNis property can besimple(denoted byh), if it considers
comes|V*|! x n2IV"I, wheren is the number of distinct only S|mple.edges:ollateral (ch), when it is based on paths
peers. Even for simple scenarigéplans(A) tends to be that start with a collateral edge of the node and that may
large due to the exponential nature of the problem. include transitive collateral calls; @bsolute(ah), which

To reason about these possibilities, we introduce a cen-S the highest value betweénandch. A variation of this
tral element of AXML planning: amaterialization plan property is thdeast heighof a node, which is the size of the

which is derived from the dependency graph of an AXML shortest pa_th from the node to a !eaf. We prefix the height
document. However, instead of a complex graph, we useW'th | to |nd|c_ate such a vananone(g, Ih denotes_the.
trees to represent a plan. More precisely, we consider theIeaSt simple height). We assume the. size of a.p.ath IS given
minimum forest of spanning tree$ a dependency graph: by the number of nodes on it, including the origin and the

namely, the minimum set of trees containing all the nodes 9estination, and leaf nodes of the plan have 1. Unless
and edges of the graph. Also, in a materialization plan stated otherwise, hereafter we refer to the simple height of

these tree nodes are labelled by operators of an algebraln® Nodes by default.

which represent adequate materialization alternatives. We Observe that the evaluation of a physical plan corre-
use the symbol4 to indicate a finite set of algebraic op- sponds to a grounded invocation track of a materialization

erators. In Section 6, we present a formal definition for phase. This correspondence is important because it enables

the minimum forest of spanning trees of an AXML docu- the optimizer to control the plan evolution, namely to cor-

ment, and describe how such a forest is generated and cori€Clly make the necessary updates to the plan during its
verted into materialization plans. It should be noted that evaluation. It is also worth noting that one can determine a
a tree-based representation is interesting for several regmaterialization plan for some subset of service call nodes of

sons, specially because it enables the optimizer to reducé document, based on the corresponding dependency graph.
the complexity of AXML planning by partitioning the prob- I this case, we havesubplanof the document.
lem into simpler and possibly independent tasks (using theperformance metric outline. Comparing alternative ma-
Divide&Conquer heuristic [44]). Basically, AXML plan- terialization plans requires estimating their makespan. To
ning is encoded in the following structures. calculate this metric, it is necessary to consider the sequen-
tial computations of the plan, as well as its peer assignment
DEFINITION 23 Given a service call node held by peer |oad. In workflow systems, the makespan of a physical
P,, an invocation planiP, is an expressiof P¥, P“), plan is typically estimated by itsritical path [18, 33, 63],
whereP¥ and PC are peers thataninvoke and execute, namely the path of sequential executions with the larger
respectively, such that” € L7 andP“ € (LT UP,). The completion time. Similarly, in AXML planning, sequential
term /P, denotes the set of all possible invocation plans of executions are mostly determined by invocation constraints.

v, according toL and LE . We can estimate thstatic critical pathof each spanning
tree of a physical plan by calculating the costs of both ser-
DEFINITION 24 Let A be a dependency graph. rAate- vice execution and data transfers of its nodes (which is done
rialization planM for A is of the form(A, O, L, -, P,,,), recursively, from the leaves). Such a path is said “static” be-
where: cause the load of service executions of the involved peers is
e A is the minimum forest of spanning treesof disregarded. On the other hand, tiynamic critical path

accounts the sequential processing of service executions as-

signed to each peer. We describe the basic formula to es-

timate the costs of Web service invocations in [44], which

e L is a mapping from each nodein A to invocation are compounded with other costs, such as delegation costs,
plans inI/P\'u; in the model presented in Section 7. We consider both

e (O is alabelling function that associates every node in
A with an operator inA;

20

execution and communication costs may be weighted, tofeasible due to its high time complexity (see Equations 3
calibrate the cost model according to tbemputation-to- and 4), and heuristic approaches are necessary to prune the
communication ratigCCR) [33] of the AXML setting. search space. For instance, the optimizer can us®ithe

An issue in estimating the makespan of a materialization vide&Conquer(D&C) heuristic to split the problem into
plan is thatdelegating AXML materialization implies in a smaller disjoint parts [44], which correspond to the con-
non-deterministic execution scenaribue to P2P collabo- nected subgraphs of the dependency graph. Thereby, the
ration, it is impossible to know the exact position of the ser- total complexity is reduced from a product to a sum of the
vice call invocations of an AXML document on the execu- complexity of the problem parts. Suppose thereracon-
tion queue of each peer involved in the materialization pro- nected subgraphs in a dependency graghen the number
cess. Consequently, we cannot determine precisely the dyof alternative physical plans is given by:
namic critical path of a dependency graph. This represents imln
an important restriction on the invocation scheduling prob- #plansPeC (A) = Z Aplans(D;) (5)
lem, since it prevents the direct use of current algorithms
to schedule workflows tasks onto heterogeneous machineswhere#plans(A;) denotes the number of alternative plans
such as proposed in [15, 18, 33, 46, 47, 63, 66]. These algo-of each subgraph;. Since each subgraph is evaluated in-
rithms are usually based on estimates such asdhdiést dependently, the D&C strategy is optimal only if there is
start tim€ and the ‘atest start timé of a task on a ma- no interference between the enactment of the subgraphs.
chine, which cannot be obtained with exactitude in AXML Namely, if the corresponding materialization plans involve
settings. The main reason is that peers are not dedicatedlistinct location scopes. Otherwise, some optimization de-
resources and some parts of the dependency graph may beisions of a materialization plan might disregard the per-
evaluated in parallel without global synchronization of ser- formance penalties resulting from the evaluation of other
vice invocations. Nevertheless, ignoring current invocation plans. Nonetheless, the main problem of the D&C strategy
assignments during the optimization may yield schedulesis that shared dependencies and collateral calls often im-
similar to those based on th&/fnimum Execution Tinie ply graphs with a few, yet complex connected subgraphs.
(MET) heuristic [18], which may cause significant load im- Hence, in these cases, the optimizer cannot explore signif-
balance across peers. For example, if a peer outperforms the&eant complexity reductions. In Section 6, we propose an
others in many services, a load-blind optimizer may exhaustalgorithm that maximizes the number of subgraphs of an
such a peer with excessive assignments. Worst, this wouldAXML document by virtually replicating shared nodes.
also stretch the makespan with massive sequential process- Another class of heuristic strategies consists in setting ar-
ing. To take into account service assignment load during bitrary plan configurations. For example, the optimizer can
AXML planning, our cost model (presented in Section 7) systematically: set the master peer as the caller of the ser-
defines theenergy factoof a peer in a materialization plan, vice invocations; and choose each service executor from the
which is used to dynamically weight the costs of plan nodes. best provider w.r.t. execution time (namely, using the MET

S . . , heuristic). We call this particular strategy MMET, refer-
Optimization strategies. Many different strategies can be ing to “Master caller and MET heuristic In this case, the

used to generate and compare alternative materialization) .
X number of plan configurations that are analyzed for a de-

plans (based on makespan estimates) of an AXML docu- endency aranh is bound to-

ment. Each strategy is determined by an algorithm to pro- P y grap '

duce these plans, and by a method used to compute their

makespan, as follows.

a=1.|V"|
#locationCon figs™MET(A) = Z ILE] . (6)

Although the MMET strategy may save significant opti-
mization time, it does not explore P2P collaboration. More-
over, the MET heuristic ignores the invocation schedul-
ing, and usually produces poor makespans [18]. Notice the
MMET strategy is clearly suboptimal.

An important aspect of AXML planning is that, in gen-
eral, cost functions for makespan estimation are not mono-
tonic, in the sense defined in [25]. Namely, optimizing a
subproblem may increase the overall makespan, as well as
increasing the cost of a subproblem may lead to a better

A straightforward optimal strategy to find materializa- overall solution. For that reason, materialization plans need
tion plans is to adopt an exhaustive search, which yieldsto be entirely specified to be properly compared. However,
all possible combinations of callers and executors, and of AXML settings are highly-dynamic scenarios, thus gener-
invocation sequences. However, such a strategy is often unating complete materialization plans may produce solutions

DEFINITION 25 Let M S be an objective function that es-
timates the makespan of materialization plans. @uti-
mization strategys an expressioY, M S, ceil), whereY

is an algorithm that finds a plao\ for a given depen-
dency graphA, andceil is a performance ceiling such that
MS(M) < ceil. The optimization algorithn¥ is optimal

if M.S(M) is minimal for anyA and for all possible plans
of A. Moreover, we say thaf is completef M is physical
whenever such a plan exists far.

21

Shallow Deep
fanOut <1 fanOut > 1 fanOut <1 fanOut > 1
@) @) @)
O0| ob SleJe'éle é}é@ ;56
o i
without O @) 0-0

collateral calls () (47) (i11) (w)

@“:\ ,’7© ->Q

A

with O--0 00 | OO~ (5 @
collateral calls (v) (vi) (vi7) (viii)

Figure 12. Main topologies of dependency graphs.

that are invalid at runtime. We propose an optimization the optimizer has to schedule parallel sequences of service
strategy that interleaves AXML planning and materializa- invocations without data transfers between service execu-
tion. We first identify independent tasks (spanning trees) of tions. Also in this case, service execution costs are the per-
the graph, and then evaluate them separately. For each tredprmance yardstick. Notice that with shared dependencies
we incrementally generate the corresponding plan based orand/or some data flows between service invocatiaes (
the topological order of the service invocation nodes. The topologies {i) and (1)), the optimization goal remains load
plan evaluation algorithm basically consists in climbing up balancing, since only persistent nodes are handled. Yet, if
a (partial) plan, from the leaf nodes to the root, consider- persistent nodes do not represent large data transfers, then
ing subtrees of fixed heights. For each subtree, we ana-AXML delegation can be explored to improve parallelism
lyze its materialization possibilities and generate a subplan,in shallow graphs, thereby reducing their makespan.
which is executed before resuming the AXML planning and
materialization. It is worth mentioning that our strategy is)
based on a meta-heuristic that can be combined with other ©OPServe that shallow topologies are not expected to be
approaches to find efficient solutions for the subplans. frequentin AXML documents, because they do not encom-
pass intensional parameters. Another class of problems is
represented by deep graphs, which are more usual in AXML
materialization. For these graphs, the optimizer can try to
) find fast links between the participating peers in order to re-
The sha_lpe of a dependency g_raph determines most O_f @ uce communication costs related to temporary nodes. The
opportunities for F_>2P collgbor_auon, as well as the require- typical case is topologyidi), where the exit points of the
ments of sc;hedullng service |n\{ocat|ons. To ggt a b(,attergraph denote independent materialization tasks with few re-
understanding of th.e issues behind _AXML mqtenghzatmn, quired data transfers to the master peer. Interestingly, these
we ana!yze the main graph topologies. We .h|ghl|ght three tasks remain independent in topologyi, despite the col-
d|men_3|ons: 1) the length of p_ath_s of sequential data trans- lateral edges connecting them. The reason is that collateral
fers W't_h temporary ”‘?dew hich is related to the paths of calls represent new instances of service invocations, which
|nvoc.at|on dependencies on the graﬂ)m? shared depen- are ‘clones of the referred nodes. On the other hand, the
dencies of the grapmamely the nodes witlianOut > 1; shared dependencies in topology)(determine some syn-

ang 6) t\?ve seqUﬁntlal dcollatt(ajral mvocan@ fs_eLwcel call chronization points between materizalization tasks, which
nodes. We say that a dependency grajfetspif it has long are not independent from each other.

paths of invocation dependencies with few persistent nodes,
andshallowotherwise.

Based on these criteria, we have the graph topologies of ~The first attempt of our optimization strategy is to sim-
Figure 12. Considering shallow graphs, the simplest topol- plify the dependency graph by transforming it into a forest
ogy is an empty dependency graph, shown in itéJni{ of (possibly deep) independent tasks. The resulting graph
consists essentially of hag-of-tasks without data trans- is close to the topology ini{;), which can be more easily
fers between service call nodes. Optimizing such a graphevaluated by the optimizer. Such a topology favours par-
concerns mostly load balancing. A variant of this topology allel execution, along with the reduction of communication
including collateral calls is illustrated by item»)(where costs. Next, we present the proposed optimization strategy.

5.5 Main Problem Topologies

22

6 Optimizing AXML Materialization

Currently, the ActiveXML platform lacks a
performance-oriented approach to the optimization of
AXML documents with abstract service references. Basi-
cally, ActiveXML peers support only one materialization
strategy, which is uniquely determined by explicit ser-
vice call attributes and (possibly) typing control. In this
Section, we propose a cost-based optimization strategy tg
improve AXML materialization by dynamically analyzing
alternative materialization plans. We describe the overall
optimization strategy in Section 6.1, and its main steps are
detailed as follows. Section 6.2 presents techniques base
on spanning trees to generate initial materialization plans
from arbitrarily-complex dependency graphs. These plans
are encoded with an algebra that enables the optimizer tg
perform incremental and collaborative AXML materializa-
tion. In Section 6.3, we outline an algorithm to partition a
materialization plan into tasks, and a priority-based mecha-
nism to order these tasks. In particular, we explore both the
inter-task and the intra-task parallelism degree of a plan to
sort its tasks. Going further, we propose in Section 6.4 an
algorithm that scans a materialization plan in topological
order and dynamically generates “good” physical plans
based on cost metrics. Finally, we discuss task delegatio
and collaborative optimization in Section 6.5.

The proposed strategy is dynamic in the sense it partially
materializes the plan before completing the optimization.
Moreover, resource allocation and planning are performed
at runtime. It is also adaptive, as defined in [28], since it

makes the optimizer choices sensitive to changes in the p2p

system at each step of the materialization process.

6.1 Dynamic Optimization Strategy

To materialize an AXML document, the optimizer has to
deal with two major issues:tauge search spaad material-
ization alternatives, and thenpredictabilityof the P2P set-
ting. In a static approach to generate materialization plans,
all the service calls, the interactions among them, their ser-

1 | procedureDynamicOptimiz€A, k)
2 | {Efficiently materializeA based on dynamic plan
generation ok-depth stepg.
3 | begin
4 Generate an initial abstract plavt; from A
5 Compute the s€f; of materialization tasks o,
6 Order the tasks df; by priority level
7 for each task in 7; do
8 if ¢ is to be delegated then
10 Pick a new master peét., in \/ for ¢
11 Delegatet to P,
12 go to next task
13 end if
d 14 Split ¢ into k-depth subplans
15 for each subplaoM, in ¢ in topological order do
16 Locate providers and executors o1 .,
17 Generate alternative physical plans/ef.,
18 Rank physical plans and pick the bégty.:
19 ExecuteM e
20 end for
21 Re-evaluate the order of tasksih
22 end for
23 | end

Figure 13. Overall optimization algorithm.

Yem such that important performance aspects, such as data

flows between service invocations, are preserved and con-
sidered by the optimizer.

Inspired on Web protocols, which present results as they
arrive (instead of waiting for complete documents), our op-
imization strategy also allows to minimize the time to ob-
tain thefirst resultsof the document materialization. We
interleave materialization planning and executitimus the
peer optimizer can decide how to proceed after partial exe-
cutions, when it may have more up-to-date information on
the system status.

The basis of our optimization strategy is to work on the
materialization of an AXML document by using its depen-
dency graph, which explicitly shows all the invocation con-
straints of the embedded service calls. The optimizer un-

vice providers, and communication costs are assumed to bdolds this graph into a simplified tree-based structure, and

known before the optimization starts. Clearly, this approach
is not suitable for AXML materialization. Ideally, the opti-

mizer should react to changes in the environment, and this|
should not be based solely on plan reoptimization, which

then produces ainitial abstract plan whose location scope
and invocation schedule are not determined. Such a plan is
partitioned into materialization tasks, which can be further
split into subplans of height according to the topological

is often quite expensive in an unstable setting. We proposeorder of the service call nodes. For each subplan, the opti-
an optimization strategy that exploits dynamic techniques to mizer annotates the execution and delegation scopes of its
reduce complexity and to enable the system to adapt to botmodes, and then generates its alternative physical subplans.
system performance and membership fluctuations. In ourThese equivalent subplans are then ranked based on some
approach, materialization plans are not produced at oncecost metrics, and the “best” (but not necessarily optimal) al-
and reoptimization is triggered only when really necessary. ternative is picked and evaluated. This process is repeated
Not surprisingly, our techniques mostly rely splitting the until all the tasks and their subplans are evaluated. Option-
dependency graph into smaller piecd$owever, the main ally, the optimizer can delegate some tasks to be completely
question here is how to partition the materialization prob- evaluated by other peers. The overall algorithm of our op-

23

timization strategy is described in Figure 13. In the follow- which denote subgraphs that do not correspond to trees. To
ing, we detail these optimization steps. handle this, we have to build a flat representation of the de-
pendency graph, where each node belongs to exactly one
tree. This is done bpode detachmenrt namely, by identi-
fying and separating subgraphs that are connected by some
To generate a materialization plan, the optimizer has to service call i;e., which have service calls in common). We
associate the service call nodes of the dependency graplpropose two special transformations to obtain such a repre-
with adequate evaluation operators, which will actually pro- sentation:
cess each service request. For example, a service call may
be invoked locally i(e., by the master peer) or delegated to
another peer; each of these cases require a different oper-
ator to handle the service call node. These operators are
interpreted by the optimizer, and their service call results
are inserted into the AXML document. Nevertheless, a
dependency graph is rather a complex structure to be di- e node cloningwhich consists of adding new instances
rectly processed by the optimizer, due mostly to shared de- of a service call node to the dependency graph. It is
pendencies and collateral calls. Therefore, we first encode used to represent collateral calls.

the dependency graph using a simpler, tree-based StrUCEjg e 14 shows the algorithm used to flatten a dependency

tu_re that is more adequate for distributed evaluatio_n. In graph based on these two transformations. Basically, each
this transformation process, we also attempt to apy-a gpared dependency (namely, a node witmOut > 1)

yider&Conquerheuristic to reduce thg problem complex- is replaced byfanOut replicated nodes, such that each
ity. In particular, we extract thepanning treesf the de- opjica inherits exactly one of the outgoing simple edges
pe”de”CY graph, such that the optimizer can identify and ¢ original node, and all of its incoming simple edges.
evaluate independent tasks. Then, we use an algebra of Ma- nodes that are pointed as collateral calls, we clone their
terialization operators to generate an initial plan from these g iire subtrees for each incoming collateral edge. Replicat-
trees. Such a plan contains orgstract operatorgwhich ing shared nodes has time complexity® x |E|), while

lack location scope information) and its purpose is to enable o hound for node cloning depends on the algorithm used
the optimizer to produce alternative physical plans. to unfold spanning trees.

Extracting spanning trees. Several classical algorithms From a flat dependency graph, we can expand the span-
can be used to build spanning trees from an arbitrary graph.ning tree of each exit point based on the border criteria of
For instance, the well-known Prim’s algorithm [11] has time Definition 26. The result of this process consists of the fol-
complexityO(|V|?) using an adjacency list as graph struc- lowing set of (possibly related) trees.

ture, andO(|V|log|V'| + | E|) for a heap-based graph. This
algorithm beglns_wnh a node of fche graph as the current the set of exit points @k, wherel ¢** C V. The expression
tree, and then builds itsorder, that is a set of all the nodes A — -

. . = (ST, g, —) represents theninimum forest of span-
that can be reached from this start node. Each node in thening trees{or MFST, for short) ofA, whereST is a set of
border is added to the current spanning tree and expandecliJnordered trees cm’such that: '
recursively. These steps are repeated until all the spanning ' ') _
trees of the graph are obtained. The roots of these trees ® Shared nodes ah are properly replicated i7",
are the seeds of the algorithm. In our case, only exit points e collateral calls ofA are properly cloned ir57"; and

of the dependency graph are used as seeds. Moreover, the ¢ tor each nodev, in Verit there is a treest, in ST
border is built considering the opposite direction of simple that is rooted by, and which results from recursively
edges, as stated next. expanding the border af,.

6.2 Extracting Materialization Plans

e node replicationthat is to replace the node by a set of
exact copies of it, which represent the same instance
of the corresponding service call. This transformation
is applied to separate subgraphs connected by shared
dependencies; and

DEFINITION 27 LetA be a dependency graph, amd®i

DEFINITION 26 LetA be a dependency graph amg, v,
be two nodes im\. The nodev, is reachable for spanning
from v, iff either v, — v, or v, — v, isin A. Further-

Furthermore, the functiop associates replicated nodes in
A with their original node inA, and — denotes a distin-
guished subset of edgesAn which correspond to the out-

going collateral edges ah. The number of spanning trees
of A is denoted byA|.

more, theborderof v,, consists of the set of all the nodes in
A that are reachable for spanning from.

If the dependency graph has only connected subgraphs Observe thabT is equivalent taA ;,¢. We assume that
that represent trees, then we can easily identify and eval-tree nodes keep their properties from the dependency graph,
uate its independent tasks. However, an AXML document such as the persistency flag and invocation status. Also,
usually involves shared dependencies and/or collateral callssince the edges of a spanning tree are not directed, collateral

24

1 | functionFlattenDependencyGrapi\): A¥7e?
2 | {Transform shared nodes (due to shared dependencigs
and collateral calls) to disconnect subgrapha\of
3 | begin
4 letAflet = A
5 for each node in @7t
6 if fanOut(v) > 1 then{shared dependengy
7 Replicateg, Aflet)
8 end if
9 end for
10 | for each edge, — v, in £/“ do {collateral cal}
11 Cloney, vy — vy, AH“’)
12 end for
13 returnAftet
14 | end
15 | procedureReplicatév, A)
16 | {Replicate node in dependency graph
according to its outgoing simple edggs.
17 | begin
18 for eachv — v, in E do
19 letv,¢, be a newreplicaof v {an exact copy ob}
20 Add vyep OV
21 Add vyep — v, 1OE
22 for eachv, — vin E do
23 Add vy — vpep tOE
24 end for
25 for eachv — v, in E do
26 Add vyep — v, 1O E
27 end for
28 Deletev — v, from E
29 end for
30 | end
31 | procedureClong(vy, vy, — vy, A)
32 | {Clone subtree rooted at nodg through the
collateral callv, — v, in graphA.}
33 | begin
34 let veione be a nevmlgr;eof vy {anew instance of, }
35 Add v, < Veione O FE
36 Unfold the spanning tree rooted@f into veione
37 Deletev, — v, from E
38 let IN be the set of incoming collateral edgesugf
39 if [IN|=0then
40 Deletev, from A
41 end if
42 | end

Figure 14. Algorithm to flatten (by node repli-
cation and/or cloning) a dependency graph.

edges require proper distinction for their particulfire’ af-
ter” semantics. In fact, we consider that collateral calls are

not expanded as regular child nodes in the spanning trees,

but asannotationson the service call nodes.

DEFINITION 28 Given a MFSTA and two nodes, and
v, in A, we say thaw, is a collateral annotatioon v, iff
vy = vy iNA.

25

Figure 15. MFST of the SwapWorkspacgraph.

Figure 15 shows the MFST obtained from the graph of
Figure 8; replicated nodes have underlined text, and col-
lateral annotations are denoted by dotted arrows. Cloned
nodes have distinct IDs, which we represent bgX.Y”
whereX is the ID of the original node, and is the spe-
cific ID of the clone. Observe that the spanning trees of a
dependency graph may be grouped into (possibly overlay)
clusters, such that each cluster has all the trees with node
replicas of a service call. More precisely, a cluster repre-
sents some connected subgraph of the dependency graph.
For example, there is one cluster in the MFST of Figure 15,
which is indicated by a dotted rectangle. Although there are
not precendence constraints between the trees of a cluster,
they are not independent from each other: replicated nodes
express synchronization points in the evaluation of their re-
spective spanning trees. Yet, the trees of a cluster become
independent once one of the replicas is evaluated. We ad-
dress these issues in Section 6.3.

Algebra of materialization operators. Having computed

the MFST of a dependency graph, the optimizer has to turn
the resulting trees into a materialization plan. Basically, this
can be done by replacing tree nodes in the MFST by opera-
tors of an algebrad, whose main requirements are the sup-
port for Web services invocation and for P2P collaboration.
Also, such an algebra should allow the optimizer to incre-
mentally evaluate a materialization plan. Based on these
requirements, we propose the algebra described in Table 2.
We distinguish three groups of operators:

(7) the abstract operatorg: and p, which represent the
possible combinations of executors and callers of ser-
vice call nodes in a plan. These operators cannot be
interpreted as service executions since they lack spe-
cific invocation details, such as the Web service end-
point. For example, the operator has to be converted
into some physical operatoe.g, invoke) in order to
result into a service invocation;

(i7) the physical operatorgnvoke, fetch and 4, which
contain all the information required to invoke a Web
service. Observe thatdoes not point directly to ser-
vices that are requested in the AXML document. In-
stead, it represents the invocation of a basic Web ser-
vice for P2P collaboration, which is going to handle

Table 2. Algebra of operators for dynamic and decentralized AXML materialization.

Operator | Description

wu(v) | Thematerializeoperator tells the optimizer to determine an invocation plan for the service calknddemely,
to choose hoth a caller and an executorif@mong the peers in its location scoge;(and LZ, respectively).
Pre-conditions LZ is not empty; none of its descendant nodes in the plan is an auxiliary operator; and every
descendant node has at least one provider in its execution scope.
p(v) | Theretrieveoperator is slightly different fromu(v). Additionally, it informs the optimizer that is a shared
dependency. That is, it behaves likév) with the additional cache operation for future retrievals, unieiss
already evaluated. Otherwise, it retrieves the invocation planfafm the cache.
Pre-conditions either there is an entry farin the cache or the same pre-conditions agffr) hold.
invoke(v, IP,) | This operator is interpreted during evaluation as an invocatianfafm peerP to execute the requested Web
service at peeP”, such thatf P, = (P”, P) is an invocation plan of.
Pre-conditions all the dependencies ofare inactive.
fetch(v) | Itinforms the optimizer to look for previous invocation resultadt the system cache before materializing it.
It corresponds to a physical versionmfin particular, it behaves asvoke with the caching feature.
Pre-conditions either there is a cache entry for the invocation resutt ¢f v is not inactive), or there is an
invocation plan fow in the cache and all the dependencies afe inactive.
6(v, IP,) | Thedelegateoperator asks ped?®, from the invocation plaid P, = (P¥, P%) such thatP® € LY, to
materialize (possibly with some further optimization) the subplan rootedat solving itself all the necessary
intensional parameters and collateral calls.
Pre-conditions all the s operators in its subplan, as well as all theoke operators whose caller is the curren
master peer, are evaluated. Al$%; must be a neighbor (that i®° € \).
O(v) | Theoptimizeoperator denotes a request for a remote pieer feighbor) to optimize the subplan rootecbat
possibly including its materialization.
Pre-condition at least one peer iV supports9.
locate(v) | This auxiliary operator denotes a request for a neighbor to discover the execution scope of both the Weh service
of v and the services of all the operators in the subtree ofthat have an empty execution scope.
Pre-condition at least one peer iV supportdocate.
pipe | Itis used to simplify updating the dependency graph with intensional answers, as explained in Section 4}4. This
operator represents a pipeline that gathers the results of its children and transmits them to its parent node in the
plan. Its Web service may be executed either locally or at some pgér in
Pre-condition all of its children are ready.

one or more service requests of the document; and cal counterparts. For auxiliary operators, evaluating them

(i7i) theauxiliary operators®, locateandpipe, which are ~ Means choosing a peer (neighbor) and then invoking the
mainly used to decentralize the optimization process. corresponding Web serwcg_for P2P collaboration. Observe
Similarly to, these operators point to some basic col- that both abstract and auxiliary operators do not cause any
laboration service. Initially, they may lack the target changes to the AXML document, except rwhen itin-
peer, but the optimizer must set them to some Spe_cIudes plan materialization (that is, the subplan evaluation

cific neighbor (or locally, in case gfipe) before their is completely delegated to other peer). On the other hand,
evaluation. evaluating physical operators results in invoking some ser-

Each algebraic operator i is associated to a specific vice calls of the AXML document and updating its contents.

set of actions, according to its goal. To be evaluated by the The optimizer uses these operators to compose mate-
optimizer (thus triggering its actions), the operator has to rialization plans as follows. First, it generates an initial

satisfy some pre-conditions, as described in Table 2. Theplan with abstract operators. Then, this plan is successively
semantics of evaluating an operator varies according to itstransformed by replacing, adding and/or consuming opera-
type. In general, the evaluation of abstract operators doedors. Plan transformations may be due to either operators
not trigger any service invocation, but only makes the op- evaluation or traditional rule-based optimization. Table 3

timizer to analyze their alternative physical plans in order enumerates the possible transformations obtained by evalu-
to choose the “best” options. Such an analysis usually ating algebraic operators. Notice all physical operators are
results in replacing the abstract operators by their physi-either consumed or replaced by an intensional answer. Also,

26

Table 3. Evaluation of algebraic operators. ; Luengﬁ::onGeneratelnltlaIPlar(A). M
Original operator | Resulting operator(s) 3 FlattenDependencyGraphj
w(v) | eitherinvoke(v, IP,) or §(v, [P,) 4 Compute the MFSTA of A
p(v) | fetch(v) | cached plan of 5 let M; such that\; = A
invoke(v, IP,) | none| intensional answer 6 | {Determine the labelling functio®; }
fetch(v) | none] intensional answer 7| foreachwestin A; do
0(v, IP,) | nonelintensional answer 8 for each node in st do
©(v) | subplan forv | none| intens. answer 2 'fvis a replicated node then
: i 10 Replacev by p(v)
locate(v) | subplan rooted withu(v) 11 else Replace by 1 (v)
pipe | none 12 end if
13 end for
the © operator may be consumed if it includes materializ- ig d tlhe master peer cannot evaluatethen
Co et vro0t b€ the root ofst
ing its delegated subplan. Furthermore, we assume the op- | |4 Replacev,oor bY ©(vro0t)
timizer can apply the following basic transformation rules: 17 end if
1. it inserts© operators to partition the children of a node 18 | end for _
if they are too numerous; 19 {Both £, and:-; are left undetermined for noyv.
20 return M;
2. it replaces au operator bylocate if the subplan ofy 21 | end

has at least some pre-defined percentage of nodes miss-
ing the execution scope (if the peer failed to identify the
providers of these nodes); and

3. it replaces arnvoke operator bys if its caller (.e., P¢) of a tree are associated with algebraic operators, the opti-

is neither the master peer nor the caller of its parent node.mizer decides (at 14) whether or not it is going to evaluate
h | b lored at the di) fth the respective subplan. Notice the optimizer may choose to
These rules are meant to be explored at the discretion of theygigate a subplan in many cases; for the initial plan, we

optimizer, in diﬁereqt phase; of the op?imizaﬁon strategy. consider this happens when either the MFST has too many
For example, rule 1 is used in early optimization phases 0yaes o the master peer is overloaded. Also, for simplic-

break the plan into pieces of reasonable size, while rule 3 sy, \ye assume delegated subplans do not contain replicated
used to determine delegation points when generating phys;,jjes (to avoid problems due to data coupling). At this
ical plans. Rule 2 i.S related wontingency planningvhich phase, we neither set an invocation schedulen(or deter-
we d_lscuss n Secyor? 6.4.)) mine the location scop&C] for the abstract plan, which will

Itis worth mentioning that our algebraic approach is ex- e hrogressively defined during the optimization process.
tensible, since one can add other operatord tas well as Figure 17 depicts the initial abstract plan for the depen-

new rules to handle these operator;. . For _examplemthe dency graph of Figure 8. Each node represents an algebraic
voke operator could be further specialized into other phys- erator, which is specified in the node label. Nodes may

0
ical rator: h nchron nd an nchron §|p : -
cal operators, such as a synchronous a d an asynchronoy so have collateral annotations (thep™ reference under
operator (for continuous Web services).

the label, in Figure 17). Additionally, the optimizer may
Generating initial plans. Although the MFST is a canoni- annotate nodes with some supportive information, such as
cal representation, usually there are many different plan al-node height. Persistent nodes are denoted by double-line
ternatives for its trees, according to the algebraic operatorsrectangles. We divide the materialization plan into three ar-
used to handle the service requests. Nevertheless, the opas. The central area is thenain plari, which consists
timizer can rely on abstract operators to rather perform aof all the spanning trees of the materialization plan, such
simple (and fast!) analysis to generate initial plans. Such that subplans rooted by replicated nodes are represented by
an analysis assumes that each service call node yields eithegither ap or afetch operator. The subplans of replicated
ayu or ap operator. (This last operator is used if the node nodes are kept in theeched plansarea, and thecp” ref-

is a replica.) The initial plan is calleabstractbecause its erences point to subplans in theollateral plang area. The
nodes consist essentially of abstract operators. master peer of our example #%, according to Figure 1.

The GeneratelnitialPlanalgorithm of Figure 16 shows If the dependency graph does not change between subse-
the steps to generate an initial abstract plan from a depenquent materialization requests (or if changes are not signif-
dency graph. After computing the MFST, an initial plan is icant), then the optimizer can store the initial abstract plan
set as a carbon copy of if. Then, for each tree, nodes are laof an AXML document for further reuse. Also, the opti-
belled by abstract operators accordingly. Once all the nodesmizer can propagate occasional updates on the graph to the

Figure 16. Algorithm to generate initial plans.

27

(main plan nset) 1sc5) 1509) 7 function IdentifyTaskClusteréM): Clusters
h=3 cp=1.2,h=3 h=2 2 | {Returns a collection of clusters indexed by shared
nodes (or root nodes, for independent trées).

begin

I
Ysc3.1}| |LUYsc2.1) LYsc7) LYsc6) | | LY sc10)
h=1 h=1 h=1

3
hTz i 4 let Clusters =0
plsc8.1) 5 for each treest in M do
=1 p(i"j'” "l(hs:f) 6 let Rep be the set of replicated nodesf
N e 7 if Rep = 0 then {stis independerjt
8

cachied plans [yyscs.1)| | | colateral plans [1ysc1.2) let v,.00: b€ the root ofst
=1

=3 9 CreateClusters[vroot|
10 Add st to Clusters[vroot)
Ni‘igl) !"'(?:3'2) 11 else {st has some shared nodes
|' - 12 for each node in Rep do
1(sc8.2) 13 let nodevorigin such thato(v) = vorigin
h=1 14 if Vorigin ¢ Clustersthen
15 CreateClusters[vorigin|
Figure 17. Initial abstract plan for the Swap- 16 end if
Workspacedocument. 17 Add st to Clusters[vorigin]
18 end for
19 end if

plan according to the rules presented in Section 4.4, possi- | 20 end for

bly by usingpipe operators. For many changes, however, | 21 returnClusters
re-computing the initial plan from scratch may be less ex- | 22 | end

pensive than applying the respective updates.

Figure 18. Algorithm to identify clusters of
6.3 Determining Materialization Tasks materialization tasks.

In our optimization strategy, instead of processing the
entire initial plan at once, the optimizer partitions it: first, trees can be grouped into overlay clusters, where the trees
into materialization tasksand then intdk-depth subplans of each cluster share some service call results. Identifying
By materialization task, we consider a well-defined, self- the clusters of a plan can be done by a simple algorithm, as
contained goal of a materialization plan. To determine the shown in Figure 18. Such a data coupling usually restricts
tasks of a plan, we adopt an approach that focuses on its exifor, at least, complicates) the distributed processing of a ma-
points, which correspond to the roots of the MFST. Also, terialization plan. Yet, once a replicated node is evaluated
for preliminary scheduling purpose, each task is associatedand its result is passed to the other replica accordingly, its
with some evaluation priority, as defined next. tZebe a corresponding cluster stops existing. Determining indepen-

finite set of tasks identifiers. dent tasks has many advantages. In particular, it enables
]] parallel execution and the decentralization of the optimiza-
DEFINITION 29 Given a planM, the expressioqT,) tion process, which fit quite well in P2P systems. More-

denotes the set ahaterialization tasksf M, whereT" is over, partitioning the plan may significantly reduce its opti-
an injection of trees in\ into tasks in7', andr associates mization complexity, as discussed in Section 5.4. Hence, to

each task of T with a priority level overcome the data-coupling problem, we try to find a tasks

We consider that each tree of a materialization plan €valuation order that would gradually increase ffzzal-
yields a task. Our choice for this criterion is motivated '€iSm potentialof the plan, thus allowing the optimizer to
by two main reasons. Following Proposition 2, we know effectively expl_ore P2P collaboration. For _S|mpI|C|ty, let us
the materialization process converges at the exit points of2SSume each independent task of a plan is a cluster. Thus,
a plan after a finite number of service invocations (assum-We can estimate the parallelism potential of a plenas:
ing a snapshot semantics). Therefore, these nodes enable
the optimizer to use an objective function to properly esti-
mate the mgkespan of eaph task. Besides that, e?<|t pomt%/vhere(]lusters is the set of clusters oM, including its
are always first-level service calls, and they constitute the. . :
ultimate contents of the document materialization. !ndepe_n(_j_ent tasks. F_|gure 19 descnbe_s the clusters found
in the initial plan of Figure 17. Tasks in each cluster are
Clustering tasks. Due to shared dependencieg(nodes represented by their root nodes. In this example, we have
labelled byp or fetch operators), the trees of a material- par,; = 2. Observe this number may change after each
ization plan are not necessarily independent. That is, plantask evaluation, according to the affected clusters.

paryp = |Clusters| . ©)

28

Clusters[sc8.1] {p(sc1.1), u(sc5)} parallel evaluationi(e., if one of the tasks of is evaluated),
Clusters[sc9] = {u(sc9)} and it is given by:

Figure 19. Clusters of the SwapWorkspacglan. Tinter(€) =[] =1, (10)

where || is the number of tasks on Analogously, the
Priority assignment. To rank the tasks of a materialization intra-task parallelism degree;,,;.., of a taskt in a clusterc
plan, we consider the optimizer assigns priorities for them. represents the branchestdhat could be parallelized once
Such a metric can be determined based on (possibly a come has been solved. This parameter is given by the number of
bination of) several different task properties, such as: replicated nodes afin ¢, since two replicated nodes cannot
e the number of service Ca”s; be in the same branCh Of a taSk.
Observe the optimizer has to start the plan evaluation by

h r ritical path; L
* the abstract critical path; distributing the tasks that were chosen to be delegated to

e the absolute height of the root node; other peers. Hence, we consider the highest priority level
e the expected makespan, based on previous executiorfdenoted byr,.) is assigned to delegated tasks by default.

times; Recall that we assume these tasks do not belong to any clus-
e the number related clusters: and ter. Moreover, tasks with the same priority level can be fur-

. her order m iding criterion h k size.
« the number of replicated nodes. ther ordered by some deciding criterion, such as task size

The first three criteria basically define the size of a task; the Bl_ocklng versusnon-blocking tasks.In a regular peeri ., _
optimizer can be configured to evaluated tasks following ei- With only one processor), tasks are usually evaluated in a
ther a “smallest-first” or a “biggest-first” policy, according Plocking modgnamely, they are handled one-by-one, and
to the system requirements. Observe that to estimate thé&@ch task blocks the evaluation of the others. In this case,
size of a task, ideally the optimizer should consider the dy- USing parallelism potential to compute priority can help the
namic critical path of the plan. However, the plan operators OPtimizer to explore tasks delegation. On the other hand,
are rather abstract at this phase of the optimization strat-for parallel peers, the optimizer can directly explore the
egy, and this information is not available yet (trying to get clusters of a plan t_o speedup |t§ evaluation, since each task
it would be very costly). Besides these size-based criteria,PlOcks the evaluation only within the scope of its clusters.
more user-defined properties could also be used, such as thit iS worth mentioning this can be simulated with a multi-
presence of certain Web services requests. thread system in regular peers. Nevertheless, empirical re-
The last two bullets are related to parallelism potential. SUlts [37] have shown that managing several simultaneous
These clustering-based criteria reflect, respectively, the ex-connections to Web services usually penalizes performance.
ternal and internal data coupling of a task. Notice that Notice that tasks delegation is a quite different technique,
both size- and clustering-based criteria are important to ef-SiNCe the optimizer can use asynchronous Web services for
ficiently schedule materialization tasks. Thereforezloe Collaboration, thus avoiding lasting open connections.
a materialization task an@lusters; be the set of clusters When parallelism is imperative, the optimizer may com-

that contairt. We compute the priority levet of ¢ as: pute dynamically the priority levels of materialization tasks,
since these parameters can significantly change after each

T(t) = Tgize(t) + Z Tetuster(t,€) 5 (8) task evaluation.
ceClusters,

wherern,; .. is the size-based priority of andm ., s:c.- iS the 6.4 Dynamic Plan Generation

cluster priority oft (for each cluster in Clusters;). We

assume that;.. is estimated by some arbitrary function, As we saw in Section 5.4, the search space of alter-
regarding some criteria such as those we enumerated. Ofative materialization plans is dramatically large even for
the other hand, the cluster priority of a task is given by: very sma_lll problem configurations. In general, exponential-
complexity search problems cannot be solved for any but

Tetuster(£,€) = Winter X Tinter(€) + the smallest instances [45]. Also, breaking the optimization

Wintra X Tintra(t,c) . 9) problem into pieces fosters P2P collaboration. Although

materialization tasks are natural candidates as a plan split-
The termsw;,¢e, andw;,i- denote weights to adjust par- ting unit, usually they are not necessarily small enough to be
allelism priority, for inter-cluster and intra-cluster paral- efficiently optimized. Hence, we further split materializa-
lelism, respectively. These weights allow the optimizer to tion tasks into subplans, which are used to finally generate
adapt priority assignment to different performance require- and rank alternative physical plans.
ments and problem topologies. Theer-task parallelism Two main aspects rule generating physical plans in
degreer;,;., Of a clusterc indicates the potential af for AXML optimization: the location scopef) of the re-

29

guested Web services; and the invocation schedu)eof ally, as the plan is evaluated. Thearameter can be either
the plan operators. Basically, the optimizer yields different determined by the peer administrator or inferred (based on
combinations of service providers and callers (according to some heuristics) from the absolute height of the task root.
both the execution and delegation scopes of each servic
call node), along with different invocations sequences, to
obtain alternative physical plans. Our optimization strat-

egy adopts a variation of theorkflow-based generation U . -
approach[15] to produce these plans. This is opposed to shown in Figure 20. Loosely speaking, the optimizer walks
) the task in some arbitrary tree traversaly, in pre-order or

a task-based generation approach (which is quite popular in) I oo
grid systems [24, 51]), where the optimizer makes greedy'n lpos]:[—ordher), fr?r eac_h _task operator, i 't? helght |sha mull;
decisions for each plan operator. Notice a task in this con—tlp €o it gnt € Op“”.“zer. Sets it asasp It po'f“- The tas
text is just a plan operator. Typically, a greedy optimization root is considered gspllt point by definition. Notice we have'

. - 0 use the least height of the plan operators to properly split
algorithm processes a plan node-by-node, picking the besﬂihe task. Thenod (for modulus) function in lineg3 and34
alternative for each node according to some heuristics an FEi) 20 ret th inder of an int divisi
localized performance parameters. Its main advantages ar \gure 9 returns the remainder ot:an in eger IVI.SIOH.
the reduced complexity and the adaptability to changes in Furthermore’. two node occurrences require spec!al treat-
the system. Moreover, intermediate results can be shippednem to d.etermme. the split points O.f a task. The f|rst oc-
as soon as possible. However, in the AXML setting, there is currence is of replicated nodes, which are essentially task

a strong performance correlation between a plan node andeaves that point to some cached plans. When consider-

its dependencies, and greedy decisions are usually very ining a replicated node for task splitting, either its respective

efficient. In a workflow-based approach, the whole problem ca}ched plan is already evaluat_ed. or it is Waiting for evalu-
is considered to produce the search space. The analysis o?t'on' In. the last case, thg qptlmlzer can partition the cor-
complete plans enables the optimizer to reason about overal[espondlng cached plan 5|m_|larly o a task, except_that the
performance, but it is really inadequate for AXML materi- root T‘Ode of the_cacr_\ed plane(.,_ the sharegl no_de) 'S nqt
alization due to the exponential nature of the problem. We con5|dereq a S.P“t ppmt unless 't.s least height is a multiple
propose a new optimization strategy that combines advan.0f & The intuition is that a rephcated.node has to be re-
tages from these two approaches. placed by |t§ cached plan. I—_|0\{vever, since a task may have
several replicated nodes pointing to the same cached plan,
Dynamically producing k-depth subplans.The mainidea the optimizer has to choose exactly which replica is going
of our strategy is to exploit a hybrid search technique, which to be solved first (and be replaced by its cached plan). For
performs a greedy analysis &rdepth subtreesf each ma- replicated nodes in different subplans, this is done follow-
terialization task. The: parameter determines the abso- ing the split points evaluation order. Within a subplan, the
lute height of each subplan that is analyzed by the opti- optimizer can analyze the resulting subplan complexity for
mizer. This parameter usually has a significant impact on each replica replacement (based on the formula presented in
the problem complexity, thus we assumés a small inte- Section 5.4), and choose the less-impacting change. Before
ger (say, chosen from 2 to 4 inclusive). For each subtree,starting to split a task, the optimizer retrieves the unsolved
the optimizer generates and ranks alternative physical sub+eplicated nodes and copy their cached plans into the task
plans, considering the relationships between the operatoraccordingly. If a cached plan is already evaluated, the op-
of the subtreed.g, data transfers and invocation sequenc- timizer just need to replace the replicated node bgteh
ing). Once a good physical subplan is selected, it is exe-operator.
cuted before the optimization process is resumed. In Fig- The second special occurence is of collateral annota-
ure 13, the steps from line 14 to 20 describe the core of thetions. The optimizer deals with this occurrence according
proposed strategy. to the size of the collateral plan. Small collateral plans can
Observe that, through our dynamic strategy, the opti- be attached to the main plan, thus enabling the optimizer
mizer can have a bird’s eye perspective of heigtuf the to consider collateral annotations to determine an efficient
materialization plan. This way, it can still be sensitive to invocation schedule. When splitting a task, to assign node
overall performance issues, while keeping the plan com- heights, the root of an attached plan is handled as a child
plexity manageable. Moreover, the optimizer is able to node. If collateral plans are potentially large (more specifi-
adapt a plan to changes in the system, such as peers meneally, when the node ha$ > k), then the optimizer has to
bership fluctuations. Also, it can handle incomplete prob- handle them independently. This is because we assume the
lem specifications. For example, the optimizer does not entire collateral plan has to be execusdter the node that
have to know the execution scope of all the plan operatorstriggers it. Since optimization and execution are interleaved
from the beginning of the optimization process. Instead, in our strategy, the optimizer can evaluate large collateral
it can try to increase its knwoledge of the problem gradu- plans (including determining their split points) only imme-

eComputing split points. To partition a task, the optimizer
has to compute itsplit points namely the nodes that root
the k-depth subplans of the task. The algorithm outline is

30

diately after their origin nodes. In a more relaxed execution
environment, we can admit the optimizer processing both a
plan operator and the dependencies of its collateral call con-
currently. In such a scenario, all the collateral plans have to
be attached to the main plan. However, we limit plan at-
tachment to small collateral calls.

Figure 21 shows the split points of the task rooted by
operatoru(scs), from the initial plan in Figure 17. In
this example, we also include the collateral plan rooted by
u(scl.2). Nonetheless, we remark thafsc1.2) is not at-
tached tou(sc5). For simplicity, nodes are annotated with
ch only if they have a collateral annotation, and wigh
only if lah # h. Split points are indicated by large red ar-
rows. We assumg(sc5) is the first task to be evaluated,
thus the operatop(sc8.1) is replaced by its corresponding
cached plan. Moreover, we have thiat= 2, and the split
points are: u(sc5), u(sc7), p(scl.2), andp(sc3.2). No-
tice that, if collateral dependencies can be evaluated con-
currently, then the split points of the task pfscs) are:
u(sch), u(sc7), and u(sc3.2). Although these points do
not seem to change much in this case, the optimization of
their subplans is quite different. This is mainly because the
optimizer will consider materialization alternatives for both
u(sc5) andu(scl.2) before executing them. Also, the de-
scendants ofi(sc1.2) may be executed befoygscs).

Scheduling subplans evaluation.Basically, the subplans

of a materialization task must be evaluated in topological or-

der from the leaf nodes, such that child nodes are inspected
first and collateral calls are properly triggered. This task

traversal usually can be easily followed. However, since an

abstract task does not enforce a total order on sibling oper-

ators, some subplans can be processed concurrently. There-

fore, the optimizer has to determine an invocation schedule
(>) for the task. This schedule does not need to be com-
pletely specified, since only split points have to be consid-
ered at this moment.

To focus the scheduling analysis on split points, the op-
timizer summarizes a materialization task witlsubplans
guide (or s-guide, for short), which is an access structure
that expresses the dependency relationships between suh
plans. An s-guide contains only the split points of a task,

coO~NO UL WNE

functionSplitTaski, k): Split Points
{Returns the set df-depth split points of task }
begin
let Split Points = ()
{Handle replicated nodégs
for each clustet in Clusters; do
let Rep be the set of replicated nodesoin ¢
if the cached plan of is evaluated then
for each node in Rep do
Replace the operator ofby fetch
end for
else
Choose a node,, in Rep as the master replic
Replacev,, by the cached plan of
for each node in Rep do
if v # vy, then
Replace the operator ofby fetch
end if
end for
end if
{Handle collateral annotatiohs
let C'olls be the set of nodes containing collateral
annotations int
for each node in C'olls do
if ch, < kthen
lett..;; be the collateral plan af
Attacht.o; tov
end if
end for
for each node in ¢t do {search for split points
let remainder = 0
if v has an attached plan then
remainder = mod(lahy, k)

elseremainder = mod(h., k)
end if
if remainder = 0 then
Add v to SplitPoints
end if
end for

let vr00t DE the root of
if vroot ¢ SplitPoints then
Add vyo0t t0 Split Points
end if
returnSplit Points
end

A

along with their descendant relationships. Notice that two
split points may be siblings in the s-guide even if their re-
spective operators do not have this relationship in the mate-
rialization task. We consider two basic approaches to sched-
ule the nodes of an s-guide. The first approach consists
in determining an evaluation order on the children of each
node of the s-guide. Such an order can be defined by some
size-based heuristic, such adetpest first(e.g, based on

the absolute height of subplan root in the task), similarly to
the size-based criteria used for tasks priority assignment in

Figure 20. Algorithm to compute split points.

After u(sc5) execution

— W(sc1.2)
mp| 1=3,/ah=2
(sc
h

-J LU(sc3.2)
=2
|

I(sc5)

cp=1.2,h=3,hh=4,lah=2

H(sc?) H(sch) H(sc2.2)
h=2 h=1 h=1

-

H(sc8.1)
h=1

W(scd) L(sc8.2)
h=1 h=1

Section 6.3. The second scheduling approach is based on Figure 21. Split points of the materialization
task rooted by p(sc5), assuming that & = 2.

a “ready list, which contains the subplans that can be im-

31

After l(sc5) execution K(sc7)

@[ses) | -3(pisc1.2)|® LE=(p, P, P_Pg, Lo=any
@ msen) | [(mise3.2))® Hsc8.1) J(sc4)
LF=any, L=any LE={P P}, L°=any

Figure 22. S-guide with evaluation order. .
Figure 23. Abstract subplan rooted by u(sc7)

annotated with location scope.
mediately evaluated. Initially, the ready list contains all the

leaf nodes of the s-guide. Once a subplan is evaluated, its,imizer can use more fresh (and reliable!) information.
par.en't node in the 3'9“",’6 IS a‘?'d,ed to the ready list. The When annotating the operators of a subplan with location
optimizer makes scheduling decisions only for the subplansscope’ the optimizer replaces everyperator that misses
on this list; to choose the next subplan to be evaluated, they,q jnformation by docate operator. After visiting the en-
optimizer can apply some size-based heuristic on these S“bfire subplan, it checks ifocate operators can be grouped
plans. Although this approach relies on localized decisions, by subtrees. This analysis aims at reducing communication
;ince it ignores the overall task mak_eSPa”z it can improvecosts_ Moreover, the optimizer may decide to start evaluat-
intra-task parallelism and workload distribution. ing another subplan (or other operators of the current sub-
Figure 22 shows the s-guide for the task rooteg (sc5) plan) while it waits for the result of icate operator. Also,
of our running example, along with the collateral plan of if too many operators of a subplan miss the location scope,
p(sc5). Circled numbers indicate the subplans evaluation it js quite likely that the optimizer will face difficulties eval-
order; nonetheless, only the topological order can be ob-yating the subplan, due to the lack of supportive information
served in this example, since this task does not have con<e g, cost parameters and statistics). To solve this problem,
current subplans. either peers may embed supportive informatioridcate

Locating Web services. In AXML documents, Web ser- results, or the optimizer may delegate the entire subplan to

vices requests may be specified with abstract references‘f,’InOther peer. In Flgure 23, we ;how the subplan. rooted by
which need to be converted into some concrete service endy(SC?) ann_otqted_wnh th? location §cope according to the
points in order to generate physical materialization plans.serv_ICeS distribution of Figure 1(b); We assume any peer
The location scope of a plan is an essential input of our op—Can invoke all the requested Web services.

timization problem. It determines a two-dimensional search Generating and ranking physical subplans Having spec-
space, since:i) abstract references may be converted into ified the location scope of an abstract subplan, the optimizer
many alternative addresses of Web service providers; ands able to enumerate and analyze the costs of its physical al-
(i7) peers can collaborate to materialize an AXML docu- ternatives. This is a key phase of our optimization strategy,
ment. Basically, the optimizer can retrieve this information and it mainly concerns reasoning about resource planning
from an internal peer catalog, a catalog server in the net-and invocation scheduling.

work (such as a UDDI server [52]), and from other peers. Algorithms for job scheduling usually rely onsahedul-
The optimizer tries to annotate operators with their respec-ing list [33], which is essentially a sequence of nodes or-
tive execution and delegation scopes, primarily accessingdered by priority. To define the schedule, the first node is
the peer catalog and registered catalog servers. If some opremoved from the list and allocated to some available re-
erators miss this information, then the optimizer can explore source, repeatedly until the list is empty. The scheduling

a dynamic discovery method, using tleeate operator to list can be eithestaticor dynamic according to whether the
gather the missing scopes from neighbors. This enables theptimizer recomputes the priorities of unscheduled nodes
optimizer to perform basicontingency planningThat is, after each allocation. Also, there are several different poli-

the optimizer can try to automatically recover from failing cies to assign priorities to nodes, most of them focused on
in determining the providers of some Web services, by col- the critical path of a plan. Notice that defining an invocation
laborating with other peers. schedule depends on the available resources. Therefore, we
Since P2P systems are highly dynamic, the location consider the optimizer first chooses the peers that are go-
scope of a materialization plan should be preferably pro- ing to participate in the materialization process, and then
vided bylate binding In our optimization strategy, this is attacks the problem of finding a good invocation sequence
done incrementally, for each subplan of a task, in some ar-based on the critical path.
bitrary tree walk. By restricting the location scope to sub- Nevertheless, resource planning is also affected by the
plans, we enable the optimizer to defer retrieving Web ser- order in which physical operators are processed. For exam-
vices addresses until they are really necessary. Hence, thele, if two concurrent operators are assigned to be executed

32

1 | procedureEagerEnumeratior{sp,X)
2 | {Enumerates the search space of the abstract subplan
sp by applying a two-level cost analysis on its top
X partial plans}

[invoke(sc7,<P,.P>) |

"invoke(scS.1,<P1,P1>)|| ||invoke(sc4,<p5,p1>)||

(@) 3 | begin
4 let Phys = {set of physical subplans
5 Generate all the partial subplansspf
6 Rank partial subplans by cost of potential transfers
|| invoke(sc8.1,<P;,P;>) || || O(sc4,<Pg,P,>) || 7 let PP be the set of topX partial subplans afp
8 for each subplap in PP do

b
(®) 9 Generate physical subplansinto Phys

10 | end for

11 Rank subplans oPhys by makespan

[invoke(sc8.1,<P;,P;>)| linvoke(sc4,<P,,P,>)| 12 Let M.s: be the best subplan iRhys
13 Generate an invocation schedule foty.;
© 14 | end

Figure 24. Some alternative physical conver-

sions for the subplan rooted by ju(sc7). Figure 25. Eager enumeration of alternative

physical plans.

at the_same peer, they are probably going to be p_rocessed S$ocation scope of the subplan is determined, the optimizer
guentially. Even if the peer offers the best execution cost for applies a transformation rule that searchesdelegation
eac_h qperator, the overall performance may be worst th,anpoints namely theinvoke operators whose caller is nei-
assigning one of the operators to another peer (and pOSSIbI3fher the master peer nor the caller of the parent node. This

profiting fro'm parallel'executior)). To Fackle t'his problem rule replacesnvoke operators by accordingly. Figure 24
W'thOlIJt having tot pre\élolutshlytdefme_ dan |r1\r/]0cat|o|r(1l scge(:ule, shows some alternative physical convertions for the subplan
we rely on a cost modet that considers the workioad of 0p- ;e byu(sc7). The optimizer uses a cost model to rank
erators assigned tp peers (see Section 7 for_ further deta|ls)these alternative physical subplans by their makespan.
In general, the optimizer performs the following steps: Although exhaustive algorithms are often unfeasible for
1. Generate the search spacepaftial subplans Yvhose complete materialization plans, they may become useful in
nodes are set only with the execution scope; our optimization strategy, since the optimizer deals with
2. For each partial subplan, generate the search space 0§ pplans of reduced size. Furthermore, with our dynamic
physical subplans by setting the delegation scope of approach, the optimizer can use intermediary results to re-

the algebraic operators; and duce error propagation in cost prediction, thereby improv-
3. For each physical subplan, generate the search spacgg the cost analysis of plan operators.
of alternative invocation schedules. Another approach is based on eager enumeratioof

However, we are considering decentralized execution en-the search space, where the optimizer generates alternative
vironments, where an invocation schedule cannot be glob-physical subplans only for the ta¥ partial plans, as shown
ally enforced. Hence, we focus our strategy on resourcein Figure 25. The optimizer relies on a two-levels cost
planning, assuming the optimizer chooses the “best” physi-model. In the first level, only the execution scope of the op-
cal subplan and then determines a good invocation schedul@rators is considered, and the optimizer tries to reduce the
only for this subplan. Observe that, by starting with partial costs of transfering invocation results to the master peer,
plans based only on service providers, the optimizer is ablebased on the set of distinct peers of each partial subplan.
to make use of some heuristias g, the “Context” heuris- This selects subplans involving a few peers, which have a
tic [44]) to prune the search space of physical subplans, asfast link to the master peer. Although clearly suboptimal,
in the eager enumeration approach presented next. this heuristic may be efficient when communication costs
An abstract subplan works as a template for generat-are predominant. Notice that other criteria could be used to
ing alternative physical subplans. A straightforward (and filter partial plans. In the second level, only the t&ppar-
mostly inefficient) approach to produce these subplans con-ial subplans are used to generate physical subplans, which
sists in exhaustively enumerating the search space, such thaire fully analyzed and ranked by their makespan. An eager
the optimizer yields all the possible combinations of loca- approach is interesting when the size of the search space is
tion scope and invocation schedule. To generate a physicatritical even for low values of.
subplan, first the optimizer converts everyoperator into It is worth mentioning that many different algorithms can
aninvoke operator by picking a definite invocation plan for be exploited to produce the search space of physical sub-
the corresponding service call node from 8. Once the plans. Yet, our work rather puts emphasis on breaking the

33

1 | procedureéEvaluatePhysicalSubplafv,oot) Monitor

2 | {Evaluates subplan rooted by,.; operator} performance

3 begin

4 let Children be the set of child nodes of.,.¢ Build operator Invoke target }% Collect | | Check shared

5 for each node.p;,q in Children in order ofs- do inputs Webservice | - |operator result nodes

6 Evaluate Physical Subplan(veniid) v i

7 end for ‘Check intensional}% Update CHERE RS

8| if PC. = P, or O(vren) € {6,0} then enswers p'j”

9 Evaluatevr oot Update AXML Trigger
10 end if document | | collateral cal
11 | end

Figure 26. Algorithm to evaluate subplans. Flgure_27. Steps of evaluating an operator of
a physical subplan.

optimization problem to reduce the search space, based ont lexitv. H h Gimi have t iew th
the structure of materialization plans. Still, most of these 'S complexily. Hence, the oplimizer may have 1o review the

algorithms can perform efficiently with our strategy, since scb flan spllttlntg tc_> aic om dmo.d"?“e the nev;operators. Mor.e—
it enables them to handle smaller problems. OVer, some optimization decisions may become wrong In

the presence of new plan operators, and the optimizer may
Evaluating physical subplans.An important feature of our have to reconsider the chosen location scope and invoca-
strategy is that planning and execution are interleaved dur-tion schedule. Yet, in our strategy such an analysis does not
ing the AXML materialization process. After selecting a ripple to the whole materialization plan. When an operator

physical subplan, the optimizer evaluates its operators inevaluation results in some intensional answer, the changes
a bottom-up traversal, following the specified invocation affect only the subplan that is being evaluated since the rest
schedule, as described in the algorithm of Figure 26. Re-of the plan consists of abstract operators only. This avoids
call that we consider a decentralized execution model whereunnecessary re-optimization.

parts of a plan may be delegated to other peers. Therefore, If the result of an operator evaluation corresponds to

the optimizer actually evaluates only: some shared node, then it has to be properly loaded into the
e local operators namely those whose caller is the mas- cache. To manage keeping these results in the cache, the op-
ter peer; and timizer maintains for each cached plan a countdrasfging
e delegation pointswhich are represented by eitheor referenceswhich represent the non-evaluatedndfetch
© operators. operators of the main plan. Recall these operators stand for

Moreover, although delegated points may be nested in athe replicated nodes of the plan. Initially, each counter is set
subplan €.g, thed operators in Figure 24(b)), we assume with the number of respective replicated nodes. Whenever
the optimizer does not reason about transitive delegation,a replicated node is evaluated, its corresponding counter is
and all of these points are supposed to return their result todecreased. The result of a shared node is kept in the cache
the master peer. Nonetheless, it is worth mentioning thatwhile its counter is not zeroed. Some additional checking
this restriction does not prevent peers from deciding to del- may also be applied to an operator result; for example, the
egate parts of a subplan coming from another peer. optimizer may want to validate the result against some ex-

Evaluating a plan operator involves the steps shown in pected datatypes before updating the materialization plan
Figure 27. Basically, the optimizer builds the required in- and AXML document.
puts, invokes the corresponding service call, gathers the During an operator evaluation, the optimizer monitors
result, and updates both the materialization plan and thethe performance of both service invocation and result trans-
AXML document accordingly. Also, the optimizer has to fer. It may ask for subplan re-optimization in case the per-
check on the result to verify whether or not it contains in- formance significantly surpasses the expected costs. Alter-
tensional answers. If it is the case, the optimizer must up- natively, the optimizer may exploit some rescheduling tech-
date the subplan with the new service call nodes. To sim-nique, similarly to query scrambling [53], to hide evaluation
plify the plan update, the optimizer can emplpipe op- delays. Furthermore, if some error situation arises, the opti-
erators based on the techniques presented in Section 4.4 fanizer may resubmit an operator for evaluation (considering
pipelined graphs. Namely, the optimizer generates an initialthe user allows it). For example, an operator re-evaluation
abstract plan for the intensional answer, and inserts eachmay occur due to service execution error, communication
task found in the answer into the current subplan by con-timeout, or insufficient/incorrect result (w.r.t. some prede-
necting the new task roots as children gfipe operator. fined criteria, such as expected datatypes).

Notice that an intensional answer may significantly = Once an operator is successfully evaluated, the opti-
change the subplan, specially its height and consequentlymizer must check if it has a collateral call to be triggered.

34

Nonetheless, this is done only for local operators, since weboth the execution and the delegation scope of a collabora-
assume that delegating subplans includes processing theition operator may differ from those of its service call node.
collateral calls remotely. By default, the caller of a collaboration operator is always
the master peer of its subplan, since we consider the master
peer cannot enforce transitive delegatiae.(the delega-

tion scope is empty). That is, we assume:

Foreseeing intensional answersAn advantage of our op-

timization strategy is that intensional answers affect only
the current subplan evaluation. However, we consider that
the optimizer reacts to intensional answers just when they LS, ={Pn}, if op€ {5, 0,locate}. (11)

occur. Namely, it does not try to forese_ze _Whether_ a Web are we denoted the delegation scd@ of an operator
service may return AXML data, using this information for ,, simijarly to the notation used for service call nodes, as
performance prediction. An alternative for the optimizer defined in Section 5.

to encompass intensional answers in the physical subplans Going further
enumeration is to look at the expected result type of the re-specific Web se'rvices which are provided by AXML-

quired Web services, as proposed in [3]. , enabled peers. Therefore, their execution scope is mostly
Our strategy can be extended to support this feature byjetermined by the peers i. A particular case is that of
exploiting the idea of enabling condition behind collateral § operators, which is used mostly to reduce data transfer
calls. That is, likewise a collateral call, an intensional an- . sts The executor of & operator is chosen essencially
swer represents service call nodes that have to be invokeq,,, the delegation scope of its service call node, assum-

after their origin call. Thus, the optimizer may insert SOme g the corresponding peers support collaboration. Namely,
“special collateral calls” into the materialization plan to rep- givené(v, I P,), we have that:

resent intensional answers. An additional enabling condi-

tion must be specified for these special calls, to guarantee P{ =Pn and Pf=P7 (12)

that they are going to be triggered only if they are actually whereP¢ € (LS N N).

returned as the evaluation result of their origin node. Notice ~ For © andlocate operators, there is seldom a direct re-
this may significantly inflate in advance the size of a materi- lationship between the execution scope of the collaboration
alization plan. Although our dynamic optimization strategy operator and its service call node. Thus, the execution scope
is quite adequate for large plans, handling intensional an-is usually arbitrarily chosen by the master peer based on
swersa priori is rather a complex subject, and we leave a some QoS metrics. For instance, the optimizer may use

collaboration operators request P2P-

deeper analysis of this issue as future work. SLA (Service-Level Agreement) specifications of the P2P-
collaboration Web services to prune target candidates, sim-
6.5 Delegating AXML Optimization ilarly to the approach proposed in [35]. Target selection can

be either:statig, if it is based on existing statistics and costs;
The algebra proposed in Section 6.2 contains some op-or dynamig when the optimizer polls specialized servers on
erators specially tailored for P2P collaboration. They repre- the network for fresh information on target candidates. Dy-
sent different collaboration possibilities to process service namic selection may become necessary in scenarios such as
calls of an AXML document, namely of delegating: plan ad-hoc P2P systems. Nevertheless, it is usually quite ex-
optimization @); plan evaluationd); and Web service lo- pensive due to the communication costs of its required con-
cation (ocate). These collaboration operators are executed trol flows, and it must be carefully explorede(, mostly in
remotely by their target peers, and their results are prop-case of missing or highly-outdated statistics). Although our
erly merged into the materialization plan by the master peer.optimization strategy can support both static and dynamic
Hrom the perspective of the master pe#Y, |, evaluating target selection, for simplicity we considered only the static
these operators involves three basic phases: approach. Namely, we assuni®, always chooses targets
1. Target selectionthat is whenP,, identifies possible ~ from V.
collaborators, and selects a target peer among them to Since a materialization subplan may contain several col-
handle the subplan rooted by the delegated operator; laboration operators, the optimizer can decide to set target
2. Collaboration contractingwhen P,, builds the dele- ~ P€€rs either for the entire subplan or just b(_afore evaluatlng
gated subplan (including all the necessary input data),eaCh operator. Furthermore, target selection may require
and sends it to the chosen target peer: and some P2P negotiation to ensure the chosen peer is available

3. Result deliverywhen the target peer sends the result (and willing!) to receive and process the delegated subplan.
' of the delegated subplan back/, This additional step consists basically in contacting the tar-

-))) get peer to confirm its participation.
Next we discuss issues involved in each of these phases.
)) o Collaboration contracting. Once a target peer is chosen,
Selecting target peersThis phase focuses on providing an - the master peer has to properly build the delegated subplan.
execution scope for the collaboration operator. Observe thatrp 4t is the optimizer has to produce a subplan containing:

35

e the collaboration operator, along with all its (active) e the operators related to persistent service call nodes;
descendant nodes in the materialization plan; and

o the data elements that should be passed as input of ser- ® all the collateral calls triggered in the subplan.
vice call nodes. To retrieve these elements, the opti- Recall that persistent nodes are essentially first-level ser-
mizer may have to evaluate XPath expressions for non-vice calls and shared dependencies. Also, notice that al-
concrete parameters; and though temporary results are not required in the result of a

« the collateral calls, along with their dependencies (if delegated subplan, we consider the results of their collateral
any). calls are sent back to the master peer.

We assume all local nodes are evaluated before sending &lorizontal plan partitioning. The Split algorithm breaks
delegated subplan. That is, only their results are embeddednaterialization tasks in depth, to attack the optimization
into the subplan. Furthermore, since usually there is a mis-problem incrementally. However, if some plan operator has
match between a materialization plan and the AXML tree of too many children, such a technique is not effective. To
its service call nodes, a delegated subplan follows the planovercome this drawback, the optimizer may also partition a
structure shown in Figure 17. Such a structure organizes thematerialization subplan horizontally by inserting some col-
plan into three areas, and it aims at avoiding unnecessaryaboration operators. In particular, tkeoperator enables
node replication. This is very important to reduce commu- the master peer to descentralize the optimization of a plan.
nication costs. Inserting © operators in a subplan is similar to proce-
Also, some sideways information can be passed embeddure used to update a dependency graph witle nodes.
ded into a delegated subplan. For example, to avoid dele-The operators that are going to be remotely evaluated are
gated subplans to be endlessly forwarded, we assimopsa ~~ connected as children of tite operator.
countergoes along on each subplan. In this case, a hop rep- To decide when horizontally partition a subplan, the opti-
resents each time a subplan (or a part of it) is delegated tamizer can either use the resulting complexity of the subplan
another peer. This information is related to thedegation ~ Or some fixed horizontal splitting parametey. Futher-
trace of a subplan, which indicates all the peers that have more, instead of asking a target peer to return only one phys-
ever processed it. ical plan as the result of @ operator, the master peer may
Before sending a delegation subplan to its target peer,consider getting a set of alternative solutions. Peers may
the optimizer has to serialize it (in the AXML format) and also agree in setting a limit for the maximum number of in-
marshal the resulting AXML data into a SOAP envelope. A spected alternatives for a delegated subplan, thus limiting
serialized subplan contains both a header and a body secthe expected optimization time.
tion. The subplan header keeps general properties of the
subplan, such as its delegation trace and some optimizatiory Cost Analysis of AXML Materialization
hints .9, previously estimated plan costs), whereas the
body encodes the plan operators and their input data. On Ajthough heuristics are very usefull when dealing with
the target peer side, a subplan has to be unmarshaled angdympjex optimization problems, in order to compare the
parsed before resuming the materialization process. Notic&,erformance of alternative materialization subplans, the op-
these operations incur processing costs which the optimizetjmi e requires objective metrics. In this Section, we
has to co_nsudgrwher_l analyzing materialization alternatlves,present a set cost formula to model the performance of
as described in Section 7. AXML materialization. The proposed cost model consid-

Result Delivery. When the master peer receives the re- €rs relevant aspects, such as:

sult of a delegated subplan, it has to parse the serialized e heterogeneous machines and communication links;
SOAP response, insert the embedded service results into the o equivalent Web services;

AXML document (|.1c necessary), and 'update the material- subplans delegation;

ization plan accordingly. The materialized contents that are o parallel execution:

embedded into the result of a subplan consists of a forest of)) ’)

nodes. The master peer useadin” parameter to identify e invocation dependencies and collateral calls; and

the respective service calls in the AXML document. e processing workload of peers.

While the locate operator aims at retrieving only sup- As we discussed in Section 5.4, the performance of al-
portive information for the delegated subplan, bétand ternative physical plans is represented by their makespan.
O operators may involve some AXML materialization. In This metric represents the clock-time spent from the start of
case the result contains materialized contents, it is basicallythe materialization process to the moment when the master
composed by the results of: peer gathers into the AXML document the results of all its
embedded service call nodes. Intuitively, the makespan is

¢ the children nodes of the collaboration operator;

36

determined by accounting the costs of Web services invocadlenght ofgp, that is the number of service executions wait-

tions/executions, and of communication messages betweeling in gp.

peers. To estimate the makespan of an entire plan, these The proposed cost model is sensitive only itder-

costs must be properly combined according to the plan op-operator parallelism such that a single service execution

erators and their inter-relationships. cannot be split among peers. Also, service executions are
On the other hand, the optimization strategy of XCraft non-preemptivenamely they cannot be interrupted to be

is based on dynamic and incremental plan generation. Theresumed by another peer. We denoteAflj(v, P) the av-

optimizer has to analyze plans that contain abstract oper-erage execution time of the service call nadat peerpP.

ators. To cope with this incremental approach, in XCraft The terms:allSize(v) andresSize(v) represent the size in

we adopt anulti-leveled cost analysisased on three dis- bytes of the input and output parameters pfespectively.

tinct cost models. In the first level, the optimizer estimates ~ We expect peers interconnected through heterogeneous

the costs of a materialization plan in terms of its complex- links. Therefore, the costs of transferidg bytes of data

ity (i.e., the size of its search space). For this purpose, wefrom peerP; to P; costs is:

use the complexity bounds determined in Section 5.4. This net(X, P;, P;) = 7 (13)
enables the optimizer to avoid processing plans with too ex- B(F;, P;)
pensive analysis. whereB(P;, P;) denotes the bandwidth of the link frof)

With the second-level cost model, the optimizer can limit to P;. Notice thatB(P;, P;) may be diffent fromB(P;, ;).
the plans analysis by using some heuristic criteria. In par- Itis worth mentioning that both the input parameters and the
ticular, we assume it estimates costs for partial plans. Inresult of a service call may involve large data transfers. For
this case, the optimizer considers only the execution scopeexample, in Figure 2(a), the input parameter of the sl
of plan operators. The idea is to emphasize the proximity iS expected to be a PDF file with possibly a few Mega bytes,
(in terms of communication costs) of peers that are candi-though its result is only an excerpt of the input.
dates to execute the requested Web services, with respect
to the master peer. This way, the optimizer can rank par-7.2 Heuristic Cost Analysis
tial plans before generating their physical alternatives. Fi-
nally, the third-level cost model consists of a comprehensive This cost analysis points out materialization plans in-
response-time analysis of plan operators. volving fewer peers, as well as peers that are close (in
We describe in Section 7.1 basic cost ingredients. Theterms of communication costs) to the master peer. It is
overall formula used in the second-level cost analysis is pre-worth noting this heuristic selection tends to stretch out
sented in Section 7.2, while Section 7.3 details the mainthe makespace of the resulting physical plans. This hap-

components of the third-level cost model. pens because communication costs are more weighted, and
parallel executions may be ignored. Nonetheless, in very
7.1 Representing Heterogenous Scenarios large search spaces or in scenarios with high communica-

tion costs, this preliminary cost analysis can be helpfull.
Let be the set of distinct peers involved in a materializa-

Traditional cost models usually take into account very tion planM. The heuristic cost aM is:

detailed information on the machines, such as 1/0 and CPU
operations costs. Since P2P systems are quite heteroge- VP; € DPpm

neous and with autonomous peers, gathering this informa- fcost(M) = Y. net(ARS,P,,P) , (14)
tion is seldom possible. In [44], we modeled the basic costs

of invoking a Web service by focusing on the response time where

of its major operations. According to [44], costs are com- o DP,, is the set of distinct peers in the execution scope

puted from the client viewpoint. The response time of a of M;
service callv is denoted byecost(v, P;, P;), whereP; is _
client peer and?; is the executor of. e P, is the master peer o¥1; and

We consider that costs are given in time units and that
peers may have different performance capabilities (CPU
clock, RAM memory, etc.). For simplicity, we assume they
are sequential machines, namely they can execute only onéotice that usually the heuristic costs of an entire plan can
service call at a time and requested service executions havée quickly estimated.
to join a queue at each peer. Téeecution queuef a peer This heuristic cost model is used to rank plans previously
Pis an ordered list of service executions denoted pyWe to a detailed analysis. For instance, the optimizer may apply
assume execution queues are infinite and work on a “firstthis analysis first, and then calculate detailed costs only for
arrived, first served” basis. The terfpp| represents the n best alternative plans.

e ARS is a constant for the average result size of service
calls in M.

37

7.3 Costs of Plan Operators for the sake of avoiding data transfers. In this context, peers
may be overloaded with service assignments. Thus, for fair
Given a materialization plap, the cost of an operator costs ranking, the optimizer has to consider performance

op € M is estimated as: penalties from peers workload. When estimating the costs
of a plan operatoop, we define the energy factor of a peer
cost(op) = ccost(op) + dcost(op) P.in DP' as:
(3 op .
Vopee; Op < Opce B
1 N 0gop,
+ >, costlope) , (15) S (P) = G i T . (20)
where: > ET (opj, Pi)
e the termccost(op) is the client-side cost, as provided where Bogop is the BogoMips [58] speed df;. The en-
in [44]; ergy factor can be used to add some extra response time for
e the termdcost(op) is the cost of the dependencies of service executions a®;, which are due to its performance
op; and penalties. Another (simpler and more imprecise) way to

estimate this factor would be computing the inverse of the

e op.c indicates collateral calls. :
) : number of plan operators assigned to the peers.
Remember plan operators correspond to service call invoca-

tions, thus the cost analysis is uniform for different operator Delegation costs. Delegating a subplan encompasses the
types. Therefore, the overall cost of a materialization plan costs of: {) sending the plan along with its input data)(

M can be calculated recursively as: evaluating the plan at the remote pegf)(returning the
Vr; € ROOTm plan along with its persistent results back to the master; and
overall_cost(M) = Z cost(r;) | (16) (iv) updating the AXML document. This means th_e costs
of § operators can be computed by Equation 15, with small
whereROOT), is the set of root operators @#. changes in the estimation of input and result sizes. In par-

ion d denci . h . ticular, the input size must take into account the results of
Invocathn ependencies. Sl_nce peers have processing yependencies that were previously evaluated.
gueues, if two service executions are mapped the same peer,

they run sequentially. Thus, to properly estimate the costs .
of invocation dependencies, it is necessary to consider the8 XCraft Architecture
processing workload of peers. We restrict this analysis to

the children of each operator in a materialization plan. We present a service-oriented optimizer architecture

Given a plan operatasp, we take the seD P, of dis- called XCraft, which enables dynamic and decentralized
tinct peers involved in the evaluation of its dependencies. materialization of AXML documents, and supports the pro-
Notice DP;, does not concern the location scopeopt posed optimization strategy. XCraft works in a multi-thread
Then, for each peeP; in DP,,, we calculate its total pro- fashion, as a facade component of the ActiveXML peer; it

cessing load as: interacts with the AXML document repository, the services

Vop; € Children(op,Py) and statistics catalogs, and the Service Call Handler.

total load(P;) = Z cost(op;) , (17) Main XCraft modules. Figure 28 shows the main mod-

ules of the XCraft optimizer, which conducts AXML ma-

whereChildren(op, P;) is the set of invocation dependen- terialization as follows. When the contents of an AXML
cies ofop that are executed by;. From this result, we can document are requested, its master peer starts a new op-

estimate the cost of the dependencies of the opesatas: timization task at XCraft. Th&raph Extractoranalyzes
VP; € DP], the service calls embedded into the document and produces
deost(op) = mazx — (totalload(P;)) . (18) it dependency graph (or retrieves it, if it is already avail-

able). This graph is used by théstract Plan Builderto
extract the corresponding MFST and to yield an initial ab-
stract plan. Th&lanner, a central XCraft module, takes the
initial plan, breaks it into materialization tasks and calcu-
deost(op) = Z cost(op;) , (19) lates their priority.

Materialization tasks are processed such that each task
is split into subplans, and each subplan is optimized and
completely evaluated before optimization is resumed. First,
Peer energy factor. For P2P systems with low bandwith the Planner asks th8ervice Locatorto identify both the
rates, the optimizer may tend to sacrifice parallel executionexecution and the delegation scope of the current subplan.

It is worth noting that if operators run in blocking mode,
then we have:
VYop; € Children(op)

where Children(op) is the set of all the dependencies of
op. In this case, parallel executions are disregarded.

38

;7 m neighbor AntiveX ML ,OE'EF’\\
| = reguest il i
: 2 ccenl % repository 9 = !
\ [Opfimization Collaboration i
| Tasks Factory e Service |
i AXML document tasks pool i
i Graph Extractor = = collaboration i
s P o |
f i %
| ek el eaaet External Handler = ||
i initial abstract i
| plan i
|| Abstract Plan Planner Performance i
Builder Monitor |
i annotated $ tdelegated i
i subplan ;o lan ||i
| | Service Locator | | Cost Analyzer | Supaian | 12N Evaluator
| = o % XCraft]!

AL docurments Service Call

e S — e e T . e
services metadata &
L catalog statistics catalog repositony Handler 2

Figure 28. System architecture of the XCraft optimizer.

According to the plan generation strategy, the Planner rovesConfigurable optimizer profiles. There are many variables
the search space of alternative physical plans; it uses thdo be considered by the XCraft optimizer when materializ-
Plan Scheduleto determine- by applying some schedul- ing an AXML document, such as:

ing heuristic. The Planner asks tl®st Analyzertto es- o the subplans depth used by the splitting algorithm;
timate the makespan of physical subplans, registering the

subplan with the best makespan during the search. Then, it * the scheduling heuristic;

sends the overall best subplan to Bian Evaluator which e if re-optimization is allowed;
executes it and returns the results, possibly along with in- o if peer can forward delegated subplans to other partic-
tensional answers. ipants; and

As the evaluation proceeds, service call results are gath- © the heuristic used to generate the search space of alter-
ered and merged into the AXML document. Furthermore, native physical subplans.

the Performance Monitorwatches over operators evalua- To handle all these options, XCraft uses the notiomof

tion, and it can trigger subplan re-optimization if neces- timizer profile that is a set of properties that control the
sary. Both the Planner and the Plan Evaluator may also geboptimizer behavior. The profile is loaded at launch time,
plans coming from th&xternal Handley which processes but it can be updated during the peer life cycle. It provides

requests from other peers. These requests are received bifexibility to adapt to different application requirements.

the Collaboration Servicewhich implements the interface) o . d -
of the basic Web services for P2P collaboration. Eor col- Basic optimization servicesCost parameters and statistics

laboration requests, evaluation results are sent back to thé&'® prowﬁed by_lsglme basic optimization serwcelsr,] Wh'ﬁh
origin peer in the Collaboration Service reply. are usually available at any ActiveXML peer. Although
the optimizer may collect some missing costs and statis-

For simplicity, we omitted in Figure 28 two modules of tics at runtime, much of the supportive information that is
the XCraft architecture: th@lan Cache where the opti- required during the optimization process must be gathered
mizer keeps shared plans and their results; andope- in advance. Furthermore, plan operators suckamnd
mizer Profile Loaderwhich sets relevant properties to con- are implemented as basic Web services for collaboration,
figure the behavior of the XCraft internal modulesy, the thus enabling peers to exchange evaluation plans encoded
heuristic to be used by the Plan Scheduler). as AXML data.

39

<serviceDefinition type="query" <?xml version="1.0" encoding="UTF-8"?>

axml:docName="UnionService" <serviceDefinition type="query"
xmins:axml="http://www.activexml.net/AXML"> axml:docName="JoinService"
<parameters> xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
<param name="_documentin"/> xmins:axml="http://www.activexml.net/AXML">
</parameters> <parameters>
<definition> <param name="_documentIn"/>
<query> <I|[CDATA[</parameters>
{select el <definition>
from el in SigmodRecord//articlesTuple} <query> <I|[CDATA[
union select el
{select e2 from el in SigmodRecord//articlesTuple,
from e2 in {_documentin}/articlesTuple}; e2 in {_documentin}/articlesTuple
1> </query> where el/title/text() = e2/title/text();
</definition> II> </query>
</serviceDefinition> </definition>

</serviceDefinition>
Figure 29. Declarative Web service with union

operation. Figure 30. Declarative Web service with join
operation.
Peer O.S. BogoMips RAM

9 Experimental Results Master | Debian GNU/Linux| 2957.31 | 512Mbytes

Laptopl | MS Windows“XP | 1718.18 | 512Mbytes

We have implemented and tested the proposed optimiza-| Laptop2 Linux SuséM 1198,77 | 512Mbytes
tion strategy in the ActiveXML system [13]. We extended
the ActiveXML peer (version 4-Beta) with the XCraft opti- Figure 31. Hardware of deployed ActiveXML

mizer components presented in Section 8. We used the Java peers.
language and open-source software, such as Apache Tom-
cat 4.1.29, JDK 1.4.2, and Axis 1.1. To compute spanning

gge)ﬁtsﬁr\r/]v?slﬁed a Java implementation of the Prim-Jarnik al_sponds to the number of trees in the MFST of the AXML

In our tests, we deployed three ActiveXML peers ex- document. Basically, in the experiments we used AXML

) - : documents that contain sequencesg.(batch pipelined
tend_ed with the X_Craft optimizer and some basic collab- tasks) and parallel splits patterns from grid workflows [54].
oration Web services. At each peer, we also deployed

. . ! . We performed two basic analysis. First, we identified as-
two declarative Web services, which perform respectively : o
) o . . pects that have relevant impact on the materialization com-
a union and a join operation on documents derived from the

ACM SIGMOD Record articles database [48]. The speci- plex!ty te, the_ num_be_r Of. alter_natl_/e plans). We obse_rve
o ~_. thetime spent in optimization with different plan generation
fications of these declarative services are described in Fig-

ures 29 and 30. They take a single input parameter n(,Jmeda\pproaches, and compare these results with the XCraft dy-
“ documentin” Which is combined (either by a union or hamic strategy. In the second battery of tests, we evaluate

a join operation) with a locally stored file. Notice the the gains achieved by subplan delegation. We focused on
“] P N y . Lo delegation of service invocations, since both optimization
axml:docName” parameter (of the gerviceDefinition” el-

g . . and service location operators are more related to contin-
ement) indicates the name of the declarative service. In the P

ActiveXML plataform, the query of declarative Web ser- gency planning and do not directly reflect performance im-
vices is written with th’e X-00L Ianguage [64] provement. These operators rather improve the adaptivity

. . capabilities of the optimizer.
We used three heterogeneous machines under different It is also worth noting that, in P2P and grid systems,

yvorkloads, as described n Figure 31. P_roc_essmg POWEThe communication costs from transfering data between two
is represented by BogoMips [58]Master indicates the odes that are delegated to the same peer are usually as-
master peer, which is connected through a 512Kbps Internefq 9 P y

link to the other two machinesLaptopl and Laptop2 are

located in a 36Mbps local network. Figure 32 shows these . |

peers connections. T i i .
We generated sets of AXML documents with different ~ |Laptop? Lapftop2
configurations of service call nodes by varying the height local network

and width of the document trees. Recall the height is de- . _ _
termined by invocation dependencies and the width corre- ~ Figure 32. P2P network used in experiments.

40

]
0 1E+0 A 1E+130 % %%
% _— o TEHI17 é Eé
e & 1E+104 | / g%
O 1E+06 2 et - é %%
£ 10000 | 5 ool ? %é %é
: . E
£ s E e é E% E%
= tew9 | 7 g% E% E%

7 B |

1 2 s 4 5 10 Eﬁg 7 Eg %é E; Eg
fanOut § Lt =))) wm

) : 2 3 4 5 10
—¢— partial plans —4— exhaustive fanOut
Figure 33. Impact on the size of the search i s i i
space by varying the fanOut of service calls. e el Rl il b

Figure 34. Search space analysis from vary-

ing both the document height and the i t.
sumed to be zero. Nonetheless, this simplification is not g N 9 fanOu

true for Web services, since they always involve heavy op-

erations for XML handling, as observed in [44]. B33

B3] G —¢—¢
1E+27 1
1E+24 |
1E+21 4
1E+18 1
1E+15 1
1E+12 1

9.1 Devising the Search Space

The time spent on the optimization process is a cru-
cial point when efficiently materializing AXML documents.
Since this represents an NP-complete problem, exahustive
search is usually prohibitive, making the use of heuristics
mandatory. Moreover, in P2P systems, the optimization "™
process itself cannot be time-consuming due to the dynamic 1000 1
behavior of peers. Therefore, an important task of the op- 1 ‘ . ‘ ‘ .

o
=
=
=S
“
=}
1
o
¥
E
5
£

1E+09 4 ! =1 = =] (|

timizer is to analyze the size of the search space of a given 2 3 4 5 6 8
materialization plan. k

The great improvements of hardware performance have —$—exhaustive —E—only D&C
made possible to tackle several complex optimization prob- —#— dynamic with delegation ——dynamic with partial plans

lems. Nonetheless, we observed they are still insufficient

to solve the issues posed by AXML materialization, which ~ Figure 35. Search space reduction in XCraft.

usually involves very large search spaces. To have a more

clear idea of the size of the search space of an AXML docu- materialization process.

ment, we used the complexity formulas presented in Sec- XCraft uses a dynamic optimization strategy to reduce
tion 5.4 to identify its relevant dimensions and estimate the number of inspected plans, yet taking into account rel-
their impact. For instance, in Figure 33 we varied the evant properties such as communication costs. Basically,
fanOuwut of service call nodes for an AXML document with XCraft breaks materialization plans according to a given
heighth = 2 and four first-level service call$.¢., width is parameterk. We can observe in Figure 35 the impact of
|A| = 4), considering three peers. Notice the axis of num- our strategy on the number of inspected alternative plans.
ber of plans is in a logarithmic scale. Results correspondsWe used an AXML document with four first-level service
to the complexity of partial plans with only executors and to calls of height fixed ab = 8. We assumed a very sim-
the complete search space, assuming an exhaustive methogle case, where théanOut of each service call node is
Figure 34 shows the size of the search space by varying boti{hamely, the document contains oBB/service call nodes).
the fanOwut and the document height. The search spaceWe estimated the number of inspected plans with our dy-
grows exponentially with respect to boftunOut and h. namic strategy for different values of ttheparameteri(e.,

In fact, even for small documents, its size is significantly the height of each subplan to be analyzed by the optimizer),
large. In further analysis, we found this exponential behav- considering both the analysis of subplan delegation and
ior stands the same for the number of peers involved in thechoosing only service executors. We also compare these re-

41

1000000 - 6100 -

@ 100000 £ 5100
5 o
.g 10000 E 4100 -
@ c
0 3100 -
; 1000 A g
© 3 4
S i 0 2100
o X i
S @ 1100
1 100 i
1 2 3 4 5 B 2 3 A 5 6
k height
—e—exhaustive —A— dynamic with delegation ——centralized —#—delegated
Figure 36. Simulated optimization time. Figure 37. Performance gains obtained by

subplans delegation.

sults with the exhaustive search strategy, and results of us-
ing the Divide&Conquer heuristic to identify independent 10 Related Work
materialization tasks. Observe that even in this simple case,

the size of the search space prevents adopting the exhaustive

strategy. Our dynamic approach provides XCraft with flex- Materializing AXML documents is quite similar to ex-

ibility to deal with complex AXML scenarios, by allowing ecuting workflqws: embedded service calls are tasks to_be
performed, which are often related to each other, causing

it to scan search spaces with manageable sizes.
he si £ th h h o h some invocation constraints and data flows. These invo-
The size of the search space has a major impact on the..iion constraints correspond to some basic control flow
optimization time. We simulated this time by considering patterns, namely sequence, parallel split, and synchroniza-

the optimizer spends an average (0§ seconds to gen- _ tion [54]. However, AXML materialization always involves
erate and analyze an alternative plan. We came to this

) X N , some data flows towards the peer that is gathering the docu-
value by observing experimental results obtained with small

thoua | ment contents (callechaster peer. Hence, an AXML doc-
AXML documents. Although larger documents tend to re- et can be incrementally composed and consumed, while

quire more time to be generated and analyzed, this average,, s results are seldom meaningful in workflow systems.
metric sets a good performance reference, as shown in Fig- We represent AXML invocation constraints in a formal-

llirg ?S.S\éve considered the same AXML document used injgm hased omirected acyclic graphgDAG), similarly to
igu .

models used for business processes orchestration in work-

flow systems [15, 33, 54]. As in scheduling workflow tasks

9.2 Plan Delegation Effects for grid computing [15, 38, 56], we are interested in deter-
mining an efficient assignment of tasks (Web service exe-
cutions) to distributed resources (peers). However, in grid

While our dynamic strategy produces suboptimal solu- systems usually tasks are assignedsiteswhose infras-
tions, it allows the optimizer to exploit subplans delegation, tructure encapsulates many servers, aiming mainly for load
which usually results in significant performance gains. This palance [15, 27, 42, 56]. Still, planning workflows in dis-
can be noted in Figure 37, where we evaluate the perfor-tributed heterogeneous systems is an NP-complete prob-
mance achieved by delegating materialization subplans coniem [33], which remains a research challenge. Likewise,
taining service call nodes witfanOut = 1, and invocation optimizing AXML materialization is a hard problem, with
results with100Kbytes. We vary the height of nested ser- additional complications from the volatility of a P2P sce-
vice calls in the document. nario.

In this case, the master peer sends the physical sub- Allocating resources and scheduling tasks to efficiently
plans to be evaluated remotely, and receives only serviceexecute workflows is indeed an important issue. Current
results that compose the final document contents. We useglanners [15, 27, 42, 56, 61] are essencially concerned with
AXML documents that correspond to batch pipelined tasks heuristics to schedule tasks and algorithms to improve lo-
(i.e., with at most one dependency). For higher values of cality of required data files. Nonetheless, tailored for grid
fanOut, we expect the performance gains of plan delega- computing, these planners are often based on static analy-
tion tend to be even more expressive. sis [15, 27, 42, 61]. In AXML materialization, besides the

42

performance and membership fluctuations of the system, In XCraft, since we assumed the cost analysis of ma-
the optimizer has to be prepared for occasional changes irterialization subplans is exhaustive, the algorithm used to
the materialization plan due to intensional answers. On thegenerate these subplans is quite sensitive to the choice of
other hand, planners that are based on dynamic strategies dtne height of the planning stepd., thek parameter). To di-
either greedy [56] or opportunistic [38] resources selection. minish this shortcoming, we are currently developing meth-
Since they work with local decisions, they usually cannot ods based on stochastic algorithms and local search, such
explore avoiding unnecessary data transfers. Even wheras the techniques proposed in [63]. The overall idea is to
planners are dynamic or adaptive [27, 38, 42, 56], they incrementally refine an arbitrary initial solution until some
consider either centralized or hierarchical coordination, and condition is satisfiedd.g, some bounded period of time or
rely on re-optimizations to react to changes. performance improvement percentage), while allowing the

Notice that, although decentralization has become a keyoptimizer to ramdomly move in the search space based on
feature in both P2P and grid computing, current systems dosome probability function for plan acceptance. As stated in
not support a decentralized planner. Our results highlight[45], these metaheuristics are usually very suited for search-
promising performance gains achieved by a decentralizeding good solutions using non-monotonic cost functions (as
approach. in AXML materialization).

AXML documents are similar to decision flows [30] There are many interesting paths to pursue the ideas
in the sense that their materializationatribute-centric raised in this paper. We are considering to extend the op-
namely it aims at determining the values of certain data ele-timization strategy to support contingency planning for ser-
ments. Yet, conversely to [30], our strategy is dynamic and vice call failures, that is to generate branching plans taking
enables decentralized evaluation. some or all of the possible alternative evaluations into ac-

Previous work on AXML optimization mostly addressed count, as presented in [23] for Web services composition.
typing control [39], XML query processing [3], and data Also, materialization plans are a very graphical and intu-
and Web services replication [7]. Mechanisms to generateitive representation that can be explored to monitor AXML
alternative strategies for AXML materialization, including materialization, possibly allowing the user to interfere in
basic cost formula for performance prediction, was first pre- the process “on the fly”. Finally, we have observed that
sented in [44]. XCraft is built upon these ideas, and fo- planning and scheduling Web service invocations are quite
cuses on the problem of efficiently producing and evalu- affected by resources availability. Hence, an interesting
ating materialization plans in dynamic P2P systems. Re-research perspective consists in investigating non-intrusive
cently, Abiteboulet. al [9] proposed an algebraic frame- technigques for resources provisioning in P2P systems.
work to generate AXML materialization alternatives, with
emphasis on Web services that can be described by queried cknowledgements. The authors thank CNPq agency for
In XCraft, we consider issues related to handling searchPartially funding this work. Gabriela Ruberg is also sup-

complexity, resources heterogeneity and P2P membershiﬂmrtec’ by the Central Ba_mk of_BraziI. The contents of this
dynamics when generating materialization plans. document express the viewpoint of the authors, and do not

represent the position of either these institutions. We spe-
. cially thank loana Manolescu and Serge Abiteboul for the
11 Conclusions many discussions (and text revisions) on preliminary ver-
sions of this work. We also thank: Nicolaas Ruberg for the
Materializing an AXML document corresponds to a gen- earlier discussions on AXML invocation constraints and on
eral case of finding an efficient assignment of inter-related P2P AXML materialization, and for the first experimental
tasks to heterogeneous machines, which is an extremelyesults of the performance evaluation of AXML material-
hard optimization problem. Nevertheless, this became aization; and Daniela Pereira for implementing the optimizer
current challenge for many information integration systems module that extracts invocation constraints of an AXML
based on Web services, such as P2P systems and grid comtocument. Finally, we thank the Gemo team, at INRIA-
puting. In this paper, we presented an optimization strategyFuturs, for the ActiveXML open-source prototype.
for AXML materialization, which widely explores dynamic
techniques, thus scaling well for decentralized and ad-hoc
systems. We believe this work goes beyond the context of
AXML documents, and contributes to the efficient instan-
tiation of abstract workflows, specially in highly-dynamic [1] S. Abiteboul, B. Alexe, O. Benjelloun, B. Cautis,

References

and heterogeneous systems. Also, with a descentralized ar- I. Fundulaki, T. Milo, and A. Sahuguet. An electronic
chitecture for collaborative optimization, we highlighted an patient record "on steroids”: Distributed, peer-to-peer,
important issue that has been neglected in most of the cur- secure and privacy-conscious. VDB, pages 1273—
rent systems. 1276, 2004.

43

[2] S. Abiteboul, B. Amann, J. Baumgarten, O. Benjel- [16] L. Bouganim, F. Fabret, C. Mohan, and P. Valduriez.

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

loun, F. Dang-Ngoc, and T. Milo. Schema-driven cus-
tomization of Web services (demo). L.DB, 2003.

Dynamic query scheduling in data integration sys-
tems. InICDE, pages 425-434, 2000.

S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, [17] W. B. Bradley and D. P. Maher. The NEMO P2P ser-

T. Milo, and N. Preda. Lazy query evaluation for Ac-
tive XML. In ACM SIGMOD pages 227-238, 2004.

S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo,
and R. Weber. Active XML: A data-centric perspec-
tive on Web services. liVeb Dynamicspages 275—
300, 2004.

S. Abiteboul, O. Benjelloun, and T. Milo. Positive
Active XML. In ACM PODS pages 35-45, 2004.

S. Abiteboul, O. Benjelloun, and T. Milo. The active
xml project: an overview. Gemo Tech. Report 331,
2005.

S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,
and T. Milo. Dynamic XML documents with distribu-
tion and replication. IIACM SIGMOD 2003.

S. Abiteboul, I. Manolescu, and N. Preda. Construct-
ing and querying a peer-to-peer warehouse of XML
resources. lisemantic Web and Databases Workshop
2004.

S. Abiteboul, I. Manolescu, and E. Taropa. A frame-
work for distributed XML data management. In
EDBT, pages 1049-1058, 2006.

S. Abiteboul, B. Nguyen, and G. Ruberuilding an
Active Content Warehousehapter Ill, pages 63-95.
Idea Group Publishing, 2006.

A. V. Aho, J. E. Hopcroft, and J. D. UllmanData
Structures and AlgorithmsAddison-Wesley, 1983.

M. N. Alpdemir, A. Mukherjee, A. Gounaris, N. Pa-
ton, P. Watson, A. Fernandes, and D. Fitzgerald.
OGSA-DQP: A Service for Distributed Querying on
the Grid. INEDBT, LNCS 2992ages 858-861, 2004.

ActiveXML
http://www.activexml.net

home page.

J. Blythe, E. Deelman, and Y. Gil. Automatically com-
posed workflows for grid environmenti=EE Intelli-
gent Systemd.9(4):16-23, 2004.

J. Blythe, S. Jain, E. Deelman, A. Mandal, and
K. Kennedy. Task Scheduling Strategies for
Workflow-based Applications in Grids. IHEEE Int.
Symposium on Cluster Computing and Grid (CC-
Grid), 2005.

44

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

vice orchestration framework. IHICSS 2004.

T. D. Braun, H. J. Siegel, N. Beck, L.dbni, M. Ma-
heswaran, A. I. Reuther, J. P. Robertson, M. D. Theys,
B. Yao, D. A. Hensgen, and R. F. Freund. A com-
parison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed
computing systems. J. Parallel Distrib. Comput.
61(6):810-837, 2001.

M. H. Burstein, J. R. Hobbs, O. Lassila, D. L. Mar-
tin, D. V. McDermott, S. A. Mcllraith, S. Narayanan,
M. Paolucci, T. R. Payne, and K. P. Sycara. DAML-
S: Web service description for the Semantic Web. In
International Semantic Web Conferengmges 348—
363, 2002.

L. Cherkasova, Y. Fu, W. Tang, and A. Vahdat. Mea-
suring and characterizing end-to-end Internet service
performance. IPACM Transactions on Internet Tech-
nology, volume 3, 2003.

W. K.-W. Cheung, J. Liu, K. H. Tsang, and R. K.
Wong. Towards autonomous service composition in
a grid environment. IRCWS pages 550-557, 2004.

R. Cole and G. Graefe. Optimization of dynamic
query evaluation plans. WKCM SIGMOD pages 150—
160, 1994.

L. A. G. da Costa, P. F. Pires, and M. Mattoso. Auto-
matic composition of Web services with contingency
plans. INICWS pages 454-461, 2004.

E. Deelman, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, K. Blackburn, A. Lazzarini, A. Ar-
bree, R. Cavanaugh, and S. Koranda. Mapping Ab-
stract Complex Workflows onto Grid Environments.
J. Grid Comput.1(1):25-39, 2003.

A. Doan and A. Y. Halevy. Efficiently ordering query
plans for data integration. IICDE, pages 393-402,
2002.

F. Ferreira, C. J. P. de Lucena, and D. Schwabe. A
Peer-To-Peer platform based on Semantic Web Ser-
vices. INWWW (Posters003.

A. Gounaris, R. Sakellariou, N. W. Paton, and A. A. A.
Fernandes. Resource scheduling for parallel query
processing on computational Grids. @GRID, pages
396-401, 2004.

[28] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, [41]
A. Deshpande, K. Hildrum, S. Madden, V. Raman, and
M. A. Shah. Adaptive query processing: Technology

in evolution.|IEEE Data Eng. Bull.23(2):7-18, 2000. [42]
[29] L. Huang, D. W. Walker, Y. Huang, and O. F. Rana.
Dynamic Web service selection for workflow optimi- [43]

sation. InAHM, 2005.

[30] R. Hull, F. Llirbat, B. Kumar, G. Zhou, G. Dong, and
J. Su. Optimization techniques for data-intensive de-

cision flows. InICDE, pages 281-292, 2000. [44]

[31] JDSL - the data structures
http://www.cs.brown.edu/cgc/jdsl/

library in Java.

[45]

[32] T.Jim and D. Suciu. Dynamically Distributed Query
Evaluation. INACM PODS pages 413—-424, 2001. 146]
[33] Y.-K. Kwok and I. Ahmad. Static scheduling algo-
rithms for allocating directed task graphs to multipro-
cessorsACM Comput. Sury31(4):406—471, 1999. [47]

[34] L. Liu, C. Pu, and D. D. A. Ruiz. A systematic
approach to flexible specification, composition, and
restructuring of workflow activities. J. Database [48]
Manag, 15(1):1-40, 2004.

[35] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck.
Web Service Level Agreement (WSLA) Language
Specification. IBM Software Group, Tech. Report,

January 2003.

[49]

[50]

[36] B. Medjahed and A. Bouguettaya. A dynamic
foundational architecture for semantic Web services.
Distributed and Parallel Databasesl7(2):179-206,

2005.

[51]

[37] N. C. Mendonga and J. A. F. Silva. An empirical eval-
uation of client-side server selection policies for ac-
cessing replicated Web services.SAG pages 1704—

1708, 2005.

[52]

L. A. Meyer. Estrategias para o Escalonamento Di-
namico de Workflows em Grid. (in Portugues@hD
thesis, COPPE/UFRJ, 2006.

[53]

T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and
F. D. Ngoc. Exchanging intensional XML data. In
ACM SIGMOD pages 289-300, 2003.

[54]

W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. T.
Schlosser, I. Brunkhorst, and Aodker. Super-peer-
based routing and clustering strategies for RDF-based
peer-to-peer networks. IWWW pages 536-543,
2003.

[55]

45

OWL-S: Semantic Markup for Web Services.
http://www.w3.0org/Submission/OWL-S/

Pegasus home

http://pegasus.isi.edu

page.

R. Rajamony and M. Elnozahy. Measuring client-
perceived response times on the WWW.USENIX

Symposium on Internet Technologies and Systems
(USITS) 2003.

N. Ruberg, G. Ruberg, and |I. Manolescu. Towards
cost-based optimization for data-intensive Web ser-
vice computations. I8BB0 pages 283-297, 2004.

S. Russell and P. Norvig Artificial Intelligence: A
Modern Approach (2nd Edition)Prentice Hall, 2003.

R. Sakellariou and H. Zhao. A hybrid heuristic for
DAG scheduling on heterogeneous systeni2DPS
2(2):111b, 2004.

R. Sakellariou and H. Zhao. A low-cost rescheduling
policy for efficient mapping of workflows on grid sys-
tems. Scientific Programmingl2(4):253—-262, 2004.

ACM SIGMOD Record articles database. Available at
http://acm.org/sigmod/record/xml/.

Simple Object Access Protocol
http://www.w3.0rg/TR/SOAP

(SOAP) 1.1.

D. Suciu. Distributed query evaluation on semistruc-
tured data. ACM Trans. Database Sys27(1):1-62,
2002.

C. Team. DAGMan (Directed Acyclic
Graph Manager) meta-scheduler for con-
dor. University of Wisconsin-Madison.

http://www.cs.wisc.edu/condor/dagman/

Universal Description,
gration of Business
http://www.uddi.org

Discovery, and Inte-
for the Web (UDDI).

T. Urhan, M. J. Franklin, and L. Amsaleg. Cost based
query scrambling for initial delays. I8IGMOD Con-
ference pages 130-141, 1998.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow patteriss-
tributed and Parallel Database44(1):5-51, 2003.

P. K. Vargas, I. de Castro Dutra, and C. Geyer. Appli-
cation partitioning and hierarchical application man-
agement in grid environments. Tech. Report ES-
657/04, COPPE/UFRJ, 2004.

[56] P. K. Vargas, |. de Castro Dutra, V. Nascimento,
L. Santos, L. Silva, C. Geyer, and B. Schulze. Hi-
erarchical submission in a grid environmentM&GC,
pages 1-6, 2005.

[57] K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, and
Z.Wu. The METEOR-S approach for configuring and
executing dynamic Web processes. LSDIS Tech. Re-
port, University of Georgia, June 2005.

[58] D. W. The quintessential Linux benchmark: All about
the BogoMips number displayed when Linux boots.
Linux Journal 21, 1996.

[59] The World Wide Web Consortium.
http://lwww.w3.org/

[60] The Web Services Activity Report.
http://www.w3.0rg/2002/ws

[61] M. Wieczorek, R. Prodan, and T. Fahringer. Schedul-
ing of scientific workflows in the ASKALON grid en-
vironment.SIGMOD Record34(3):56—62, 2005.

[62] Web Services Definition Language (WSDL).
http://iwww.w3.org/TR/wsdl

[63] M.-Y.Wu, W. Shu, and J. Gu. Efficient local search for
DAG scheduling.lEEE Trans. Parallel Distrib. Syst.
12(6):617-627, 2001.

[64] X-OQL homepage. Available at
http://activexml.net/xoql/.

[65] XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath

[66] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware middle-
ware for Web services compositiolEEE Trans. Soft-
ware Eng, 30(5):311-327, 2004.

46

