
TECHNICAL REPORT
RT − ES 719/08

Info Cases: Integrating Use Cases
and Domain Models

Michel Heluey Fortuna
(michel.fortuna@ufjf.edu.br)

Cláudia Maria Lima Werner
(werner@cos.ufrj.br)

Marcos Roberto da Silva Borges
(borges@nce.ufrj.br)

Programa de Engenharia de Sistemas e Computação

COPPE / UFRJ

Rio de Janeiro, June 2008

mailto:michel.fortuna@ufjf.edu.br
mailto:werner@cos.ufrj.br
mailto:borges@nce.ufrj.br

Info Cases: Integrating Use Cases and Domain Models ES-719/08

Info Cases: Integrating Use Cases and
Domain Models

 There is evidence of a gap between use case modeling and domain modeling in

the development of a system, particularly during the system requirements definition

phase. For example, the level of automation achieved in proposals to generate the

domain model from use cases, or to verify the consistency between them, is low or

depends on the interpretation of the modeler. Moreover, it has already been seen that

different modelers, working independently, produce very different domain models based

on use cases of the same system. This report analyzes this problem and proposes a

specialization of the use case model to serve as an integrated requirements model from

which a domain model can be derived. Semi-formal rules are presented to demonstrate

this capacity, as well as results of studies carried out to assess the proposed model.

1 Introduction

 In system requirements modeling, it is commonly recommended that the use case

model (UCM) and the domain model1 (DM) be used together. However, there is evidence

of a gap between use case modeling and domain modeling in the development of a

system. For example, proposals to generate the DM from the UCM [1] [11] [15], or to

verify the consistency between them [5] [8], have a low level of automation or else use

some form of linguistic analysis, which is known to be incapable of achieving conclusive

results. In other words, much depends on the interpretation of the modeler. Further

evidence of this gap is the fact that different modelers, working independently, produce

very different DMs based on use cases (UCs) of the same system [16]. In particular,

difficulties have been observed in identifying concepts of the system domain, in assigning

responsibilities to them, and in deciding upon appropriate levels of abstraction.

 This report aims to propose a solution to these problems. It begins by pointing out

three obstacles to the integration of the models (section 2), then goes on to discuss a way

of overcoming them (section 3). Based on this, it presents a proposal for a solution

(sections 4 and 5) and studies carried out to assess its effectiveness (section 6). Finally,

the report discusses related works (section 7) and gives suggestions for further research

(section 8).

1 The domain layer of software objects [9]

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
2

Info Cases: Integrating Use Cases and Domain Models ES-719/08

2 Obstacles to the integration of the models

 There are three main obstacles to a greater integration of UCM and DM.

 Obstacle 1: Use cases (UCs) do not have formal links with the DM.

UCs lack formal elements from which it is possible to obtain, safely and decisively, a

single DM, even a preliminary one. The information relevant to the determination of the

DM, when it exists, remains “hidden” in the descriptions in natural language of UCs.

During the elaboration of UCs, there is no specific concern with the capture and

specification of formally identifiable elements that can determine a DM or facilitate the

verification of consistency between the models. Consequently, much of the attainment of

the DM depends on the interpretation of the modeler. This takes us on to the second

obstacle.

 Obstacle 2: The modeler’s knowledge about the domain is insufficient.

 In general, modelers have relatively little knowledge about the system domain. Their

contact with the domain is often limited to a short period of time when they take part in the

system specification.

 Obstacle 3: The usual criterion for elicitation of UCs is subjective.

 The criterion generally recommended for this is that every UC should have value for

at least one stakeholder [7] [2] [13]. Unfortunately, this is a very subjective criterion [14],

and is partly responsible for the modelers’ difficulty in maintaining suitable levels of

abstraction in modeling with UCs.

 In principle, the validation of the DM by the stakeholders could be a guarantee

against any flaws in it. However, due to the difficulty that, in general, stakeholders have in

working with DMs [10], it is very likely that they are induced to “accept” the abstractions

that the modeler has put there, in detriment to other more effective ones that could come

about if they were to participate more fully in the elicitation and representation of the

abstractions.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
3

Info Cases: Integrating Use Cases and Domain Models ES-719/08

3 The road to integration

 The first two obstacles mentioned in the previous section suggest a course to steer

towards integration: the capture, while modeling with use cases and with the direct

participation of stakeholders, of formally identifiable elements from which a view of the DM

can be derived automatically. That is, the solution must be an integrated model of

requirements, rather than the usual approach of a collection of models [5]. Whereas in the

collection of models approach each model focuses on one dimension of modeling

(behavior, state, structure, etc.) and is treated (created, maintained and used) separately,

an integrated model captures several different dimensions in one single conceptual

framework from which it is possible to generate views, each view corresponding to one of

the modeling dimensions.

 Although working with an integrated model may be more complex than using

separately each model that it integrates, just the elimination of the problem of consistency

between models can represent a very favourable compensation, especially in the system

requirements phase, when it is recommended that both models – use cases and domain –

be used together to complement each other [5] [8].

 To capture the elements for the derivation of the DM, the solution proposed in this

report (section 4) uses a device that is little used in use case modeling: the flows of

information exchanged between the actors and the system in each UC (UCs’ informational

interface). Since these flows represent the communication between the system and its

actors, it is reasonable to expect that the domain abstractions, useful for this

communication, are some way represented in these flows. So, if these flows are specified

with a minimum of formal rigorousness (e.g. formal syntax, informal semantics), they will

reflect these abstractions through their content and structure. Collaborating with the

modeler in the specification of these flows, the stakeholders are directly involved in the

elicitation of the DM, without going outside the conceptual framework of use case

modeling.

 Each possible way of partitioning the system in UCs produces a different set of

information flows representing the communication between the system and its actors.

Therefore, we must choose some partitioning. Two questions immediately arise: 1) what

partitioning? and 2) how can we capture and identify, in the flows, the pertinent elements

for the construction of the DM?

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
4

Info Cases: Integrating Use Cases and Domain Models ES-719/08

 An answer to the first question can be obtained through a more precise

interpretation of the criterion that every UC should have value for at least one stakeholder,

normally used to elicit UCs. Such interpretation can be as follows. A UC has value for a

stakeholder when it aids the achievement of one of his goals. In turn, achieving a goal

means causing a change of state in the system and/or in its environment. The state of the

system at the moment when the goal is achieved must be a steady state, that is,

consistent with the state of the environment in which the system is inserted, and therefore

free of any need for rollback to a previous state, even if no other UC be activated

subsequently.

 It is interesting to note that the requirement that every UC should leave the system in

a steady state affects the partitioning of the system into UCs, and that the modeler must

judge the steadiness of a state based on his knowledge of the system domain. To

demonstrate this, consider a point-of-sale system in a supermarket. In it, the registering

and payment of a purchase must form part of the same UC, since if a purchase is

registered and not paid for, it will be necessary to return the system to its state previous to

registering the purchase (and the products to the supermarket shelves). On the other

hand, in a restaurant management system, registering a customer’s order and its payment

must constitute different UCs, since once the order has been made (and the meal eaten),

even if it is not paid for, the record of the order must be kept in the system (because the

dishes and the drinks were effectively consumed).

 Thus, the partitioning of the system into UCs must be such that the execution of

each UC leads to the achievement of some stakeholder’s goal and leaves the system in a

steady state. This partitioning criterion defines a level of abstraction for the elicitation of

UCs which we call Informational Level of Objectives (ILO).

 An answer to the second question above is given in the next two sections.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
5

Info Cases: Integrating Use Cases and Domain Models ES-719/08

4 Info Cases

 In this section we introduce the concept of info case. An info case (IC) is a UC of the

ILO, with its informational interface specified in a formalism capable of capturing elements

of the DM view of the integrated model, and of permitting the formal identification of these

elements. Such a formalism was proposed in [3] [4]. It has two parts:

1) A specification of the composition of the flows, and

2) A dictionary of elementary items of information.

 These parts are illustrated in Figure 1 and Table 1 respectively, for a restaurant

management system.

 In this formalism, the language adopted to describe the composition of the flows of

the informational interface is practically the same as that used previously in Structured

Analysis [18] [10] to specify data flows and data stores. It employs a small set of symbols

for the construction of data expressions.

 The signs and indicate, respectively, information input flows and output flows,

from the point of view of the system. A piece of information or information item in a flow

can be elementary (indivisible) or compound (made up of other elementary or compound

items). Compound items are also called packages and are indicated by the symbol .

The notation used to describe the composition of a flow or package is the following: +

means composition, n{x}m means from n to m occurrences (or repetitions) of x, () is used

to group items, | means or and [] delimits conditional items, that is, which will not always

be present (they may not be pertinent, according to the context). Calculated item is any

elementary item present in an output flow (output item), whose value was calculated by

the system (that is, not present in any input flow). An identifier (item) is a special kind of

calculated item. It can be recognized by the name ending with _id (for example, cust_id),

and represent a domain abstraction captured during the requirements modeling.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
6

Info Cases: Integrating Use Cases and Domain Models ES-719/08

ACTOR: Customer IC 1: Make order
 order = order_date + table_id + order_items

 order_items = 1{item_id + item_quant}

 order_id

ACTOR: Customer IC 2: Cancel order
 canc_order = order_id

ACTOR: Customer IC 3: Request bill
 req_bill = order_id + [cust_id]

 bill = order_id + table_no + order_date + bill_items + bill_value + [cust_name + cust_tel]

 bill_items = 1{item_id + item_type + item_name + unit_price + item_quant + item_value}

ACTOR: Customer IC 4: Pay bill
 payment = order_id + cash_tendered + pay_date

 change

ACTOR: Customer IC 5: Leave bill pending
 pend = order_id + cust_id

ACTOR: Manager IC 6: Register regular customer
 customer = cust_name + cust_tel

 cust_id

ACTOR: Manager IC 7: Update menu
 menu_item = item_name + unit_price + item_type + item_descr

 item_id

ACTOR: Manager IC 8: Request consumption for day
 consump_req = report_date + consump_date

 consump_day = report_date + consump_date + comsumed_items

 consump_items = 0{item_type + {item_id + item_name + item_quant} }2

ACTOR: Manager IC 9: Request receipts
 rec_req = report_date + rec_period

 rec_period = start_date + end_date

 receipts = report_date + rec_period + consump_value + rec_paid + rec_pending +

rec_servTax + total_rec

ACTOR: Manager IC 10: Register table
 table = table_no

 table_id

ACTOR: Manager IC 11: Request pending bills
 pend_req = report_date + pend_period

 pend_period = start_date + end_date

 pends = report_date + pend_period + {cust_id + cust_name + cust_tel + pend_bills +

custPend_value} + pend_value

 pend_bills = 1{order_id + order_date + table_no + bill_items + bill_value}

 bill_items = 1{item_id + item_type + item_name + unit_price + item_quant + item_value}

Figure 1. Informational interface (flows) – Restaurant System

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
7

Info Cases: Integrating Use Cases and Domain Models ES-719/08

Table 1. Dictionary of elementary items in IC 3: Request bill (partial)

Actor: Customer IC 3: Request bill

Name Description Type Domain

order_id Identifier of the order whose bill is requested Natural no.

item_quant Quantity consumed of an item. Natural no.

item_value Value of the consumption of an item. Unit price ×
quantity consumed of the item. Currency

item_type Type of the consumed item Text {dish, drink}

5 Derivation rules for the DM view

 This section presents a set of rules for the derivation of the DM view from the info

cases (ICs). The aim is to show evidence of the integration between the UCM and the

DM, achieved through ICs.

 The presentation of the rules is divided into 4 sections - one for each kind of DM

element they help to determine: classes, associations, attributes and operations. The

specification of the informational interface flows of the Restaurant system (Figure 1) is

used to exemplify the application of the rules. The resulting DM is shown in Figure 2.

 The main functions of the restaurant system are:

a) To register the order of dishes and drinks by each customer;

b) To print the bill when the customer asks for it;

c) To cancel an order at the request of the customer;

d) To register the payment of a bill or the fact that it is left pending (leaving the bill

pending is only allowed for customers that are considered regulars);

e) To print a detailed report of the daily consumption of dishes and drinks, in order

to replace stocks;

f) To print a detailed report of the restaurant’s receipts in a given period, separating

receipts effectively paid from those payable (bills left pending); and

g) To register the menu that is in effect, allowing it to be printed at the request of

the manager.

5.1 Classes

 Classes are determined by the identifiers generated in the ICs. A generated identifier

in an IC is an identifier whose value is established during the execution of the IC. Its

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
8

Info Cases: Integrating Use Cases and Domain Models ES-719/08

purpose is to serve as a reference to an object. For example, cust_id is a generated

identifier in IC 6 (Register regular customer - Figure 1) to serve as a reference to an object

(customer) created during the processing of the IC.

 Rule 1 (classes). Each generated identifier produces a class.

 The classes obtained from the generated identifiers represent abstractions used and

shared by the domain specialists who take part in the definition of the system

requirements. Thus, such classes are likely to be useful, with significant attributes and

operations in the domain [12].

 In the Restaurant system (Figure 1): order_id, generated in IC 1 - Make order,

determines the class Order. The other classes determined in this way are: Customer

(cust_id, IC 6), Item (item_id, IC 7) and Table (table_id, IC 10).

5.2 Associations

 The relationships among the many objects manipulated by the system are

represented in the informational interface of the ICs, since the system actors must

necessarily inform them. For example, in the Restaurant system, the relationship between

an order and its table must be informed to the system.

 Since the objects are represented by their identifiers, the relationships among

objects are represented by the occurrence of two or more identifiers in the informational

interface of each IC.

 Rule 2 (associations). Associations are indicated by the occurrence of more than

one identifier in the informational interface of an IC2 (for output flows only generated

identifiers should be considered)3.

 In principle, each possible pair of identifiers may indicate an association to include in

the DM. In the Restaurant system, for example, the pairs <order_id, table_id> and

<order_id, item_id>, obtained from IC 1, and the pair <order_id, customer_id> from IC 3 or

IC 5, determine the associations Order-Table, Order-Item and Order-Customer,

respectively.

2 Since all references to objects are made by means of identifiers.
3 So as to obtain only new associations.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
9

Info Cases: Integrating Use Cases and Domain Models ES-719/08

5.3 Attributes

 The activation of ICs in the Informational Level of Objectives (ILO) depends on the

initiative of some actor, and therefore, no general assumption can be embedded into the

system regarding the coexistence, in time, of the processes underlying the ICs.

Consequently, every piece of information which needs to be communicated among these

processes must be considered state information, that is, information to be persisted

between system states attained by the execution of the processes. Besides, as these

states are always stable4, those pieces of state information will become attributes of

system domain classes. This results in the following rule.

 Rule 3a (attribute determination). Every non-identifier elementary item, input in an

IC and needed in another IC must be persisted; otherwise, it should not be persisted. The

same holds for every non-identifier calculated item in the output flow of an IC, whose

originally calculated value is needed in another IC and cannot be restored in that IC.

 In the Restaurant system (Figure 1) there are many input items. For example, the

elementary item order_date enters in IC 1 (input flow order) and has its value retrieved in

ICs 3 and 11. Therefore, it must be persisted. On the other hand, cash_tendered and

item_descr do not have to be persisted; the former because it is used only in the same IC

in which it entered (IC 4, to calculate the change), and the latter because it is not used in

any IC, not even in the one in which it entered the system (IC 7) (probably a mistake that

this rule helps to uncover). For the output items, consider, for example, the output (non-

identifier) item item_value calculated in IC 3. It has to be retrieved in IC 11 in order to print

out the pending bills. But it can not be guaranteed that the value of item_value, calculated

at the moment when the customer asks for the bill (IC 3), can be restored later when the

manager requests the list of pending bills (IC 11). This is because, in the meanwhile, the

unit price of the item may be changed (through IC 7 - Update menu). Therefore, the

item_value calculated in IC 3 must be persisted.

 Once the persistence of an item is decided upon, the next step is to allocate the item

as an attribute of one of the classes determined with rule 1 (section 5.1). Modeling with

ICs, the only way to establish a link between an item and the object of which it represents

a property (attribute) is to include the identification of the object in the same informational

interface that contains the item. That is what happens, for example, in the informational

interface of IC 4, which, besides pay_date, includes order_id to identify the order that is

being paid. The following rule establishes this. It uses the concept of classes attained by

4 Consistent states that can persist indefinitely.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
10

Info Cases: Integrating Use Cases and Domain Models ES-719/08

an identifier, which includes: a) the class it identifies, and b) the association classes (if

there are any) in which it takes part as one of the identifiers.

 Rule R3b (attribute allocation). Each item to be persisted, present in the

informational interface of an IC, must be allocated as an attribute of one of the classes

attained by the identifiers present in the same interface.

 In the Restaurant system, for example: order_date and item_quant (IC 1) must be

allocated, respectively, to classes Order (identified by order_id) and Order-Item

(association class attained by order_id); item_value (IC 3) must be allocated to the class

Order-Item (association class attained by the identifier order_id); and pay_date (IC 4) to

the class Order; etc.

 The modification of the system state, i.e. of an object or of an association among

objects, commonly occurs in ICs whose informational interface contains some information

item to be persisted. However, even ICs without this characteristic may produce a state

change. That is because the mere occurrence of the IC’s dispatching event may imply the

change. Obviously, this change is also implemented by means of an attribute of the object

(or of the association), which can be an attribute previously created to persist an item of

the interface, or an attribute specially created to reflect the change. The latter will be

distinguished from other (ordinary) attributes by the term state attribute. Thus, unlike

ordinary attributes that directly correspond to persisted items present in the input and

output flows of ICs, state attributes are not shown in the informational interface of ICs.

Despite this, in some cases it is still possible to derive from that interface the need of this

special kind of attribute (rule R3c).

 Rule R3c (state attributes). In ICs with an informational interface made up of only

an input flow containing just identifiers, a state attribute must be added in one of the

classes attained by those identifiers.

 In the DM of the Restaurant system (Figure 2), the attributes cancelled? and

pending? were introduced to the class Order, through the application of this rule to ICs 2

(Cancel order) and 5 (Leave bill pending), respectively.

5.4 Operations

 The operations to be included in the DM must allow:

a) The accomplishment of state changes in the system by the creation and change

of objects (rules 4a and 4d); and

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
11

Info Cases: Integrating Use Cases and Domain Models ES-719/08

b) The accomplishment of state changes in the system environment, by producing

the outputs foreseen in the informational interface, represented by the non-

persisted calculated items and output flows (rules 4b and 4c).

 Rule R4a (constructors). Every generated identifier produces a constructor

operation for the class it identifies.

 In the Restaurant system, this rule gives rise to 4 constructor operations: Order() (IC

1), Customer() (IC 6), Item() (IC 7) and Table() (IC 10), in the respective classes of the

same names.

 Rule R4b (calculated items). Every non-persisted calculated item produces an

operation to calculate it5.

 In the Restaurant system, this rule produces the following operations: bill_value()

from IC 3, change() from IC 4, item_quant() from IC 8, consump_value(), rec_paid(),

rec_pending(), rec_servTax() and total_rec() from IC 9, pend_value() and

custPend_value() from IC 11.

 Rule R4c (flows). Every output flow present in an IC whose processing does not

produce a system state change (typically reporting ICs) and which is not made up of just

one non-persisted item6, causes an operation to produce the flow.

 In the Restaurant system, consump_day() (IC 8), receipts() (IC 9) and pends() (IC

11) are the resulting operations.

 Rule R4d (state change). Every IC that causes system state change yields an

operation to perform it and to produce the output flow (if any), unless a constructor

operation, resulting from rule R4a, performs all the change by itself and there is no output

to produce.

 In the Restaurant system, rule R4d gives rise to four operations: cancel() (IC 2),

requestBill() (IC 3), payBill() (IC 4), and leaveBillPending() (IC 5).

 Rule R4e (allocation to classes). The operations produced by rules R4b, R4c and

R4d are to be included in one of the classes attained by the identifiers present in the

informational interface of the IC, or if there are none, to be included in the class that

represents the system (to keep the cohesion of the remaining classes).

5 Persisted calculated items do not generate operations, since they are available in the class interface as attributes.
6 Already dealt with in rule R4b.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
12

Info Cases: Integrating Use Cases and Domain Models ES-719/08

 The class that represents the system can be seen as a repository of operations to be

transferred to control classes introduced in a later phase of the system analysis. All other

classes of the DM tend to have high semantic cohesion, since they correspond to

abstractions used by the stakeholders in their daily business. Similarly, the coupling

among classes tends to reflect the relationships that exist among the domain abstractions.

 The visibility of the operations must be public to the actors that are allowed to enact

the corresponding ICs, since the operations come directly from the system requirements

model. The operations determined by the non-persisted calculated items (rule R4b) return

the value calculated for the item. Most of the operations’ arguments can be obtained from

the items present in the input flow of the ICs. The specification (type and initial value) of

the arguments is based on type and domain information of the corresponding item, which

appears in the dictionary of elementary items. For example, from the informational

interface (Figure 1) and the dictionary of IC 3 (Table 1), we obtain the specifications:

requestBill(in cust: Customer) and bill_value(): Currency. Figure 2 shows the resulting DM

for the Restaurant system.

+Table(in tableNo : Byte)
-table_no : Byte

Table

+O rder(in orderDate : Date, in table : Table, in orderItem s : O bject)
+change(in cashTendered : Currency) : Currency
+bill_value() : Currency
+cancel()
+requestB ill(in cust : Custom er)
+ leaveBillPending(in cust : Custom er)
+payBill(in payDate : Date)

-order_date : Date
-pay_date : Date
-cancelled? : bool
-pending? : bool

O rder

+Custom er(in custNam e : S tring, in custTel : S tring)
+custPend_value(in startDate : Date, in endDate : Date) : Currency

-cust_nam e : S tring
-cust_te l : S tring

Custom er

+Item (in item Nam e : S tring, in unitPrice : Currency, in item Type : S tring, in item Descr : S tring)
+item _quant(in consum pDate : Date) : unsigned short

-item _nam e : S tring
-unit_price : Currency
-item _type : S tring

Item

1..1

0..*

0..*

0..1

item _quant : Byte
item _value : Currency

O rder-Item

0..*

1..*

+Restaurant()
+consum p_value(in startDate : Date, in endDate : Date) : Currency
+consum p_day(in reportDate : Date, in consum pDate : Date)
+rec_paid(in startDate : Date, in endDate : Date) : Currency
+rec_pending(in startDate : Date, in endD ate : Date) : Currency
+rec_ServTax(in startDate : Date, in endDate : Date) : Currency
+total_rec(in startDate : Date, in endDate : Date) : Currency
+receipts(in reportDate : Date, in startDate : Date, in endDate : Date)
+pend_value(in startDate : Date, in endDate : Date) : Currency
+pends(in reportDate : Date, in startDate : Date, in endDate : Date)

-orders : O bject
-tables : O bject
-custom ers : O bject
-m enu : O bject

Restaurant

Figure 2. DM view for the Restaurant system

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
13

Info Cases: Integrating Use Cases and Domain Models ES-719/08

6 Experimental studies with info cases

 Several experimental studies have already been carried out to assess modeling with

ICs [3] [4]. Three of these, focussing more specifically on the derivation of the DM, are

reported in the following.

6.1 Study 1: Proof of concept

 This case study involved a team with 1 requirements engineer, 4 programmer-

analysts and 4 domain specialists in the development of a real multi-user web system , to

support the activities of a company in the field of medicine and safety at work. The system

was developed by the analysts in PHP and MySQL from the IC model elaborated by the

engineer with the support and validation of the specialists. It was made up of 30 ICs, with

a total of 40 pages of specifications. The development took four months of work.

 The system DM was elaborated by the analysts together, on an ad hoc basis, since

the study preceded the definition of the rules presented in section 5. Even so, the analysts

elaborated the system DM with no difficulties. At the end of the study, all those involved

had a positive impression regarding ICs and the resulting system. Over the 3 years that it

has been in continuous operation, the system has had normal maintenance, most of it for

evolution.

 Some aspects that show the importance of the results obtained are:

a) None of the analysts had previous knowledge of, or experience in IC, nor in the

system domain;

b) The analysts worked for the first three months practically without personal

contact with the requirements engineer, communication between them being

carried out in writing via instant messenger-type software;

c) The specifications were elaborated in parallel with the development of the

system, each IC being released as soon as its definition was ready;

d) The division of work among the analysts was all done by IC;

e) The DM was elaborated incrementally (at each new IC) by the analysts, without

the participation of the engineer;

f) The DM elaborated by the analysts almost always met the expectations of the

engineer; occasional discrepancies were easily credited to initiatives inconsistent

with the IC model.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
14

Info Cases: Integrating Use Cases and Domain Models ES-719/08

6.2 Study 2: Adjustments to the rules and preliminary test of
uniformity of DMs

 The second study was informal, carried out to preliminarily assess the

comprehensibility and usability of the rules of derivation (section 5), as well as to provide a

first assessment of the degree of uniformity in DMs resulting from them. Two analysts,

graduates in Computer Science, both with two years experience in systems development

and one year in reading ICs, took part in the study at different times.

 First of all, one of the analysts applied the rules using the specification of a library

system with 19 ICs. The DM obtained was compared with the DM previously constructed

by the experimenter using the same rules. The discrepancies detected revealed the

analyst’s difficulties in understanding some rules, which brought about a revision of the

rules manual. Later, the manual having been revised, the other analyst did the same

exercise. To assess the uniformity of the results, the discrepancies between the model

obtained by each analyst and that constructed by the experimenter were counted. For the

purposes of this assessment, extra or missing elements (classes, attributes, associations

and operations) with regard to the model produced by the experimenter were considered

to be discrepancies. Table 2 shows the results of this assessment.

Table 2. Results of Study 2

 Analyst 1 Analyst 2

Elements #E #D %S #D %S

Classes 5 0 100 0 100

Associations 11 1 91 0 100

Attributes 20 4 80 0 100

Operations 41 4 90 1 97

Key
#E: No. of elements in the experimenter’s

model.
#D: No. of discrepancies.
%S: % of success in reproducing the

experimenter’s model

6.3 Study 3: Second test of uniformity of DMs

 The aim of this study was to compare the two techniques - ICs and UCs, regarding

granularity and uniformity of the DMs produced based on each of them.

 The granularity of a DM is given by the number of classes that the model has.

Uniformity measures the degree of similarity between models. In this study, two types of

uniformity between models were considered: 1) conceptual uniformity, based on the

comparison of the concepts (abstractions) existing in each model, at the purely semantic

level; and 2) representational uniformity, based on the comparison of attributes,

associations and operations used to represent each abstraction present in the models.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
15

Info Cases: Integrating Use Cases and Domain Models ES-719/08

The uniformity of a type of element (abstractions, associations, attributes and operations)

between two DMs was calculated as the ratio between the number of matching

occurrences of the element in both models and the number of unique occurrences of the

element in the models. For example, the uniformity of abstraction between two different

models i and j is given by the formula:

i,j
i,j

i j

A'
Unif-A =

) -)(A + A (A'i,j

where, for i ≠ j:

• Ai is the cardinality of the set of abstractions of Model i;

• Aj is the cardinality of the set of abstractions of Model j; and

• A’i,j is the cardinality of the set of abstractions common to both models i and j.

 To determine the uniformity of associations, attributes and operations, only the

classes that represent abstractions common to both models i and j were considered.

 The representational uniformity between two models i and j was calculated as the

arithmetic mean of the uniformities of attributes, operations and associations, between the

models:

i,j i,j i,j
i,j

Unif-At + Unif-O + Unif-L
Unif-R

3
=

 The hypotheses tested in the study are:

• H-G: the granularity of DMs built up from ICs is less than the granularity of DMs

built up from UCs;

• H-Ua: The uniformity of abstractions between DMs built up from ICs is greater

than the uniformity of abstractions between DMs built up from UCs;

• H-Ul , H-Uat , and H-Uo: Similar to H-Ua , for associations, attributes and

operations, respectively.

• H-Ur: The representational uniformity of DMs built up from ICs is greater than the

representational uniformity of DMs built up from UCs.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
16

Info Cases: Integrating Use Cases and Domain Models ES-719/08

 The participants of the study, 6 professionals – all Computer Science graduates –

were divided into two groups of 3. Each group used only one of the techniques – IC or UC

– to elaborate the behavioral model and the respective DM. The participants in group A

(ICs) were designated by the numbers 1, 2, and 3 – those in group B (UCs) were

designated by the numbers 4, 5, and 6. Participant 1 (P1) already had some experience

with ICs. All of them had knowledge of and some experience with UCs.

 Some days before the study, the participants received training material in the

respective technique. On the day of the study they attended a training session and were

given a summary of the main functions of the system to be modeled – a financial control

system. During the modeling, which took approximately one and a half days, they had free

access to the experimenters (the authors of the summary), who played the role of domain

specialists. Only participant 3 (P3) had any previous knowledge in this area.

 Both groups worked at the same time, in separate rooms, under the supervision of

the experimenters, so as to, among other things, avoid any exchange of information

among the participants, which could be prejudicial to the results. When the modeling was

finished, the experimenters interviewed the participants in pairs (P1-P2, P1-P3, P2-P3,

P4-P5, P5-P6, and P4-P6), mainly in order to identify the common abstractions in their

DMs, and based on them, identify the attributes, operations and associations used in the

representation of these common abstractions.

 Tables 3, 4, and 5 show the numbers found for the study variables, for each group –

A (ICs) and B (UCs) respectively.

Table 3: Count of classes - Groups A and B

 Group A Group B
Partic.

Elem. P1 P2 P3 P4 P4 P6

Classes 12 7 9 13 9 8

Table 4: Count of the study variables - Group A (ICs)

P1-P2 P1-P3 P2-P3 Pairs
Elem. P1 P2 M7 P1 P3 M P2 P3 M

Abstractions 12 9 8 12 11 10 7 9 6

Associations 5 6 3 10 7 6 6 4 4

Attributes 28 24 15 38 24 16 24 14 10

Operations 7 7 3 7 7 6 10 8 6

7 Matching occurrences

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
17

Info Cases: Integrating Use Cases and Domain Models ES-719/08

Table 5: Count of the study variables - Group B (UCs)

P4-P5 P4-P6 P5-P6 Pairs
Elem. P4 P5 M P4 P6 M P5 P6 M
Abstractions 13 9 7 13 8 6 9 8 5

Associations 4 5 3 2 7 2 2 4 1

Attributes 34 22 14 28 33 18 24 14 9

Operations 24 16 7 17 15 1 14 12 2

 To test the hypothesis of granularity (H-G), the mean of the granularity of the DMs of

each group was calculated, which gave the values 9.3333 and 10, respectively, for groups

A and B. Therefore the hypothesis was confirmed: DMs produced from ICs have 8% lower

granularity than DMs produced from UCs.

 The hypotheses of uniformity referring to each element of the DM (abstractions,

associations, attributes, and operations) were tested based on the mean of each group for

the uniformities of that element, obtained from pairs of models of the group. Similarly, the

hypothesis of representational uniformity (H-Ur) was tested based on the mean of each

group for the representational uniformities, obtained from pairs of models of the group.

Table 6 shows and compares the uniformity means obtained in each group (technique).

Table 6: Comparison of uniformity - ICs vs. UCs
Techique

Elem. ICs UCs Comparison

Abstractions 0,6615 0,4278 ICs + 55%

Attributes 0,3701 0,3541 ICs + 5%

Associations 0,5291 0,3286 ICs + 61%

Operations 0,5076 0,1092 ICs + 365%

Representational 0,4689 0,2640 ICs + 78%

 Therefore, Table 6 shows that the DMs produced from ICs were more uniform with

each other than those based on UCs. This was seen on the semantic (conceptual) level

by the comparison of the abstractions present in the models, as well as at the

representational level by the comparison of the associations, attributes and operations

present in the classes corresponding to the abstractions that coincide in the models.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
18

Info Cases: Integrating Use Cases and Domain Models ES-719/08

7 Related works

 There are many proposals to build a DM from the UCM (e.g. [1] [11] [15]), or to

establish the consistency between the two models (e.g. [5] [8]). However, these proposals

do not follow the approach of an integrated requirements model, but rather they keep the

two models − UCM and DM, separate. As mentioned previously (section 1), the result is,

invariably, incomplete DMs or a great deal of dependence on the modeler to interpret the

elements of each model.

 Like us, Glinz [6] also adopts the approach of an integrated requirements model, but

his proposal differs from ours in various aspects. It does not use the UCM as the basis for

integration. Besides, it attempts a wider integration, involving structure, data, behavior,

interaction with the user, etc., aiming at the generation of diverse views, in different levels

of abstraction.

 Svetinovic [17] tries to solve the problem of inconsistency among DMs obtained by

different modelers for the same system. He proposes an alteration of the traditional

process of the Object Oriented Analysis (“that observes only concepts”), to adopt an

approach focused on activities, which attempts to identify the concept responsible for a

particular activity. This way, he aims to validate the concepts through an “activity-purpose”

analysis, and to obtain more restricted intermediary artifacts than the DM, capable of

providing more consistency among the DMs. Therefore his strategy is to proceed with the

analysis before attempting a conceptual decomposition, in order to restrict the freedom in

choosing the domain abstractions and its responsibilities. As we see it, one of the features

of this strategy is to keep the main responsibility to identify the concepts with the modeler,

that is, let him decide, based on various artifacts (and not only on UCs), what concepts to

choose to compose the DM. Differently, our strategy assumes that the modeler should

first of all consider the concepts that the stakeholders use in their every-day business.

Ideally, these concepts should be captured during the requirements elicitation. In this way,

the UCM serves as a channel to elicit the domain concepts with the active participation of

the stakeholders. The modeler takes this opportunity to exploit the familiarity of the

stakeholders with the UCM to extract from them the concepts that will constitute a kind of

baseline for the DM. It is also possible for the modeler to suggest new abstractions or

improvements to the abstractions used by the stakeholders, working from the basis of the

abstractions consolidated by them.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
19

Info Cases: Integrating Use Cases and Domain Models ES-719/08

8 Conclusion and Future Works

 This report pointed out three obstacles to a greater integration of the UCM with the

DM: 1) a lack of formal links between UCM and DM; 2) insufficient knowledge of the

domain by the modelers; and 3) subjectivity of the usual criterion for the elicitation of UCs.

These obstacles make it difficult to obtain suitable solutions to increase the degree of

automation (or reduce the dependence on the modeler) in the generation of the DM from

the UCM, or in the verification of the consistency between them. Moreover, in our view,

these are the main reasons for the lack of consistency between DMs obtained by different

modelers for the same system.

 To overcome these obstacles, the report proposes an integrated requirements

model built up from info cases (ICs) − a specialization of UCs resulting from the fixing of a

special level of abstraction for their elicitation and greater detailing and formal meaning in

the specification of the information flows exchanged between the system and its actors.

 As evidence of the degree of integration achieved and of the capacity of ICs to

overcome the mentioned obstacles, semiformal rules were presented for deriving a DM

from the UCM. In addition, three experimental studies were reported, which showed

evidence of the usability of the rules and their capacity to solve (or to reduce) the problem

of inconsistency among DMs.

 Future works that are planned or suggested include:

1) Further experimental studies, this time with a larger number of participants

(probably students) in order to confirm the hypotheses of uniformity among DMs

with statistically significant results, and to make a comparative assessment of

ICs and UCs as to the effort required in modeling, training needs and the quality

of the models obtained;

2) Studying the possibility of automatically propagating alterations made in the DM

to the UCM;

3) Studying the contribution of ICs in the context of agile software development

methods and in the context of model-driven development;

4) Characterizing with precision the level of automation obtained with the rules; and

5) Developing a tool to support the application of the rules.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
20

Info Cases: Integrating Use Cases and Domain Models ES-719/08

Acknowledgement. We thank Leonardo G. P. Murta, Tarcísio S. Lima and Carlos

Henrique C. Duarte for comments on the subject of this report. Special thanks are due to

Vitor Padilha Gonçalves for his active participation in the planning and development of

Study 3. The first author was partially supported by a scholarship from CAPES, Brazil.

9 References

[1] Biddle, R., Noble, J., and Tempero, E., “From Essential Use Cases to Objects”, 1st

Intl. Conf. on Usage-Centered, Task-Centered, and Performance-Centered Design

(forUse 2002), Ampersand Press, Rowley, MA, 2002, pp. 1-23.

[2] Bittner, K., and Spence, I., Use Case Modeling. Addison-Wesley Canada, 2002.

[3] Fortuna, M. H., Um Modelo Integrado de Requisitos com Casos de Uso, PhD

qualification report, COPPE/UFRJ, Rio de Janeiro, October 2006 (In Portuguese).

[4] Fortuna, M. H., Werner, C. M. L., and Borges, M. R. S., “Um Modelo Integrado de

Requisitos com Casos de Uso”, X Workshop Iberoamericano de Ingeniería de

Requisitos y Ambientes de Software (IDEAS’07), Isla de Margarita, Venezuela, May

7-11, 2007, pp. 313-326 (In Portuguese).

[5] Glinz, M., “A Lightweight Approach to Consistency of Scenarios and Class Models”,

4th Intl. Conf. on Requirements Engineering (ICRE’00), Illinois (USA), June 2000,

pp. 49-58.

[6] Glinz, M., Berner, S., Joos, S. “Object-Oriented Modeling with ADORA”, Information

Systems 27, 6, 2002, pp. 425-444.

[7] Jacobson, I., “Use cases - Yesterday, Today, and Tomorrow”, Software and

Systems Modeling 3, 3, Springer Berlin, 2004, pp. 210-220.

[8] Kösters, G., Six, H-W., and Winter, W., “Coupling Use Cases and Class Models as a

Means for Validation and Verification of Requirements Specifications”. Requirements

Engineering Journal 6, Springer London, 2001. pp. 3-17.

[9] Larman. C. Applying UML and Patterns (3rd ed.), Prentice Hall, New Jersey, 2004.

[10] Lauesen, S.: Software Requirements - Styles and Techniques. Addison-Wesley

London, 2002.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
21

Info Cases: Integrating Use Cases and Domain Models ES-719/08

[11] Liang, Y.: “From se Cases to Classes: A Way of Building Object Model with UML”.

Information and Software Technology 45, Elsevier, 2003. pp. 83-93.

[12] Meyer, B.: Object-Oriented Software Construction (2nd ed.), Prentice Hall PTR, New

Jersey, 1997.

[13] Object Management Group (OMG), UML Superstructure Specification, v2.0. OMG

document formal/05-07-04. (Available at http://www.omg.org/cgi-bin/doc?formal/05-

07-04)

[14] Robertson, S., and Robertson, J., Mastering the Requirements Process, 2 ed.,

Addison Wesley Professional, New Jersey, 2006.

[15] Subramaniam, K., Liu, D., Far, B. H., and Eberlein, A., “UCDA. Use Case Driven

Development Assistant Tool for Class Model Generation”, 16th Intl. Conf. on Soft.

Eng. & Knowledge Eng. (SEKE’04), Canada, June 2004, pp. 324-329.

[16] Svetinovic, D., Berry, D., Godfrey, M., “Concept Identification in Object-Oriented

Domain Analysis: Why Some Students Just Don’t Get It”, 13th IEEE Intl. Conf. on

Requirements Engineering (RE’05), Paris, France, September 2005, pp. 189-198.

[17] Svetinovic, D., “Increasing the Semantic Similarity of Object-Oriented Domain

Models by Performing Behavioral Analysis First”. PhD. Thesis, University of

Waterloo, Ontario, Canada, September 2006.

[18] Yourdon, E. Modern Structured Analysis, Prentice Hall PTR, USA, 1988.

COPPE/UFRJ/PESC Fortuna, Werner & Borges, 2008
22

		2008-07-03T09:03:34-0300
	Michel Heluey Fortuna

