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Abstract

The minimum sum-of-squares clustering problem is considered. The math-
ematical modeling of this problem leads to a min− sum−min formulation
which, in addition to its intrinsic bi-level nature, has the significant char-
acteristic of being strongly nondifferentiable. To overcome these difficulties,
the resolution method proposed adopts a smoothing strategy using a special
C∞ differentiable class function. The final solution is obtained by solving a
sequence of low dimension differentiable unconstrained optimization subprob-
lems which gradually approach the original problem. The use of this tech-
nique, called Hyperbolic Smoothing, allows the main difficulties presented by
the original problem to be overcome. A simplified version of the algorithm
HSC containing only the essentials of the method is presented. For the pur-
pose of illustrating both the reliability and the efficiency of the method, a
set of computational experiments was performed, making use of traditional
test problems described in the literature. Moreover, a set of computational
results produced by a new extended version, XHSC Algorithm, based on an
experimental prunning procedure supported by a partition of the set of ob-
servations in two non overlapping parts, are also presented, making using of
the larger instances of Symmetric Traveling Salesman Problem (TSP)

Keywords: Cluster Analysis, Pattern Recognition, Min-Sum-

Min Problems, Nondifferentiable Programming, Smoothing
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1 Introduction

Cluster analysis deals with the problems of classification of a set of pat-
terns or observations, in general represented as points in a multidimensional
space, into clusters, following two basic and simultaneous objectives: patterns
in the same clusters must be similar to another (homogeneity objective) and
different from patterns of other clusters (separation objective), see Hartingan
(1975) and Späth (1980).

Clustering is an important problem that appears in the broadest spectrum
of applications, whose intrinsic characteristics engender many approaches to
this problem, see Dubes and Jain (1976), Jain and Dubes (1988) and Hansen
and Jaumard (1997).

In this paper, a particular clustering problem formulation is considered.
Among many criteria used in cluster analysis, the most natural, intuitive
and frequently adopted criterion is the minimum sum-of-squares cluster-
ing (MSSC). This criterion corresponds to the minimization of the sum-of-
squares of distances of observations to their cluster means, or equivalently,
to the minimization of within-group sum-of-squares. It is a criterion for both
the homogeneity and the separation objectives, as, according to the Huygens
Theorem, minimizing the within-cluster inertia of a partition (homogeneity
within the cluster) is equivalent to maximizing the between-cluster inertia
(separation between clusters).

The minimum sum-of-squares clustering (MSSC) formulation produces a
mathematical problem of global optimization. It is both a nondifferentiable
and a nonconvex mathematical problem, with a large number of local min-
imizers. It is one of the problems in the NP-hard class (Brucker (1978)).

In the cluster analysis scope, algorithms use, traditionally, two main
strategies: hierarchical clustering methods and partition clustering methods
(Hansen and Jaumard (1997) and Jain et alli (1999)). Hierarchical methods,
essentially heuristic procedures, produce a hierarchy of partitions of the set
of observations according to an agglomerative strategy or to a divisive one.
In the former case, the general algorithm starts from an initial partition, in
which each cluster contains one pattern, and successively merges two clusters
on the basis of a similarity measure until all patterns are in the same cluster.
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In the latter case, the general algorithm starts from an initial partition with
all patterns in the same cluster and, by successive bipartitions, reaches a par-
tition in which each cluster contains one single pattern. In both strategies,
the best partition is chosen, by a suitable criterion, from the hierarchy of
partitions obtained.

Partition methods, in general, assume a given the number of clusters and,
essentially, seek the optimization of an objective function measuring the ho-
mogeneity within the clusters and/or the separation between the clusters.
Heuristic algorithms of the exchange type, as the traditional k-means al-
gorithm (Mc Queen (1967)) and variations thereof (Anderberg (1973) and
Späth (1980)) are frequently used to find a local minimum of the objective
function. However, any mathematical programming technique can be applied
to solve the global optimization problem: dynamic programming (Jensen
(1969)), branch and bound (Koontz, Narendra and Fukuraga (1975)), inte-
rior point algorithms (du Merle et alli (1997)), bilinear programming (Man-
gasarian (1997)), all kinds of metaheuristics (for example: Reeves (1993)
or Pacheco and Valencia (2003)) and nonsmooth optimization (Bagirov and
Yearwood (2004)).

The core focus of this paper is the smoothing of the
min − sum − min problem engendered by the modeling of the cluster-
ing problem. In a sense, the process whereby this is achieved is an extension
of a smoothing scheme, called Hyperbolic Smoothing, presented in Santos
(1997) for nondifferentiable problems in general, in Chaves (1997) for the
min−max problem and, more recently, in Xavier and Oliveira (2004) for the
covering of plane domains by circles. This technique was developed through
an adaptation of the hyperbolic penalty method originally introduced by
Xavier (1982).

By smoothing we fundamentally mean the substitution of an intrinsically
nondifferentiable two-level problem by a C∞ differentiable single-level alter-
native. This is achieved through the solution of a sequence of differentiable
subproblems which gradually approaches the original problem. In the present
application, each subproblem, by using the Implicit Function Theorem, can
be transformed into a low dimension unconstrained one, which, owing to its
being indefinitely differentiable, can be comfortably solved by using the most
powerful and efficient algorithms, such as conjugate gradient, quasi-Newton
or Newton methods.
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Although this paper considers the particular MSSC problem, it must be
emphasized that the proposed methodology, Hyperbolic Smoothing, can be
used for solving other clustering problem formulations as well.

This work is organized in the following way. A step-by-step definition of
the clustering problem, directly connected to the presentation of the proposed
hyperbolic smoothing approach, is presented in the next section. The new
methodology is described in section 3. The algorithm and the illustrative
computational results are presented in sections 4 and 5. Brief conclusions
are drawn in section 5.

2 The Clustering Problem as a Min-Sum-Min

Problem

Let S = {s1, . . . , sm} denote a set of m patterns or observations from
an Euclidean n-space to be clustered into a given number q of disjoint
clusters.

To formulate the original clustering problem as a min − sum − min
problem, we proceed as follows. Let xi, i = 1, . . . , q be the centroids of the
clusters, where each xi ∈ R

n. The set of these centroid coordinates will be
represented by X ∈ R

nq. Given a point sj of S, we initially calculate the
distance from sj to the center in X that is nearest. This is given by

zj = min
xi∈X

‖sj − xi‖2. (1)

The most frequent measurement of the quality of a clustering associated
to a specific position of q centroids is provided by the sum of the squares
of these distances,

D(X) =
m

∑

j=1

z2

j . (2)

The optimal placing of the centroids must provide the best quality of this
measurement. Therefore, if X∗ denotes an optimal placement, then the
problem is
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X∗ = argmin
X∈R

nq

D(X), (3)

where X is the set of all placements of the q centroids. Using (1)–(3), we
finally arrive at

X∗ = argmin
X∈R

nq

m
∑

j=1

min
xi∈X

‖sj − xi‖
2

2. (4)

3 Transforming the Problem

Problem (4) above can be formulated equivalently as

minimize
m

∑

j=1

z2

j (5)

subject to zj = min
i=1,...,q

‖sj − xi‖2, j = 1, . . . ,m

Considering its definition, each zj must necessarily satisfy the following
set of inequalities:

zj − ‖sj − xi‖2 ≤ 0, i = 1, . . . , q. (6)

Substituting these inequalities for the equality constraints of problem (5),
the relaxed problem becomes

minimize

m
∑

j=1

z2

j (7)

subject to zj − ‖sj − xi‖2 ≤ 0, j = 1, . . . ,m, i = 1, . . . , q.
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Since the variables zj are not bounded from below, the optimum solution
of the relaxed problem will be zj = 0, j = 1, . . . ,m. In order to obtain the
desired equivalence, we must, therefore, modify problem (7). We do so by
first letting ϕ(y) denote max{0, y} and then observing that, from the set
of inequalities in (7), it follows that

q
∑

i=1

ϕ(zj − ‖sj − xi‖2 ) = 0, j = 1, . . . ,m. (8)

For fixed j and assuming d1 < · · · < dq with di = ‖sj − xi‖2, Figure
(1) illustrates the first three summands of (8) as a function of zj.

0 d1 d2 d3 z
j

m
ax

( 
0,

 z
j −

 d
i )

Figure 1: Summands in (8)

Using (8) in place of the set of inequality constraints in (7), we would
obtain an equivalent problem maintaining the undesirable property that
zj, j = 1, . . . ,m still has no lower bound. Considering, however, that the
objective function of problem (7) will force each zj, j = 1, . . . ,m, down-
ward, we can think of bounding the latter variables from below by considering
“ > ” in place of “ = ” in (8) and considering the resulting “non-canonical”
problem
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minimize

m
∑

j=1

z2

j (9)

subject to

q
∑

i=1

ϕ(zj − ‖sj − xi‖2 ) > 0, j = 1, . . . ,m.

The canonical formulation can be recovered from (9) by perturbing (8)
and considering the modified problem:

minimize
m

∑

j=1

z2

j (10)

subject to

q
∑

i=1

ϕ(zj − ‖sj − xi‖2 ) ≥ ε , j = 1, . . . ,m

for ε > 0. Since the feasible set of problem (9) is the limit of that of (10)
when ǫ → 0+, we can then consider solving (9) by solving a sequence of
problems like (10) for a sequence of decreasing values for ε that approaches
0.

4 Smoothing the Problem

Analyzing the problem (10), the definition of function ϕ endows it with
an extremely rigid nondifferentiable structure, which makes its computational
solution very hard. In view of this, the numerical method we adopt for solving
problem (1), takes a smoothing approach. From this perspective, let us define
the function:

φ(y, τ) =
(

y +
√

y2 + τ 2

)

/2 (11)
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for y ∈ R and τ > 0.

Function φ has the following properties:

(a) φ(y, τ) > ϕ(y), ∀ τ > 0;

(b) lim
τ→0

φ(y, τ) = ϕ(y);

(c) φ(., τ) is an increasing convex C∞ function in variable y.

Therefore, function φ constitutes an approximation of function ϕ.
Adopting the same assumptions used in Figure 1, the first three summands
of (8) and their corresponding smoothed approximations, given by (11), are
depicted in Figure 2.

0 d1 d2 d3 z
j

m
ax

( 
0,

 z
j −

 d
i )

φ(
 z

j −
 d

i, τ
 )

 

Figure 2: Original and smoothed summands in (8)

By using function φ in the place of function ϕ, the problem

minimize

m
∑

j=1

z2

j (12)

subject to

q
∑

i=1

φ(zj − ‖sj − xi‖2, τ) ≥ ε, j = 1, . . . ,m.

is produced.
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To obtain a differentiable problem, it is yet necessary to smooth the
Euclidean distance ‖sj − xi‖2. For this purpose, let us define the function

θ( sj , xi , γ ) =

√

√

√

√

n
∑

l=1

(sl
j − xl

i)
2 + γ2 (13)

for γ > 0.

Function θ has the following properties:

(a) lim
γ→0

θ( sj , xi , γ ) = ‖sj − xi‖2 ;

(b) θ is a C∞ function.

By using function θ in place of the distance ‖sj −xi‖2, the completely
differentiable problem

minimize

m
∑

j=1

z2

j (14)

subject to

q
∑

i=1

φ(zj − θ(sj, xi, γ), τ) ≥ ε, j = 1, . . . ,m.

is now obtained.

So, the properties of functions φ and θ allow us to seek a solution
to problem (10) by solving a sequence of subproblems like problem (14),
produced by the decreasing of the parameters γ → 0 , τ → 0, and ε → 0.

Since zj ≥ 0, j = 1, . . . ,m, the objective function minimization process
will work for reducing these values to the utmost. On the other hand, given
any set of centroids xi, i = 1, . . . , q, due to property (c) of the hyperbolic
smoothing function φ, the constraints of problem (14) are a monotonically
crescent function in zj. So, these constraints will certainly be active and
problem (14) will at last be equivalent to the problem:
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minimize

m
∑

j=1

z2

j (15)

subject to hj(zj, x) =

q
∑

i=1

φ(zj − θ(sj, xi, γ), τ) − ε = 0, j = 1, . . . ,m.

The dimension of variable domain space of problem (15) is (nq+m). As,
in general, the value of the parameter m, the cardinality of the set S of
the observations sj, is large, problem (15) has a large number of variables.
However, it has a separable structure, because each variable zj appears only
in one equality constraint. Therefore, as the partial derivative of h(zj, x)
with respect to zj, j = 1, . . . ,m is not equal to zero, it is possible to use the
Implicit Function Theorem to calculate each component zj, j = 1, . . . ,m
as a function of the centroid variables xi, i = 1, . . . , q. In this way, the
unconstrained problem

minimize f(x) =
m

∑

j=1

zj(x)2 (16)

is obtained, where each zj(x) results from the calculation of a zero of each
equation

hj(zj, x) =

q
∑

i=1

φ(zj − θ(sj, xi, γ), τ) − ε = 0, j = 1, . . . ,m. (17)

Due to property (c) of the hyperbolic smoothing function, each term φ
above is strictly increasing with variable zj and therefore the equation has
a single zero.

Again, due to the Implicit Function Theorem, the functions zj(x) have
all derivatives with respect to the variables xi, i = 1, . . . , q, and therefore
it is possible to calculate the gradient of the objective function of problem
(16),
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∇ f(x) =
m

∑

j=1

2 zj(x)∇zj(x) (18)

where

∇zj(x) = − ∇hj(zj, x) /
∂ hj(zj, x)

∂ zj

, (19)

while ∇hj(zj, x) and ∂ hj(zj, x)/∂ zj are obtained from equations (11),
(13) and (17).

The above approach employs the same basic idea as Abadie and Carpen-
tier (1969) for the development of the general reduced gradient algorithm,
intended for the solution of the general nonlinear programming problem sub-
ject to equality constraints.

In this way, it is easy to solve problem (16) by making use of any method
based on first order derivative information. At last, it must be emphasized
that problem (16) is defined on a (nq)−dimensional space, so it is a small
problem, since the number of clusters, q, is, in general, very small for real
applications.

The solution of the original clustering problem can be obtained by us-
ing the Hyperbolic Smoothing Clustering Algorithm, described below in a
simplified form.

Simplified HSC Algorithm

Initialization Step: Choose initial values: x0, γ1 , τ 1 , ε1.

Choose values 0 < ρ1 < 1, 0 < ρ2 < 1, 0 < ρ3 < 1; let k = 1.

Main Step: Repeat until a stopping rule is attained

Solve problem (16) with γ = γk, τ = τ k and ε = εk, starting at the
initial point xk−1 and let xk be the solution obtained.

Let γk+1 = ρ1 γk , τ k+1 = ρ2 τ k , εk+1 = ρ3 εk , k := k + 1.

Just as in other smoothing methods, the solution to the clustering prob-
lem is obtained, in theory, by solving an infinite sequence of optimization
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problems. In the HSC algorithm, each problem that is minimized is uncon-
strained and of low dimension.

Notice that the algorithm causes τ and γ to approach 0, so the
constraints of the subproblems it solves, given as in (14), tend to those of (10).
In addition, the algorithm causes ε to approach 0, so, in a simultaneous
movement, the solved problem (10) gradually approaches problem (9).

5 Computational Results

The computational results presented below were obtained from a prelim-
inary implementation developed by Sousa (2005) for his M.Sc. thesis. The
numerical experiments have been carried out on a PC Intel Celeron with
2.7GHz CPU and 512MB RAM. The programs are coded with Compac Visual
FORTRAN, Version 6.1. The unconstrained minimization tasks were carried
out by means of a Quasi-Newton algorithm employing the BFGS updating
formula from the Harwell Library (http://www.cse.scitech.ac.uk/nag/hsl/).
In the initialization step of the algorithm, the following choices were made:
ρ1 = 1/2, ρ2 = 1/2, ρ3 = 1/2, γ1 = 1/10, τ 1 = 1/10 and ε1 = 1/10.

First, to illustrate the method, we present some computational results on
one small test instance (n = 2 , q = 3 , m = 41), originally presented in De-
myanov (2004). The initial point, x0 = (2.1909362, 4.6229634, 5.5944853,
4.6315088, 3.8841220, 8.0480442), was taken over the inertia ellipse con-
structed by using the center of gravity of the observation points and the
first and second eigen values and eigen vectors of the matrix ST S, where
S is the (m,n) matrix whose row j is formed with the components of the
observation sj.

Table 1 shows the sequence of points generated by the method in solving
the first instance. The exact solution is presented in the last row. Column
k represents the iteration numbers, while the pairs (ak

i , b
k
i ) represent the

two coordinates of the centroids xk
i , i = 1, 2, 3, and column f(xk) shows

the objective function values. It is possible to observe a linear convergence
of the sequence of the points generated by the algorithm to the optimum
solution, with the controlled linear decreasing of the parameters γk , εk

and τ k. Figure 3 shows the original observation points of the Demyanov
instance and the optimum clustering produced by the algorithm.
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k ak
1 bk

1 ak
2 bk

2 ak
3 bk

3 f(xk)

1 2.1247416 6.0000027 4.8000021 1.9000180 5.1665170 7.6664565 99.411220
2 2.1249361 6.0000008 4.8000006 1.9000041 5.1666298 7.6666150 99.415309
3 2.1249842 6.0000002 4.8000002 1.9000010 5.1666644 7.6666538 99.416328
4 2.1249961 6.0000001 4.8000000 1.9000003 5.1666661 7.6666635 99.416582
5 2.1249990 6.0000000 4.8000000 1.9000001 5.1666665 7.6666659 99.416646
6 2.1249998 6.0000000 4.8000000 1.9000001 5.1666666 7.6666665 99.416661
7 2.1250000 6.0000000 4.8000000 1.9000000 5.1666667 7.6666666 99.416666
8 2.1250000 6.0000000 4.8000000 1.9000000 5.1666667 7.6666667 99.416667

- 2.1250000 6.0000000 4.8000000 1.9000000 5.1666667 7.6666667 99.416667

Table 1: Sequence of points generated in solving the Demyanov instance

Let Si, i = 1, . . . , q be the partition of S generated by the centroids
xi, i = 1, . . . , q

S =

q
⋃

i=1

Si (20)

Si1 ∩ Si2 = ∅, ∀ i1, i2 = 1, . . . , q, i1 6= i2, (21)

Si 6= ∅, ∀ i = 1, . . . , q. (22)

The center of gravity of the clusters is given by

vi =
1

|Si|

∑

sj∈Si

sj, ∀ i = 1, . . . , q. (23)

For the Demyanov instance, the coordinates of vk
i , i = 1, 2, 3, the cen-

ters of gravity of the clusters associated to the centroids xk
i , i = 1, 2, 3,

calculated by the HSC Algorithm at all iterations, assume a constant value:
v = (2.125, 6., 4.8, 1.9, 5.1666667, 7.6666667). So, already at the first itera-
tion, the centers of gravity of the formed clusters are equal to the optimum
solution presented at the last row of Table 1. This is an usual behavior no-
ticed in the computacional results produced by HSC algorithm, that provides
an excellent stopping rule.
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Figure 3: Solution for Demyanov Instance

In order to show some further performance of the proposed algorithm, results
obtained by solving four standard test problems from the cluster analysis literature
are shown below. The problems are:

1 - German Towns, which uses the two Cartesian coordinates of 59 towns,
originally presented by Späth (1980);

2 - Ruspini example, which uses 75 artificial points in the Euclidean plane
(Ruspini (1970));

3 - Iris Fisher example, which uses 4-dimensional data on 150 iris from the
Gaspé peninsula, published by Anderson(1935) and used by Fisher(1936);

4 - TSPLIB-3038, which uses 3038 points in the plane from a traveling salesman
problem of Reinelt (1991);

5 - Pla85900, the largest instance in the TSPLIB collection of challenge prob-
lems, which uses 85900 points.

The last two data sets are available in the site:
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Tables 2–3 contain the number of clusters (q), the best known value for
the global optimum (fopt) taken from du Merle et alli (2000) and Bagirov and
Yearwood (2004), the value produced by the HSC algorithm (fHSC) by using only
one starting point, the error (E) for this solution and the CPU time given in
seconds, where the error is calculated as
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E =
100 (fHSC − fopt)

fopt
. (24)

q fopt fHSC E Time

2 0.121426 E6 0.121426 E6 0.00 0.05
3 0.77009 E5 0.77009 E5 0.00 0.08
4 0.49601 E5 0.49601 E5 0.00 0.09
5 0.38716 E5 0.38716 E5 0.00 0.25

Table 2: Results for the German Towns Instance

The results presented in Table 3 show that for German towns data set,
Algorithm HSC reaches the best known results for q = 2, 3, 4 and 5 . The
CPU time is small for all q.

q fopt fHSC E Time

2 89337.83 89337.83 0.00 0.07
3 51063.47 51063.48 0.00 0.10
4 12881.05 12881.05 0.00 0.10
5 10126.72 10126.72 0.00 0.20
6 8575.41 8575.41 0.00 0.21
7 7126.20 7126.20 0.00 0.22
8 6149.64 6149.64 0.00 0.28
9 5181.65 5181.65 0.00 0.38
10 4446.28 4446.28 0.00 0.39

Table 3: Results for the Ruspini Instance

From Table 3 it is possible to see that HSC Algorithm again, in small
CPU times, gives the best known results for Ruspini data set for all values
of q, except q = 3 where the error, E = 0.00002 %, is negligible.

In Table 4, the results for the Fisher Iris data set are presented. Ten
different randomly chosen starting points were used. The third column gives
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the best objective function value produced by HSC Algorithm. The next
four columns give the number of occurrences of the best solution, the error
of the best solution, the average error and the CPU mean time.

q fopt fHSCBest
Occur. EBest EMean TimeMean

2 15235.0 15234.8 10 0.00 0.00 0.10
3 7885.1 7885.1 10 0.00 0.00 0.16
4 5722.8 5722.8 10 0.00 0.00 0.29
5 4644.6 4644.6 7 0.00 2.21 0.44
6 3904.0 3904.0 10 0.00 0.00 0.52
7 3429.8 3430.0 7 0.01 2.39 0.97
8 2998.9 2998.9 5 0.00 3.52 1.04
9 2778.6 2778.6 9 0.00 1.20 1.34
10 2583.4 2583.4 9 0.00 0.38 1.70

Table 4: Results for the Fisher Iris Instance

From Table 4, it is possible to see that the HSC Algorithm with 10
restarts solves optimally, in small computational times, the Fisher Iris prob-
lems except for q = 7, where the relative error to the best known solution,
E = 0.006 %, is nevertheless small.

Table 5 presents the results for the TSPLIB-3038 data set. The sixth
column corresponds to the number of random starting points.

It is possible to observe in each row of Table 5 that the best solution
produced by the HSC Algorithm is very close to the putative global minimum,
the best known solution of the TSPLIB-3038 instance taken from [12, 16, 28].
Moreover, in this preliminary experiment, by using a relatively small number
of initial starting points, seven new putative global minimum results (q = 9,
q = 20, q = 30, q = 40, q = 60, q = 80 and q = 100) have been established,
as recorded in the literature. In addition, it must be mentioned that for the
biggest cases (q = 60, q = 80 and q = 100), the HSC Algorithm, by using
10 initial starting points, obtained respectively 4, 3 and 5 different solutions
better than the old putative global minima. On the other hand, the low
values shown in column EMean indicates that the HSC Algorithm computes
deep local minima, meaning a good average performance.
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q fopt fHSCBest
Occur. EBest Start EMean TimeMean

2 0.31688E10 0.31705E10 10 0.05 10 0.05 0.60
3 0.21763E10 0.21776E10 7 0.06 10 1.08 1.08
4 0.14790E10 0.14793E10 10 0.02 10 0.02 1.81
5 0.11982E10 0.11986E10 9 0.03 10 0.06 3.09
6 0.96918E09 0.96936E09 10 0.02 10 0.02 9.56
7 0.83966E09 0.83967E09 7 0.001 10 4.66 10.65
8 0.73475E09 0.73491E09 1 0.02 10 1.35 16.24
9 0.64477E09 0.64471E09 2 -0.01 10 0.38 10.05
10 0.56025E09 0.56030E09 10 +0.01 10 0.01 16.16
20 0.26681E09 0.26675E09 1 -0.02 10 2.51 62.90
30 0.17557E09 0.17543E09 3 -0.08 10 0.36 169.17
40 0.12548E09 0.12541E09 1 -0.06 20 1.34 333.92
50 0.98400E08 0.98893E08 1 +0.50 40 1.46 662.33
60 0.82006E08 0.81115E08 1 -1.09 10 0.19 1049.97
80 0.61217E08 0.61025E08 1 -0.31 10 0.63 2038.31
100 0.48912E08 0.48470E08 1 -0.90 10 0.19 3499.76

Table 5: Results for the TSPLIB-3038 Instance

q fHSCBest
Occur. EMean TimeMean

2 0.374908D+16 4 0.86 23.07
3 0.228057D+16 10 0.00 47.41
4 0.159308D+16 10 0.00 76.34
5 0.133969D+16 1 0.80 124.32
6 0.113663D+16 8 0.12 173.44
7 0.971101D+15 4 0.42 254.37
8 0.837741D+15 8 0.55 353.61
9 0.746602D+15 3 0.68 438.71
10 0.682942D+15 4 0.29 551.98

Table 6: Results for the Pla85900 Instance
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Table 6 presents the results for the Pla85900 data set. Ten different ran-
domly chosen starting points were used. The second and third columns give
the best objective function value produced by the HSC Algorithm and the
number of occurrences of this best solution. The last two columns corre-
spond to the average error of the 10 solutions in relation to the best solution
obtained and CPU mean time given in seconds.

The results presented in Table 6 shows an efficient performance of the
HSC Algorithm, since the mean CPU time was consistently small despite
the big size of the Pla85900. On the other hand, the high number of oc-
currences of the best solution shows a consistent performance of the HSC
Algorithm. It was impossible to find any record of solutions of this instance.
Indeed, the clustering literature seldom considers instances with such number
of observations.

From the results presented in Tables 2–6 one sees that the first implemen-
tation of the HSC Algorithm reaches the best known solution in most of the
cases, otherwise it calculates a solution which is close to the best. Moreover,
in this first experiment, seven new best results in the cluster literature have
been established for the TSPLIB-3038 instance. At last, a big size clustering
problem, Pla85900, was suitably solved in small CPU times, given both the
low dimension of nonlinear problem (16), defined on a (nq)−dimensional
space, and the use of a minimization algorithm that takes advantage of its
C∞ differentiable property.

Tables 7-17 present the computational results produced by a new XHSC
Algorithm, including an experimental prunning procedure based on a par-
tition of the set of observations in two non overlapping parts, for larger
instances of Symmetric Traveling Salesman Problem (TSP) of the Reinelt
(1991) collection: FL3795, FNL4461, RL5915, RL5934, Pla7397, RL11849,
USA13509, BRD14051, D15112, BRD18512 and Pla33810. Ten different ran-
domly chosen starting points were used. The second and third columns give
the best objective function value produced by the HSC Algorithm and the
number of occurrences of this best solution. The last two columns corre-
spond to the average error of the 10 solutions in relation to the best solution
obtained and CPU mean time given in seconds. It was impossible to perform
a comparasion given the lack of records of solutions of these instances . In-
deed, the clustering literature seldom considers instances with such number
of observations.
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q fXHSCBest
Occur. EMean TimeMean

2 0.105918E+10 4 0.33 0.24
3 0.721176E+09 2 5.12 0.29
4 0.542131E+09 2 2.23 0.33
5 0.368291E+09 1 6.12 0.40
6 0.265694E+09 2 4.07 0.45
7 0.197312E+09 2 3.29 0.51
8 0.157997E+09 1 2.97 0.62
9 0.121239E+09 1 8.04 0.71
10 0.106409E+09 1 4.08 0.91

Table 7: Results for the FL3795 Instance

q fXHSCBest
Occur. EMean TimeMean

2 0.467708E+10 5 0.18 0.26
3 0.294958E+10 3 0.26 0.34
4 0.231441E+10 1 0.32 0.40
5 0.181675E+10 1 0.67 0.47
6 0.150569E+10 1 0.52 0.61
7 0.122668E+10 1 1.47 0.67
8 0.108361E+10 1 1.91 0.68
9 0.952660E+09 1 3.02 0.92
10 0.853319E+09 1 1.09 1.04

Table 8: Results for the FNL4461 Instance

6 Conclusions

In this paper, a new method for the solution of the minimum sum-of-
squares clustering problem has been proposed. By using the Hyperbolic
Smoothing technique, the problem has been reformulated, in an approx-
imation approach, as a completely differentiable constrained optimization
problem. By using the Implicit Function Theorem, the problem was further
reformulated as a low dimension unconstrained optimization problem, in the
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q fXHSCBest
Occur. EMean TimeMean

2 0.100036E+12 6 0.19 0.17
3 0.642032E+11 4 0.40 0.24
4 0.485154E+11 2 0.69 0.47
5 0.379585E+11 3 0.59 0.51
6 0.318596E+11 1 0.54 0.69
7 0.267754E+11 2 0.70 0.67
8 0.234647E+11 1 0.51 0.84
9 0.208871E+11 1 2.55 1.17
10 0.187811E+11 1 0.87 1.27

Table 9: Results for the RL5915 Instance

q fXHSCBest
Occur. EMean TimeMean

2 0.920861E+11 1 0.66 0.29
3 0.681943E+11 1 1.55 0.37
4 0.488114E+11 2 0.81 0.49
5 0.393672E+11 1 0.97 0.71
6 0.317269E+11 2 0.65 0.98
7 0.279411E+11 1 1.12 0.96
8 0.244099E+11 1 1.44 1.12
9 0.215587E+11 1 1.34 1.37
10 0.191812E+11 1 1.89 2.07

Table 10: Results for the RL5934 Instance

q fXHSCBest
Occur. EMean TimeMean

2 0.178155E+15 4 0.21 0.30
3 0.111206E+15 3 0.97 0.45
4 0.629983E+14 2 0.31 0.61
5 0.506261E+14 1 1.75 0.69
6 0.396793E+14 1 2.14 0.75
7 0.352162E+14 1 1.32 0.81
8 0.308137E+14 1 2.31 1.32
9 0.272712E+14 1 4.07 0.93
10 0.243525E+14 1 3.09 1.21

Table 11: Results for the Pla7397 Instance
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q fXHSCBest
Occur. EMean TimeMean

2 0.210287E+12 2 1.23 0.61
3 0.152061E+12 1 1.09 3.42
4 0.104991E+12 1 2.11 1.27
5 0.809571E+11 1 1.18 1.38
6 0.637439E+11 2 0.75 1.78
7 0.552341E+11 1 3.01 2.45
8 0.472998E+11 1 2.27 2.33
9 0.416351E+11 1 1.35 2.61
10 0.369192E+11 2 4.27 3.19

Table 12: Results for the RL11849 Instance

q fXHSCBest
Occur. EMean TimeMean

2 0.109770E+15 1 1.41 1.35
3 0.573853E+14 3 0.71 1.47
4 0.434554E+14 2 0.61 2.27
5 0.329531E+14 1 0.72 7.43
6 0.265986E+14 2 0.75 2.51
7 0.222732E+14 1 2.43 2.17
8 0.194874E+14 1 1.28 8.07
9 0.167993E+14 1 2.31 2.75
10 0.149840E+14 1 1.75 3.14

Table 13: Results for the USA13509 Instance

q fXHSCBest
Occur. EMean TimeMean

2 0.371152E+11 4 1.71 1.27
3 0.197682E+11 3 1.23 2.17
4 0.152334E+11 1 0.48 3.12
5 0.122288E+11 2 1.01 4.17
6 0.101929E+11 1 2.17 5.17
7 0.832857E+10 1 0.91 6.48
8 0.736814E+10 1 4.78 6.25
9 0.656451E+10 1 7.27 7.17
10 0.593939E+10 1 3.12 9.17

Table 14: Results for the BRD14051 Instance
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q fXHSCBest
Occur. EMean TimeMean

2 0.368403E+12 4 0.35 0.79
3 0.253240E+12 2 0.72 1.35
4 0.173603E+12 2 0.81 1.47
5 0.132707E+12 1 1.23 1.61
6 0.111553E+12 1 1.11 2.04
7 0.994057E+11 1 2.11 2.27
8 0.816971E+11 1 2.17 2.74
9 0.713094E+11 1 3.21 3.12
10 0.644923E+11 1 2.42 3.49

Table 15: Results for the D15112 Instance

q fXHSCBest
Occur. EMean TimeMean

2 0.597589E+11 3 0.27 1.27
3 0.399281E+11 2 0.32 2.08
4 0.280691E+11 1 1.27 2.05
5 0.233421E+11 1 0.98 7.34
6 0.190493E+11 1 3.27 2.47
7 0.162834E+11 2 1.25 2.52
8 0.137893E+11 1 1.87 6.30
9 0.117489E+11 1 0.99 4.61
10 0.105912E+11 2 1.35 5.04

Table 16: Results for the BRD18512 Instance

q fXHSCBest
Occur. EMean TimeMean

2 0.946269E+15 2 1.27 2.23
3 0.605695E+15 3 1.72 4.08
4 0.404399E+15 4 1.20 5.32
5 0.335715E+15 2 4.27 6.27
6 0.280991E+15 1 1.73 7.28
7 0.238088E+15 1 1.68 8.75
8 0.204086E+15 2 2.13 8.70
9 0.179983E+15 1 1.11 12.12
10 0.164841E+15 1 1.38 11.27

Table 17: Results for the Pla33810 Instance
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Euclidean space R
nq. Then, the basic steps of an algorithm for solving the

original clustering problem were presented.

Although only the particular MSSC formulation has been considered,
it must be emphasized that this approach can be used for solving other
clustering problems. For example, for the norm 1 formulation, only a trivial
adaptation is necessary.

Moreover, it must be observed that the methodology can be applied to
any min − sum − min problem. Among them, we consider it to be partic-
ularly interesting to apply this approach to the general problem considered
by Demyanov (2004).

The performance of the HSC Algorithm can be attributed to the complete
differentiability of the approach. Within this context, each centroid gets to
permanently see every observation point. Conversely, each observation point
can permanently see every centroid and attract it. Figure 4 tries to depict
this idea.
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Figure 4: The C∞ differentiability property effect

There are several possibilities for the continuation of this work. One ob-
vious alternative to be explored is to study simple algorithmic modifications,
such as:

- Like other clustering algorithms, such as Eikelder and Erk (2004),
Hansen and Mladenovic (2001) and du Merle et alli (2000), heuristics can
be used to produce a good initial point through an auxiliary fast algorithm
such as k-means or any of its numerous variations, Hansen el alli (2002).
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- In a complementary way, it is possible to connect it with a heuristic or
metaheuristic algorithm to do a local search, so as to pick up a better point
around the initially found local minimum.

- It is also possible to calculate clusters step-by-step, gradually increasing
the number of data clusters until reaching the specified q parameter value.
This approach has been successfully adopted, for example, by Hansen et alli
(2002), Bagirov and Yearwood (2004) and Bagirov(2008).

Finally, it must be remembered that the MSSC problem is a global opti-
mization problem with a lot of local minima. Although the HSC Algorithm
does not offer the guarantee of obtaining a global optimum point, in view
of the results obtained, where a preliminary implementation of the proposed
algorithm produced efficiently and reliably very deep local minima, perfectly
adequate to the necessities and demands of real applications, we believe that
the methodology introduced in this article can be used for solving large,
practical optimal clustering problems.
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