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Abstract

This article considers the minimum sum of distances clustering (MSDC)
problem, where the distances are measured through the L1 or Manhattan
metric. The mathematical modeling of this problem leads to a min−sum−
min formulation which, in addition to its intrinsic bi-level nature, has the sig-
nificant characteristic of being strongly nondifferentiable. To overcome these
difficulties, the proposed resolution method, called Hyperbolic Smoothing,
adopts a smoothing strategy using a special C∞ differentiable class func-
tion. The final solution is obtained by solving a sequence of low dimension
differentiable unconstrained optimization subproblems which gradually ap-
proach the original problem. This paper uses also the method of partition of
the set of observations into two non overlapping groups: ”data in frontier”
and ”data in gravitational regions”. The resulting combination of the two
methotologies for the MSDC problem has interesting properties: complete
differentiability and drastic simplification of computational tasks.

Keywords: Cluster Analysis, Min-Sum-Min Problems, Manhat-

tan Metric, Nondifferentiable Programming, Smoothing
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1 Introduction

Cluster analysis deals with the problems of classification of a set of pat-
terns or observations, in general represented as points in a multidimensional
space, into clusters, following two basic and simultaneous objectives: pat-
terns in the same clusters must be similar to each other (homogeneity ob-
jective) and different from patterns in other clusters (separation objective)
[Anderberg (1973), Hartingan (1975) and Späth (1980)].

Clustering is an important problem that appears in a broad spectrum
of applications, whose intrinsic characteristics engender many approaches to
this problem, as described by Dubes and Jain (1976), Jain and Dubes (1988)
and Hansen and Jaumard (1997).

Clustering analysis has been used traditionally in disciplines such as: bi-
ology, biometry, psychology, psychiatry, medicine, geology, marketing and
finance. Clustering is also a fundamental tool in modern technology ap-
plications, such as: pattern recognition, data mining, web mining, image
processing, machine learning and knowledge discovering.

In this paper, a particular clustering problem formulation is considered.
Among many criteria used in cluster analysis, a frequently adopted crite-
rion is the minimum sum of L1 distances clustering (MSDC). This criterion
corresponds to the minimization of the sum of distances of observations to
their centroids, where the distances are measured through the L1 or Man-
hattan metric. As broadly recorded by the litterature, the L1 metric has the
advantage of offering more stable solutions.

Similarly to others clustering formulations, it produces a mathematical
problem of global optimization. It is both a nondifferentiable and a noncon-
vex mathematical problem, with a large number of local minimizers.

There are two main strategies for solving clustering problems: hierarchical
clustering methods and partition clustering methods. Hierarchical methods
produce a hierarchy of partitions of a set of observations. Partition meth-
ods, in general, assume a given number of clusters and, essentially, seek the
optimization of an objective function measuring the homogeneity within the
clusters and/or the separation between the clusters.

For the sake of completeness, we present first the Hyperbolic Smothing
Clustering Method (HSCM), Xavier (2010). Basically the method performs
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the smoothing of the nondifferentiable min − sum − min problem en-
gendered by the modeling of a broad class of clustering problems, including
the minimum sum of L1 distances clustering (MSDC) formulation. This
technique was developed through an adaptation of the hyperbolic penalty
method originally introduced by Xavier (1982). By smoothing, we funda-
mentally mean the substitution of an intrinsically nondifferentiable two-level
problem by a C∞ unconstrained differentiable single-level alternative.

Additionally, the paper presents a faster methodology applied to the spe-
cific considered problem. The basic idea is the partition of the set of obser-
vations into two non overlapping parts. By using a conceptual presentation,
the first set corresponds to the observation points relatively close to two or
more centroids. This set of observations, named boundary band points, can
be managed by using the previously presented smoothing approach. The
second set corresponds to observation points significantly closer to a single
centroid in comparison with others. This set of observations, named gravi-
tational points, is managed in a direct and simple way, offering much faster
performance for the specific minimum sum of L1 or Manhattan distances
clustering (MSDC) formulation. The same partition scheme was presented
first by Xavier and Xavier (2010) in order to solve the the specific minimum
sum of distances clustering (MSSC) formulation.

This work is organized in the following way. A step-by-step definition
of the minimum sum of L1 distances clustering problem is presented in the
next section. The original smoothing hyperbolic smoothing approach and the
derived algorithm are presented in section 3. The boundary and gravitational
regions partition scheme and the new derived algorithm are presented in
section 4. Brief conclusions are drawn in section 5.

2 The Minimum Sum of L1 Distances Clus-

tering Problem

Let S = {s1, . . . , sm} denote a set of m patterns or observations from
an Euclidean n-space, to be clustered into a given number q of disjoint
clusters. To formulate the original clustering problem as a min−sum−min
problem, we proceed as follows. Let xi, i = 1, . . . , q be the centroids of the
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clusters, where each xi ∈ R
n. The set of these centroid coordinates will be

represented by X ∈ R
nq. Given a point sj of S, we initially calculate the

L1 distance from sj to the center in X that is nearest. This is given by

zj = min
xi∈X

‖sj − xi‖1. (1)

A frequent measurement of the quality of a clustering associated to a
specific position of q centroids is provided by the sum of the L1 distances,
which determines the MSDC problem:

minimize
m

∑

j=1

zj (2)

subject to zj = min
i=1,...,q

‖sj − xi‖1, j = 1, . . . ,m

3 The Hyperbolic Smoothing Clustering Method

Considering its definition, each zj must necessarily satisfy the following
set of inequalities:

zj − ‖sj − xi‖1 ≤ 0, i = 1, . . . , q. (3)

Substituting these inequalities for the equality constraints of problem (2),
it is produced the relaxed problem:

minimize
m

∑

j=1

zj (4)

subject to zj − ‖sj − xi‖1 ≤ 0, j = 1, . . . ,m, i = 1, . . . , q.
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Since the variables zj are not bounded from below, the optimum solution
of the relaxed problem will be zj = 0, j = 1, . . . ,m. In order to obtain the
desired equivalence, we must, therefore, modify problem (4). We do so by
first letting ϕ(y) denote max{0, y} and then observing that, from the set
of inequalities in (4), it follows that

q
∑

i=1

ϕ(zj − ‖sj − xi‖1 ) = 0, j = 1, . . . ,m. (5)

Using (5) in place of the set of inequality constraints in (4), we would
obtain an equivalent problem maintaining the undesirable property that
zj, j = 1, . . . ,m still has no lower bound. Considering, however, that the
objective function of problem (4) will force each zj, j = 1, . . . ,m, down-
ward, we can think of bounding the latter variables from below by including
an ε perturbation in (5). So, it is obtained the following modified problem:

minimize
m

∑

j=1

zj (6)

subject to

q
∑

i=1

ϕ(zj − ‖sj − xi‖1 ) ≥ ε , j = 1, . . . ,m

for ε > 0. Since the feasible set of problem (2) is the limit of that of (6) when
ε → 0+, we can then consider solving (2) by solving a sequence of problems
like (6) for a sequence of decreasing values for ε that approaches 0.

Analyzing the problem (6), the definition of function ϕ endows it with an
extremely rigid nondifferentiable structure, which makes its computational
solution very hard. In view of this, the numerical method we adopt for
solving problem (1), takes a smoothing approach. From this perspective, let
us define the function:

φ(y, τ) =
(

y +
√

y2 + τ 2

)

/2 (7)
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for y ∈ R and τ > 0.

Function φ has the following properties:

(a) φ(y, τ) > ϕ(y), ∀ τ > 0;

(b) lim
τ→0

φ(y, τ) = ϕ(y);

(c) φ(y, τ) is an increasing convex C∞ function in variable y.

By using function φ in the place of function ϕ, the problem

minimize
m

∑

j=1

zj (8)

subject to

q
∑

i=1

φ(zj − ‖sj − xi‖1, τ) ≥ ε, j = 1, . . . ,m.

is produced.

To obtain a differentiable problem, it is still necessary to smooth the L1
distance ‖sj − xi‖1. For this purpose, let us define the function

θ1( sj , xi , γ ) =

√

√

√

√

n
∑

l=1

‖sl
j − xl

i‖
2 + γ2 (9)

for γ > 0.

Function θ1 has the following properties:

(a) lim
γ→0

θ1( sj , xi , γ ) = ‖sj − xi‖1 ;

(b) θ1 is a C∞ function.

By using function θ1 in place of the distance ‖sj − xi‖1, the following
completely differentiable problem is now obtained:
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minimize
m

∑

j=1

zj (10)

subject to

q
∑

i=1

φ(zj − θ1(sj, xi, γ), τ) ≥ ε, j = 1, . . . ,m.

So, the properties of functions φ and θ1 allow us to seek a solution to
problem (6) by solving a sequence of subproblems like problem (10), produced
by the decreasing of the parameters γ → 0 , τ → 0, and ε → 0.

Since zj ≥ 0, j = 1, . . . ,m, the objective function minimization process
will work for reducing these values to the utmost. On the other hand, given
any set of centroids xi, i = 1, . . . , q, due to property (c) of the hyperbolic
smoothing function φ, the constraints of problem (10) are a monotonically
increasing function in zj. So, these constraints will certainly be active and
problem (10) will at last be equivalent to problem:

minimize
m

∑

j=1

zj (11)

subject to hj(zj, x) =

q
∑

i=1

φ(zj − θ1(sj, xi, γ), τ) − ε = 0, j = 1, . . . ,m.

The dimension of the variable domain space of problem (11) is (nq+m).
As, in general, the value of the parameter m, the cardinality of the set S of
the observations sj, is large, problem (11) has a large number of variables.
However, it has a separable structure, because each variable zj appears only
in one equality constraint. Therefore, as the partial derivative of h(zj, x)
with respect to zj, j = 1, . . . ,m is not equal to zero, it is possible to use the
Implicit Function Theorem to calculate each component zj, j = 1, . . . ,m
as a function of the centroid variables xi, i = 1, . . . , q. In this way, the
unconstrained problem

minimize f(x) =
m

∑

j=1

zj(x) (12)
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is obtained, where each zj(x) results from the calculation of a zero of each
equation

hj(zj, x) =

q
∑

i=1

φ(zj − θ1(sj, xi, γ), τ) − ε = 0, j = 1, . . . ,m. (13)

Due to property (c) of the hyperbolic smoothing function, each term φ
above is strictly increasing with variable zj and therefore the equation has
a single zero.

Again, due to the Implicit Function Theorem, the functions zj(x) have
all derivatives with respect to the variables xi, i = 1, . . . , q, and therefore
it is possible to calculate the gradient of the objective function of problem
(12),

∇ f(x) =
m

∑

j=1

∇zj(x) (14)

where

∇zj(x) = − ∇hj(zj, x) /
∂ hj(zj, x)

∂ zj

, (15)

while ∇hj(zj, x) and ∂ hj(zj, x)/∂ zj are obtained from equations (7), (9)
and (13).

In this way, it is easy to solve problem (12) by making use of any method
based on first order derivative information. At last, it must be emphasized
that problem (12) is defined on a (nq)−dimensional space, so it is a small
problem, since the number of clusters, q, is, in general, very small for real
applications.

The solution of the original clustering problem can be obtained by us-
ing the Hyperbolic Smoothing Clustering Algorithm, described below in a
simplified form.
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The Simplified HSC Algorithm

Initialization Step: Choose initial values: x0, γ1 , τ 1 , ε1.

Choose values 0 < ρ1 < 1, 0 < ρ2 < 1, 0 < ρ3 < 1; let k = 1.

Main Step: Repeat until a stopping rule is attained

Solve problem (12) with γ = γk, τ = τ k and ε = εk, starting at the
initial point xk−1 and let xk be the solution obtained.

Let γk+1 = ρ1 γk , τ k+1 = ρ2 τ k , εk+1 = ρ3 εk , k := k + 1.

Just as in other smoothing methods, the solution to the clustering prob-
lem is obtained, in theory, by solving an infinite sequence of optimization
problems. In the HSC algorithm, each problem to be minimized is uncon-
strained and of low dimension.

Notice that the algorithm causes τ and γ to approach 0, so the
constraints of the subproblems as given in (10) tend to those of (6). In
addition, the algorithm causes ε to approach 0, so, in a simultaneous
movement, the solved problem (6) gradually approaches the original MSDC
problem (2).

4 The Accelerated Hyperbolic Smoothing Clus-

tering Method

The calculation of the objective function of the problem (12) demands
the determination of the zeros of m equations (13), one equation for each
observation point. This is a relevant computational task associated to HSC
Algorithm.

In this section, it is presented a faster procedure. The basic idea is the
partition of the set of observations into two non overlapping regions. By using
a conceptual presentation, the first region corresponds to the observation
points that are relatively close to two or more centroids. The second region
corresponds to the observation points that are significantly close to a unique
centroid in comparison with the other ones.
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So, the first part JB is the set of boundary observations and the second
is the set JG of gravitational observations. Considering this partition,
equation (12) can be expressed in the following way:

minimize f(x) =
m

∑

j=1

zj(x) =
∑

j∈JB

zj(x) +
∑

j∈JG

zj(x), (16)

so that the objective function can be presented in the form:

minimize f(x) = fB(x) + fG(x), (17)

where the two components are completely independent.

The first part of expression (17), associated with the boundary observa-
tions, can be calculated by using the previous presented smoothing approach,
see (12) and (13):

minimize fB(x) =
∑

j∈JB

zj(x), (18)

where each zj(x) results from the calculation of a zero of each equation

hj(zj, x) =

q
∑

i=1

φ(zj − θ1(sj, xi, γ), τ) − ε = 0, j ∈ JB. (19)

The second part of expression (17) can be calculated by using a faster
procedure, as we will show right away.

Let us define the two parts in a more rigorous form. Let be
xi, i = 1, . . . , q be a referential position of centroids of the clusters taken in
the iterative process.

The boundary concept in relation to the referential point x can be easily
specified by defining a δ band zone between neighboring centroids. For a
generic point s ∈ R

n, we define the first and second nearest distances from
s to the centroids:

d1(s, x) = ‖ s − xi1 ‖ = min
i

‖ s − xi ‖ (20)
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d2(s, x) = ‖ s − xi2 ‖ = min
i6=i1

‖ s − xi ‖ , (21)

where i1 and i2 are the labeling indexes of these two nearest centroids.

By using the above definitions, let us define precisely the δ boundary
band zone:

Zδ(x) = {s ∈ R
n | d2(s, x) − d1(s, x) < 2 δ } (22)

and the gravity region, this is the complementary space:

Gδ(x) = {s ∈ R
n − Zδ(x) } . (23)

Figure 1 illustrates in R
2 the Zδ(x) and Gδ(x) partitions. The

central lines form the Voronoy polygon associated with the referential cen-
troids xi, i = 1, . . . , q. The region between two parallel lines to Voronoy
lines constitutes the boundary band zone Zδ(x).

Figure 1: The Zδ(x) and Gδ(x) partitions.

Now, the sets JB and JG can be defined in a precise form:
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JB(x) = {j = 1, . . . ,m | sj ∈ Zδ(x)} , (24)

JG(x) = {j = 1, . . . ,m | sj ∈ Gδ(x)} . (25)

Proposition 1:

Let s be a generic point belonging to the gravity region Gδ(x), with
nearest centroid i1. Let x be the current position of the centroids. Let
∆ x = maxi ‖xi − xi‖ be the maximum displacement of the centroids.

If ∆ x < δ then s will continue to be nearest to centroid xi1 than to
any other one,so

min
i6=i1

‖ s − xi ‖ − ‖ s − xi1 ‖ ≥ 0. (26)

Proof

min
i6=i1

‖ s − xi ‖−‖ s − xi1 ‖ = min
i6=i1

‖ s − xi + xi − xi ‖−‖ s − xi1 + xi1 − xi1 ‖ ≥

(27)

min
i6=i1

‖ s − xi‖ − ‖xi − xi ‖ − ‖ s − xi1 ‖ − ‖xi1 − xi1 ‖ ≥ (28)

2 δ − 2 ∆ x ≥ 0 (29)

Since δ ≥ ∆ x, Proposition 1 makes it possible to calculate exactly
expression (16) in a very fast way. First, let us define the subsets of gravity
observations associated with each referential centroid:

Ji(x) =

{

j ∈ JG | min
l=1,...,q

‖ sj − xl ‖ = ‖ sj − xi ‖

}

(30)

Let us consider the second sum in expression (16).

minimize fG(x) =
∑

j∈JG

zj(x) =

q
∑

i=1

∑

j∈Ji

‖ sj − xi ‖1
= (31)
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q
∑

i=1

∑

j∈Ji

n
∑

l=1

| sl
j − xl

i | = (32)

q
∑

i=1

n
∑

l=1

∑

j∈Ji

| sl
j − xl

i | (33)

Let us now perform the partition of each set Ji into 3 subsets for each
component in the following form:

J+

il (x) =
{

j ∈ Ji(x) | sl
j − xl

i ≥ δ
}

(34)

J−
il (x) =

{

j ∈ Ji(x) | sl
j − xl

i ≤ − δ
}

(35)

J0

il(x) =
{

j ∈ Ji(x) | − δ < sl
j − xl

i < δ
}

(36)

By using the defined subsets, it is obtained:

minimize fG(x) =

q
∑

i=1

n
∑

l=1





∑

j∈J+

il

| sl
j − xl

i | +
∑

j∈J−

il

| sl
j − xl

i | +
∑

j∈J0
il

| sl
j − xl

i |



 =

q
∑

i=1

n
∑

l=1





∑

j∈J+

il

| sl
j − xl

1 + xl
i − xl

i | +
∑

j∈J−

il

| sl
j − xl

i + xl
i − xl

i | +
∑

j∈J0
il

| sl
j − xl

i |





Let us define the component displacement of centroid ∆ xl
i = xi − xl

i.
Since |∆ xl

i | < δ, from the above definitions of the subsets, it follows that:

| sl
j − xl

i | = | sl
j − xl

i | − ∆ xl
i for j ∈ J+

il (37)

| sl
j − xl

i | = | sl
j − xl

i | + ∆ xl
i for j ∈ J−

il

So, it follows:
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minimize fG(x) =

q
∑

i=1

n
∑

l=1





∑

j∈J+

il

( | sl
j − xl

i | − ∆ xl
i ) +

∑

j∈J−

il

( | sl
j − xl

i | + ∆ xl
i ) +

∑

j∈J0
il

| sl
j − xl

i |



 =

q
∑

i=1

n
∑

l=1





∑

j∈J+

il

| sl
j − xl

i| − | J+

il |∆ xl
i +

∑

j∈J−

il

| sl
j − xl

i| + | J−
il |∆ xl

i +
∑

j∈J0
il

| sl
j − xl

i |





(38)
where | J+

il | and | J−
il | are the cardinalities of two first subsets.

When the position of centroids xi , i = 1, . . . , q moves within the iterative
process, the value of the first two sums of (38) assumes a constant value, since
the values sl

j and xl
i are fixed. So, to evaluate fG(x) it is only necessary to

calculate the displacements ∆ xl
i , i = 1, . . . , q , l = 1, . . . , n , and evaluate

the last sum, that normally has only a few number of terms because δ
assumes in general a relatively small value.

The function fG(x) above specified is nondifferentiable due the last
sum, so in order to use gradient information, it is necessary to use a smooth
approximation:

minimize fG(x) =

q
∑

i=1

n
∑

l=1





∑

j∈J+

il

| sl
j − xl

i | − | J+

il |∆ xl
i +

∑

j∈J−

il

| sl
j − xl

i | + | J−
il |∆ xl

i +
∑

j∈J0
il

θ1(s
l
j, x

l
i, γ)





(39)
where θ1(s

l
j, x

l
i, γ) = (( sl

j − xl
i )

2 + γ2)1/2 .

So, the gradient of the smoothed second part of objective function is
easily calculated by:
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∇fG(x) =

q
∑

i=1

n
∑

l=1



 − | J+

il | + | J−
il | +

∑

j∈J0
il

−(sl
j − xl

i) / θ1(s
l
j, x

l
i, γ)



 eil ,

(40)
where eil stands for a unitary vector with the component l of centroid i
equal to 1.

Therefore, if δ ≥ ∆ x was observed within the iterative process, the
calculation of the expression

∑

j∈JG
zj(x) and its gradient can be exactly

performed by very fast procedures, equations (39) and (40).

By using the above results, it is possible to construct a specific method,
the Accelerated Hyperbolic Smoothing Method Applied to the Minimum of
Sum of L1 Distances Clustering Problem, which has conceptual properties to
offer a faster computational performance for solving this specific clustering
problem given by formulation (17), since the calculation of the second sum
is very simple.

A fundamental question is the proper choice of the boundary parameter
δ. Moreover, there are two main options for updating the boundary param-
eter δ, inside the internal minimization procedure or after it. For simplicity
sake, the HSC method connected with the partition scheme presented below
adopts the second option, which offers a better computational performance,
in spite of an eventual violation of the δ ≥ ∆ x condition, which is corrected
in the next partition update.

The Simplified AHSC-L1 Algorithm

Initialization Step:

Choose initial start point: x0;

Choose parameter values: γ1 , τ 1 , ε1;

Choose reduction factors: 0 < ρ1 < 1, 0 < ρ2 < 1, 0 < ρ3 < 1;

Specify the boundary band width: δ1;

Let k = 1.

Main Step: Repeat until an arbitrary stopping rule is attained
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For determining the Zδ(x) and Gδ(x) partitions, given by (22) and
(23), use x = xk−1 and δ = δk.

Determine the subsets J+

il , J−
il and J+

il and calculate the cardinalities
of two first sets: |J+

il | and |J−
il | .

Solve problem (17) starting at the initial point xk−1 and let xk be
the solution obtained:

For solving the equations (19), associated to the first part given
by (19), take the smoothing parameters: γ = γk, τ = τ k and ε = εk;

For solving the second part, given by (39), use the above deter-
mined subsets and their cardinalities.

Updating procedure:

Let γk+1 = ρ1 γk , τ k+1 = ρ2 τ k , εk+1 = ρ3 εk

Redefine the boundary value: δk+1

Let k := k + 1.

Comments:

The above algorithm does not include any procedure for considering the
occurrence of empty gravitational regions. This possibility can be overcome
by simply moving the centroids.

The efficiency of the AHSC-L1 algorithm depends strongly on the param-
eter δ. A choice of a small value for it will imply an improper definition of
the set Gδ(x), and frequent violation of the basic condition ∆x < δ, for
the validity of Proposition 1. Otherwise, a choice of a large value will imply
a decrease in the number of gravitational observation points and, therefore,
the computational advantages given by formulation (39) will be reduced.

As a general strategy, within first iterations, larger δ values must be
used, because the centroid displacements are more expressive. The δ values
must be gradually decreased in the same proportion of the decrease of these
displacements.
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5 Conclusions

In this paper, a new method for the solution of the minimum sum of
L1 distances clustering problem is proposed. It is a natural development of
the original HSC method and of the descending AHSC-L2 method, linked to
the the minimum sum of distances clustering (MSSC) formulation, presented
respectively by Xavier (2010) an by Xavier and Xavier (2010). We hope for
a good computational performance in a similar way of the two precedent
methods. Such expectation is based on the complete differentiability of the
approach and on the partition of the set of observations into two non over-
lapping parts, which offers a drastic simplification of computational tasks.
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