

A Methodology for Query Processing over Distributed

XML Databases

Guilherme Figueiredo
1
, Vanessa Braganholo

2
, Marta Mattoso

1

1
Programa de Engenharia de Sistemas e Computação – COPPE/UFRJ, Brazil

2
Departamento de Ciência da Computação – IM/UFRJ, Brazil

{g.coelho, marta}@cos.ufrj.br, braganholo@dcc.ufrj.br

Technical Report ES-710/07
1

1
 This document presents a revised version of the Technical Report ES-710/07, previously published in

2007.

Abstract. The constant increase in the volume of data stored as native XML

documents makes fragmentation techniques an important alternative to the

performance issues in query processing over these data. Fragmented databases are

feasible only if there is a transparent way to query the distributed database, without

the need of knowing the fragmentation details and where each fragment is located.

This paper presents our methodology for XQuery query processing over distributed

XML databases, which consists on the steps of query decomposition, including the

query’s TLC algebra representation; data localization; global optimization; global

query execution and final result assembly. This methodology can be used in an XML

database that allows fragmentation and also in a system that publishes an integrated

view of semi-autonomous and homogeneous XML databases. We propose an

architecture based on a Mediator with Adaptors (wrappers) attached to remote

databases. The Mediator publishes a global XML view of the distributed data, which

can be queried by users in a transparent way. A Mediator and two Adapters

prototypes have been implemented and experiments were executed, where we could

analyze the performance improvements and impacts of different queries over

distributed XML databases.

1. Introduction

The increasing volume of stored XML data poses new chalenges to efficient query

processing. Queries posed over centralized databases may take very long times to be

answered, since large ammounts of data need to be accessed. In most of the cases,

indexes are not enough to increase query performance.

 A solution to this problem may be to distribute and fragment data accros the

network. In fact, lots of systems to process queries over distributed data have been

proposed [GUPTA et al. 2000, AGUILERA et al. 2002, IVES et al. 2002, SUCIU 2002,

GERTZ,BREMER 2003, RE et al. 2004, SILVEIRA,HEUSER 2005]. Some others

focus on query processing over heterogeneous distributed systems [BARU et al. 1999,

GARDARIN et al. 2002, LEE et al. 2002]. None of them, however, deal with XML data

fragmentation.

 In relational [ÖZSU,VALDURIEZ 1999] and object-oriented databases [BAIÃO

et al. 2004], fragmentation techniques have been sucessfuly used to increase query

performance in distributed databases. By fragmenting and distributing the data, queries

can be sent to specific fragments, avoiding a complete scan over large portions of

irrelevant data. This is the direction we take in this paper to solve the performance

problem of XML queries over large repositories.

Several fragmentation techniques for XML data have been proposed in literature

[BREMER,GERTZ 2003, MA,SCHEWE 2003, GERTZ,BREMER 2003, ANDRADE

et al. 2006, ANDRADE 2006]. All of them focus on fragments definitions, but only

Gertz and Bremmer [GERTZ,BREMER 2003] deal with query processing over the

fragmented data. However, their approach is not generic – it completely depends on the

index structures created by their approach. Thus, we still lack of a generic and non-

intrusive methodology for distributed XML query processing.

In this paper, we adopt the fragmentation technique of Andrade et al. [2006] and

define a methodology for query processing over fragmented databases. Andrade’s

approach was adopted due to several reasons. First, it uses an XML algebra to represent

the fragments. Thus we can use the algebra properties to process queries over the

fragments. Second, it has experimental results that show that fragmentation can also be

applied successfully to increase the performance of XML queries.

To be able to define a generic and automatic approach to process distributed

XML queries, we need some formalism. When fragments and queries can be represented

in an algebraic form, the properties of the algebra, together with the rewrite rules for

fragments [ANDRADE et al. 2005, ANDRADE et al. 2006] can be used to replace

references to the centralized database by references to its fragments in a given query.

The algebraic properties allow us to formally prove that this query rewriting is correct.

Thus, to process a query over a fragmented repository, the first step is to rewrite it so it

references the fragments instead of the centralized (virtual) database.

However, an algebra is not enough. We need also to define a methodology with

the steps needed to automatically execute distributed XQuery queries. This methodology

is the main contribution of this report.

Before going further, it is important to notice that our approach to improve the

performance of queries over large repositories can be applied not only in fragmented

databases, but also in semi-autonomous databases. In some real-world cases, semi-

autonomous databases can be considered a fragment of a global (virtual) database, as we

explain below.

The dynamism of the real world makes companies to grow faster than its

technological infrastructure. This causes lots of decentralized databases that store

information about the company to appear. As an example, consider a bookstore that has

several branches. Each of them may have a local (semi-autonomous) database to store

local orders, among other information. However, when the company directors need to

have a global view of the company (ex: the total amount of sales of each branch library

in a given month), (s)he must send individual queries to each of the databases, and then

collect the results. A possible alternative to the problem would be to replicate each local

database in a centralized server, and then pose queries to this server. However, when up

to date results are needed, this may not be the best choice. The solution we propose to

this problem is to look at these local databases as horizontal fragments of a global

company database. In this way, our approach could be used to process a query over the

global (virtual) database and distribute the query among each local branch library

database. This would be completely transparent to the company directors, and up to date

results are always guaranteed. From now on, we call this global (virtual) database global

view. Similarly, the local databases could be seen as local views. In fact, they may be

real views in some cases as we will see later on. In such scenarios, both the global view

and the local views can be considered XML views [ABITEBOUL 1999]. Thus, XQuery

can be used to query them.

The solution above requires the XML views of the branch libraries to be

completely homogeneous, since integration of heterogeneous data sources is out of the

scope of our work. However, data appearing in such views may be stored in different

ways, using different data models. The only requirement is that the XML view obtained

from this data be homogeneous. The XML views can be automatically obtained and

maintained by using some of the existing approaches (SHANMUGASUNDARAM et

al., 2000; FERNÁNDEZ et al., 2002; BRAGANHOLO et al., 2004; CAREY et al.,

2000), depending on the data model in which the source data is stored.

This report is structured as follows. Section 2 presents an overview of distributed

query processing and existing work on this area. The methodology we propose to

process distributed queries is presented in Section 3. Section 4 shows details of the

implementation of our methodology and a prototype of a Mediator to process distributed

queries. Section 5 contains an experimental evaluation. Finally, we conclude on Section

6.

2. Querying Distributed Databases

Query processing over distributed and fragmented databases is more challenging than

doing so in a centralized environment. In a distributed environment, the DBMS needs to

know where each node is located, as well as parameters such as communication costs

and current load of each node, to be used by the query optimizer. Fragmentation further

adds complexity related to reducing the query so it can be executed only in nodes that

have relevant data to that query answer. In [ÖZSU,VALDURIEZ 1999], we can find a

very good reference about distributed databases, and also a methodology for distributed

query processing in relational databases. The general ideas of this methodology can be

applied to other data models [BAIÃO et al. 2000, BAIÃO et al. 2004]. More advanced

topics on distributed query processing, such as optimization techniques, execution

techniques, dynamic replication in the distributed environment, caching, architectures,

etc., can be found in [KOSSMAN 2000].

In general, to process a distributed query we need to transform a high-level query

over the global (centralized) view of the distributed data into one or more sub-queries of

lower level (to be executed over the nodes in the distributed environment). We now

present a summary of fragmentation and query processing techniques in the relational

model, object-oriented model and semi-structured model.

Ozsü and Valduriez [1999] present a methodology to process distributed queries

over the relational model. The methodology consists in several layers: query

decomposition; data localization; global optimization; and local optimization, as shown

in Figure 1.

Figure 1. Generic Layering Scheme for distributed query processing

[ÖZSU,VALDURIEZ 1999]

The first layer decomposes the query in an algebraic query over global relations.

In this process, syntactic and semantic analyses are performed over the submitted query.

The query is simplified and rewritten in an algebraic form. Information about data

distribution are not used in this layer.

The data localization layer has as goal to locate query data by using information

about data distribution (fragmentation and allocation of fragments among the nodes).

This layer determines the fragments that are involved in the query, and replaces the

references to the global view by references to fragments in the algebraic query. This

replacement can be performed automatically when the fragmentation design follows

correction rules [ÖZSU,VALDURIEZ 1999] such as the reconstruction rule (the global

database can be reconstructed from its fragments).

The global optimization layer tries to find a near to optimal strategy (or plan) to

execute the global query. The optimization is performed, in general, by minimizing a

cost function. The cost function is usually a combination of CPU, communication and

I/O costs. To databases distributed in slow networks, the communication cost must be

the most important factor in the cost function.

After global optimization of the global query, sub-queries are generated and sent

to the remote sites. Each sub-query executed in a given site is further optimized using

the local site schema in the local optimization layer. The results of the remote sub-

queries are processed by the DBMS according to the adopted strategy of final result

composition.

Further information about the layering scheme for distributed query processing

can be found in [ÖZSU,VALDURIEZ 1999].

2.1. Distributed Queries on the Semi-structured Model

The semi-structured data model was defined for data that cannot be represented by a

strict schema [BUNEMAN 1997, ABITEBOUL et al. 1999]. This model allows data to

be partially structured. This means that components may be missing in some data items,

components may have different types in different items, and data collections can be

heterogeneous. In the semi-structured data model, a database is modeled as a labeled

rooted graph. In this graph, nodes represent objects and have an associated identifier

(oid). XML [W3C 2006] is essentially a syntax to represent semi-structured data.

An XML repository may be of two distinct types: Single Document (SD) or

Multiple Documents (MD) [YAO et al. 2002]. In SD repositories, all of the information

is stored in a single XML document (with an associated DTD or XML Schema). MD

repositories, on the other hand, also require a schema definition. However, the

repository is composed of multiple instances (XML documents) of this schema,

constituting what is called a collection of XML documents.

The hierarchical and semi-structured nature of XML poses some difficulties in

dealing with distributed queries. Some work in literature [SUCIU 2002,

GERTZ,BREMER 2003, RE et al. 2004, SILVEIRA,HEUSER 2005] deal with query

processing over distributed XML models.

One of the first work on distributed query processing over the semi-structured

model is presented in [SUCIU 2002]. The author analyzes the problem for two kinds of

queries over XML repositories: path expressions and select-where queries. Suciu

analyzes the efficient evaluation of distributed queries by minimizing the

communication times and also the data volume transferred between remote nodes. The

approach, however, does not support join operations between remote bases, and also do

not deal with fragmented repositories.

In [GERTZ,BREMER 2003], Gertz and Bremmer present a complete solution to

distributed XML query processing. However, their solution is based on join algorithms

that need to be implemented in the XML repositories. Additionally, they do not present

a methodology for query processing. Their algorithms focus on using their index

structures to efficiently process distributed queries. Our approach is more generic in the

sense that it uses an algebraic representation for both fragment definition and query

decomposition. In addition we present a non intrusive architecture design. The index

structures of [GERTZ,BREMER 2003] could be used, complementarily, to improve the

performance in our approach. To be best of our knowledge, there is no work in literature

that proposes a methodology and execution model to process queries over a distributed

XML database. We also contribute by showing how it can be used on top of pre-existing

native XML DBMS applications.

Re et al. [2004] propose an extension to XQuery to allow sub-queries over

remote sites to be declared directly in the extended XQuery syntax. The goal of this

approach is to remotely pre-select the document that will be used in the query, avoiding

the need of transferring the entire document to the server that executes the query. A

disadvantage of this approach is that the user needs to know the structure of the remote

sites, which reduces its applicability in practice.

In literature, we can also find work on integration of heterogeneous distributed

databases using XML as a common standard between the heterogeneous data sources,

and a mediator [BARU et al. 1999, GARDARIN et al. 2002, LEE et al. 2002]. Such

works do not deal with fragmented databases, since their focus is on dealing with the

heterogeneous schemas attached to the Mediator. The remote databases are accessed

through adapters that provide an XML view of the data and support queries over these

views.

2.2. Fragmentation Techniques in Native XML Databases

To work with distributed XML queries, we need a formal definition of XML database

fragmentation. This definition must allow us to reconstruct the global collection from its

fragments (by using reconstruction rules). These rules are needed to decompose the

distributed query. Several fragmentation techniques for XML repositories have been

proposed in literature [BREMER,GERTZ 2003, MA,SCHEWE 2003, ANDRADE et al.

2006].

 Ma et al [2003] proposes three types of fragmentation: horizontal, which groups

elements of an XML document according to a selection predicate; vertical, whici

restructures the XML document; and split, which breaks an XML document in a set of

new XML documents. These fragmentation definitions are not accompanied by an XML

algebra that supports the correct reconstruction of the original document. This prevents

the use of this technique to automatically decompose algebraic queries over distributed

XML documents and the consequent result composition.

 In [BREMER,GERTZ 2003], the authors propose a new approach to the

distribution design of an XML database. This design comprehends both fragmentation

and allocation of fragments. However, the approach considers only SD repositories.

Additionally, there is no formal distinction between horizontal and vertical fragments,

which are combined in a hybrid type of fragment. The fragments are defined in a

language derived from XPath, and their definitions are stored in a metadata repository.

This metadata repository is used in the distributed query processing, and is applied in all

of the nodes of the distributed environment.

In [ANDRADE et al. 2005, ANDRADE et al. 2006], the authors formally define

horizontal, vertical and hybrid fragmentation. Fragments are defined through TLC

[PAPARIZOS et al. 2004] algebra operations, which allows queries to be decomposed

over the fragments when one uses TLC to represent XQuery queries. A horizontal

fragment is created by using a selection operation over the original XML document(s); a

vertical fragment uses a projection operation over the original document(s). A hybrid

fragment uses both selection and projection operations to create the fragment. Besides

the formal aspect of integrating an algebra to XQuery queries, the definitions of

Andrade et al. can be applied to both SD and MD repositories. Another interesting

aspect of this work is that the fragmentation definitions are very similar to the ones

proposed to the relational model [ÖZSU,VALDURIEZ 1999]. Thus, adapting the well

succeeded techniques of the relational model to the XML model becomes an attractive

and promising option. Furthermore, the authors present correction rules for each

fragmentation type, which is essential to query decomposition.

Using the analysis of the XML fragmentation techniques we have made, we have

decided to adopt the technique defined in [ANDRADE et al. 2006]. This choice was

made for several reasons. First, it comprises both SD and MD collections. Second, it has

formal correction and reconstruction rules using the TCL algebra, which is essential to

distributed query processing.

2.3. XML Query Algebras

Work done in both relational and object-oriented models shows us that using an algebra

is essential to query processing and optimization. XML documents have a very flexible

structure. This allows semi-structured documents, but on the other hand, makes the

creation of an XML algebra more complex. Despite there is no standard XML algebra,

there are several work on literature on this subject [FERNÁNDEZ et al. 2000,

JAGADISH et al. 2001, FRASINCAR et al. 2002, ZHANG et al. 2002, CHEN et al.

2003, PAPARIZOS et al. 2004].

 The Tree Logical Class (TLC) algebra [PAPARIZOS et al. 2004], also

implemented in the native database Timber [JAGADISH et al. 2002], is an evolution of

TAX [JAGADISH et al. 2001]. It allows access to heterogeneous sets of trees through

annotated pattern trees (APTs). APTs extend the concept of pattern tree by allowing its

use with heterogeneous sets. Also, the concept of Logical Classes is used to label nodes

of the output trees according to the pattern tree.

Besides the concepts of annotated pattern trees and logical classes mentioned

above, TLC defines the following algebraic operations: filter, join, selection, projection,

elimination of duplicates, aggregation functions and construction.

3. A methodology for Distributed Query Processing of XQuery queries

This section presents our methodology to process XQuery queries over distributed XML

databases. It involves the decomposition of the main query into sub-queries that will be

executed in the remote sites containing fragments of the global collections. Over the

main query, we apply the layers of decomposition, localization, global optimization,

creation of sub-queries and their execution on the XML remote databases.

This methodology can be applied in a database that allows fragmentation as well

as in a system that provides an integrated view of homogeneous semi-autonomous

databases (since it does not support heterogeneous schemas). In both cases, a Catalog

stores information about the distributed database (global schemas, fragments schema,

fragments definitions, information about fragments allocation, as well as statistics about

the fragments and remote nodes).

Our methodology is an adaptation of the four generic layers proposed by

[ÖZSU,VALDURIEZ 1999] illustrated in Figure 1: query decomposition; data

localization; global optimization; and local optimization. We describe each of these

layers in the context of distributed XQuery queries in the next sections.

3.1. Query Decomposition

The first layer consists on decomposing the XQuery query into a TLC algebraic

expression over the global collections. In this layer, we use the catalog of global

collections to validate the collections referenced in the query. However, information

about data distribution is not used in this phase. This layer is very similar to XQuery

processing over centralized environments. It has four main steps: syntactic validation;

semantic validation; query simplification; and query translation to an algebra

expression.

The final product of the query decomposition layer is the algebraic

representation of the query over the global collections. To do this, we use an algorithm

that syntactically analyses the query and generates the algebraic expressions, the patterns

trees and the TLC logical classes. We show an example in Figure 2.

Figure 2. XQuery query and its TLC representation

3.2. Data Localization

The data localization layer has two main steps: replacing references to the global

collections in the algebraic query plan by references to local fragments; and reducing

these fragments according to selection and projection predicates of the original query, in

a similar way of what is done in [ÖZSU,VALDURIEZ 1999]. This layer is the main

responsible for benefits in query performance, since a query may have a better

performance when irrelevant fragments can be discarded (by reducing the queried data

volume).

To replace references to global collections in the algebraic query, we need to

know the fragments and their predicates: selection, in the case of horizontal fragments;

projection, in the case of vertical fragments; or both, in the case of hybrid fragments.

This information is store in the catalog of the distributed database.

With this knowledge in hands, we now need to know how to make the

replacements. When the fragments follow the correction rules of [ANDRADE et al.

2006], we can use the reconstruction property to guarantee that there will be a TLC

operation that is capable of reconstructing the global collection from its fragments. This

operation will be defined according to the fragmentation type: union for horizontal

fragments; join for vertical fragments (and both for hybrid fragments). In the next

sections we present localization rules for the different types of fragmentation.

3.2.1. Horizontal Fragmentation

Horizontal Fragmentation implies, by definition, that all fragments of the global

collection are defined only by using selection predicates. In this way, the reconstruction

can be made through the TLC union operation over these fragments [ANDRADE et al.

2006].

Definition 1: Let GC be a global collection and HF1, HF2, ..., HFn its horizontal

fragments. According to [ANDRADE et al. 2006], GC = HF1 HF2 ... HFn.

Figure 3 shows an example of localization of a TLC selection operation over a

global collection composed by three horizontal fragments.

Figure 3. Localization of a selection operation over a global collection

horizontally fragmented

After replacing the global collection by its reconstruction expression (that is, by

the union of its fragments), we pass to the next step: reducing irrelevant fragments. In

the case of horizontal fragments, which have selection predicates, the reduction consists

in an analysis of the global selection operation (that is now being applied to the

fragments) to identify the ones that contradict the selection predicates of the fragments.

These fragments can be eliminated from the query. Formally, the elimination of

fragments can be defined by the following rule:

Definition 2: Let GC be a global collection and HF1, HF2, ..., HFn its horizontal

fragments. Let pi be the selection predicate that defines fragment HFi. Let pq be the

selection predicate of a query q over the global collection GC. Let A be the algebraic

tree representing query q over GC. A fragment HFi can be eliminated from A if

pq(HFi) = . This selection is empty if the following rule holds: pq (HFj) = if

s in GC: (pq(s) pi(s)), where p(s) denotes that the sub-tree s satisfies the predicate

p.

Figure 4 shows the result of the reduction step of a query over a collection that is

horizontally fragmented. The three fragments are formed by selection criteria over an

attribute of the collection that is being queried. Since the query uses this same attribute,

we can verify the compatibility among the query selection criteria and the fragments

selection criteria, and then eliminate fragments that produce empty answer sets,

according to the rule above.

Figure 4. Reduction of irrelevant operations to the final result

The reduction of a selection operation over a fragment in an algebraic plan of a

purely horizontally fragmented database also implies in removing the parent union

operation, that should be replaced by its sibling (if any). Formally, if GC = A (B C),

and fragment C can be eliminated, then the resulting expression is A B. This

procedure is applied in all remove operations, thus resulting in a reduced query plan. In

the same way as in the localization of a global collection, where the operation over the

global collection is replaced by the union of its horizontal fragments, a special attention

must be given to the LCLs of the APTs of the reduced operations, so that there is not

lost reference between algebraic operations.

3.2.2. Vertical Fragmentation

In vertical fragmentation, fragments will have only projection operations. In this case,

the reconstruction of the global collection can be done through joins of the fragments

[ANDRADE et al. 2006].

Definition 3: Let GC be a global collection, and VF1, VF2, ..., VFn its vertical

fragments. According to [ANDRADE et al. 2006], GC = VF1 VF2 ... VFn.

Vertical fragmentation requires an additional care in the location layer. Since

vertical fragments do not have all elements of the global collection (they are distributed

over the fragments), it is necessary to prune the APTs of the selection operations applied

to fragments in order to eliminate elements that do not belong to the vertical fragment.

This procedure is not necessary in cases of horizontal fragmentation, since the schemas

of horizontal fragments are homogeneous.

After replacing references to the global collection by a join of its vertical

fragments, we need also to reduce irrelevant fragments of the query plan. In the case of

vertical fragmentation, this process consists on analyzing the sub-trees of the algebraic

query tree. When we use vertical fragmentation we need to check all the algebraic

operations (not only selections as in horizontal fragmentation). In case a subtree of the

node representing a vertical fragment in the algebra query tree is needed in any other

operation (result construction, join, order by, etc.), then this fragment can not be

discarded. It can be removed otherwise. This procedure is formally defined as follows:

Definition 4: Let GC be a global collection and VF1, VF2, ..., VFn its vertical

fragments. GC has a set of sub-trees A = {A1, A2, ..., An}. By definition, each vertical

fragment VFi contains a projection such that VFi = GCA' , where AA ' . Let Q be

an algebraic tree that represents a query q over GC, and Q’ the result produced by the

localization layer on Q. Let P be the set of sub-trees (AP) used by operations in Q’.

A fragment VFi can be eliminated from Q’, if Q’ does not use as an operand any sub-

tree contained in A’, such that iP VF = . This projection is empty when the

following rule holds: iP VF = if the set of sub-trees P has no sub-tree in A’.

3.2.3. Hybrid Fragmentation

Hybrid fragmentation is characterized by fragments composed of selection and/or

projection operations. It must contain at least one fragment defined using both

operations (selection and projection).

The reconstruction of the global collection in face of a hybrid fragmentation is

done using union and joins applied over the fragments. The reconstruction rule of the

global collection is constructed depending on how the operations are used in the

fragments. A hybrid fragmentation can be reconstructed by a join applied over unions,

or by a union applied over joins, depending on the type of hybrid fragmentation.

A hybrid fragmentation is of type primary horizontal when it is created by a

horizontal fragmentation followed by a vertical fragmentation of these horizontal

fragments. Similarly, a hybrid fragmentation is of type primary vertical when it is

created by a vertical fragmentation followed by a horizontal fragmentation of these

vertical fragments. Determining the type of hybrid fragmentation is essential to identify

which reconstruction rule should be used. It can be determined as follows:

Definition 5: Let GC be a global collection and YF1, YF2, ..., YFn its hibrid

fragmetns, ordered in the sequence in which they were created. If YF1 is defined using

only a selection operation, then the hybrid fragmentation is of type primary horizontal.

If YF1 is defined only by a projection operation, then the fragmentation is of type

primary vertical. Otherwise, we must read the definitions of the sibling fragment YF2.

This fragment will have a selection or projection operation that is identical to the same

operation in YF1. Is this identical operation is a selection, than the hybrid fragmentation

is of type primary horizontal, otherwise, it is primary vertical.

After we identify the type of hybrid fragmentation, we can create the

reconstruction function for the global collection. The following rule shows how we can

create this function for a primary vertical fragmentation. The rule for primary horizontal

fragmentation can be easily obtained by adaptation in this rule.

Definition 6: Let GC be a global collection and YF1, YF2, ..., YFn its primary

vertical hybrid fragments. This type of fragmentation is defined initially by a vertical

fragmentation. According to Definition 3, the root of the global collection

reconstruction function will be a join operation. If there are fragments YFi defined only

by the projection operation, such fragments can be treated as vertical fragments and

added to the reconstruction function by using the rules of Definition 3. For each

fragment YFj defined over selection and projection operations, we must find its sibling

fragments, that is, fragments the have projection operations identical to the one in YFj.

These sibling fragments are a result of a horizontal fragmentation applied over a vertical

fragment, and can be united according to Definition 1. In this way, we can create the

reconstruction function of a hybrid fragmentation using as basis the rules for horizontal

and vertical fragmentation.

After constructing the algebraic expression using the reconstruction rules, we can

apply the same principles applied to horizontal and vertical fragmentation for reducing

irrelevant hybrid fragments. In this way, the reduction of a hybrid fragment can occur

due to selection and or projection predicates criteria.

3.3. Global Optimization

The global optimization layer is responsible for obtaining an algebraic plan of minimal

cost by creating equivalent variations of the algebraic plan obtained in the Localization

layer. These variations are obtained through algebraic transformations. The minimal cost

plan is obtained by using a cost function to choose the best among the alternative plans.

The seek for the optimal plan can be, besides very difficult and sometimes impossible,

very expensive to the query processing, which in the end reduces the gains obtained by

the optimizations of the algebraic plan. Consequently, this layer should also use

algebraic optimization heuristics and techniques for minimization of cost functions that

have the lowest possible processing cost. This layer is out of the scope of this report.

Thus we give readers only an overview of this layer.

The task of globally optimizing a distributed query starts by the generation of

query plans that are equivalent to localized query plan. This can be done by changing the

order of the operations in the plan; replacing the localization of fragments (when there

are replicas of fragments in different nodes of the system); etc.

For each equivalent plan produced in this step, we calculate the estimated cost by

using a cost function. The plan with lowest cost is chosen to execute the distributed

query. This cost function should use and estimate parameters to calculate the cost of

each plan operation, so it can obtain the total cost of the plan. Among the parameters,

we can cite the data volume processed by the operation, the cost of disk access, the cost

to data transfer in the network, volume estimations and histograms of the database,

estimation of data volume returned by a given operation, etc.

The Global Optimization layer has as a result a near-to-optimal execution plan.

Each operation in the optimized algebraic plan must know the site where it should be

executed. This site can be a remote site or the distributed DBMS. This algebraic plan

will be used to assemble sub-queries in XQuery that will execute all of the operations

designated to a given site.

3.4. Local Optimization

Local optimization is performed by the DBMS that stores the XML fragments in each of

the remote nodes. Any database capable of processing XQuery queries can be used,

since the sub-queries are generated in XQuery. Details about XQuery local optimization

in native XML DBMS are out of the scope of this work. Details about query processing

in native XML databases can be found in [SCHONING 2001, FIEBIG et al. 2002,

JAGADISH et al. 2002, MEIER 2002].

4. Implementation of the Methodology

To evaluate the technical viability of our methodology, and to evaluate the performance

of query processing in a distributed environment, we propose an architecture based on

the methodology we propose in Section 3. To compose a global view and also to serve

as a unique access point to the system, we propose the use of a mediator

[WIEDERHOLD 1992] as shown in Figure 5. The mediator is responsible for

processing distributed XML queries, thus making localization and fragmentation issues

completely transparent to users. Queries submitted over the global view are decomposed

in sub-queries that are executed over the fragments in the remote sites. The results of

each sub-query return to the mediator where the final result is built.

Figure 5. Mediator-Adapters architecture to execute XML queries over

distributed databases

Our prototype implementation was completely based on the architecture

presented in Figure 5. Its main components are explained in the next sections.

4.1. Mediator

The Mediator is the main component of the architecture, since it is responsible for

processing the distributed query. It is also responsible for the decomposition and

localization layers of our methodology.

Figure 6. Blocks diagram of the Mediator components

The architecture we propose for the Mediator follows the basic query processing

architecture presented in [KOSSMAN 2000], as shown in Figure 6. This architecture

has several modules. Each of them is responsible for a step of the distributed query

processing, as we describe below.

Parser: the parser is responsible for syntactically validating the XQuery query

submitted by the user. The query parsing is the first step in the query decomposition

layer, as mentioned in Section 3.1. To implement the parser, we have used the JavaCC

with JJTree libraries [SUN MICROSYSTEMS 2006]. These libraries automatically

constructs a parser using as input the grammar of the language that will be accepted by

the parser. Besides performing syntactical validation, the parser transforms a textual

query into an internal representation that will be used in the next processing step.

TLC Converter: this module transforms a XQuery query into na equivalent

TLC algebraic representation. It implements the XQuery/TCL conversion algorithm

proposed in [JAGADISH et al. 2001].

Locator/Reducer: this module is responsible for the data localization layer of

our methodology. It performs the following activities: (i) replacement of references of

global collections by references to fragments of these collections; (ii) reduction of

irrelevant fragments (see Section 3.2). This module uses Catalog data to locate global

collections.

Global Optimizer: the global optimizer is responsible for the global

optimization layer of our methodology. In our prototype implementation, we developed

an optimizer that produces a set equivalent of algebraic plans from replicas of fragments

existing in the distributed environment to find (by using a cost function) the lowest cost

plan. Other approaches and heuristics could have been used to optimize the global query

plan, as mentioned in Section 3.3.

Cost Function: this is the module responsible for calculating the cost of a given

algebraic plan. To do so, it uses statistical data of each fragment, selectivity parameters,

disk read weight, communication weight, etc. In the prototype implementation, our cost

function uses only communication weight and an estimation of the total number of

nodes of a fragment. The cost is calculated bottom-up. We perform an estimation of the

data volume that will be processed by each operation in the plan, and also the data

volume that will be transferred between the operations. Operations that are executed in

the same node have no communication cost, but on the other hand, cannot be executed

in parallel, which could compensate the communication costs in some cases.

Sub-query generator: this module generates the sub-queries of the optimized

algebraic plan. Each sub-query in algebra is translated to XQuery and sent to the

appropriate Adapter. A sub-query can also stay in the Mediator for composing the final

result. The XQuery sub-queries are generated using the inverse XQuery/TLC algorithm

used in the TLC Conversor, thus generating XQuery from TLC expressions.

Adapter Proxy: the Adapter proxy allows the communication between the

Mediator and the Adapters. This is done by using protocols for Web Service calls. The

proxy allows us to define the address of the Adaptor that will be invoked, making the

communication process transparent to the rest of the Mediator.

Results Consolidator: this module generates the final result of a query. In our

implementation, the final result composition is done through the execution of a local

XQuery query over the results sent by the Adapters, as shown in Figure 7. We use the

Saxon XQuery processor [SAXONICA LIMITED 2006] to execute the query in

memory, without having to store the results sent by the Adapters (this would slow down

the query execution). This was done to simplify the implementation of the prototype.

Another alternative would be the Mediator to physically execute the algebraic

operations of result composition. In this way, it could use streaming processing

techniques, which would certainly improve the performance of queries over large

volumes of data. When there is only one sub-query, there is no need for result

composition -- the final result will be the result of this sub-query.

Figure 7. Sub-queries sent to remote nodes and to the Mediator

Note that the remote sub-queries on Figure 7 uses the VIEW expression to refer

to a fragment. This sub-query will be processed by an Adaptor in the remote database,

where this VIEW expression will be replaced by the correct XQuery syntax that

represents the local address of the document or collection queried.

Another detail in this example is the execution of the order by operation only in

the Mediator (not on the remote sub-queries). Since we use the Saxon API to execute

the results consolidation sub-query in the Mediator, we have no control over the

algorithm that is used in the union operation performed over the fragments. If we were

executing our methodology in a native XML database, for instance, we could execute

the ordering operation in the remote sub-queries and make the Mediator to unite the

fragments using a merge algorithm, thus taking advantage of the pre-order of the results.

Mediator Proxy: in the same way of the Adapter Proxy, the Mediator Proxy

allows a client to communicate with the Mediator through the implementation of

communication protocols e together with the configuration of specific attributes in the

Mediator. It is important to notice that, despite they are different proxies, the interface

they implement is exactly the same. The Mediator proxy was implemented only to make

the development of client applications easier.

4.2. Catalog

The Catalog stores all information needed to process a distributed query. In special, it

serves the layers of data localization by providing the name and schema of global views,

the fragments that compose the global view, the definition of each fragment, the address

of each remote Adapter that has a copy of a given fragment, statistics about

fragments.(total number of nodes, selectivity characteristics, etc.). The Catalog was

implemented as a set of Java objects that can be serialized and deserialized in an XML

document for manual edition.

 One of the most important information stored in the Catalog is the definition of

the fragments of the global collections. Using the relationship between the selection and

projection criteria that forms the fragments, the Mediator is capable of assembling a

reconstruction operation to reconstruct the global view from its remote fragments. The

relationship of the fragment predicates also allows the Mediator to reduce the algebraic

query plan by removing the operations over the irrelevant fragments for a given query.

4.3. Adaptors

The Adaptors are responsible for the execution of the sub-queries in the XML DBMS

attached to them through a library or communication protocol. The result of each sub-

query is sent to the Mediator for final result composition.

We have implemented two types of adapters to execute XQuery sub-queries. One

uses eXist [EXIST DEVTEAM 2006] (a native XML DBMS) and the other one uses

Saxon [SAXONICA LIMITED 2006] (a Java library to process XQuery queries over

documents stored in the file system or in memory). By using the Web Service interface

published by the Adapters, the nature of the XML database is transparent to the

Mediator. It can be a native XML DBMS, as eXist, and also an XQuery processor API

such as Saxon. This transparency to the Mediator allows one to implement different

adapters to different XML databases, or even to relational or OO databases that publish

XML views corresponding to the fragments needed by the Mediator.

The implementation of an adapter is relatively simple, since the XQuery query

sent by the Mediator is almost read for execution. The only responsibility of the

Adapter, besides implementing the communication interface with the Mediator, is to

update the location of the queries XML document or collection to its address in the local

database (or disk). To do so, the Adapter has a configuration file that contains the

mapping of the document name (fragment) with its complete address in the local server.

After performing this mapping, the Adaptor can execute the query using the interface or

API to the database it is connected to. This resource allows the Mediator not to worry

with storage details on the adapters. It delegates this responsibility. The blocks diagram

of an Adaptor components is shown in Figure 8.

Figure 8. Blocks diagram of Adaptor components

Over the implementation of the Mediator and Adapters, we executed local tests

to evaluate the implementation modules. After these initial tests, we started the planning

of a series of experiments to be executed in laboratory and analyzed the results. We

show them in the next section.

5. Experimental Evaluation

Our experiments were executed in laboratory. The environment was set up with three

computers in a local network (Node 0, Node 1 and Node 2). The computers had all the

same configuration: 1.8 GHz Dual Core Pentium with RAM memory of 1 GB running

Windows XP. We have installed eXist Adapters in all of them. Additionally, one of the

nodes (Node 0) played the role of the Mediator. The servers of the distributed

environment were totally dedicated to our tests. We have programmed a simple

application to collect the experimental results. They are analyzed in this section

We have defined four scenarios for our experiments: scenario 0, centralized with

no fragmentation; scenario 1, distributed with no fragmentation; scenario 2, distributed

with little fragmentation; scenario 3, distributed and heavily fragmented. They are

described in details in Tables 1 and 2.

Table 1. Definition of the experimental scenarios 0, 1 and 2

Scenario 0

Base Fragments Type Size Location

CLoja CLoja_c0 SD 4,71 MB Node 0

COrders COrders_c0 MD 10,1 MB Node 0

Scenario 1

Base Fragments Type Size Location

CLoja CLoja_c1 SD 4,71 MB Node 1

COrders COrders_c1 MD 10,1 MB Node 1

Scenario 2

Base Fragments Type Size Location

CLoja

CLoja_c2_fv1 := ItensLojaLojalojaC //,/, SD 4 KB Node 1

CLoja_c2_fv2 := ,//, ItensLojalojaC SD 4,71 MB Node 2

COrders

COrders_c2_fh1 := 4000//, totalorderordersC MD 3,23 MB Node 0

COrders_c2_fh2 :=

8000//^4000//, totalordertotalorderordersC
MD 3,70 MB Node 1

COrders_c2_fh3 := 8000//, totalorderordersC MD 3,16 MB Node 2

The queries were defined based on a benchmark [YAO et al. 2002], on related

work [ANDRADE et al. 2006] and some were defined by us to include some queries

that would be beneficiated with the fragmentation and others that wouldn’t, in order to

have experimental results in these two situations. The definition of the complete set of

queries is available at Appendix A.

The analysis of the results was done by comparing the average total time of

query execution in all of the scenarios. We have also analyzed the average total time of

query execution without the communication time between the Mediator and the

Adapters. Finally, for each query in each scenario, we analyzed the average total

compilation time at the Mediator, so that we could individually verify the cost of query

decomposition.

The comparison of the average total time of query execution in the scenarios we

assembled was done through a graphic that shows the query execution time normalized

by the execution time of the same query in scenario 0. Thus, we calculate for each

query, the reason between its average execution time in scenarios 1, 2 and 2, with the

average time in scenario 0. Consequently, the average time in scenario 0, is always equal

to 1 in our graphics. Figure 9 shows a performance comparison of queries over a

vertically/hybrid fragmented SD collection (CStore), while Figure 10 shows the results

for queries over a horizontally fragmented MD collection (COrders).

Table 2. Definition of the experimental scenario 3

Scenario 3

Base Fragments Type Size Location

CLoja

CLoja_c3_fy1 := ItensLojaLojalojaC //,/, SD 4 KB Node 1

CLoja_c3_fy2 := ""//,//, BrinquedosSecaoItemItensLojalojaC SD 1 MB Node 0

CLoja_c3_fy3 := ""//,//, GamesSecaoItemItensLojalojaC SD 284 KB Node 0

CLoja_c3_fy4 := ""//,//, PerfumariaSecaoItemItensLojalojaC SD 97 KB Node 1

CLoja_c3_fy5 := cos""//,//, EletroniSecaoItemItensLojalojaC SD 727 KB Node 1

CLoja_c3_fy6 := ""//,//, CDSecaoItemItensLojalojaC SD 907 KB Node 2

CLoja_c3_fy7 := ""//,//, DVDSecaoItemItensLojalojaC SD 477 KB Node 2

CLoja_c3_fy8 := ""//,//, LivrariaSecaoItemItensLojalojaC SD 896 KB Node 2

CLoja_c3_fy9 :=

""//^
""//^

""//^
cos""//^

""//^
""//^

""//,//,

LivrariaSecaoItem
DVDSecaoItem
CDSecaoItem
EletroniSecaoItem
PerfumariaSecaoItem
GamesSecaoItem

BrinquedosSecaoItemItensLojalojaC

SD 648 KB Node 2

COrders

COrders_c3_fh1 := 2000//, totalorderordersC MD 1,36 MB Node 0

COrders_c3_fh2 := 4000//^2000//, totalordertotalorderordersC MD 1,86 MB Node 0

COrders_c3_fh3 := 6000//^4000//, totalordertotalorderordersC MD 1,87 MB Node 1

COrders_c3_fh4 := 8000//^6000//, totalordertotalorderordersC MD 1,83 MB Node 1

COrders_c3_fh5 := 10000//^8000//, totalordertotalorderordersC MD 1,87 MB Node 2

COrders_c3_fh6 := 10000//, totalorderordersC MD 1,29 MB Node 2

For the queries executed over the SD collection (Figure 9), there was no

performance gains because of distribution and fragmentation. Even for those queries

that would benefit from fragmentation (those that query a single fragment), the times

introduced by the distributed architecture such as communication times between nodes

and compilation time in the Mediator were significant when compared to the total query

time in the centralized environment (scenario 0). Because of this, their performance

were inferior in the distributed environment.

Figure 9. Comparison of Total Execution Time of queries over CLoja - scenarios

0 (normalized), 1, 2 e 3.

Figure 10. Comparison of Total Execution Time of queries over COrders -

scenarios 0 (normalized), 1, 2 e 3.

Figure 11. Comparison of total execution time of queries over a SD collection in

scenarios 0 (normalized), 1, 2 and 3

Some queries over the MD collection (Figure 12) presented gains in the

distributed environment. Some achieved reductions in the order of 95% when compared

to the execution time in centralized environment. The major gains were observed in

queries that totally benefit from fragmentation and have results aggregation. Queries

with fragmentation benefit, but no aggregation functions obtained gains between 10 and

40%.

Figure 12. Comparison of total execution time of queries over a MD collection in

scenarios 0 (normalized), 1, 2 and 3

During the analysis of our results, we noticed that the time spent with the

communication between the nodes and the Mediator, and between the Mediator and the

client, was high when compared to the total execution time of the queries. To evaluate

the performance of the distributed queries without the interference of the

communication costs, we have recalculated the query execution times by removing the

communication costs. The results are presented in Figure 11 and Figure 12.

With these results, we conclude that the performance problems found in the

queries over the SD collection were related to the communication cost in most of the

times, especially because of the use of web services as the interface technology which

increases the communication overhead. However, even when we exclude the

communication costs, these queries still show no performance gains. When we compare

the results obtained by the SD and MD collections, we can easily see that the

fragmentation of the MD collection COrders presented better results. The (centralized)

query processing over eXist in the SD collection was more efficient than over the MD

collection. This explains the better results of the fragmentation of the MD collection. In

a MD collection, the database has to parse all documents to process a query, and this

increases the query execution time. For this reason, a SD collection with hybrid

fragments will also have this disadvantage.

Based on our results, we can conclude that the fragmentation of an XML

database is possible by using a XQuery decomposition system as proposed in our work.

The results show that it is possible to reduce query execution times up to 95%,

depending on the type of fragmentation, on the query and on the queried data volume.

However, the fragmentation of na XML database needs to be carefully planned. It can

highly improve the performance of queries that benefit from fragmentation, but it also

can significantly reduce the performance of queries that do not benefit from

fragmentation. The more fragmented a base is, the more severe these behaviors will be.

For this reason, we need a methodology to design fragmented XML databases, similar to

the existing ones for OO [BAIÃO et al. 2004] and relational [ÖZSU,VALDURIEZ

1999] models. With this, the fragmentation process of an XML base would be easier, or

even automatic (based on the history of queries over the database).

6. Final Remarks

This report has shown a solution to query processing over distributed and fragmented

native XML databases. Our goal was achieved by using the TLC algebra [PAPARIZOS

et al. 2004] to process distributed queries, as well as a definition of XML fragmentation

[ANDRADE et al. 2006] that provides us formal reconstruction rules of the original

XML document from its fragments.

 Our solution is based on distributed query processing techniques for relational

databases [ÖZSU,VALDURIEZ 1999]. We make an analogy of the relational model

with the semi-structured model so we can take advantage of the techniques in our

approach. We propose the use of a Mediator with Adapters architecture

[WIEDERHOLD 1992] for the distributed databases. The Mediator is responsible for

processing the distributed query by implementing the layers: query decomposition, data

localization, global optimization, generation of sub-queries to be sent to the Adapters,

and consolidation of the final result. The Adapters are responsible for executing the sub-

queries sent by the Mediator over the fragments. From the fragments definitions (stored

in the Catalog), we could define rules to reduce the global query to assure that only

relevant fragments would be accessed. This improves the performance of distributed

queries.

We have implemented prototypes of the Mediator and Adapters by using the

eXist native XML database [EXIST DEVTEAM 2006]. The implementation was totally

based on the rules and definitions shown in this report, with the goal of proving the

viability of our proposal. Several experiments were conducted using the three types of

fragmentation: horizontal, vertical and hybrid.

Our experiments have shown that our solution can achieve performance

improvements of up to 95% when compared to the centralized environment, for queries

that benefit form the fragmentation. This reduction in query processing time was

obtained due to the reduction of irrelevant fragments done by the Mediator, and also due

to the intra-query parallelism of the distributed environment. Queries that do not benefit

from fragmentation presented inferior processing time when compared to the centralized

environment, because of the additional processing in the Mediator. The experiments

have also shown that the use of Web Services in the interface of the components of our

architecture compromised the queries performance due to the time spent with

communication between nodes. On the other hand, the use of Web Services allows more

interoperability between the architecture components. In this way, nodes can be

heterogeneous, as in the example of integration of semi-autonomous databases of the

branches of a bookstore.

References

ABITEBOUL, S. (1999) "On views and XML", In: PODS, p. 1-9. ACM Press,

Philadelphia, Pennsylvania, United States.

ABITEBOUL, S., BUNEMAN, P., SUCIU, D. (1999) "Data on the Web: From

Relations to Semistructured Data and XML", Morgan Kaufmann Publishers, San

Francisco, California, USA.

AGUILERA, V., CLUET, S., MILO, T., VELTRI, P., VODISLAV, D. (2002) "Views in

a Large Scale XML Repository", The VLDB Journal, v. 11, 3, p. 238-255.

ANDRADE, A., 2006, PARTIX: Projeto de fragmentação de dados XML,

Dissertação de M.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.

ANDRADE, A., RUBERG, G., BAIÃO, F., BRAGANHOLO, V., MATTOSO, M.

(2005) "PartiX: processing XQuery queries over fragmented XML repositories", In:

Technical Report ES-691. COPPE/UFRJ, Rio de Janeiro, RJ.

ANDRADE, A., RUBERG, G., BAIÃO, F., BRAGANHOLO, V., MATTOSO, M.

(2006) "Efficiently processing XML queries over fragmented repositories with

PartiX", In: DATAX, p. 150-163, Munich, Germany.

BAIÃO, F., MATTOSO, M., ZAVERUCHA, G. (2004) "A Distribution Design

Methodology for Object DBMS", In: Distributed and Parallel Databases, v. 16, p. 45-

90. Kluwer Academic Publishers, Hingham, MA, USA.

BAIÃO, F., MATTOSO, M., ZAVERUCHA, G. (2000) "Horizontal Fragmentation in

Object DBMS: New Issues and Performance Evaluation", In: IPCCC, p. 108-114.

IEEE CS Press, Phoenix, AZ, USA.

BARU, C., GUPTA, A., LUDAESHER, B., MARCIANO, R.,

PAPAKONSTANTINOU, Y., PAVEL, V., CHU, V. (1999) "XML-Based

Information Mediation with MIX", In: SIGMOD, p. 597-599. ACM Press.

BREMER, J.-M., GERTZ, M. (2003) "On Distributing XML Repositories", In: WebDB,

p. 73-78, San Diego, California.

BUNEMAN, P. (1997) "Semistructured Data", In: PODS, p. 117-121. ACM Press,

Tucson, Arizona.

CHEN, Z., JAGADISH, H. V., LAKSHMANAN, L. V. S., PAPARIZOS, S. (2003)

"From Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation of

XQuery", In: VLDB, p. 237-248, Berlin, Germany.

EXIST DEVTEAM, 2006, "eXist: Open Source Native XML Database", v. 1.1.

Disponível em http://exist.sourceforge.net/.

FERNÁNDEZ, M., SIMÉON, J., WADLER, P. (2000) "An Algebra for XML Query",

In: FSTTCS, p. 11-45. Springer-Verlag, London, UK.

FIEBIG, T., HELMER, S., KANNE, C., MOERKOTTE, G., NEUMANN, J.,

SCHIELE, R., WESTMANN, T. (2002) "Anatomy of a native XML base

management system", The VLDB Journal, v. 11, 4, p. 292-314.

FRASINCAR, F., HOUBEN, G.-J., PAU, C. (2002) "XAL: an algebra for XML query

optimization", In: Australian Database Conference, p. 49-56. Australian Computer

Society, Inc., Melbourne, Victoria, Australia.

GARDARIN, G., MENSCH, A., DANG-NGOC, T.-T., SMIT, L. (2002) "Integrating

Heterogeneous Data Sources with XML and XQuery", In: DEXA, p. 839-846. IEEE

Computer Society.

GERTZ, M., BREMER, J.-M. (2003) "Distributed XML Repositories: Top-down

Design and Transparent Query Processing". Department of Computer Science.

http://exist.sourceforge.net/

GUPTA, N., HARITSA, J., RAMANATH, M. (2000) "Distributed Query Processing on

the Web", In: ICDE, p. 1-20. IEEE Computer Society.

IVES, Z. G., HALEVY, A. Y., WELD, D. S. (2002) "An XML query engine for

network-bound data", The VLDB Journal, v. 11, 4, p. 380-402.

JAGADISH, H. V., AL-KHALIFA, S., CHAPMAN, A., LAKSHMANAN, L. V. S.,

NIERMAN, A., PAPARIZOS, S., PATEL, J., SRIVASTAVA, D., WU, Y. (2002)

"TIMBER: A native XML database", VLDB Journal, v. 11, 4, p. 274-291.

JAGADISH, H. V., LAKSHMANAN, L. V. S., SRIVASTAVA, D., THOMPSON, K.

(2001) "TAX: A Tree Algebra for XML", In: DBPL, p. 149-164.

KOSSMAN, D. (2000) "The State of the Art in Distributed Query Processing", In: ACM

Computing Surveys, v. 32, p. 422-469.

LEE, K., MIN, J., PARK, K., LEE, K. (2002) "A Design and Implementation of XML-

Based Mediation Framework (XMF) for Integration of Internet Information

Resources", In: Hawaii International Conference on System Sciences, v. 7, p. 202-

211. IEEE Computer Society.

MA, H., SCHEWE, K.-D. (2003) "Fragmentation of XML documents", In: XVIII

Simpósio Brasileiro de Banco de Dados, p. 200-214, Manaus, AM, Brasil.

MEIER, W. (2002) "eXist: An Open Source Native XML Database", In: Web, Web-

Services, and Database Systems, v. 2593, p. 169-183. Springer, Erfurt, Germany.

ÖZSU, M. T., VALDURIEZ, P. (1999) "Principles of Distributed Database Systems". 2

ed., Prentice Hall

PAPARIZOS, S., WU, Y., LAKSHMANAN, L. V. S., JAGADISH, H. V. (2004) "Tree

Logical Classes for Efficient Evaluation of XQuery", In: SIGMOD, p. 71-82. ACM.

RE, C., BRINKLEY, J., HINSHAW, K. P., SUCIU, D. (2004) "Distributed XQuery",

In: IIWeb, p. 116-121, Toronto, Canada.

SAXONICA LIMITED, 2006, "Open Source SAXON XSLT Processor, v.8.8".

Disponível em http://saxon.sourceforge.net/.

SCHONING, H. (2001) "Tamino - A DBMS designed for XML", In: ICDE, p. 149-154.

IEEE Computer Society, Washington, DC, USA.

http://saxon.sourceforge.net/

SILVEIRA, F. V., HEUSER, C. (2005) "Decomposição de Consultas sobre Múltiplas

Fontes XML", In: I Escola Regional de Banco de Dados, Porto Alegre, RS, Brasil.

SUCIU, D. (2002) "Distributed Query Evaluation on Semistructured Data", ACM

TODS, v. 27, 1, p. 1-62.

SUN MICROSYSTEMS, 2006, "Java Compiler Compiler 4.0 (JavaCC)". Disponível

em https://javacc.dev.java.net/.

W3C, W. W. W. C. (2006), "Extensible Markup Language (XML) 1.0". Disponível em:

http://www.w3.org/TR/REC-xml/, acessado em 20/01/2007.

WIEDERHOLD, G. (1992) "Mediators in the Architecture of Future Information

Systems", In Michael N.Huhns and Munindar P.Singh, Readings in AgentsMorgan

Kaufmann

YAO, B., ÖZSU, M. T., KEENLEYSIDE, J. (2002) "XBench: A Family of Benchmarks

for XML DBMSs", In: EEXTT.

ZHANG, X., PIELECH, B., RUNDESNTEINER, E. (2002) "Honey, I shrunk the

XQuery!: an XML algebra optimization approach", In: WIDM, p. 15-22. ACM Press,

New York, NY, USA.

Appendix A – Queries used in the experimental evaluation

CLoja_bns_c01.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja
 for $a in collection('Cloja_c?.xml')/Loja/Itens/Item
 where $a/Secao = "CD"
 return
 <loja>
 { $a/Nome }
 { $x/Secoes }
 </loja>
 }
</results>

https://javacc.dev.java.net/
http://www.w3.org/TR/REC-xml/,

CLoja_bps_c02.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Itens/Item
 where $x/Lancamento = "T"
 order by $x/Codigo
 return
 <lancamento_t>
 { $x }
 </lancamento_t>
 }
</results>

CLoja_bts_c03.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Itens/Item
 where $x/Secao = "CD"
 return
 <output>
 { $x/Nome }
 </output>
 }
</results>

CLoja_bts_c04.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Itens/Item
 where $x/Secao = "Livraria"
 return
 <output>
 { $x/Nome }
 </output>
 }
</results>

CLoja_bts_c05.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Itens/Item
 where $x/Secao = "CD"
 and $x/Lancamento = "T"
 return
 <output>
 { $x/Nome }
 </output>
 }
</results>

CLoja_bts_c06.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Itens/Item
 where $x/Secao = "Perfumaria"
 return
 <output>
 { $x/Nome }
 { $x/Preco }
 </output>
 }
</results>

CLoja_bpc_c07.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Itens/Item
 where count($x/Caracteristica) >= 4
 order by $x/Codigo
 return
 <output>
 { $x }
 </output>
 }
</results>

CLoja_btc_c08.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Itens/Item
 where $x/Secao = "CD"
 and count($x/Caracteristica) >= 4
 return
 <output>
 { $x }
 </output>
 }
</results>

CLoja_bps_c09.xq

<results>
 {
 for $x in
collection('Cloja_c?.xml')/Loja/Funcionarios/Funcionario
 return
 <output>
 { $x }
 </output>
 }
</results>

CLoja_bpc_c10.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Funcionarios
 return
 <TotalPagamento>
 { sum($x/Funcionario/Salario) }
 </TotalPagamento>
 }
</results>

CLoja_bps_c11.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja
 return
 <loja>
 { $x/Funcionarios }
 </loja>
 }
</results>

CLoja_bts_c12.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Itens/Item
 where $x/Secao = "Brinquedos"
 return
 <output>
 { $x/Nome }
 { $x/Preco }
 </output>
 }
</results>

CLoja_bts_c13.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Itens/Item
 where $x/Secao = "Brinquedos"
 and $x/Preco > 50
 return
 <output>
 { $x/Nome }
 { $x/Preco }
 </output>
 }
</results>

CLoja_bts_c14.xq

<results>
 {
 for $x in collection('Cloja_c?.xml')/Loja/Itens/Item
 where $x/Secao = "Perfumaria"
 and $x/Preco > 40
 return
 <output>
 { $x/Nome }
 { $x/Preco }
 </output>
 }
</results>

COrders_bns_c01.xq

<results>
 {
 for $order in collection('Corders_c?.xml')/order
 where $order/@id = "1"
 return
 <order>
 { $order }
 </order>
 }
</results>

COrders_bns_c02.xq

<results>
 {

 for $a in collection('Corders_c?.xml')/order
 where $a/@id = "3"
 return
 <items>
 { $a//order_line/item_id }
 </items>
 }
</results>

COrders_bts_c03.xq

<results>
 {

 for $a in collection('Corders_c?.xml')/order
 where $a/total > 11000
 order by $a/ship_type, $a/@id
 return
 <Output>
 {$a/@id}
 {$a/order_date}
 {$a/ship_type}
 </Output>
 }
</results>

COrders_bts_c04.xq

<results>
 {

 for $a in collection('Corders_c?.xml')/order
 where $a/total > 11000.0
 order by $a/total descending, $a/@id
 return
 <Output>
 {$a/@id}
 {$a/order_date}
 {$a/total}
 </Output>
 }
</results>

COrders_bns_c05.xq

<results>
 {

 for $a in collection('Corders_c?.xml')/order
 where $a/@id = "5"
 return
 <Output>
 {$a/order_lines}
 </Output>
 }
</results>

COrders_bns_c06.xq

<results>
 {

 for $a in collection('Corders_c?.xml')/order
 where count($a/order_lines/order_line) = 1
 order by $a/@id
 return
 <Output>
 {$a/@id}
 </Output>
 }
</results>

COrders_bns_c07.xq

<results>
 {

 for $a in collection('Corders_c?.xml')/order
 where $a/@id = "6"
 return
 <Output>
 {$a}
 </Output>
 }
</results>

COrders_bpc_c08.xq

<results>
 {
 for $order in collection('Corders_c?.xml')/order
 let $l := $order/order_lines/order_line
 where $order/total > 7000
 and count($l) >= 5
 order by $order/ship_date, $order/@id
 return
 <order>
 { $order/@id }
 { $order/ship_date }
 { $order/total }
 <total_items>
 { count($l) }
 </total_items>
 </order>
 }
</results>

COrders_bps_c09.xq

<results>
 {
 for $order in collection('Corders_c?.xml')/order
 where $order/total > 7000
 order by $order/ship_date, $order/@id
 return
 <order>
 { $order/@id }
 { $order/ship_date }
 { $order/total }
 </order>
 }
</results>

COrders_bts_c10.xq

<results>
 {
 for $order in collection('Corders_c?.xml')/order
 where $order/total > 10000
 order by $order/ship_date, $order/@id
 return
 <order>
 { $order/@id }
 { $order/ship_date }
 { $order/total }
 </order>
 }
</results>

COrders_bts_c11.xq

<results>
 {
 for $order in collection('Corders_c?.xml')/order
 where $order/total > 10000
 order by $order/@id
 return
 <order>
 { $order/@id }
 { $order/ship_date }
 { $order/total }
 </order>
 }
</results>

COrders_bps_c12.xq

<results>
 {
 for $order in collection('Corders_c?.xml')/order
 where $order/total > 7000
 order by $order/@id
 return
 <order>
 { $order/@id }
 { $order/ship_date }
 { $order/total }
 </order>
 }
</results>

COrders_bts_c13.xq

<results>
 {
 for $order in collection('Corders_c?.xml')/order
 where $order/total > 7000
 and $order/total < 8000
 order by $order/@id
 return
 <order>
 { $order/@id }
 { $order/ship_date }
 { $order/total }
 </order>
 }
</results>

COrders_btc_c14.xq

<results>
 {
 for $order in collection('Corders_c?.xml')/order
 let $l := $order/order_lines/order_line
 where $order/total < 2000
 and count($l) >= 5
 order by $order/ship_date, $order/@id
 return
 <order>
 { $order/@id }
 { $order/ship_date }
 { $order/total }
 <total_items>
 { count($l) }
 </total_items>
 </order>
 }
</results>

COrders_bnc_c15.xq

<results>
 {
 for $order in collection('Corders_c?.xml')/order
 let $l := $order/order_lines/order_line
 where count($l) >= 5
 order by $order/ship_date, $order/@id
 return
 <order>
 { $order/@id }
 { $order/ship_date }
 { $order/total }
 <total_items>
 { count($l) }
 </total_items>
 </order>
 }
</results>

COrders_btc_q16.xq

<results>
 {
 for $order in collection('Corders_c?.xml')/order
 let $l := $order/order_lines/order_line
 where $order/total > 11000
 and count($l) >= 5
 order by $order/ship_date, $order/@id
 return
 <order>
 { $order/@id }
 { $order/ship_date }
 { $order/total }
 <total_items>
 { count($l) }
 </total_items>
 </order>
 }
</results>

