
BAYESIAN NETWORK STRUCTURE LOCAL LEARNING FROM

INCOMPLETE DATA

Roosevelt de Lima Sardinha

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Gerson Zaverucha

Rio de Janeiro

Fevereiro de 2014

BAYESIAN NETWORK STRUCTURE LOCAL LEARNING FROM

INCOMPLETE DATA

Roosevelt de Lima Sardinha

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE

SISTEMAS E COMPUTAÇÃO.

Examinada por:

RIO DE JANEIRO, RJ – BRASIL

FEVEREIRO DE 2014

Sardinha, Roosevelt de Lima

Bayesian Network Structure Local Learning from

Incomplete Data/Roosevelt de Lima Sardinha. – Rio de

Janeiro: UFRJ/COPPE, 2014.

XII, 91 p.: il.; 29, 7cm.

Orientador: Gerson Zaverucha

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2014.

Bibliography: p. 80 – 84.

1. bayesian networks. 2. local learning. 3. incomplete

data. I. Zaverucha, Gerson. II. Universidade Federal

do Rio de Janeiro, COPPE, Programa de Engenharia de

Sistemas e Computação. III. T́ıtulo.

iii

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

APRENDIZADO LOCAL DE ESTRUTURAS DE REDES BAYESIANAS COM

DADOS INCOMPLETOS

Roosevelt de Lima Sardinha

Fevereiro/2014

Orientador: Gerson Zaverucha

Programa: Engenharia de Sistemas e Computação

Neste trabalho, o BBSL (Bayes Ball Structure Learning), um algoritmo para

aprendizado de estrutura de redes bayesianas a partir de dados incompletos é ap-

resentado. O BBSL melhora a classificação de uma variável escolhida pelo usuário

alterando a estrutura da rede nos arredores da variável de classe. Esse algoritmo é

capaz de lidar com dados incompletos utilizando o critério de d-separação, adotado

no algoritmo Bayes Ball, uma alternativa ao uso da Markov Blanket para dados in-

completos. BBSL é também um algoritmo de aprendizado local, o que permite que

sua execução não seja dependente do número de variáveis do domı́nio consideradas,

sendo uma alternativa de execução rápida a algoritmos presentes na literatura.

Os resultados obtidos neste trabalho mostram que o BBSL é uma alternativa

eficiente para o aprendizado que visa melhorar a classificação de uma dada variável.

O BBSL é comparado com um algoritmo baseado em restrições (GS), um h́ıbrido

(MMHC) e um baseado em pontuação (SEM com GHC), mostrando bons resultados

em termos de tempo, comparável a opção baseada em restrições, e em termos de

score CLL (Conditional Log-Likelihood). A abordagem local, usando d-separação,

e score próprio para problemas de classificação, contribui para que a busca seja

mais eficiente ao restrinǵı-la a um determinado conjunto de redes bayesianas com

modificações locais, reduzindo o tempo de execução do algoritmo, mesmo com dados

incompletos.

iv

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

BAYESIAN NETWORK STRUCTURE LOCAL LEARNING FROM

INCOMPLETE DATA

Roosevelt de Lima Sardinha

February/2014

Advisor: Gerson Zaverucha

Department: Systems Engineering and Computer Science

In this work, BBSL (Bayes Ball Structure Learning), an algorithm for learning

the structure of bayesian networks from incomplete data is presented. BBSL im-

proves the classification of a variable chosen by the user by changing the network

structure in the surroundings of the class variable. This algorithm is able to work

with incomplete data using d-separation criteria, in Bayes Ball, an alternative to

the use of the Markov Blanket for incomplete data. BBSL is also a local learning

algorithm, what allows it to execute independently of the number of variables in the

domain considered, being a fast execution alternative to algorithms present in the

literature.

The results obtained in this work show that BBSL is an efficient alternative to

learning for enhancing the classification of a specific variable chosen by the user.

BBSL is compared to a constraint-based algorithm (GS), a hybrid one (MMHC)

and a score-based one (SEM with GHC), presenting good results in terms of time,

comparable to the constraint-based option, and in terms of CLL (Conditional Log-

Likelihood) score. The local approach, using d-separation, and appropriate score to

classification tasks, contribute to a more efficient search by restricting it to a specific

set of bayesian networks with local changes, reducing the algorithm’s execution time,

even in the presence of incomplete data.

v

Contents

List of Figures viii

List of Tables ix

Abbreviations xi

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 6

1.3 Organization . 6

2 Background Knowledge 8

2.1 Bayesian Networks . 8

2.2 Conditional Independence in Bayesian Networks 11

2.3 Bayes Ball . 15

2.4 Structure Learning in Bayesian Networks 19

2.4.1 Score-Based Structure Learning 19

2.4.2 Constraint-Based Learning . 22

2.4.3 Hybrid or Mixed algorithms 26

2.5 Local and Global Approaches . 26

2.6 Incomplete Data . 27

2.6.1 Expectation Maximization . 28

2.6.2 Structural Expectation Maximization 31

2.7 Scores . 32

2.7.1 Log-Likelihood . 32

2.7.2 Conditional Log-Likelihood (CLL) 33

2.7.3 Akaike Information Criterion (AIC) 34

3 Bayes Ball Structure Learning 35

3.1 The First Step of BBSL (CollectRelevantVariables) 39

3.1.1 Procedure Illustration . 42

3.2 The Second Step of BBSL (SelectStructure) 44

vi

3.3 AICCLL score . 46

3.4 Other Approaches . 49

3.4.1 External Edges . 50

3.4.2 Lidstone Smoothing . 50

4 Experimental Results 52

4.1 Algorithms Used in Comparisons (DAHVI, SEMGHC , GS and MMHC) 52

4.1.1 Constraint-Based Choice . 53

4.1.2 Score-Based Choice . 53

4.1.3 Hybrid Choice . 54

4.2 Required Algorithm Adaptations . 54

4.3 Experimental Configurations . 55

4.4 Results . 58

4.4.1 CLL . 58

4.4.2 Time . 60

4.4.3 AICCLL . 63

4.4.4 Structural Hamming Distance (SHD) 66

4.4.5 Accuracy . 66

4.5 BBSL Configurations Analysis . 67

5 Related Work 70

6 Conclusions 77

Bibliography 80

A Detailed Results 85

vii

List of Figures

1.1 Bayesian Network structure example 2

2.1 Bayesian Network structure example 9

2.2 D-separation cases . 12

2.3 D-separation cases . 18

3.1 Bayesian Network example . 42

4.1 BBSL - Total execution time (seconds) 62

viii

List of Tables

2.1 Example of CPT for three variables X, Y and Z 10

2.2 CPTs for B, D and E . 13

2.3 Probabilities of B given D and E, B given E, B given D, and proba-

bility of B . 13

2.4 Number of possible Bayesian networks given the number of variables . 20

3.1 Example of dataset . 43

3.2 BBSL Counts . 44

4.1 CLL final score . 59

4.2 CLL Increase . 60

4.3 Detailed Average CLL . 61

4.4 Average execution time . 63

4.5 Detailed Average Time Spent (in seconds) 64

4.6 AICCLL Increase . 65

4.7 AICCLL final score . 65

4.8 SHD . 66

4.9 Accuracy . 67

4.10 BBSL - Randomly Initialized . 68

4.11 BBSL - Started from Disconnected Network 68

4.12 BBSL - Started from Simulated Expert Network 68

4.13 BBSL - Started from Simulated Expert Network with External Edges 68

5.1 Comparative - Algorithms Characteristics 76

A.1 Detailed Average AIC+CLL . 85

A.2 T-tests for AIC+CLL . 86

A.3 Detailed Average AIC+CLL Increase 86

A.4 T-tests for AIC+CLL (Difference) . 87

A.5 Detailed Average CLL . 87

A.6 T-tests for CLL . 88

A.7 Detailed Average CLL Increase . 88

ix

A.8 T-tests for CLL (Difference) . 89

A.9 Detailed Average Time Spent (in seconds) 90

A.10 T-tests for Time Spent . 91

x

Abbreviations

BD Bayesian Dirichlet

CLL Conditional Log-Likelihood

DMBC Dynamic Markov Blanket Classifier

BB Bayes Ball

ALARM A Logical Alarm Reduction Mechanism

MMPC Max-Min Parents and Children

BARD Bayesian Aerosol Release Detector

GHC Greedy Hill Climbing

ESS Expected Sufficient Statistics

CPT Conditional Probability Table

MIT Mutual Information Tests

NML Normalized Maximum Likelihood

AIC Akaike Information Criterion

GES Greedy Equivalent Search

BBSL Bayes Ball Structure Learning

DAG Directed Acyclic Graph

MCMC Monte Carlo Markov Chain

MMHC Max-Min Hill Climbing

MDL Minimum Description Length

LL Log-Likelihood

RAM Random Access Memory

BIC Bayesian Information Criterion

SEM Structural Expectation Maximization

BN Bayesian Network

EM Expectation Maximization

xi

GS Grow and Shrink

TLSA Two-Level Simulated Annealing

SLL Score-based Local Learning

SHD Strcutural Hamming Distance

GB Gigabyte

GSMB Grow and Shrink Markov Blanket

DAHVI Discriminative Approach for Hidden Variable Intro- duction

IAMB Incremental Association Markov Blanket

MB Markov Blanket

SS Sufficient Statistics

MI Mutual Information

ITS Intelligent Tutoring Systems

KS Koller-Sahami

xii

Chapter 1

Introduction

In this chapter, an introductory view of Bayesian networks is presented. Also, the

motivations that led us to develop this research, and to obtain a local structure

learning Bayesian network algorithm that, as shown in the presented results, is able

to improve the classification of a variable more than commonly used algorithms in

the literature. Applications of Bayesian networks are as well presented to support

our motivations, like medical diagnosis, genetics and reliability analysis. Moreover,

the objectives of this work and the topics exhibited in the next chapters are specified.

A Bayesian Network is a probabilistic graphical model able to represent, in a

compact way, a joint distribution of variables [1]. Besides this, it is able to answer

questions about this distribution, by the use of inference algorithms without obtain-

ing the joint distribution of all variables, in a more elegant, and computationally less

expensive way. Bayesian Networks can also be applied to a great variety of classifi-

cation and prediction problems that can be modeled as this kind of network, such as

genetic linkage analysis, speech recognition, information theory and reliability anal-

ysis [2]. As such, they have been widely used for uncertain reasoning in artificial

intelligence and expert systems [1]. Several applications in classification problems

have been developed like in diagnosis, in troubleshooting, in data mining and in

pattern recognition. Bayesian networks, unlike other methods, are able to represent

the relationship between variables in a human-readable way, through local proba-

bility distributions, conditional independence and independence representations in

a directed acyclic graph. They are also able to deal with incomplete data preserving

important characteristics from the missing data, like the missing data distribution

1

Figure 1.1: Bayesian Network structure example

pattern.

From a Bayesian network representation of a problem like the one shown in

Figure 1.1, one is able to answer queries involving the probability of a variable

assuming a certain value, given some evidence about the values of the others in the

variable set. This way queries can be answered, for instance: what is the probability

of variable Rain to assume value little, given that variable Season has assumed

value summer and variable Traffic Jam has assumed value low? These queries

can involve any set of variables in the network. But not only this kind of question

but other useful ones can be answered, like: Which one is the most probable value to

variable Get to the Bus Station to assume, since variables Rain, Crowded and

Bus passes have assumed values little, much and yes, respectively? And even

more immediate ones that can arise from the direct interpretation of the graph.

When using a Bayesian network we count on a set of tools already developed by

the scientific community in the form of exact and approximate algorithms, for tasks

such as inference and learning. As examples of inference algorithms found in the

literature, and some of them have already some software implementation available,

there are Variable Elimination [3], Junction Tree[3] and approximated methods

MCMC (Markov Chain Monte Carlo) based like Gibbs Sampling [3]. For learning

parameters of a Bayesian Network we have Gradient Ascent [3] and Expectation

Maximization [3]. And finally, for learning the structure of a Bayesian network from

2

a given dataset there are Grow and Shrink [4], Optimal Reinsertion [5] , Sparse

Candidate [6], Max-Min Hill Climbing [7], Greedy Equivalent Search [8], Simulated

Annealing [9], Dynamic Markov Blanket Classifier [10], B&B[11], and others.

1.1 Motivation

Bayesian networks, as shown in the book ”Bayesian networks: a practical guide

to applications” [12], have several interesting applications. Here some of them are

exemplified:

• Medical Diagnosis - since medical decisions are hard to do, and human-decision

making is not optimal for complex problems, under bad conditions, and with

plenty of information, physicians need assistance on decision-making and risk

evaluations. Bayesian networks can be applied to help in diagnosis, progno-

sis, and selection of therapy. Other applications are in clinical epidemiology,

disease surveillance, BARD (Bayesian Aerosol Release Detector), prediction

of secondary structure of a protein and discover causal pathways in gene ex-

pression data, the ALARM network for monitoring patients in intensive care,

diagnosing oesophageal cancer, mammography, diagnosing liver disorder and

assessment of cardiovascular risk;

• Genetics - discovering the genetic base for diseases and traits is a difficult work,

mainly when considering several possible genotypes and interaction from these

genotypes with the environment. Machine learning methods have been applied

to this problem and BNs are useful to discover genetic basis of complex traits

on the same time it provides prognostic models;

• Biomedicine and health-care;

• Decision support on crime risk factors in an area, helping analizing crime

patterns. It has been adopted as a useful approach for inference and prediction

in the crime problem domain. Also for forensic science, when dealing with

multiple sources of uncertainty;

• Classifying potential for mineral deposit occurrence by using a Bayesian classi-

fier to determine from some known barren or mineralized area, how mineralized

3

are the new areas being evaluated;

• Student modeling for use in Intelligent Tutoring Systems (ITS);

• Sensor validation algorithms - to evaluate if the output of a sensor indicates

a real value or if its just a sensor fault, avoiding wrong behaviour from sensor

dependent systems;

• Information retrieval;

• Reliability analysis of safety-critical systems;

• Terrorism risk management;

• Financial applications - as credit-rating of companies (how desirable is a com-

pany for investments), usually determined by specialists. BNs allow missing

data, and allow better evaluation than other methods, by making it possible

to evaluate the interactions between variables that caused the results.

Other applications cited at this book include: classification of wines, pavement

and bridge management, complex industrial processes operation, risk management

in robotics and human cognition enhancement. After all, applications presented

usually work with decision support, reliability analysis, complex tasks for a human

to reason about, and tasks involving uncertainty and possibly missing data.

In [13], Bayesian Networks are also said to be useful to evaluate the impact

of management maturity level, assess the usability of web sites using web logs,

monitoring bioreactors and to analyze customer survey data.

Although Bayesian networks are very useful, as shown in the last paragraphs,

it is necessary to build its structure and to determine its parameters before any

inference can be made. For this task, a commonly used approach is to build the

BN from the knowledge of a specialist and from the available literature. However,

this task is usually known as difficult and time consuming [14]. Furthermore, it may

lead to imprecise networks, since it often depends on the opinion of the specialists

involved. As shown in [14] it is still a useful aproach when data is unavailable.

Another approach, is to learn the network structure and parameters from data,

avoiding the difficulties presented before. It brings advantages like freeing the spe-

cialist time for use in other tasks. This is the approach used in this work.

4

Real-world applications usually have missing data, frequently as a result of the

process of gathering it. Sometimes data is difficult to obtain, the process of gathering

it has failures, or the missing value is a consequence of the behaviour of other

variables involved. As cited in [15], in a drug study a missing datum may be caused

by a patient that abandoned the research due to the side effects of it, becoming too

sick to continue.

Actually, several Bayesian network structure learning algorithms require com-

plete data for learning, what is incompatible with the situation of having missing

data in real-world applications. For instance, the constraint-based category of algo-

rithms, and popular score-based solutions like GHC (Greedy Hill Climbing) [3], K2

[16], Simmulated Annealing [9] need complete data to run. Even hybrid solutions

like MMHC [7] and H2PC [17], which start with a constraint-based approach, also re-

quire no missing data. Alternatives to work with incomplete data, that consider the

data incompletion pattern, are restricted, and include algorithms like SEM (Struc-

tural Expectation Maximization) [18] and some SEM-based variants for structure

learning. However, because of the high number of inferences demanded by working

with incomplete data, these approaches still take too much computation time.

In order to reduce the time consumed by the global SEM-based approaches, it is

proposed in this work a local alternative. The local approach for Bayesian network

structure learning is already present in algorithms like SLL [19] and DMBC [10],

but for complete data. For complete data, as in SLL, the local approach has shown

to be very fast. In [19] it is shown that a score-based local approach can have an

execution time competitive to constraint-based solutions. For incomplete data, as

far as we know, only DAHVI (Discriminative Approach for Hidden Variable Intro-

duction) [20], a structure revision algorithm that tries to improve the classification

of a variable by introducing hidden variables applies it.

United to all that was cited, several of the problems listed before where Bayesian

networks can be used are machine learning classification problems. Then, improving

the classification of a variable or group of variables is a desirable feature of an

algorithm for Bayesian networks, as proposed in this work.

The approach proposed uses the d-separation concept, that will be explained

later. It allows us to determine which are the variables that influence the classifica-

5

tion of a particular one in the algorithm to be presented. Since it may be used with

incomplete data, selecting variables accordingly to which ones are in the evidence,

it consists of a more flexible approach then the Markov Blanket one. The MB of a

variable consists of the minimum set of variables conditioned on which a variable is

conditionally independent of all others in the directed acyclic graph. It is a set com-

posed by the parents, children and spouses of the variable being evaluated. Since it

assumes these variables are in the evidence (”conditioned on which”), in the case of

unobserved variables, where these variables may not be in the evidence, it does not

apply without adaptations. The d-separation concept works in this situation, being

able to deal with incomplete data, where not all MB variables are in the evidence.

In addition, an algorithm like Bayes Ball is able to return the set of variables that

influence the probability distribution of the class variable using d-separation criteria.

1.2 Objectives

Based on the motivations exposed before, the objectives of this work include:

• To build an algorithm that can be applied to improve the classification of a

variable in the Bayesian network, through Bayesian network structure learning;

• To learn from incomplete data, and to allow previous knowledge usage about

the domain;

• To accomplish the learning task as fast as possible, with good results, con-

cerning the adequated score;

• To show that d-separation criteria can be used in the learning task, as an

alternative to the Markov Blanket set.

1.3 Organization

The following chapters are organized as follows:

• Chapter 2 briefly introduces the knowledge needed to understand the rest

of the work. Extended explanations can be taken in the referred articles.

6

This chapter does not intend to be an exaustive exposition of the knowledge

available in the respective approached topics;

• Chapter 3 explains the algorithm proposed in this work, and the score used to

evaluate the networks;

• Chapter 4 is a review of the available Bayesian network structure learning

literature, related works are presented there;

• Chapter 5 are the results obtained and the discussion about the presented

results;

• Chapter 6 presents conclusions.

7

Chapter 2

Background Knowledge

The background knowledge chapter was developed to introduce to the reader the key

concepts that will be used in the presentation of this work. In order to achieve this,

a more formal presentation of Bayesian networks is done, as well as, other concepts

like conditional independence in this probabilistic graphical model, d-separation and

Bayes Ball algorithm, structure learning and useful algorithms like EM and SEM to

work with incomplete data, and finally the scores used, are presented.

2.1 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) where nodes represent random

variables that belong to the variable set of the domain of a problem, and each edge

represent a statistical relationship of dependence between two variables. To each

variable is associated a conditional probability table (CPT). The CPT denotes a

local probability distribution, from the variable represented by the node given its

parents in the graph [1].

8

Figure 2.1: Bayesian Network structure example

This way, in a Bayesian network, one is able to represent the conditional in-

dependence relationships existent among variables, the independence relationships,

and the joint distribution of all variables in the graph. In a Bayesian network, a

node or set of nodes is considered independent of one other node or set of nodes

if they are disconnected in the graph, that is, if there is no undirected path from

one set of nodes to another. Also, a variable is conditionally independent of all its

nondescendants given its parents in the DAG.

Other characteristic of Bayesian networks, as it will be discussed later, is the

assumption that a variable is conditionally independent of all other variables in

the network given its Markov Blanket (MB) [21]. Besides all this, a variable is

independent of all other variables, as it also will be discussed later, given its Bayes

Ball (BB) set of variables, without the restriction that all the MB variables are in

the evidence [22].

Furthermore, the joint distribution of all variables cited previously can be ob-

tained by computing the product of the probabilities of each variable given its par-

ents, as in the Equation 2.1 [1]:

P (X1 . . . Xn) =
∏
i

P (Xi|Parents(Xi)). (2.1)

Where Parents(Xi) means the set of parents of the variable Xi in the graph,

9

Table 2.1: Example of CPT for three variables X, Y and Z

X Y Z
yes yes yes 0.1
yes yes no 0.2
yes no yes 0.1
yes no no 0.1
no yes yes 0.9
no yes no 0.8
no no yes 0.9
no no no 0.9

if the variable has no parents the set is ∅. To compute the joint distribution it is

necessary to compute the formula for every combination of values of X1 to Xn, what

is unfeasible in networks with great number of parameters.

Given a topological order of the variables in the network (X1, ..., Xn), Equa-

tion 2.1 can be obtained by the application of the restriction imposed by Bayesian

networks of each variable being conditionally independent of its nondescendants

given its parents to the chain rule of probability, as shown below.

Accordingly to the chain rule, we have:

P (X1, . . . , Xn) =
∏
i

P (Xi|X1, . . . , Xi−1). (2.2)

Applying the cited conditional independence rule for Bayesian networks, we get

back to Equation 2.1.

Associated to each variable in the Bayesian network is a Conditional Probability

Distribution of the variable given its parents in the graph, as said before. When

variables are discrete a Conditional Probability Table (CPT) is built with all possible

combinations of values of the variable and its parents. Assigned to each combination

of values in this table is a probability value, called the parameters of the network.

On Table 2.1, Y and Z are parents of X and each of the three variables has only

two possible values, yes or no. The probabilities in each line are the parameters

associated to the values on the same line. That is, the probability of X given Y and

Z, considering the values in the line.

10

2.2 Conditional Independence in Bayesian Net-

works

In a Bayesian network if there is an edge from one node to another, it means that the

second node is statistically dependent on the first. So, if the probability distribution

of the first node is changed, there may be some impact on the probability distribution

of the second. That does not necessarily mean that the first variable is the cause of

the second, unless you are dealing with a causal network [1].

A causal network is a network where the dependency between the variables are

not only statistical but also causal [1]. What is meant is that, in this kind of network,

if there is a connection between two variables, from A to B, then we have that A

causes B, or that B is a consequence of A.

From the definition of Bayesian networks, all nodes that are not descendants of

the second variable (B), are conditionally independent of the variable (B), given its

set of parents, to which the first node (A) pertains to. Explaining, in Figure 2.1, Bus

passes is conditionally independent of its nondescendants (Event, Rain, Hour,

Season, Get to the Bus Station, Broken Bus), given that its parents Traffic

Jam and Crowded are in the evidence of the query. It means that, the intensity

of the Rain (the value of the variable Rain), does not affect that the bus is passing

or not by the bus station, if we already know that the bus is crowded and that there

is no traffic jam. In a mathematical form:

P (Bus passes|Crowded ,Traffic jam,Rain) =

P (Bus passes|Crowded ,Traffic jam).
(2.3)

But what about the descendants of variable Bus passes? Does the value ob-

served in the variable Work affects the distribution of variable Bus passes? The

answer to this question depends on if we already know or do not about the variable

Get on the bus. If Get on the bus is not in the evidence, then the value of Work

gives us some evidence about the value of Get on the bus and so affects the distri-

bution of the variable Bus passes. This kind of behaviour is the object of studies

in this section, and can be explained by the use of the concept of D-separation.

11

Figure 2.2: D-separation cases

D-separation as defined in [3]:

Definition 2.2.1 Let X, Y and Z be three sets of nodes in a graph G. We say that

X and Y are d-separated given Z, denoted dsepG(X; Y|Z), if there is no active trail

between any node X ∈ X and Y ∈ Y given Z [3].

And also, still as said in [3], there is an active trail between two nodes whenever

we have a v-structure (Xi−1 → Xi ← Xi+1), and Xi or one of its descendants are in

Z, or, if no other node along the trail is in Z.

For a better understanding of the d-separation criterion it is useful to separate

the definition in four cases, illustrated in Figure 2.2

In the first case illustrated in Figure 2.2, I, the probabilistic influence of node C

in node A only happens when node B is not in the evidence. When it is, there is

no need to know about C distribution when computing the probability of A given

the other nodes, because A is conditionally independent of C given B. Analogously,

in Figure 2.1, if you know that there is a huge Traffic jam, it is not probable that

your bus will pass (variable Bus passes), no matter the size of the Event that is

happening in the city. However, if you do not know about the Traffic jam, the size

of the event can give you a clue about it, and so let you change the probability of

Bus passes.

In the second case, II, something similar occurs in the opposite direction, the

distribution of A only affects the one of C if B is not in the evidence, if it is then you

do not have to worry about the value of A, when computing the probabilities for C.

Following the same analogy, if you know that Bus passes probably there is not a

big Trafficjam, and so, probably there is not a big Event happening in the city, so

when you do not know about the Traffic Jam, Bus passes affects the distribution

of Event. Otherwise, if it is already known about the intensity of the Traffic jam,

12

Table 2.2: CPTs for B, D and E

B D
yes yes 0.6
yes no 0.8
no yes 0.4
no no 0.2

E D
yes yes 0.3
yes no 0.6
no yes 0.7
no no 0.4

D
yes 0.4
no 0.6

Table 2.3: Probabilities of B given D and E, B given E, B given D, and probability
of B

B D E
yes yes yes 0.6
yes yes no 0.6
yes no yes 0.8
yes no no 0.8
no yes yes 0.4
no yes no 0.4
no no yes 0.2
no no no 0.2

B E
yes yes 0.75
yes no 0.69
no yes 0.25
no no 0.31

B D
yes yes 0.6
yes no 0.8
no yes 0.4
no no 0.2

B
yes 0.72
no 0.28

this affects the distribution of Event and not Bus passes anymore. There is no

need to know about the value assumed by Bus passes in this last situation.

In the third case, III, following a little bit different directives from that taken

to explain the other two cases, consider the following CPTs, on Table 2.2.

Computing the probabilities P (B|D,E), P (B|E), P (B|D), and P (B) it results

in Table 2.3.

The values on Table 2.3 were calculated based on the values of CPTs adopted

for nodes in Figure 2.2 presented on Table 2.2. Notice that for this specific case,

randomly generated, when D is present in the evidence, the value of E does not affect

the probability of B, as it can be seen by the same values in the tables where are

calculated P (B|D,E) and P (B|D). However if we do not have D in the evidence,

the values now are different for P (B|E) and also for P (B). This gives us some

evidence about this behaviour, and that is what in fact happens, when D is in the

evidence it blocks the probabilistic influence of E on B, and of B on E. In other

words B and E are conditionally independent given D.

The fourth case IV is probably the most difficult to understand and the most

13

intriguing one. In this situation, shown in Figure 2.3, when variable B or any of its

descendants is in the evidence, the value of variable C can affect the distribution of

variable D, and vice-versa. Only when none of the variables including B and its de-

scendants are in the evidence, the path between variables C and D will be blocked,

such that it is not an active trail anymore. As a way of illustrating this behaviour,

consider the corresponding structure in the Bayesian network in Figure 2.1 that in-

cludes nodes Traffic jam, Rain, Event, Bus passes, Get on the bus. Suppose

the value of Traffic jam is known, for example, and that it assumes value big, mean-

ing that there is a big traffic jam. If it is known that a very big Event is happening,

the possibility of Rain is changed, since it is known about the Traffic jam. The

same way, if we know that it is not raining, there is a greater probability of having

some big event in the city since it was noticed that there is a traffic jam. However, if

the value of Traffic jam is not known, but one of its descendants is in the evidence,

they give some hints about the probability of Traffic jam to assume its possible

values, and this way the values of Event and Rain can affect the distribution of

each other.

Combining the four situations cited before, and considering the variables that

are and that are not in the evidence, it is possible to determine which variables

in the Bayesian network can be influenced by a selected variable. It means that

if the value of this variable is changed it is possible to determine which variables

may have its distribution affected. So, considering this, and as an example, for

variables Get to the bus station and Event being independent, there should not

exist any active trail from one to another. There are two possible trails to check

if they are active: a) the one that includes nodes Event, Traffic jam, Rain and

Get to the bus station; and b) the trail that includes nodes Event, Traffic jam,

Bus passes, Get on the bus and Get to the bus station. For the first, follow-

ing the cases that were explained before, if variable Rain is not observed, and,

variable Traffic jam or any of its descendants is observed, this path is active and so

Get to the bus station and Event are not independent. But if these conditions

are not satisfied the path is blocked and it is also necessary to evaluate the other

trail, to see if it is active, if both are blocked than the variables are independent. An-

alyzing the second path, variable Get on the bus or any of its descendants should

14

be in the evidence, and also variables Traffic jam and Bus passes should not have

been observed. This way the path is active, otherwise it is blocked and not ac-

tive. As said before, if any path is active between the variables then they are not

independent.

The minimum set of variables that influence the value of one variable blocking

influence from others is called the Markov Blanket of the variable, and it is composed

by the parents of the variable, its children, and the parents of its children (also called

its spouses). If some of these variables are not in the evidence, influence from other

variables can be detected using the rules already presented. An algorithm that can

be used to determine which variables influence a selected one, in the case where not

all variables in the Markov Blanket are in the evidence, is the Bayes Ball algorithm

[22].

2.3 Bayes Ball

Using d-separation allows us to determine which are the variables in a Bayesian

network that affect the probability distribution of one specific variable even if not

all variables are in the evidence, that means, for one specific example it is possible

to determine the influence in the graph of one variable into another even if not all

data is observed. In this context it is very immediate to think about an algorithm

that could be able to return all the variables that may influence the probability

distribution of a specific node, given some evidence. Algorithms like these exist and

the one used in this work is called Bayes Ball. In [3], in section 3.3.3, an algorithm

to find nodes reachable from X to Z via active trails is presented, as an example.

Bayes Ball, ”the rational pastime”, as described in [22], uses the d-separation

concept to navigate through the Bayesian network. It starts from the query variable

and walks through the graph while determining which are the variables that can

change the probability distribution of a specific variable. The reason the use of the

algorithm is needed, is related to the d-separation concept, because in case a variable

is not present in the evidence, the Markov Blanket of the variable may not be the

set of variables that is being looked for. For instance, if the parent of variable X

is Y , and the latter was not observed, variable Z that is parent of Y can influence

15

the distribution of X and is not in the Markov Blanket set of X. Situations like

these agree with the d-separation criteria, previously explained, for the case where

the dataset is not complete.

The Bayes Ball algorithm is presented in Algorithm 1.

16

Algorithm 1 Bayes Ball (adapted from [22])

function BayesBall(J,K, bn structure)

visited, marked on top, marked on bottom = ∅

visited, marked on top, marked on bottom = ∅

nodes to be visited = J

Mark all nodes as visited from children

while nodes to be visited 6= ∅ do

j = get and remove node from nodes to be visited

visited.append(j)

if (j not in K) and (j is visited from a child) then

if (top of j not marked) then

marked on top.append(j)

nodes to be visited.append(parents(j))

end if

if (j bottom is not marked) then

marked on bottom.append(j)

nodes to be visited.append(children(j))

end if

end if

if (j is visited from a parent) then

if (j in K) and (top of j not marked) then

marked on top.append(j)

nodes to be visited.append(parents(j))

end if

if (j not in K) and (j bottom is not marked) then

marked on bottom.append(j)

nodes to be visited.append(children(j))

end if

end if

end while

. The nodes that affect J given K are those nodes in visited.

return visited

end function

17

Figure 2.3: D-separation cases

To understand this algorithm it can be useful to think about the four cases of

d-separation presented in the beginning.

Lets divide our strategy into two parts, one concerning visiting the node from a

child and the other concerning visiting the node from a parent.

Consider the following paths:

I) In Figure 2.3 (I), from node C to A visiting node B from parent;

II) In Figure 2.3 (II), from node A to C visiting node B from child;

III) In Figure 2.3 (III), from node B to E visiting node D from child;

IV) In Figure 2.3 (IV), from node C to D visiting node B from parent.

If the node is visited from a child, there are two possibilities: a) the variable is in

the evidence; or b) the variable is not in the evidence. Situation I and IV does not

apply because the visit is from the parent. In the first case (a), analyzing situation

II, the path is blocked. For situation III the path will also be blocked. So for all

four cases, there is nothing to do, the path is not active and the visit would return

to the child node. In the second case (b), for situation (II) the path is not blocked

and the parents should be visited. For situation (III), the children should be visited.

So if the variable is in the evidence (a), the algorithm should do nothing and if the

variable is not in the evidence (b) parents and children of the variable should be

visited. It explains the first condition inside the loop.

Analogously for the case where the visit is from a parent, there is also the same

two possibilities called previously (a) and (b). In this situation only I and IV apply.

In the first case (a), the path is blocked in situation (I), however, parents should be

visited in situation (IV). In situation (b), children should be visited for situation (I)

and the path (IV) is blocked. And now, these explain the second condition inside

the loop, and its inner conditions.

18

Notice that for the d-separation case illustrated in Figure 2.3 (IV), if A was in

the evidence the flow should not be interrupted. And it is not, since the algorithm

would visit B and A, and return to visit D. However, if any of the descendants of

B is in the evidence (A in this case), the algorithm would visit B and A, but this

time it would not return to visit D.

2.4 Structure Learning in Bayesian Networks

Bayesian network structure learning tries to solve the problem of determining the

structure of a Bayesian network given data. Considering that the variables are

known, it learns the relationships existent among them. This is represented in

the graph by the edges that connect variables and its orientation. Besides this,

it learns the independence and conditional independence constraints that exist in

the distribution, since the structure of the graph makes it possible to read which

variables are independent or conditionally independent of each other given another

set of variables, as explained in the last section. The structure with its parameters

is also a compact representation of the joint probability distribution of the variables,

such that it could also be obtained. However, it is not usually desirable since you can

make inference without obtaining the joint probability distribution, and computing

it can be computationally expensive.

There are three main approaches for learning the structure of Bayesian networks:

the score-based, the constraint-based and the hybrid one. The last is a mixture of

characteristics of the first two in the same algorithm. Each of them will be explained

in this section.

2.4.1 Score-Based Structure Learning

Learning the structure of a Bayesian network using a score-based approach demands

the definition of a score function to allow structure evaluation. This score function

will be responsible for determining whether a structure is better than another or

not, or how well does this structure fits the data. There are several kinds of possible

scores and this subject is left for a particular section in this work. In summary, the

score is a function that returns a value of how good is the structure for a particular

19

Table 2.4: Number of possible Bayesian networks given the number of variables

Number of variables Number of possible DAGS
1 1
2 3
3 25
4 543
5 29,281
6 3,781,503
7 1,138,779,265
8 78,370,2329,343
9 1,213,442,454,842,881
10 4,175,098,976,430,598,100

purpose, and should be evaluated in order to make comparisons among networks.

To determine the best network structure accordingly to a given score it is nec-

essary to search the space of all possible Bayesian networks. One simple approach

would be to take each possible network, calculate the score for each one, and com-

pare the results for all of them. Unfortunately, this approach is not efficient since the

number of possible Bayesian networks increases very fast with the number of vari-

ables in the network. The computation of this number is possible by calculating the

number of DAGs (Directed Acyclic Graphs) which is the same number of possible

Bayesian networks since a Bayesian network is a DAG. There is a recursive formula

for this computation [23] [24] and some of the assumed values were computed in

Table 2.4 as a way of illustrating this super-exponential behaviour:

f(n) =
n∑

i=1

(−1)i+1Cn
i 2i(n−i)f(n− i). (2.4)

Considering this fast increasing number of networks, another approach needs

to be considered. For several practical problems it is not a requisite to have the

best solution, it is only desirable, such that a good solution is usually enough. So,

an heuristic is applied to search the space of possible Bayesian network structures,

computing the score only for some of the networks. And, as well as in the case of

the score, there are several possible known heuristics described by algorithms like

K2 [16] or Greedy Hill Climbing [3].

As an example, it would be useful to describe one of them, Greedy Hill Climbing,

20

in order to illustrate the presented ideas.

Greedy Hill Climbing

The pseudocode for the Greedy Hill Climbing algorithm is shown in Algorithm 2.

Algorithm 2 Greedy Hill Climbing

function GHC(initial bn, score function)

current bn = initial bn

score improves = True

while score improves do

N = Compute neighbours for current Bayesian network

next eval = -infinity

next bn = null

for bn in N do

eval bn = Evaluate Bayesian network using score function

if eval bn > next eval then

next bn = bn

next eval = eval bn

end if

end for

eval current bn = Evaluate current bn using score function

if next eval ≤ eval current bn then

score improves = False

else

current bn = next bn

end if

end while

return current bn

end function

In the algorithm, from an existent starting structure that can be obtained by

several means like by expert description, randomly, by running another algorithm

and so on, all the possible neighbours of the starting network are generated and

evaluated. At each iteration of the most internal loop these neighbours are evaluated

21

and compared, if the score is improved by any of the neighbours then the algorithm

continues to the next iteration of the outer loop, but if not, the algorithm ends and

the current best network is returned. Neighbours, in this case, are networks that

differ from the current structure from only one operator application. In the most

common algorithm, there are only three possible operators: addition, removal or

reversion of an edge. The number of possible neighbours of a network structure

can be very big if the number of variables is too large. Such that the number of

neighbour structures being evaluated at each iteration can still be big, and make

the algorithm to consume too much time, when, for example, working with a large

number of variables, examples and incomplete data.

2.4.2 Constraint-Based Learning

Constraint-based learning tries to learn the structure of the network by constructing

a minimal I-map for the independence constraints in the domain [3]. A graph is an

I-map for a determined set of independence constraints when all the independence

constraints of this set are represented in the Bayesian network graph [3]. That is, the

set of independence constraints in the set (for this case, in the domain), is a subset

of the independence constraints represented by the graph. Continuing from this, a

minimal I-map for a domain, is a graph where all the independence constraints are

represented in the graph (it is an I-map), and if any edge is removed (and it does

not matter which edge, and it can be just one) the graph is not an I-map anymore.

This is the structural representation that constraint-based methods look for [3].

Independence Tests

In order to achieve the objectives described in the previous paragraph, one has

to be able to test for independence between variables. This way, it is possible to

determine which variables are connected to which other. Unfortunately, the problem

of determining independence and conditional independence tests that are efficient for

every dataset is not trivial. A common approach uses statistical tests to determine

if the variables are independent or not, assuming as null hypothesis the case where

the variables are independent.

The chi-squared statistic is able to compute a sum of differences between observed

22

values and expected ones, and so is useful for this kind of application. In this case,

the expected values being considered are the values for the case when the variables

are independent. Another possible approach is using the mutual information statistic

[25], since it calculates a ratio between the independent case and the dependent

case. Both formulas need to be adapted to use sufficient statistics instead of the real

probabilities, since they are unknown. As an illustration, these formula are shown:

χ2 =
n∑

i=1

(Oi − Ei)
2/Ei; (2.5)

χ2 =
∑
x,y

(SS[x, y]−M · P̂ (x) · P̂ (y))2/(P̂ (x) · P̂ (y)); (2.6)

MI =
∑
y∈Y

∑
x∈X

P (x, y) logP (x, y)/(P (x) · P (y)); (2.7)

MI =
∑
y∈Y

∑
x∈X

SS[x, y] logSS[x, y]/(SS[x] · SS[y]). (2.8)

Equation 2.5 is the original formula for computing the Pearson’s χ2 statistic,

where Oi are the observed values and Ei are the expected values for n examples.

Adapting it to use the sufficient statistics Equation 2.6 is obtained. In this equation,

X and Y are random variables of the Bayesian network, SS[.] are the sufficient

statistics obtained by counting the occurrences of the variables inside the brackets

together, M is the total number of examples in the dataset and ˆP (x) and ˆP (y) are

the estimated values for the probabilities of x and y respectively.

In the second pair of equations, analogously to the first pair, Equation 2.7 is the

original formula for computing mutual information of two variables and Equa-

tion 2.8 is its adaptation using sufficient statistics. In χ2 and MI modified formulas,

when doing conditional independence tests, adaptations are needed to include the

23

evidence set, originating slightly different formulas for χ2 and MI. Other statistics

in the statistical tests for independence are also possible like using G2.

Heuristic

Constraint-based methods for learning network structure usually execute several

independence and conditional independence tests until finding the best network

representation for the distribution of the data. Each method considers a different

heuristic in order to avoid the execution of too much independence tests, because

testing all combinations of pair of variables given all combinations of possible vari-

ables in the evidence can take more time than desirable when the number of variables

is big.

One important thing to notice is that by doing independence tests the only

thing that is determined initially is the existence of the edge between variables,

such that it is still necessary to orient these edges to achieve the full structure. Each

algorithm has its specific heuristic for this step, but the observance of v-structures

(X → Z ← Y) and direction propagation of the edges is something often used for

this task. Some algorithms also do not always give as output a network with all

edges oriented, but a representation of an I-equivalence class, i.e., a set of Bayesian

networks that represent the same set of independence constraints.

Grow and Shrink

As an example of constraint-based learning in this subsection, the Grow and Shrink

(GS) Markov Blanket algorithm is presented. GS Markov Blanket (sometimes re-

ferred as GSMB) is used to recover the Markov Blanket of a variable [4]. It is used

as part of the GS algorithm to recover a Bayesian structure, as presented in [4]. The

algorithm is shown and succinctly explained below:

24

Algorithm 3 GS Markov Blanket

function GSMB(X,U)

S ← ∅

while ∃Y ∈ U− {X} : Y 6⊥ X | S do . Growing Phase

S← S ∪ Y

end while

while ∃Y ∈ S : Y ⊥ X | S− {Y } do . Shrinking Phase

S← S− Y

end while

return MB(X)← S

end function

The algorithm is divided into two phases as described in the Algorithm 3: Grow-

ing Phase and Shrinking Phase. As the names suggest, in the first phase variables

are added to the Markov Blanket of the variable X being evaluated and in the second

phase variables are pruned.

In the first phase, Growing, for each one of the other variables in the domain

(excluding X), if this variable Y is not independent of variable X given a set of

variables S, variable Y is added to the set S. Notice that S is initially empty

and represents the MB being constructed. Also notice, that tests for independence

are made the way described before. In this phase, the algorithm tries to separate

the variables, checking if they are conditionally independent. When conditional

independence happens, they are not directly connected in the graph, since this

conditional independence is represented in the structure by variables in the evidence

between X and Y .

In the Shrinking phase the current MB is pruned by checking when variables X

and Y ∈ S are conditionally independent given the other variables in the current

blanket. Once again, the algorithm tries to separate variables, this time, using only

variables from the output of the Growing phase, if there is conditional independence

between X and Y the latter is removed from the MB. The result is a set of variables

that belong to the MB of X. In the GS algorithm, after the GS Markov Blanket

procedure has been executed for each variable, adjacent nodes are determined, cycles

dissolved and edges oriented.

25

For more information about Grow and Shrink refer to [4].

2.4.3 Hybrid or Mixed algorithms

There are algorithms that mix characteristics of both approaches presented. One

example of this is Max-Min Hill Climbing (MMHC) [7], that executes a score-based

algorithm after reducing the search space using a constraint-based approach. In

MMHC, Max-Min Parents and Children (MMPC) is used to determine the parents

and children of the node in the Bayesian network. MMPC uses conditional indepen-

dence tests to determine the parents and children set of the node in the Bayesian

network graph. MMHC is described in [7].

After determining the PC set for each variable using MMPC, MMHC employs

a score-based algorithm (Greedy Hill Climbing) with restrictions to only consider

possible edges that connect two variables X and Y when Y is in the parents and

children set of X. For these cases, as in GHC, the algorithm applies operations as

adding, removing and inverting edges [7].

2.5 Local and Global Approaches

The Bayesian network structure learning algorithms may be divided into two groups:

local and global learning. Local learning algorithms like SLL [19] and DMBC [10]

where the search space does not include all possible Bayesian networks, restrict itself

to only making changes to a smaller neighbourhood of a node, like the parents and

children set of nodes, or the markov blanket of a given variable in the graph. Despite

the recent local score-based approach presented in papers like [19], this approach,

as cited in the same paper, is not new for constraint-based learning and had been

presented in works like [26] and [27].

Other algorithms search the entire space of possible Bayesian networks. They

consider all possible structures that could be formed by the set of all nodes in the

graph, and use an heuristic to navigate through these networks. Consequently, they

can make modifications to any edge in the graph. Global search algorithms are more

common than the local approach ones, and are well represented by several known

algorithms like K2, GHC, MMHC and GS. However, the global approach, because

26

of its larger search space, is more computationally expensive, demanding more time

to execute its algorithms.

2.6 Incomplete Data

A dataset is considered incomplete when there are missing values or hidden variables.

A value is considered to be missing when in an example, the value for a given variable

is not present. Also, a variable is considered to be hidden when for all examples

in the dataset the value of the variable is not present. Missing values occur for

a number of reasons, these include difficulties or failures in the process to gather

the data [3]. The common approach adopted by several data mining workflows is

not to consider these data by eliminating the examples where they occur or to use

a technique where the dataset is completed. However, considering the pattern of

missing data can lead us to a more unbiased solution, since data may not be missing

at random, and a source or reason for these missing values may exist. Then, making

an analysis of something in a completed dataset may lead to a biased conclusion.

Example of reasons for missing data may include patient refusal to continue in a

study, treatment failures or successes, adverse events, choice of not reporting critical

statistics or fail to do so, any type of unavailability of data, and other common

causes.

Unfortunately, a number of learning algorithms assume that data sets are com-

plete. A possible cause is that inference in the presence of missing values is an

expensive task, as shown in [3]. However, as cited before, research data usually have

several incomplete examples. Thus, the hypothesis assumed by several algorithms

gets a little bit unrealistic. Bayesian network structure learning from incomplete

data imposes not only difficulties concerning what to do with incomplete examples,

but also high computational costs when searching for an unbiased solution. As it

can be seen in [3], assuming incomplete data imposes several foundational and com-

putational problems for us to solve, like the increasing computational time as more

missing values are present in the dataset.

An approach to deal with incomplete data in Bayesian networks is using the

Expectation Maximization (EM) algorithm [3]. This algorithm requires the compu-

27

tation of the Expected Sufficient Statistics (ESS), the equivalent to the Sufficient

Statistics (SS) when the data is complete. Computing sufficient statistics is fairly

immediate since it usually requires only counting examples, but not with incomplete

data when computing ESS. In this case, for each combination of possible values for

variables that are missing in an example, inference is used. With the resulting

probability values obtained from inference, each possible case is considered into the

counting. This will be seen in more details when explaining EM. The point is that

the number of necessary inferences fastly increases with the increase of missing data.

And so the time to make all these inferences.

Another issue to consider is that when dealing with missing data, when using a

score-based approach, since constraint-based ones does not allow incomplete datasets

[28], several scores become not decomposable. When a score is decomposable, the

total score of the network structure is a function of local scores involving the variable

and its parents. Being decomposable is a desired characteristic for a score function,

because in a score-based algorithm when comparing several network structures there

is no need to recompute the score for every network being compared, but only for a

smaller part where the change was made. Unfortunately, it does not happen if the

score is not decomposable, and it is necessary to recompute all the score for each

network being compared, and that is a problem when dealing with incomplete data.

2.6.1 Expectation Maximization

Expectation maximization (EM) [3] is a well known iterative algorithm that searches

for the maximum likelihood estimates of the parameters of a Bayesian network. It

is an algorithm used to learn parameters from a network and is able to deal with

incomplete data. EM is composed by two steps: the first is called Expectation step

and is responsible by computing Expected Sufficient Statistics that will be used in

the second step called Maximization that uses the statistics obtained in the first

step to estimate the parameters of the network. These two steps happen iteratively

and it is guaranteed by the algorithm that the likelihood of the network always gets

better at each iteration [3]. The Expectation step of EM is also useful in structure

learning algorithms as the computation of the Expected Sufficient Statistics can be

a form of trying to solve the problem of computing sufficient statistics [18], those

28

are necessary in structure learning algorithms to compute the score.

Algorithm 4 Expectation Maximization

function EM(structure, data)

Initialize parameters of structure

while score improves do

ESS ← EM Expectation Step

parameters← EM Maximization Step(ESS)

score calculation(structure)

end while

return structure with updated parameters

end function

The expectation and maximization steps of the algorithm in Algorithm 4 is

explained below.

First, before iterating through Expectation and Maximization steps, the param-

eters of the network are initialized. It is an important step since EM can get stuck

on a local maximum if initialization is not good. And, considering that the likeli-

hood function on the incomplete data case has more local maxima the more missing

values exist, it becomes really important to initialize parameters correctly. There

is no specific rule for this and initialization can be done by expert specification, by

means of running another algorithm, or by doing several random initializations.

In the expectation step, the algorithm uses the current network with its current

parameters to calculate the ESS, using the formula in Equation 2.9:

ESS(Xi,Parents(Xi)) =
d∑

m=1

P (Xi,Parents(Xi)|o[m]), (2.9)

where, Xi is a variable of the Bayesian network, there are d examples, and o[m]

are the observed values in example m.

In the formula, calculated for each combination of values from a node and its

parents, the probability of the assumed values for the nodes and its parents given the

observed data on each example is computed. Then, the results for all the examples

in the dataset is summed. Considering these calculations, notice that inference is

29

made for all the examples in the dataset, for all the possible combinations of values

from the variable and the values of its parents. As an illustration, suppose a dataset

of 1000 examples, and a network of 3 variables A, B and C, where A and B are

parents of C in the graph and there is no other edge. Consider also that all of them

are discrete, binary variables. In this situation, the total number of parameters for

ESS estimation is 2 · 2 · 2 for C, plus 2 for A, plus 2 for B, times the number of

examples in the dataset. At each iteration of EM, where these computations are

needed, 12.000 inferences are made for this really small network, disconsidering any

optimization.

When the examples are complete it is simpler to compute the ESS, because the

result from the inference can only be 0 or 1. It is 0 if the query does not agree

with the evidence and 1 if the opposite is truth. But when there is missing data, an

algorithm for inference has to be executed, and the number of times it is executed

makes the process time consuming.

After the Expectation step, it comes the Maximization one. At this step of EM,

the parameters are estimated using the ESS computed before. It is done the same

way as it is for sufficient statistics in the complete case. The counting for a given

combination of values from the variable and its parents is divided by the total count

for the parents values, resulting in Equation 2.10:

θ̂(Xi,Parents(Xi)) = ESS(Xi,Parents(Xi))/ESS(Parents(Xi)). (2.10)

After estimating each parameter, the likelihood score is calculated using the new

parameters and the results are compared to the score using the old parameters. The

difference between the two scores is computed and compared to a threshold given

by the user. If the difference is smaller than the threshold given by the user, the

algorithm stops. Otherwise, it continues to the next iteration.

One important and useful thing to notice about EM is that the likelihood of

the network converges really fast in the first iterations, that is not possible to say

the same about the parameters, but if the user is interested only in the likelihood

increase, he can stop the algorithm with only a few iterations. After the first itera-

30

tions, the algorithm continues to improve the likelihood but not so much as in the

beginning, it is a slight improvement. However, the parameters can still suffer great

variations.

2.6.2 Structural Expectation Maximization

Structural EM is an algorithm that allows Bayesian network learning from incom-

plete data [18]. It uses the Expectation step of the EM algorithm to reduce the

problem of learning the structure of the network with incomplete data to the sim-

pler problem of learning the network with complete data. When learning a Bayesian

network with incomplete data, there are issues, as described before, concerning the

decomposability of the score and the use of inference calculations to acquire the

ESS. Since for each change made to the network the parameters need to be updated

not only on the adjacencies of the node, requiring a new EM run, the procedure

gets time consuming. SEM tries to deal with these problems by computing the ESS

and using it as the sufficient statistics for a structural search step. It is an iterative

algorithm and so after each structural search step, using an algorithm like GHC,

parameters are reestimated using EM for the new structure and also the ESS.

Algorithm 5 SEM (Structural Expectation Maximization)

function SEM(structure, parameters, data, convergence threshold)

while score improves do

ESS ← EM Expectation Step (structure, parameters, data)

parameters← EM Maximization Step (ESS, structure)

structure← Search Algorithm (structure, parameters, ESS, data)

score calculation(structure)

end while

return structure, parameters

end function

As shown in Algorithm 5, at each iteration the score is checked for improvement.

If it does not improve enough the algorithm is stopped, but if so, it continues

to the next iteration. Improvement criteria is determined by the user, using a

threshold. At each iteration, EM Expectation step is run to compute ESS. The

31

new parameters of the network that maximize the likelihood function are estimated

during the Maximization step, using the same rules as for the complete case, but

now using the ESS. These ESS are used in the score-based search algorithm to allow

score calculation for each network. The scores are compared for all possible changes

evaluated and the best network is chosen. This network will be the starting structure

for the next iteration [18]. It is also possible to have more than one iteration of EM

before entering the search for the structure in order to improve parameters even

more, but likelihood rapidly increases in the first iterations [3], such that it is useful

to consider only a few iterations.

The search algorithm used in SEM uses the ESS to estimate the parameters for

each change and calculate the score. However, it is not recommended to keep reusing

the same ESS after several changes in the structure [3], because they were estimated

with the structure before entering the search algorithm and a new network would

require a new parameter estimation procedure.

2.7 Scores

A score-based algorithm transforms the problem of learning a Bayesian network

structure into the problem of searching the structure that scores the best, given a

score function. This way it is very important to choose a good score function [3]. In

this section the scores used at this work are described, but there are several other

scores like BD [29], BIC [30], MDL [31], K2 [32], NML [33] and MIT [34].

2.7.1 Log-Likelihood

Maybe the most natural score, the likelihood score [3] is calculated computing the

probability of the observed data given a set of parameters and a structure. The

calculation is done by multiplying the probabilities of occurrence of each example,

i.e., the probability of the variables in the domain to assume the values in the dataset

example given the considered set of parameters and network structure. This may

be expressed mathematically like this:

32

L(Θ|D) = P (D|Θ) =
N∏
i=1

P (Xi|Θ). (2.11)

In the formula, Θ is the set of parameters θ of the Bayesian network, Xi is the

set of values of the variables X for the example i, N is the number of examples and

D is the dataset.

As the likelihood is a product of probabilities, when the dataset is sufficiently

large, the decimal part of the number gets more and more algarisms, being difficult to

represent in a computer. The solution is to compute the logarithm of the likelihood,

since the log function assumes bigger values for bigger likelihood values, and the

opposite is also true. As the interest is to compare likelihood values, this solution

fits well to the problem. Also, it turns the product into a set of sums:

LL(Θ|D) = log(P (D|Θ)) =
N∑
i=1

log(P (Xi|Θ)). (2.12)

The likelihood function also has an information theory interpretation as a func-

tion of the mutual information and entropy [3]. When used as a score function in

a score-based structure learning algorithm it presents some problems in the sense

that it always gives a higher value for more connected networks. Then, if you have

a structure S, and a structure S+1, with one more edge, L(S,Θ|D) ≤ L(S+1,Θ|D),

with equality only being true in the rare case where there is perfect conditional

independence between variables [3].

2.7.2 Conditional Log-Likelihood (CLL)

Conditional Log-Likelihood as presented in [35] computes the sum of the logarithms

of the probability of a specific variable to assume the values in the dataset given all

the other variables in the dataset. Unlike the likelihood, it concentrates in a specific

variable, it is a score calculated for that variable. These probabilities are calculated

given the parameters and structure of the Bayesian network, like in:

33

CLL(Θ|D) =
N∑
i=1

log(P (Xi = xi|X \Xi; Θ)). (2.13)

Differently from accuracy, CLL not only gives us information about if examples

were classified correctly or not. It also gives us information about how well the

examples were classified. If CLL is used, from the formula, it is possible to notice

that its not only a matter of doing classification correctly or not, but the probability

of the classification being correct is also taken into account. Besides this, CLL also

offers a way of evaluating the classification of only one variable, what is useful when

trying to improve its classification.

2.7.3 Akaike Information Criterion (AIC)

The Akaike Information Criterion [36] is an information theory founded score (like

BIC and MDL) that deals with the problem of evaluating how well a model fits to the

data, as the other scores, but penalizing model complexity. This way, it surpasses

problems like the one presented when computing the likelihood. Unlike the other

scores, the smaller the AIC, the best the model is. AIC computation formula is

shown below:

AIC = 2k − 2 log(L). (2.14)

In the formula k is the number of parameters. The more connected a network is,

the more parameters will be necessary to represent the network. L is the likelihood

of the data to the structure.

34

Chapter 3

Bayes Ball Structure Learning

This section describes the algorithm that was developed in this work, called BBSL

(Bayes Ball Structure Learning) [37]. BBSL is a local structure learning algorithm

that is able to learn from incomplete data with focus on classification tasks. BBSL

tries to improve the AICCLL score (to be presented in this chapter) for a specific vari-

able given the data. It improves the classification of the variable without achieving

an extremely complex model.

One of the advantages of working with a local approach is that it allows us

to solve specific variable classification problems even in bigger networks. This is

possible because this approach is usually faster than the global one, making changes

only to a small set of edges. The global approach has a lot of possible Bayesian

networks to consider during the search step and consequently takes more time. The

local approach is also a recent approach in Bayesian network structure learning if

compared to the older global approach, that has more published algorithms, as it

will be presented in the Related Work chapter.

Also, incomplete data is a common characteristic of research datasets, and work-

ing with it is not a feature of many algorithms, even for the global case. Constraint-

based algorithms usually are not able to support incomplete data, and until now,

as far as we know, its unknown any constraint-based algorithm that can work with

incomplete datasets. Moreover, for score-based learning, the usual approach is to

complete the data before running an algorithm. This procedure usually inserts some

more bias in the process. An alternative is to use the Structural Expectation Maxi-

mization (SEM) algorithm. It uses a global approach, and was adapted to build the

35

algorithm in this work.

Making the union of the local approach with the SEM one for incomplete datasets

takes the advantages of both. So that it allows us to create a new algorithm that is

able to solve to some extent the problem of learning a Bayesian network structure

locally, even if it is a big network, and even for datasets that are not complete. This

is the problem that is being addressed here.

BBSL is a SEM-based algorithm, it makes some changes to the SEM Expectation

Step, and proposes a local search algorithm to the Search Step. This local search

uses only locally modified networks as candidates. These are generated based on

the nodes returned by a previous step of BBSL. A big picture of BBSL is presented.

Algorithm 6 BBSL

function BBSL(data, class variable, structure, parameters, classif threshold,

count threshold)

while score improves do

variables← CollectRelevantVariables(data, class variable, structure,

parameters, classif threshold, count threshold)

ESS ← EM Expectation Step(structure, parameters, data, variables)

parameters = EM Maximization Step(ESS, structure, variables)

structure← SelectStructure(structure, parameters, ESS, data,

variables)

score calculation(structure)

end while

return structure, parameters

end function

The CollectRelevantVariables and SelectStructure steps of BBSL will be detailed

later. By now, lets focus on the overall structure of the algorithm and changes made

to the Expectation Step.

First of all, the structure is similar to the SEM structure presented before. It

has an EM step and a structure search one. During the Expectation step statistics

are computed from data, in the Maximization step parameters are estimated, and

in the structure search every candidate network is evaluated in order to choose one

that improves the score the most. During this search, networks scores are evaluated

36

and compared to determine if the algorithm should continue to the next iteration

or not. Notice that the minimal improvement threshold to get to the next iteration

is a parameter of SEM and needs to be determined previously.

In order to select a restricted set of variables that will be used in BBSL, such

that it can work locally, there is the CollectRelevantVariables step. From the output

of CollectRelevantVariables, it comes a set of variables that is able to affect the

probability distribution of one specific variable. This variable, also a parameter of

the algorithm, is the variable whose classification needs to be improved. This specific

variable will be called the class variable, since only classification problems are being

considered.

The CollectRelevantVariables set is the group of variables that is able to change

the probability distribution of the class variable considering if variables are observed

or not in the examples and if the class variable is missclassified or not for each

example. The algorithm to obtain it will be explained and detailed in Section 3.1.

This set of variables, output of the CollectRelevantVariables step, is used to make

a local version of Expectation Maximization algorithm. Expectation Maximization

usually compute Expected Sufficient Statistics (ESS) for all the variables in the

Bayesian network. This demands too much computational resources for big networks

and high number of examples. The local version of EM used here does not include

all the variables in the Expected Sufficient Statistics computation. Using this local

EM approach affects the behaviour of the Expectation and Maximization steps by

reducing the number of ESS to be computed and parameters to be estimated.

Considering this, the performance will be dependent of the number of variables

only in the likelihood score calculation, used at each iteration of the EM, since the

other steps are local. The ESS needed to the next steps will be calculated only

for the variables in the surroundings of the class variable that affect the most its

classification, represented by the output of the CollectRelevantVariables step. As

the ESS calculation demands too much computational resources to be computed,

calculating it to only a few variables makes the algorithm to be executed faster.

The several ESS calculations for each variable are independent of its calculations

for other variables, so this computation can be parallelized. It is also possible to

divide the dataset, compute the ESS for parts of the dataset and sum the results

37

in the end. Taking advantage of this characteristic is not something new in the

literature, as shown in [38], and it was done here since the most modern computers

have several cores, and it is possible to take advantage of this feature using threads

to allow faster computation.

ESS are computed for each combination of values of a variable and its parents.

When searching for a structure the score-based way, it would be necessary to recal-

culate the ESS for each candidate change in the network, because a modification in

one edge of a network changes the parents of one or two variables. Recomputing

ESS for all the variables, in this case, would not be good to the overall execution

time. When you make a change to the structure of a Bayesian network, the specific

set of ESS that were calculated to the old Bayesian network structure does not ap-

ply to the new structure, because ESS is calculated for each set of variables and its

parents, or in other words, for each line of each CPT. In order to avoid recalculating

all ESS, only the ESS for the affected CPTs are recalculated.

Variables whose parents are changed during search, in BBSL, are part of the Col-

lectRelevantVariables set (usually a small set of variables). Changes in the structure

are made only between variables of this set, as it will be explained in Section 3.2.

Considering this, the ESS for the variables in the CollectRelevantVariables set and

its parents is calculated before entering the search, as a result of the local expecta-

tion step. Then, it is easier to compute the ESS for a network that suffered a local

change, by computing the ESS to the variables affected by the structural change.

All the ESS for the other variables in the CollectRelevantVariables set is already

available during the structure search.

To estimate the parameters from the network, the maximization is done once

or iteratively with the expectation step, depending on the implementation, both

are possible. Iterations are done in order to improve the likelihood score of the

Bayesian structure network and learn the parameters. Parameters are also learned

because it is interesting to have in the end of all the procedure a set of structure and

parameters that allows someone to make inference about the variables in the domain.

Notice that, not all structure learning algorithms return a network that allows one

to make inference, because, for instance, there are no parameters, resulting from

only learning structure, as in GS and PC.

38

At this maximization step it is also used a local approach so that parameters

that were not changed are repeated from the previous structure, and the changed

parameters, inside the CollectRelevantVariables set, are estimated using the same

technique used for complete data. For the computation of the parameters, the ESS

calculated before, in the Expectation step, is used.

After the maximization, the search for the structure is made locally through

SelectStructure which returns the best structure accordingly to the AICCLL score

that will be explained later, using the heuristic presented in the algorithm.

In the end, the score is calculated to define if the algorithm continues or not to

the next iteration of BBSL. The score calculation step in the algorithm is just an

emphasis resource to clarify what is being done, since the score could be stored from

the SelectStructure search step. After the loop, BBSL returns a Bayesian network,

with its structure and parameters, and desirably this structure will be able to classify

the class variable better than before.

3.1 The First Step of BBSL (CollectRelevant-

Variables)

The first step of BBSL, referred as CollectRelevantVariables before, receives as input

a Bayesian network and a class variable. Then, it returns the set of variables that

can affect the class variable distribution for part of the missclassified examples. The

variables returned are not conditionally independent of the class variable given the

observed variables for several examples in the dataset. Algorithm 7 shows how it

works.

In the algorithm, first, the set of relevant variables to the classification task is

initialized as empty. This is the set that will be filled and returned in the end of the

algorithm for this step.

For each example in the dataset, the value for the class variable in the example

is checked to determine if it is observed or not, if the variable is not observed, this

example will not be considered in the evaluation. However, if the class variable

assumes any value at this example, then the algorithm calculates the probability of

the class variable to assume the value given the other observed values in the same

39

Algorithm 7 CollectRelevantVariables step

function CollectRelevantVariables(Dataset, ClassV ariable, BN,
classif threshold, count threshold)

RelevantV ariables← ∅
for all example in Dataset do

if ClassV ariable is observed then
Prob = P (ClassV ariable = c | observed[example] = o)
if Prob ≤ classif threshold then

BB ← BayesBall(ClassV ariable, example, BN)
RelevantV ariables ∪BB
Increment count[node] for each node in BB

end if
end if

end for
. Filter nodes in RelevantVariables

for all node in RelevantV ariables do
if count[node] ≤ count threshold then

RelevantV ariables.remove(node)
end if

end for
return RelevantV ariables

end function

example. Here, the algorithm is trying to evaluate how well the classification task is

being done for this specific example. This probability calculation is done the same

way it is a single term of the sum in CLL.

If the result from the previous calculation is good (it is greater than the classifica-

tion threshold), so that the classification is being well done, the algorithm considers

that there is no need to improve it. Classifying the result in good or bad depends

on a classification threshold that is a parameter of the algorithm and needs to be

determined before its execution. If the classification is bad, and that means the same

as if the result is below the threshold for BBSL, then it is necessary to improve it.

If the result of the classification is bad, BBSL tries to determine the set of

variables that are relevant to the classification of the class variable using Bayes Ball.

Now, that it is already known that the example is not classified as well as the user

would like, BBSL tries to detect which are the variables that may have caused this

misclassification using Bayes Ball. This is done for each example in the dataset that

is misclassified, since this algorithm is oriented by the classification results found for

the examples.

The solution proposed, to run the Bayes Ball algorithm presented before, allows

40

to determine, given the states of observation of the variables and a class variable,

which are the variables that may influence its distribution. By states of observation,

it is meant if the variable is observed or not. It means, if the variable assumes a

value in that specific example, such that it is placed in the evidence set for Bayes

Ball. This way, Bayes Ball is able to return a set of variables that may influence

the classification of the variable. Notice that, although the Bayes Ball algorithm is

used here, any other algorithm with the same objectives could have been used, any

algorithm that would return the set of variables that are not d-separated from the

class variable.

The procedure described before is done for each example in the dataset and its

result is united to the previous set obtained in the loop, forming a bigger set with the

union of all sets of variables returned by the Bayes Ball on each example evaluated.

As BBSL always makes the union of the sets returned by Bayes Ball in the loop,

it may happen that one example, given the state of observation of its variables, when

submitted to Bayes Ball, returns a big number of variables. This number may be

considered big relatively to the size of the network or to the Bayes Ball return for

other examples. In order to avoid that a small set of examples be responsible by

the inclusion of a big set of variables, degrading performance, filtering is necessary.

If the number of variables is big, more combinations of variables are possible, and

consequently, more structural modifications, and more candidate networks are con-

sidered in the search. As estimating parameters and computing a score is needed

for each candidate network, and these tasks demand more computational resources,

performance is degraded.

In order to filter these variables, for each variable in the Bayesian network is

associated a counter. Each counter registers the number of times a variable was

returned by the Bayes Ball algorithm. It works like if the examples voted for which

variables should enter the returned set, since at each misclassified example, Bayes

Ball is run and a new set returned. This number associated to each variable will be

considered later in a filter.

When filtering, for all nodes in the set of relevant variables to the class one, the

algorithm checks if the counter associated with the variable registers a value that is

greater than a threshold. This value is also a parameter to the algorithm, and as

41

any other parameter in this algorithm it should be determined before its execution.

The value of the threshold is a percentual, the minimum quantity of times a vari-

able should be selected by the Bayes Ball algorithm, divided by the total examples

considered in the evaluation. Variables which the counter is below the threshold are

eliminated from the relevant variables set.

The result of this filtering is the returned set of variables of the first step of the

algorithm, and that is what allows the local approach considered here. This set is

used when computing the ESS and in the search procedure. It allows improvements

in the computation time, and a better focus on the classification problem. This

focus is obtained by not considering variables that would not have a strong impact

to the classification results.

3.1.1 Procedure Illustration

In this section, it is presented an example so as to illustrate the procedure explained

above. For this reason an artificial network was built and is presented in Figure 3.1.

In the picture, the structure of the Bayesian network is presented together with

the Conditional Probability Distribution of the variable. Read the table as the

probability of the first variable in the table from left to right, given the probability

of the other variables in the table. The lines of the table show the values assumed

for each variable and the parameters are the conditional probabilities values.

Figure 3.1: Bayesian Network example

Also consider this small artificial dataset with only 10 example for this illus-

tration. In the table it is also presented the probability of the class variable to

42

assume the observed value in the example, given that the other variables assumed

the observed values in the same example.

Table 3.1: Example of dataset

A B C D E F G Probability BayesBall

1) True True False True ? True True 0,97 A, B, F

2) False ? False False True False ? 0,37 A,B,C,D,F

3) True True ? False True ? True 0,65 A,B,C,D,F

4) True True False ? False True ? 0,97 A,B,F

5) True ? ? ? ? ? ? 0,69 A,B,C,D,E,G,F

6) False True False False ? False False 0,38 A,B,F

7) True ? False True False False True 0,77 A,B,C,D,F

8) True ? False True False False ? A,B,F

9) True True False ? False True True 0,97 A,B,F

10) False True False True ? True False 0,03 A,B,F

Following the algorithm, for each example in the dataset, it is applied a sequence

of steps. For the example, consider the class variable to be A, and the classification

threshold to be 0.7.

Lets consider the first example in the dataset, the probability of the class variable

A to assume value True given that B, C, D, F and G assumed values True, False,

True, True and True respectively is computed. The result is 0.97, as shown in the

table. This value is compared to the classification threshold, 0.7, and, as its greater

than it, it is considered that there is no need to improve this classification and the

algorithm follows to the next example.

For the second example, inference is made considering the new values for the

variables, and the result is 0.37. The calculations, as in the first case, are made con-

sidering the current initial structure and parameters of the Bayesian network. Now,

that the inference result is lesser than 0.7, it is necessary to improve classification.

First of all, the nodes that affect classification are computed using the Bayes Ball

algorithm (they are the nodes that can affect A probability distribution). For this

example, as shown in Table 3.1, the variables returned from Bayes Ball execution

are A,B,C,D and F . The counter from each of these variables is incremented by 1,

and the total of examples is also updated.

The same is done for the third example, notice that depending on the state of

43

observability of the variables, using the concept of d-separation, Bayes Ball returns a

different set of variables. The fourth, fifth, sixth and seventh follow the same rules,

incrementing the counter for the variables returned by the Bayes Ball when the

value returned by inference is greater than the previously established classification

threshold.

However in the eighth example, something different happens, the class variable A

has no value. When it happens, the algorithm simply does not consider the example.

By the end of the execution the following counts were computed for this case:

Table 3.2: BBSL Counts

A B C D E F G

5 5 3 3 1 5 1

100% 100% 60% 60% 20% 100% 20%

Now consider the filtering step that happens after the loop. If a limit of 60% to

the acceptance of the node to the next step of BBSL is imposed (user parameter),

then, for this special case, only variables A, B and F would be considered. It is a

high value, and almost all other variables would enter the returning set if the value

was reduced to 20%, except E and G. Although this has happened in this example,

in a larger network, where a greater number of nodes are considered, some variables

would never be counted and some would have a small percentual caused by special

and rare cases like the one where all the variables in the Bayesian network are not

observed, except the class variable (like in the fifth example of the dataset).

In the end of this step of the algorithm, this filtering was done to avoid that if

only one example like this occurs in thousands of examples in a dataset, not a lot

of variables need to be included. It avoids that several variables be included only

to enhance the classification performance for a small portion of the dataset. This

makes the algorithm to be attained to the bigger classification improvements.

3.2 The Second Step of BBSL (SelectStructure)

After the EM step, in the SEM algorithm, there is a structure search step where

the results from previous steps are used. Results from previous steps include the

44

ESS calculated from the current structure and parameters, using the dataset, and

the current Bayesian network. In BBSL something similar is done, but a specific

behaviour is proposed.

In BBSL, the entries for this second step are composed by: a) the set of variables

determined in the first step of the BBSL, using the Bayes Ball algorithm; b) the class

variable; c) the set of ESS originated from the EM step, only making changes to the

ESS selected by the first step of BBSL; d) the current structure of the network; e) the

estimated parameters from the maximization step; and the f) dataset considered.

Algorithm 8 SelectStructure step

function SelectStructure(RelevantV ariables, ClassV ariable, Data, BN)
Neighbours← GenerateNetNeighbours(RelevantV ariables, BN)
BestBN ← Evaluate AICCLL(Neighbours, Data, ClassV ariable)
return BestBN

end function

From these entries, the BBSL second step is very similar to one iteration of

Greedy Hill Climbing, except by the fact that not all possible structures are eval-

uated. Only a small set of nodes is considered in the algorithm to form a new

structure. With this restriction, the algorithm execution takes less time and allows

it to be run for bigger Bayesian networks.

The algorithm is described in Algorithm 8. First, from the current structure, the

candidate networks are generated. The candidate networks are neighbour networks

that only differ from the current structure from a local structural change.

A neighbour network is a Bayesian structure that differs from the current struc-

ture only by the application of one operator. Here, the operators considered are the

same as in GHC: a) add an edge; b) remove an edge; or c) invert an edge. The

restriction applied to the neighbours is that the change needs to be local. The ap-

plication of only one operator, between variables that are in the set returned by the

first step of the BBSL algorithm (CollectRelevantVariables), is considered. There-

fore, it is only allowed to add, invert or remove edges between variables that are in

this set of variables returned by the first step of BBSL.

After generating the candidate networks, each of them is evaluated using the

AICCLL score, presented later. In the evaluation it is necessary to compute the

CLL for the network. For this, after changing the structure, new parameters for the

45

network are estimated using the ESS calculated before entering the search. New

parameters estimation and AICCLL computation is done for each network. After

each score computation, the structure that minimizes it, is selected to enter the next

iteration.

It is important to notice that only one change is applied to the network, applying

more changes at each iteration is also possible, however it is not recommended to

change the network very much, since ESS are the same from the beginning of the

search procedure and needs to be updated [3].

3.3 AICCLL score

When using the CLL score in the experiments, it was noticed that networks cho-

sen by BBSL and GHC were very connected. In [3], some problems of using the

likelihood score to select Bayesian networks are presented. In the same work, it

is demonstrated that networks selected using the likelihood score tends to run into

problems when working with new instances, a desired characteristic of machine learn-

ing algorithms. As demonstrated there, there is some preference for more connected

networks, causing overfitting.

The log-likelihood score may be decomposed into CLL and one more sum of

terms, as presented in [35]:

LL =
n∑

d=1

logP (Yd,Xd). (3.1)

In Equation 3.1, the log-likelihood formula is presented in a more adequate way

to perform the decomposition using the CLL. In the formula, n is the number of

examples in the dataset, d is one particular example, Yd is the class variable and X is

the set of other variables in the Bayesian network. The decomposition is performed

like this:

LL =
n∑

d=1

log(P (Yd|Xd) · P (Xd)); (3.2)

LL =
n∑

d=1

logP (Yd|Xd) + logP (Xd); (3.3)

46

LL =
n∑

d=1

logP (Yd|Xd) +
n∑

d=1

logP (Xd); (3.4)

LL = CLL+
n∑

d=1

logP (Xd). (3.5)

In [35], it is explained that the second term when calculating the log-likelihood

usually dominates the calculation.

In order to justify our next steps, our choice for the AICCLL score proposed here,

it is shown, in a demonstration someway analogous to the one presented by [3], that

CLL score also may prefer more connected networks. As this was not found in the

literature, it will be presented here.

For this, imagine a graph G1, where variable Y is not conditionally independent

of the set of variables W given the set of variables X. Also, imagine a graph G0

where this conditional independence holds. The difference between the CLL scores

of both graphs is:

CLLG1 − CLLG0 =
n∑

d=1

logP1(Yd|Xd,Wd)−
n∑

d=1

logP0(Yd|Xd,Wd). (3.6)

If M [y,x,w] are the counts for how many times Y,X and W, assume x,y,w

values respectively. Then, the sum can be changed to:

CLLG1 −CLLG0 =
∑
y,x,w

M [y,x,w] · logP1(y|x,w)−
∑
y,x,w

M [y,x,w] · logP0(y|x,w).

(3.7)

And noticing that M [y,x,w] = n · P̂ (y,x,w) then:

CLLG1−CLLG0 =
∑
y,x,w

n·P̂ (y,x,w)·logP1(y|x,w)−
∑
y,x,w

n·P̂ (y,x,w)·logP0(y|x,w).

(3.8)

In the case where conditional independence holds, then:

47

CLLG0 = n ·
∑
y,x,w

P̂ (y,x,w) · logP0(y|x,w) = n ·
∑
y,x,w

P̂ (y,x,w) · log P̂ (y|x). (3.9)

So, making this substitution, and joining the sums:

CLLG1 − CLLG0 = n ·

(∑
y,x,w

P̂ (y,x,w) · (log P̂ (y|x,w)− log P̂ (y|x))

)
. (3.10)

Applying the logarithm properties:

CLLG1 − CLLG0 = n ·

(∑
y,x,w

P̂ (y,x,w) · log

(
P̂ (y|x,w)

P̂ (y|x)

))
, (3.11)

and rewriting:

CLLG1 − CLLG0 = n ·

(∑
y,x,w

P̂ (y,x,w) · log

(
P̂ (y,x,w)

P̂ (y|x) · P̂ (x,w)

))
; (3.12)

CLLG1 − CLLG0 = n ·

(∑
y,x,w

P̂ (y,x,w) · log

(
P̂ (y,x,w)

P̂ (y|x) · P̂ (w|x) · P̂ (x)

))
; (3.13)

CLLG1 − CLLG0 = n ·

(∑
y,x,w

P̂ (y,x,w) · log

(
P̂ (y,w|x)

P̂ (y|x) · P̂ (w|x)

))
. (3.14)

The factor that multiplies n is the Conditional Mutual Information (I(Y,W |X)),

making this last substitution:

CLLG1 − CLLG0 = n · I(Y,W |X). (3.15)

Conditional Mutual Information is always non-negative, so or CLLG1 = CLLG0 ,

or CLLG1 ≥ CLLG0 . The conclusion is that CLL score prefers networks where

48

conditional independence are not present for some group of nodes, being equal only

in the case where Conditional Mutual Information is perfectly zero, that means,

when nodes are totally conditionally independent, what is unlikely to happen due

to statistical noise.

When the X set is empty, the formula above reduces itself to the mutual informa-

tion between X and Y . And again, the mutual information is also nonnegative, and

it has as a consequence that the demonstration above applies to the independence

case between variables or set of variables, besides the conditional independence case.

In order to avoid the problem of overfitting due to high connectivity of the

network considering the motivation above, it would be interesting to have some

kind of penalization for complexity. This characteristic is present in the AIC (Akaike

Information Criterion) score. Considering that it could be possible to use it with

CLL, it was preferable to do so. This score, to which is referred as AICCLL is

proposed in Equation 3.16:

AIC = 2k − 2CLL. (3.16)

Notice that the only change made to the AIC score, was the substitution of

the log-likelihood (LL) score in the parentheses for the conditional log-likelihood

(CLL). This new score has the local characteristics of the CLL, and the penalization

for complexity in function of the number of the parameters of the AIC score.

The same way as the AIC score, the AICCLL score gets better the lesser is the

score value. It means, by this criterion, that a better model is chosen if the AICCLL

score is lower.

3.4 Other Approaches

When trying to improve BBSL, some changes in it were tested, some of then are

presented in this section.

49

3.4.1 External Edges

Analyzing the proposed algorithm, BBSL, it is possible to notice a case for which

the algorithm does not apply. It occurs in the specific case the class variable is

independent of all others in the graph (when the class variable is not connected to

the others). The Bayes Ball algorithm returns the set of variables that may influence

the probability distribution of the class variable given the states of observability of

the variables in the Bayesian network. However, if the class variable is independent

of all other variables there is no way it could return a single node more than the class

variable itself. This way, the first step of BBSL only returns the class variable and

the search step does not produce any candidate networks. As a consequence, the

network is not changed and the algorithm stops without making any modification.

To solve the problem cited above, it was proposed the addition of one more

operator to the search step, the ”add external edge” operator. This allows the

algorithm to consider, besides the other three operators, this fourth one that allows

edges from the class variable, to any other nodes in the network. That is, using this

operator, it is allowed during the search step, that one edge from any node to the

class variable, or, from the class variable to any node, to be added to the graph.

This has the drawback of adding more candidate networks to the evaluation

step, thus increasing computation time. But it solves the problem of connecting an

independent class variable to the other nodes of the graph, allowing bayes ball to

be more useful in this specific case. In the next iterations, it would be possible to

the class variable to find better connections.

3.4.2 Lidstone Smoothing

While trying to solve the problem of the overfitting caused by running the algorithm

using only the CLL, i.e., without using the AICCLL score, one option to improve the

performance of the classifier on new instances was to cause a perturbation to the

parameters of the network. This was done since it was observed that for the test set,

some classifications were done very well, while others were poor. The impact of the

small probabilities in the logarithm, consequence of bad classifications in the CLL

score, used to decrease the score very much, even for a small number of instances

of the test set. The solution, before thinking in AICCLL, was to cause a small

50

perturbation to the parameters of the Bayesian network returned by BBSL. This

way, the effect of overfitting used to be atenuated. The technique used to cause

this perturbation, keeping the parameters consistent to the probability rules was

the Lidstone Smoothing [39]. The formula is shown in Equation 3.17:

θnew =
θold + α

1 +N ∗ α
. (3.17)

In the formula, α is an additive parameter for smoothing and N is the number

of possible values to be assumed by the variable.

51

Chapter 4

Experimental Results

In this chapter, the methodology applied to make the experiments is presented, as

well as the results obtained from the experiments execution. Results are discussed on

Section 4.4 and its specific conclusions are shown. The results contain statistics from

CLL, Time spent, AICCLL optimization score and SHD. More general conclusions

are left to the Conclusion chapter. Some more detailed tables with results are

presented in the Appendix of this work.

4.1 Algorithms Used in Comparisons (DAHVI,

SEMGHC, GS and MMHC)

Before discusssing the results obtained, it would be usefull to justify some choices

made considering the algorithms used in the comparison. As presented in the Re-

lated Work chapter, there are several possibilities of algorithms, however not all

of them fit the requirements needed for a good comparison of BBSL with existing

techniques.

First, to achieve a fairer comparison, it would be desirable to compare BBSL with

other algorithms that have the same proposal as it has. The best scenario would

lead us to compare BBSL with other local learning, for incomplete data algorithms,

that focused on classification tasks. Unfortunately, as far as it goes our structure

learning knowledge, the only algorithm that fits this description is DAHVI. DAHVI

is a revision algorithm that tries to improve the classification of a group of variables

by hidden variable insertion.

52

An alternative to try to solve the problem of selecting algorithms for comparisons

could be to use local learning algorithms, as BBSL. However, there is the need to

ignore other restrictions like focus on classification tasks or working with incomplete

data, because there are only a few algorithms available that are local and also have

these characteristics. As far as we know, options include SLL and DMBC. Part of

these options also were not published at the beginning of this research, what brings

some difficulties. However, even these algorithms do not allow using incomplete

data. SLL does not allow it because of its OptimalNetwork heuristic presented in

[40], that needs the score to be decomposable. And DMBC, as a K2-based algorithm,

has some limitations also present in K2 , in what concerns its score.

Not considering the local approach restriction, there are algorithms that could

be used for incomplete data, these include SEM and its variations. However, SEM

is not local as BBSL and not even focus on classification tasks.

Because of this, for this research, it was decided to use a constraint-based algo-

rithm, a score-based algorithm and a hybrid algorithm for comparison. A represen-

tative member of each group of algorithms has been chosen.

4.1.1 Constraint-Based Choice

For the constraint-based cited in the Related Work chapter, GS and PC are algo-

rithms that return a global structure for the Bayesian network. This is better for

our purposes because a full network is also the output of BBSL and allows fairer

score comparisons. GS and PC do not return only a local set of variables as many

constraint-based solutions. GS was selected for the comparison.

4.1.2 Score-Based Choice

From the score-based algorithms, the choice was SEM, because of being able to

work with incomplete data. It is a common approach to use EM or some kind of

adaptation of it to learn in an incomplete data scenario. However, it is necessary to

determine a search algorithm to use in the SEM framework. For simplicity, the one

selected was GHC, and this solution is called here SEMGHC . At this work, it was

used the SEM algorithm with the GHC in the search step.

53

4.1.3 Hybrid Choice

MMHC was chosen to represent the hybrid algorithms because of being recent, if

compared to other structure learning algorithms like H2PC. And also, because of

being popular, since it has been cited in several works (at the time of writing this

dissertation H2PC was cited only once, while MMHC, 420, considering data from

Google Scholar).

4.2 Required Algorithm Adaptations

From the selected algorithms DAHVI, GS, MMHC and SEMGHC . In order to

perform comparisons, GS, MMHC and SEMGHC had to be adapted.

For SEMGHC , the bigger search space of a global approach united to the incom-

plete dataset computational cost problems made SEM with GHC not to run in a time

slice it could be possible to wait. This execution time depends on infra-structure

restrictions that could not be surpassed. Also, this time consumption increases with

the size of the dataset, number of variables and percentual of examples containing

missing data. The alternative to these performance problems was to change the

search algorithm a bit in pursuance of a better execution time. While GHC nor-

mally compares all the possible Bayesian network neighbours, the algorithm used

in the comparison has the same heuristic as GHC, but compares only 50 randomly

chosen neighbours of the current structure.

For the constraint-based algorithms there is an issue. One of the disadvantages of

using a constraint-based algorithm is that they do not usually allow incomplete data

[28]. None of the constraint-based algorithms cited in the Related Work chapter can

deal with incomplete data and the interested reader can check this at each algorithms

respective article.

The workaround found to deal with the problem of using incomplete data with

constraint-based algorithms, trying not to change the structure of the algorithm, was

to compute the ESS for the dataset before any change to the network. Then, before

executing GS, that is constraint-based, the ESS were computed for the dataset and

the available initial network. After ESS computation, the algorithm was executed

using these ESS when statistics were needed. In the end, parameters of the learned

54

Bayesian network are estimated from these ESS. This is not the recommended sce-

nario, since changes will be made to the network and the ESS are not updated [3].

But, it is an option that allows computation in a reasonable time.

MMHC, the hybrid option chosen, is also not able to work with incomplete data

because of its constraint-based initial part. The same adaptations made to GS

(constraint-based) were made to MMHC.

Remember that MMHC and GS start from a totally disconnected network. BBSL

does not have this restriction, but Bayes Ball is not useful when all the nodes are

independent of each other. Anyway, algorithms were compared. GS and MMHC

starting from disconnected networks, and BBSL starting from a generated one.

Probably, one of the hardest parts of preparing the experiments involved choosing

the algorithms (if infrastructure issues are disconsidered), because of these differ-

ences in the characteristics between them and BBSL.

4.3 Experimental Configurations

For all the experiments done in this work the computers had processors Intel i7,

8GB of RAM memory, and had Ubuntu as operational system. This is exposed

because it affects the performance of implemented algorithms concerning the time

they take to be executed, and allows more reproducibility. All the code used was

implemented in Python 2.7.3, and all the algorithms were implemented without

using any Bayesian network framework for this. All the algorithms implementations

followed the instructions of the articles where they were published. The inference

algorithm used in this work was Variable Elimination [3].

As justified before, the algorithms chosen for comparison were the constraint-

based algorithm Grow and Shrink, the hybrid Max-Min Hill Climbing and the score-

based GHC inside an SEM structure (with some modifications). They are commonly

used in the literature for comparisons, have its pseudo-code available and imple-

mentable, and were considered representatives of each category to which each of

them pertain to.

Four different networks were used in this work, all of them are commonly used

in the literature, in special the ALARM network, present in several papers. The

55

ALARM (A Logical Alarm Reduction Mechanism) is a real life Bayesian Network,

described as a network to monitor patients in intensive care [41]. Some of these

networks may be found in http://www.bnlearn.com/bnrepository/. These networks

include: ALARM (37 vertices, 46 edges, 509 parameters), Child (20 vertices, 25

edges, 230 parameters), Hailfinder (56 vertices, 66 edges, 2656 parameters) and

Insurance (27 vertices, 52 edges, 984 parameters).

For each network, artificial datasets were generated by means of using the For-

ward Sampling [3] method. In forward sampling, each variable in the network is

sampled in topological order, until there are no more variables to be sampled. The

result of this sampling is an example in the dataset. The procedure is repeated

until filling the quantity of examples needed for the artificial dataset. The choice

for building artificial datasets from these known networks was done because of the

difficulties to find real world datasets that filled the needs of the research, and for

the lack of time for collecting data to build real world datasets.

From each of these artificial datasets generated, that had 500 and 1000 examples,

other four datasets were generated changing the amount of missing data in it. Finally

there were a set of 8 datasets, 4 for 500 examples and 4 for 1000 examples. Each

group of four, contained datasets of 1%, 5%, 15% and 30% of examples that had at

least one missing value.

The networks cited above were also used to generate new networks. They were

5 different networks, each of them with three random local changes to its structure,

resulting in a total of 20 networks to be tested. These local changes were applied

adding, removing or inverting edges that were 2 hops at maximum from the class

variable. Networks were generated this way in order to try to simulate an hypothet-

ical expert that would elicitate the initial network. This is the network that has a

variable such that its classification should be improved by the algorithm.

The experiments built for testing BBSL against the other algorithms used a com-

bination of the several factors presented before that could affect execution. Others

could be considered, but the more factors to consider the more it rapidly increases

the number of experiments to be done. The experiments were a combination of

target networks (ALARM, Child, Hailfinder and Insurance), initial networks (the

networks generated by random local changes applied), number of examples in the

56

dataset and percentual of missing data in examples. In a total of 4 · 5 · 2 · 4 = 80

configurations, for each algorithm. If you consider the 4 algorithms being run, you

have a total of 320 configurations. Not enough, to try to reduce the variance in the

results obtained, 10-fold-cross-validation was employed, resulting in 3200 executions

of algorithms per try.

MMHC and GS algorithms have the restriction of starting from totally discon-

nected networks. This was done in the experiments. In the case of MMHC and

GS, five different parameter initialization sets were considered. Adaptations were

needed in the sense of using constraint-based algorithms with incomplete data. As

cited before, the ESS were computed before execution for use in the independence

and conditional independence tests.

The mean from the results of the 10-fold-cross-validation was computed and from

these means, other were taken through configurations of the experiments to present

them at the results in the tables. Also, statistical tests were realized (paired t-tests)

to determine if the difference between the values found in the experiments were

significant.

At all the experiments the parameters used for BBSL are: a) classification thresh-

old, used to determine if the class variable was classified correctly or not, equal to

0.7; b) minimal occurrence percentual of the variable in the counts from the results

of Bayes Ball algorithm, necessary so that the variable is not eliminated in the first

step of BBSL, equal to 10%; c) SEM convergence threshold, to determine if SEM

has already converged, equal to 0.01.

These parameters were obtained from preliminary tests, trying to achieve best

results. The classification threshold was determined in order to restrict results to

high quality classifications, over 70%. Minimal occurrence percentual was selected

in order to avoid a small number of examples to force the inclusion of more variables

in the RelevantVariables set. This way, changes in the network are done in order

to achieve greater improvements in the classification score used, not just to improve

the classification for a small set of examples. As EM uses to converge rapidly, with

high increase of the likelihood score, a limit of maximum three iterations per EM

execution was selected.

To check if differences in the presented results are statistically significative, paired

57

t-tests were realized for each case presented in the tables, for all four algorithm

comparisons. Analyzing the p-value for each test, comparing BBSL to each one

of the four algorithms, results allowed us to define with high significance levels

(higher than 95 %), that the differences are statistically significative, for most of

the experiments. This can be seen, as the results are shown in the Appendix of this

work.

More detailed tables of results are also shown in the appendix of this work.

4.4 Results

In this section, results and discussion are presented considering the experiments

made the way described before. As expected of any good machine learning approach,

the results shown refer to the test set. In this specific case, as said before, these

results were obtained using 10-fold-cross-validation. The results presented in the

tables are the average of the results obtained for each fold used in the tests, not

used in the training. Compared algorithms are BBSL, DAHVI, GS, MMHC and

SEMGHC .

Everytime a score was neeeded to evaluate and compare candidate networks, to

be fairer, the score used was the AICCLL score. It was like this for BBSL, DAHVI

and SEMGHC that make comparisons based on score evaluations.

Henceforth, in the tables that will be presented, darkened results in a collumn

correspond to the best results found in the comparisons with the other algorithms

in the table. If the score should be maximized it corresponds to the maximum value

in the line of the table, however, if the score should be minimized, the best value,

darkened, will be the minimum value in the line. If a value is underlined in the

table, it means that, although it may be the best result, the difference to the other

algorithms is not statistically significative for at least one other algorithm in the

same table.

4.4.1 CLL

The first results to be presented here are the CLL score results, since the proposed

algorithm tries to improve the classification of a variable. As shown in Section 3.3,

58

CLL presents overfitting problems related to using it when comparing Bayesian

networks. That means, when using CLL to evaluate which of a number of Bayesian

network structures has higher CLL score during search, the result will usually be a

more connected network, because as shown in Section 3.3, this score is commonly

better for structures with more edges between variables. This behaviour tends to

cause overfitting problems. Because of this, in the BBSL algorithm comparisons,

AICCLL was adopted for optimization. This way, the classification of the variable

is improved, as shown by the CLL score increase.

The results obtained for the networks learned with BBSL show that the average

CLL (Conditional Log-Likelihood) scores obtained from the test set are good in the

comparisons, not presenting the overfitting problem (the score used for optimization

was AICCLL). This can be considered an evidence that AICCLL works well for

the comparisons between candidate Bayesian networks, when trying to improve the

classification of a variable. The average results for the CLL are presented in Table 4.1

(the greater the result the best).

Table 4.1: CLL final score

The increase in the CLL score from the initial network to the network learned

by the algorithm is presented in Table 4.2. The results show us that indeed the final

CLL for some networks were good, the initial networks already had a good score,

such that the algorithm in some cases, like in the average for the ALARM network

results has not improved the score very much. However, it also shows us that BBSL

increased the score more than SEMGHC and DAHVI, that started from the same

point, resulting in a better scored network. Negative values mean that the CLL for

the learned network is worse than the CLL of the initial network.

One important fact to notice when analysing these results is that GS and MMHC

start from a disconnected network because of own algorithms restrictions. For BBSL,

59

Table 4.2: CLL Increase

SEMGHC and DAHVI the simulated expert starting point was considered. Contin-

uing, it is reasonable to consider, that starting from a disconnected network, allows

a bigger improvement in the score. This would happen because the score of the

initial structure is more distant from the ideal situation, that means, from the score

of the structure that generated the data. As the simulated expert structure changes

were made only to a local neighbourhood of the network that generated the data, to

improve this network very much is harder then to improve a very different one. This

seems to justify the better increases for GS and MMHC, although the final results

were not the best, even for GS that were next to the second best result.

Detailed results for the CLL are presented in Table 4.3. Notice in the table

that some results are unavailable due to problems during algorithm execution, an

operational issue. Other results are not in the table because they haven’t finished

execution in less than eight hours per fold, these are indicated as ”Timeout”.

For the results, notice that BBSL has the best for most of all the algorithms

presented. However, also notice that except for Hailfinder (the biggest network

considered), results are not statistically significative for 95% of confidence. Anyway,

the CLL of the learned network is better or as good as the others when using BBSL,

for all the cases presented. As it will be shown, the execution time is usually shorter

for BBSL than for the other algorithms used in the comparison.

4.4.2 Time

It is important to notice for the experiments, that given incomplete data, the execu-

tion time tends to increase with the number of examples and percentual of missing

data. This time is greater than the one consumed for the execution of the cited al-

gorithm with complete data, usually presented in the literature. In our experiments

60

Table 4.3: Detailed Average CLL

with BBSL, this is presented in Figure 4.1.

Notice, that in these charts, sometimes the execution time when 1% of missing

values is used is greater than the execution time for 5%. This is not the expected

behaviour in structure learning algorithms. However, this could be explained by the

fact that for different missing values in an example different sets are returned by

the Bayes Ball algorithm, and so by the CollectRelevantVariables step. As different

sets are returned, the number of candidate structures may differ, and then the time

spent to compare structures. Since the difference in the number of examples with

missing values for 1% and 5% in datasets with 500 and 1000 examples, is not so big

if compared to the other percentuals presented, this effect might be the cause of the

results presented.

In terms of execution time, BBSL was the fastest for most of the cases, taking

more time for Insurance network. The better results are probably related to the

local approach used, since GS, MMHC, and SEMGHC , use global approaches. The

results for DAHVI may be justified by the optimizations done in BBSL, like filtering

the size of the set of variables that enter the SelectStructure step by considering the

61

Figure 4.1: BBSL - Total execution time (seconds)

percentual of examples that could be affected by the inclusion of new variables in

the search. Other optimization issue is related to the fact that DAHVI runs EM for

every candidate network, what BBSL does not, since EM expectation step consumes

too much computational resources BBSL can achieve better results. Both GS and

MMHC, in its original publications, does not allow searching just a piece of the

network at the same time it returns all the structure of a Bayesian network, and

were considered this way [4] [7].

SEMGHC would search locally only if a variant was used, like it is done in the

second step of BBSL, restricting the search for only some networks. The networks

that makes changes only to the surroundings of the class variable, and the definition

of surroundings would depend on the algorithm proposed (like the Markov Blanket

or the BBSL CollectRelevantVariables set). Then, it would be another algorithm

that could be proposed, not exactly GHC.

One possible explanation to the execution time results for BBSL in Insurance

network, is that, the ”SocioEcon” variable, considered as the classification variable

in the experiments is very connected. Its degree is 8, resulting in a bigger BBSL

CollectRelevantVariables set. Then, with more variables returned by CollectRel-

evantVariables, more possible candidates are analyzed and the time consumption

increases.

62

When considering the Hailfinder results, the network with the greatest number

of variables (56), notice that the difference in time is greater than usual. This is

an evidence that BBSL could be used in more big-sized networks, without great

damages to execution time. In this case, for the approach that was adopted, using

not so big networks, network connectivity and missing values have greater relative

impact than it would be if the size of the network was bigger. Even if results were

worse, differences in the CLL score for the same network, in some situations, may

not justify the additional time used, favoring BBSL instead of other algorithms.

Table 4.4: Average execution time

The paired t-tests results show that these execution times that are usually better

for BBSL than for other algorithms, are also statistically significative. There are

only a few exceptions as shown in Table 4.5. These results confirm that BBSL results

are achieved faster with equal or better quality than the algorithms considered in

the comparisons.

4.4.3 AICCLL

Results in Table 4.6 use the AICCLL score. AICCLL is the optimized score in

BBSL, it was used when comparing Bayesian networks in the SelectStructure step.

Results presented are the mean of the increase of the score from the initial structure

to the learned network using the algorithm. In the mean calculation, the several

folds executed were considered, the several initial structures and the percentuals of

incomplete data, for 500 and for 1000 examples, at each of the networks (ALARM,

Child, Hailfinder, Insurance).

Remember that for AIC score the lesser the value obtained the better. At all

results, considering only GS and MMHC, the BBSL algorithm presented a value

of AICCLL better than the other two algorithms. However, when the comparison

63

Table 4.5: Detailed Average Time Spent (in seconds)

was made to the SEMGHC , results were worse at all cases. The GHC variant con-

sidered, despite of having a reduced number of networks to compare per iteration,

increases the AICCLL score at each iteration, using a greedy heuristic. This heuristic

considers modifications at any edge of the Bayesian network, so that the number

of possible modifications available when trying to improve the score is greater. In

BBSL, changes are only allowed to the edges that connect variables in the Collec-

tRelevantVariables set obtained. However, the time consumed in the search even

for the reduced number of network comparisons is is still high for SEMGHC , as seen

in Table 4.4

The average AICCLL score for the learned Bayesian networks produced in the

experiments are presented in Figure 4.7.

Notice that, in Table 4.7 and in Table 4.6, indeed the score increase shows

good results in the comparisons, the score of the final learned network is the worst

among all the algorithms. One possible cause for this is that algorithms like MMHC

are delivering highly disconnected networks, therefore with a reduced number of

64

Table 4.6: AICCLL Increase

Table 4.7: AICCLL final score

parameters. In this way, the penalty value of Akaike for these networks is too small,

what highly decreases the score. Possibly, using AICCLL is giving a higher weight to

the number of parameters than it should do. Notice however, that when comparing

candidate networks, the structures being compared differ only from local changes,

such that they are similar in the edges that are away from the local surroundings.

Then, the number of parameters of these networks are more similar, and the choice

is more dependent of the CLL score, still penalizing complexity.

From the results that have been presented untill here, it may be said that AICCLL

score can be considered useful to compare structures in order to try to improve the

CLL of the resulting Bayesian network. Also, that this CLL improvement is greater

than the SEMGHC improvements, that started at the same conditions.

As it will be presented on Table 4.11, in the case where BBSL starts from a

network similar to the ones GS and MMHC start, results are comparable to GS ones

in the average. On Table 4.10 where the start is random, and the nodes are already

connected, in such a way BBSL can take advantage of the existent connections for

Bayes Ball execution, the results are even better.

65

4.4.4 Structural Hamming Distance (SHD)

Table 4.8 presents the Structural Hamming Distance (SHD) [7]. It is defined by

the number of operations (additions, removals and inversions of edges) that would

be necessary to transform one structure into another. The comparisons were made

between the resulting learned networks and the target networks. These last are the

original networks from which the datasets were sampled.

Table 4.8: SHD

SHD results in Table 4.8 had smaller values for BBSL, what indicates that the

obtained network differs less from the gold model, the target structure. Evaluating

the results for GS and MMHC, it may be said that in part this is caused by the

differences in initial networks. BBSL and SEMGHC already started from a structure

that is not very different from the target one. DAHVI is not presented because it

inserts hidden variables, so the number of variables is also not equal to the ones in

the other structures.

4.4.5 Accuracy

In the Figure 4.9, the accuracy of the final resulting learned network is compared

among the algorithms. Results show that in the end of the learning task, BBSL still

has a good percentual of accuracy.

66

Table 4.9: Accuracy

4.5 BBSL Configurations Analysis

In order to try to achieve better results, some other configurations of BBSL were

tested. In this section, some results are presented for a part of these approaches.

Among the possible configurations the ones selected were:

• (I) Starting BBSL from a randomly generated Bayesian network, as if there

were not any background knowledge about the domain (results in Table 4.10);

• (II) Starting BBSL from a totally disconnected Bayesian network, where there

are no edges, as if all nodes are independent of all the others. In this case, the

External Edges operator was used, in order to solve the problem of the bayes

ball set of the node being empty when the class variable is independent of all

other nodes (results in Table 4.11);

• (III) Starting BBSL using the network that generated the data with a lo-

cal modification on its structure in the neighbourhood of the class variable,

simulating a network structure elicitated by an expert (results in Table 4.12);

• (IV) Starting BBSL using the network that generated the data with a local

modification on its structure in the neighbourhood of the class variable, sim-

ulating a network structure elicitated by an expert and using the External

Edges operator (results in Table 4.13).

67

Table 4.10: BBSL - Randomly Initialized

Table 4.11: BBSL - Started from Disconnected Network

Table 4.12: BBSL - Started from Simulated Expert Network

Table 4.13: BBSL - Started from Simulated Expert Network with External Edges

68

Notice that results for the Insurance network in Table 4.13 are not available due

to operational problems.

If comparing the final CLL of the network is the criterion adopted, the best con-

figuration would be (III) considering the average. If the CLL increase is the selected

parameter of comparison, the randomly initialization would be the best choice (I)

followed by (II), probably explained by the fact that there is more opportunity to

improve a structure that is farther from the ideal one. The same may explain a

better SHD in (III) and (IV). The AICCLL score is worst for (I), probably because

of the number of parameters, not high in (II).

Also notice that, using the External Edges operator in BBSL (compare III and

IV), makes BBSL more dependent on the size of the network, increasing the time

spent. The bigger the network, more time will be spent when using External Edges

because edges are added connecting the class variable to each of the other vari-

ables. This behaviour produces an addition of a number of candidate networks to

be evaluated that is twice the number of variables excluding the class variable.

69

Chapter 5

Related Work

There are several algorithms in the literature that are in some way related to the

algorithm developed in this work. They are structure learning algorithms that have

one or more characteristics in common with BBSL. In this chapter, these works are

briefly presented, and differences between them and BBSL are pointed out.

There are already several algorithms to learn Bayesian network structure in the

literature. They are divided into three main types as presented earlier: constraint-

based, score-based or hybrid algorithms. Algorithms at each of these three classes

are considered in this chapter.

Some of the algorithms that use a constraint-based approach include GS(Grow

and Shrink)[4] [42], SGS [43], KS (Koller-Sahami) [44], PC [45], IAMB (Incremen-

tal Association Markov Blanket) [46] and its variations like Inter-IAMB [46], In-

terIAMBnPC [46], λ-IAMB [47], HITON [48], Fast-IAMB [49]. Despite of being

constraint-based, not all of these algorithms try to learn all the structure of the

Bayesian network.

Some of the algorithms cited above only try to discover the Markov Blanket of a

given variable, an important task, since researchers have suggested that the Markov

Blanket is a key concept to variable selection [48]. However, this behaviour can be

used to learn the structure of the network. This is the case of GS as referred in [4]

where it is separated into GS Markov Blanket (GSMB) and GS, the second is used

to learn all the structure of the network using the first. Something similar happens

to PC, where sometimes its version for learning the MB is considered, and other

times its full version to learn all the Bayesian networks with oriented edges like in

70

[45].

Algorithms like IAMB, a two phase algorithm like GS, that is not very different

from GS except for the dynamic ordering of the variables during the growing phase,

only learn the MB [46]. Its variations like Inter-IAMB, InterIAMBnPC and the more

recent λ-IAMB also only learn the MB [46] [47]. λ-IAMB is a slight variation of

IAMB with computer time gains in conditional mutual information calculation, since

it decomposes it in function of entropy and computes only the factors that change

from one independence test to another [47]. Because independence tests are done

repeated times during a constraint-based algorithm execution and are considered a

common measure of performance for these algorithms, enhancing independence test

performance is a good upgrade.

More recent algorithms include HITON, Fast-IAMB and λ-IAMB. All of them

learn the Markov Blanket of the node [48] [49] [47]. HITON has a different approach

from the other two since it learns the parent and children set of the variable first,

then make the union of this set to the parents and children set of each parent and

children of the node and tries to identify, in another step, the spouses and nodes

that does not pertain to the MB set of the variable [48]. Fast-IAMB and λ-IAMB

have in common that both are variations of the IAMB algorithm [49] [47].

KS (Koller-Sahami) algorithm is not dedicated to discovering the MB of a vari-

able or even to learn Bayesian structure, but it is useful to make feature selection,

and accepts parameters that when the size of the MB is known allows the user to

learn the MB of the variable and so it is used in comparisons in some works like [48]

[46].

Notice that some of these algorithms have variants that were not explicited here.

Also there are other works in the same orientation.

Some examples of score-based algorithms are GHC (Greedy Hill-Climbing) [3],

Simmulated Annealing [9] (and variants like TLSA [50] and Parallel TLSA [50]), K2

[16], GES (Greedy Equivalent Search) [51], Sparse Candidate [6], Optimal Reinser-

tion [5], B&B (Branch & Bound) [11], DBMC (Dynamic Markov Blanket Classifier)

[10]. From these, all of them use its respective heuristics and scores to search the

Bayesian networks space of solutions trying to solve the optimization problem of

learning the structure. DMBC [10] is a local algorithm that restricts its search to

71

the Markov Blanket of the network, improving classification locally. B&B [11] tries

to apply combinatorial optimization techniques to improve the score of the learned

network.

Hybrid algorithms include MMHC [7] and the more recent H2PC [17]. Both

use a constraint-based approach in a previous step to restrict the search space of

possible solutions, and then in a second step use a score-based heuristic to navigate

the search space while optimizing the solution. In this concern, BBSL behaves the

same way, with two steps, one for restricting the space of solutions and the other

for searching and optimizing. One of the differences comes from the fact that BBSL

does not use conditional independence tests to restrict the search space, but the

d-separation concept. Other difference is that BBSL only searches a local neigh-

bourhood, determined by its first step using the Bayes Ball algorithm, improving an

existent network locally, instead of starting from a totally disconnected structure.

This way, BBSL can use the existent background knowledge for the domain. Also,

BBSL is more example oriented than the other two, trying to improve the network

for most of the examples for which classification does not perform well. Besides this,

BBSL focus on the classification problem, in what it differs from MMHC and H2PC.

When considering local structure learning algorithms, there are, at least, SLL,

DMBC and DAHVI.

SLL [19] is a local score-based search algorithm, with a global variation called

SLL+G and a constraint-based variation called SLL+C. SLL executes in a more

comparable time to a constraint-based algorithm by using a local approach. It

is still worst when considering time consumption but it is already a competitive

alternative to constraint-based algorithms [19]. Usually score-based alternatives are

slower than constraint-based ones and SLL approach tries to be an intermediary

option [19]. It differs from BBSL in some important aspects, first its local search

considers the Markov Blanket of the node. In BBSL a more comprehensive concept,

the d-separation, is considered, as explained in the introduction. Other important

difference is that SLL is not adequate for incomplete data, because its sub-routine

OptimalNetwork uses an algorithm that has this restriction. SLL is also not focused

on the classification problem.

Other alternative for local learning cited is the DMBC[10] algorithm. This algo-

72

rithm looks for the optimal solution to the structure search problem in the Bayesian

network restricting itself to the Markov Blanket of the variable [10]. BBSL as cited

before uses the d-separation concept to choose the set of variables that affect the

probability distribution of the variable, being more comprehensive, and is able to

consider statistical relationships existent between variables in incomplete datasets

that would not exist for complete examples. DMBC, like BBSL, is focused on the

classification problem. Also, DMBC is not suitable for incomplete data problems

since the K2 score used, has factorials that cannot be calculated for the decimal num-

bers in Expected Sufficient Statistics. And finally, DMBC, as a K2-based algorithm,

needs some variable ordering before its execution.

Perhaps the most similar algorithm to BBSL is DAHVI (Discriminative Ap-

proach for Hidden Variable Introduction) [20], both are local, change the structure

of the Bayesian network, deal with incomplete data and try to improve the classifi-

cation of variables. However, DAHVI tries to accomplish its objective of improving

the classification of a group of variables by inserting hidden variables in the current

structure. As it will be shown, BBSL tries to improve the classification of only one

variable by changing the edges of the structure in the surroundings of the variable.

Although BBSL was designed for use with just one variable, it could be easily ex-

tended to the case of several variables classification improvement, as DAHVI does.

DAHVI, as DMBC, also uses the Markov Blanket of the node, actually, it uses the

referred MB* [20] set that is an extension of the MB concept, including the MBs of

the variables that are missing for a specific example recursively.

The MB* set of variables differs from the set returned by the Bayes Ball algo-

rithm, used in BBSL, as proven with a counterexample:

Consider the Bayesian network structure with variables A, B, C, D e E. This

structure presents two v-structures A → B ← C and C → D ← E. B and E are

observed variables (they are in the evidence). A is the class variable (P (A|B,E)).

Using MB*, C pertains to MarkovBlanket(A) and is not observed.

MarkovBlanket(C) includes D and E, therefore MB∗ = {A,B,C,D,E}.

Using d-separation, the path from C to A is active through B, because B is

observed. The path through C is active because C is not observed. However, the

path through D is blocked, because D is not observed, so E, in this specific case,

73

does not influence the probability distribution of A. P (A|B,E) = P (A|B) and the

result of Bayes Ball does not include E.

Finally, the conclusion is that the set returned by Bayes Ball is not always the

same as the one returned by MB*.

Other improvements, differences and optimizations between DAHVI and BBSL

include:

• BBSL defines the candidate structures in the search step as neighbours by the

application of only one operator of addition, remotion or inversion of edges (as

in GHC), while DAHVI defines it by the application of only one operator of

hidden variable inclusion.

• BBSL eliminates variables with little presence in the resulting sets returned

by Bayes Ball, the same is not done for DAHVI using the MB*. Such that a

MB* set determined by only one example, may happen to include variables in

the search, increasing computation time.

• DAHVI executes EM for each candidate network, while BBSL only once per

iteration, reusing the expected sufficient statistics. Since EM takes very much

time to execute, it has great impact on evaluation performance.

• BBSL proposes and uses the AICCLL score for classification tasks, presented

in Section 3.3.

For incomplete data with global approach, there are solutions like SEM [18] and

its variations that search all the space of possible Bayesian networks, in contrast

to BBSL that has a local nature. This makes BBSL faster than these algorithms,

however, BBSL only makes local changes.

BBSL combines desirable characteristics of several approaches cited before. It

uses a local approach, improves the classification of a chosen variable and can deal

with incomplete data. It also may start from an existing network, what is not

common for all hybrid and constraint-based algorithms, like MMHC and GS. Like

BBSL, some score-based structure search algorithms can look for an optimized so-

lution from a known starting network, like GHC and Simulated Annealing. This is

important because allows us to use existent background knowledge.

74

In Table 5.1, a set of characteristics of the main algorithms presented in this

chapter is shown.

BBSL is a fast algorithm, competitive to some constraint-based solutions like

Grow and Shrink. It also learns a Bayesian network with structure and parameters,

such that it allows the user to make inference from this network. Constraint-based

methods, and methods that try to learn the MB of the network sometimes only

return a Bayesian network structure without parameters or a set of variables that

compose the MB, without differing from parents, children and spouses. These in-

clude GS, PC and IAMB.

75

Table 5.1: Comparative - Algorithms Characteristics

76

Chapter 6

Conclusions

In this final chapter, the main and general conclusions of this work are presented.

Moreover, the main contributions of this work to the literature are highlighted. Also,

future work indicate possible improvements and opportunities, in order to continue

this research.

From what was presented at this work, the main contribution is the BBSL algo-

rithm, an algorithm that is able to learn from incomplete data, with a local approach,

that improves the classification of a variable given by the user.

BBSL uses the d-separation criterion instead of the more commonly used markov

blanket of the variable. The use of the concept of d-separation for evaluating the

variables that may influence the probability distribution of a random variable in

the learning structure algorithm is something new to the local structure learning for

Bayesian networks and could be more explored in other new algorithms.

Results have shown that BBSL consumes little time in comparison to other

algorithms. It is competitive even to some constraint-based solutions. Also, it

achieves its objective of acting locally to improve the classification of a variable. In

this work, this was represented by the CLL score.

The score proposed intended to evaluate classifications not only by the number

of examples classified correctly or not, like in accuracy, but also, how well these

examples were classified. This already exists in the CLL score presented, however

with AICCLL the problem of overfitting a network because of high connectivity

preference is avoided.

Another topic that is worthy attention in the results, are the comparisons made.

77

The algorithms to which the comparisons were made do not really fit the profile of

having the same proposal as BBSL. Although, they serve as good metrics to give

some idea of performance of BBSL, relating its performance to the performance of

other algorithms present in the literature. Adaptations made to the algorithms such

that they could work with incomplete data may be seen as minor contributions, and

used in future comparisons by others.

The work also complements the available literature concerning Bayesian network

learning with incomplete datasets, since books usually don‘t come into detail for this

topic, and literature seemed to be very fragmented. Also, the local approach applied

to Bayesian network structure learning appear as a relatively recent topic.

Other issue that may come into discussion when trying to develop Bayesian net-

work related software is the lack of software tools, libraries, and uniformity in the

implementations. Every work makes comparisons to other related works, but there

are no uniform implementations that can be used. Even for the algorithms that

are available on the web, some are not open source, some are not even available,

and there is no uniformity to the technologies used, making comparisons more de-

pendable on the technology used, and not only on the algorithm itself. Not a small

work had been employed in the Python implementations of the algorithms needed

to learn structure, learn parameters, make inference, evaluate networks, make sta-

tistical tests, and so on.

BBSL allows using previous knowledge about the domain variables in its execu-

tion, a desirable characteristic not present in several algorithms that is important

when this background knowledge is available. In BBSL, it can be expressed as the

currently known Bayesian network, which variables are known to be statistical de-

pendent of each one, and what is the conditional probability distribution of these

variables. Using previous knowledge and being able to work with incomplete data

makes BBSL more adequate to real world situations.

In what concerns execution time, the Bayesian network algorithms presented for

learning structure are very sensitive to the number of variables and percentual of

missing data. ESS computation is really costful and it would be very interesting to

have more alternative methods. Even in this situation, BBSL executed in a reason-

able time for networks with 56 variables, 30% of examples containing missing data

78

and a thousand examples. This is possible because of the use of a local approach,

since it allows that execution time doesn‘t increase so rapidly with the size of the

Bayesian network.

For future work, it would be useful to solve the problem of BBSL with inde-

pendent nodes. When the class variable is independent, the bayes ball algorithm

only returns the class variable, so that BBSL does not make any improvement to

the network strcuture, only to the parameters through EM execution. When data

is complete the nodes returned from the Bayes Ball execution is the MB of the class

variable.

Also it would be nice to try to build an algorithm from BBSL that uses a global

approach, an algorithm that learns the edges between all pair of variables in the

structure. The fact that BBSL can be run locally to the surroundings of a node,

and the continuous increasing number of cores of recent computers could be used to

build a parallel algorithm that could run faster even for bigger networks.

79

Bibliography

[1] PEARL, J., RUSSELL, S. “Bayesian networks”, The Handbook of Brain Theory

and Neural Networks, 2nd edition, 2003.

[2] DARWICHE, A. “Bayesian networks”, Communications of the ACM, v. 53,

n. 12, pp. 80–90, 2010.

[3] KOLLER, D., FRIEDMAN, N. Probabilistic Graphical Models: Principles and

Techniques. MIT Press, 2009.

[4] D.MARGARITIS. Learning Bayesian Network Model Structure from Data. PhD

thesis, School of Computer Science, Carnegie Mellon University, Pitts-

burgh, 2003.

[5] MOORE, A., WONG, W. “Optimal reinsertion: A new search operator for

accelerated and more accurate Bayesian network structure learning”. In:

Proceedings of the 20th International Conference on Machine Learning

(ICML 03), pp. 552 – 559. AAAI Press, 2003.

[6] FRIEDMAN, N., NACHMAN, I., PEÉR, D. “Learning Bayesian network struc-

ture from massive datasets: the sparse candidate algorithm”. In: Proceed-

ings of the Fifteenth Conference on Uncertainty in artificial intelligence,

pp. 206–215. Morgan Kaufmann Publishers Inc., 1999.

[7] TSAMARDINOS, I., BROWN, L. E., ALIFERIS, C. F. “The max-min hill-

climbing Bayesian network structure learning algorithm”. In: Machine

Learning, Vol. 65, pp. 31 – 78, 2006.

[8] MEEK, C. Graphical Models: Selecting Causal and Statistical Models. PhD

thesis, Carnegie Mellon University, 1997.

[9] KIRKPATRICK, S., GELLET, C. D., VECCHI, M. P. “Optimization by simu-

lated annealing”, Science, pp. 671–680, 1983.

[10] DOS SANTOS, E. B., HRUSCHKA JR, E. R., HRUSCHKA, E. R., et al.

“Bayesian network classifiers: Beyond classification accuracy”, Intelligent

Data Analysis, v. 15, n. 3, pp. 279–298, 2011.

80

[11] DE CAMPOS, C. P., JI, Q. “Efficient structure learning of Bayesian networks

using constraints.” Journal of Machine Learning Research, v. 12, n. 3,

pp. 663–689, 2011.

[12] POURRET, O., NAÏM, P., MARCOT, B. Bayesian networks: a Practical

Guide to Applications, v. 73. Wiley. com, 2008.

[13] KENETT, R. “Applications of Bayesian Networks”, Available at SSRN

2172713, 2012.

[14] XIAO-XUAN, H., HUI, W., SHUO, W. “Using expert’s knowledge to build

Bayesian networks”. In: Computational Intelligence and Security Work-

shops, 2007. CISW 2007. International Conference on, pp. 220–223.

IEEE, 2007.

[15] HECKERMAN, D. A Tutorial on Learning with Bayesian Networks. Microsoft

Research, 1995.

[16] COOPER, G. F., HERSKOVITS, E. “A Bayesian method for the induction of

probabilistic networks from data”, Machine learning, v. 9, n. 4, pp. 309–

347, 1992.

[17] GASSE, M., AUSSEM, A., ELGHAZEL, H. “An experimental comparison of

hybrid algorithms for Bayesian network structure learning”. In: Machine

Learning and Knowledge Discovery in Databases, Springer, pp. 58–73,

2012.

[18] FRIEDMAN, N. “Learning belief networks in the presence of missing values

and hidden variables”. In: Proceedings of the Fourteenth International

Conference on Machine Learning, pp. 125–133. Morgan Kaufmann, 1997.

[19] NIINIMAKI, T., PARVIAINEN, P. “Local Structure Discovery in Bayesian

Networks”, arXiv preprint arXiv:1210.4888, 2012.

[20] REVOREDO, K., PAES, A., ZAVERUCHA, G., et al. “Revisando redes

Bayesianas através da introdução de variáveis não-observadas”, ENIA,

2009.

[21] KOLLER, D., FRIEDMAN, N., GETOOR, L., et al. “Graphical models in

a nutshell”. In: Getoor, L., Taskar, B. (Eds.), Introduction to Statistical

Relational Learning, MIT Press, 2007.

81

[22] SHACHTER, R. D. “Bayes-Ball: The rational pastime (for determining ir-

relevance and requisite information in belief networks and influence dia-

grams)”. In: Proceedings of the 14th Conference on Uncertainty in Arti-

ficial Intelligence, Madison, Wisconsin, pp. 480 – 487, 1998.

[23] ROBINSON, R. W. “Counting labeled acyclic digraphs”. In: New Directions

in the Theory of Graphs, Academic Press, pp. 239–273, 1973.

[24] ROBINSON, R. W. “Counting unlabeled acyclic digraphs”. In: Combinatorial

mathematics V, Springer, pp. 28–43, 1977.

[25] CHENG, J., BELL, D., LIU, W. “Learning Bayesian networks from data: An

efficient approach based on information theory”, On World Wide Web at

http://www. cs. ualberta. ca/˜ jcheng/bnpc. htm, 1998.

[26] ALIFERIS, C. F., STATNIKOV, A., TSAMARDINOS, I., et al. “Local causal

and Markov blanket induction for causal discovery and feature selection

for classification part i: Algorithms and empirical evaluation”, The Jour-

nal of Machine Learning Research, v. 11, pp. 171–234, 2010.

[27] NÄGELE, A., DEJORI, M., STETTER, M. “Bayesian substructure learning-

approximate learning of very large network structures”. In: Machine

Learning: ECML 2007, Springer, pp. 238–249, 2007.

[28] NEAPOLITAN, R. E. Learning Bayesian Networks. Prentice Hall, 2003.

[29] COOPER, G. F., HERSKOVITS, E. “A Bayesian method for the induction of

probabilistic networks from data”, Machine learning, v. 9, n. 4, pp. 309–

347, 1992.

[30] SCHWARZ, G. “Estimating the dimension of a model”, The Annals of Statis-

tics, v. 6, n. 2, pp. 461–464, 1978.

[31] RISSANEN, J. “Modeling by shortest data description”, Automatica, v. 14,

n. 5, pp. 465–471, 1978.

[32] COOPER, G. F., HERSKOVITS, E. “A Bayesian method for constructing

Bayesian belief networks from databases”. In: Proceedings of the Seventh

conference on Uncertainty in Artificial Intelligence, pp. 86–94. Morgan

Kaufmann Publishers Inc., 1991.

[33] MYLLYMÄKI, P., ROOS, T., SILANDER, T., et al. “Factorized NML mod-

els”, 2008.

82

[34] DE CAMPOS, L. M. “A scoring function for learning Bayesian networks based

on mutual information and conditional independence tests”, The Journal

of Machine Learning Research, v. 7, pp. 2149–2187, 2006.

[35] GROSSMAN, D., DOMINGOS, P. “Learning Bayesian network classifiers by

maximizing conditional likelihood”. In: In Proc. 21st International Con-

ference on Machine Learning, Banff, Canada, pp. 361 – 368, 2004.

[36] AKAIKE, H. “A new look at the statistical model identification”, Automatic

Control, IEEE Transactions on (Volume:19 , Issue: 6, Pages: 716-723),

1974.

[37] SARDINHA, R., PAES, A., ZAVERUCHA, G. “Aprendizado Local da Estru-

tura de Redes Bayesianas a partir de Dados Incompletos”, X Encontro

Nacional de Inteligência Artificial e Computacional (ENIAC), 2013.

[38] WOLFE, J., HAGHIGHI, A., KLEIN, D. “Fully distributed EM for very large

datasets”. In: Proceedings of the 25th International Conference on Ma-

chine Learning, pp. 1184–1191. ACM, 2008.

[39] CHEN, S. F., GOODMAN, J. “An empirical study of smoothing techniques

for language modeling”. In: Proceedings of the 34th Annual Meeting on

Association for Computational Linguistics, pp. 310–318. Association for

Computational Linguistics, 1996.

[40] SILANDER, T., MYLLYMAKI, P. “A simple approach for finding the globally

optimal Bayesian network structure”, arXiv preprint arXiv:1206.6875,

2012.

[41] BEINLICH, I., SUERMONDT, H. J., CHAVEZ, R. M., et al. “The ALARM

monitoring system: a case study with two probabilistic inference tech-

niques for belief networks”. In: Proceedings of the 2nd European Confer-

ence on Artificial Intelligence in Medicine, Springer-Verlag, pp. 247–256,

1989.

[42] MARGARITIS, D., THRUN, S. “Bayesian network induction via local neigh-

borhoods”. In: Advances in Neural Information Processing Systems 12,

p. 505–511. MIT Press, 2000.

[43] SPIRTES, P., GLYMOUR, C. “An algorithm for fast recovery of sparse causal

graphs”, Social Science Computer Review, v. 9, n. 1, pp. 62–72, 1991.

83

[44] KOLLER, D., SAHAMI, M. “Toward Optimal Feature Selection”. In: Saitta, L.

(Ed.), Proceedings of the Thirteenth International Conference on Machine

Learning (ICML), pp. 284–292. Morgan Kaufmann Publishers, 1996.

[45] ABELLÁN, J., GÓMEZ-OLMEDO, M., MORAL, S. “Some Variations on the

PC Algorithm.” In: Probabilistic Graphical Models, pp. 1–8, 2006.

[46] TSAMARDINOS, I., ALIFERIS, C. F., STATNIKOV, A. R., et al. “Algorithms

for Large Scale Markov Blanket Discovery.” In: FLAIRS Conference, v.

2003, pp. 376–381, 2003.

[47] ZHANG, Y., ZHANG, Z., LIU, K., et al. “An improved IAMB algorithm for

Markov blanket discovery”, Journal of Computers, v. 5, n. 11, pp. 1755–

1761, 2010.

[48] ALIFERIS, C. F., TSAMARDINOS, I., STATNIKOV, A. “HITON: a novel

Markov Blanket algorithm for optimal variable selection”. In: AMIA An-

nual Symposium Proceedings, v. 2003, p. 21. American Medical Informat-

ics Association, 2003.

[49] YARAMAKALA, S., MARGARITIS, D. “Speculative Markov blanket discov-

ery for optimal feature selection”. In: Data mining, fifth IEEE interna-

tional conference on, pp. 4–pp. IEEE, 2005.

[50] XUE, G.-L. “Parallel two-level simulated annealing”. In: Proceedings of the 7th

international conference on Supercomputing, pp. 357–366. ACM, 1993.

[51] CHICKERING, D. M. “Optimal structure identification with greedy search”,

The Journal of Machine Learning Research, v. 3, pp. 507–554, 2003.

84

Appendix A

Detailed Results

Table A.1: Detailed Average AIC+CLL

85

Table A.2: T-tests for AIC+CLL

Table A.3: Detailed Average AIC+CLL Increase

86

Table A.4: T-tests for AIC+CLL (Difference)

Table A.5: Detailed Average CLL

87

Table A.6: T-tests for CLL

Table A.7: Detailed Average CLL Increase

88

Table A.8: T-tests for CLL (Difference)

89

Table A.9: Detailed Average Time Spent (in seconds)

90

Table A.10: T-tests for Time Spent

91

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Objectives
	Organization

	Background Knowledge
	Bayesian Networks
	Conditional Independence in Bayesian Networks
	Bayes Ball
	Structure Learning in Bayesian Networks
	Score-Based Structure Learning
	Constraint-Based Learning
	Hybrid or Mixed algorithms

	Local and Global Approaches
	Incomplete Data
	Expectation Maximization
	Structural Expectation Maximization

	Scores
	Log-Likelihood
	Conditional Log-Likelihood (CLL)
	Akaike Information Criterion (AIC)

	Bayes Ball Structure Learning
	The First Step of BBSL (CollectRelevantVariables)
	Procedure Illustration

	The Second Step of BBSL (SelectStructure)
	AICCLL score
	Other Approaches
	External Edges
	Lidstone Smoothing

	Experimental Results
	Algorithms Used in Comparisons (DAHVI, SEMGHC, GS and MMHC)
	Constraint-Based Choice
	Score-Based Choice
	Hybrid Choice

	Required Algorithm Adaptations
	Experimental Configurations
	Results
	CLL
	Time
	AICCLL
	Structural Hamming Distance (SHD)
	Accuracy

	BBSL Configurations Analysis

	Related Work
	Conclusions
	Bibliography
	Detailed Results

