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AbstractThe ability to set breakpoints stands, along with the possibility of deterministic re-execution, as one of the most important issues in the debugging of message-passing pro-grams. We consider in this paper the design of fully distributed algorithms for the detectionof breakpoints in such programs, and provide four algorithms, each for a di�erent type ofbreakpoint. One of the algorithms detects the occurrence of unconditional breakpoints,while the other three detect the occurrence of breakpoints on disjunctive predicates, stableconjunctive predicates, and generic conjunctive predicates. All the algorithms we presentdetect breakpoints in the form of earliest global states with respect to the particular prop-erty involved. In the case of unconditional breakpoints, such an earliest global state mustcoincide exactly with the requested local unconditional breakpoints for the processes thatdo actually participate in the breakpoint. In the case of the other (conditional) break-points, what is detected is the earliest global state at which either the disjunctive orconjunctive predicate under consideration is true. In order to actually halt the computa-tion at the exact global state the algorithms detect, we suggest as a �rst approach the useof checkpointing and rollback-recovery techniques, and indicate for each of the four caseshow to approach the recording of checkpoints so that the additional storage requirementper process is not demanding beyond the actual needs.

2



1. IntroductionThe problem we address in this paper is the problem of debugging message-passing pro-grams written for distributed-memory parallel processing machines. This problem hastraditionally been treated from two distinct, although complementary, perspectives. The�rst one concentrates on the ability to deterministically re-execute programs aiming atthe exact reproduction of the behavior observed in the previous execution. The secondperspective is that of setting breakpoints where the program is to be halted for its contextto be examined. Here breakpoints are distributed, comprising a collection of interrelatedconditions spread throughout the system. Because of the inherent asynchronism of thosemachines, and aggravated by the assumed absence of a shared address space, both views ofdistributed program debugging must of necessity depart signi�cantly from the approachestraditionally adopted in the debugging of sequential programs. Various contributions haveappeared in the literature in recent years [1, 4, 6, 8{15, 20, 21, 23{25], including thetechnical report [6] of which this paper is an expanded and revised version.Within the broad spectrum of problems associated with the debugging of distributedprograms, in this paper we concentrate on the design and analysis of distributed algorithmsto detect the occurrence of breakpoints. The breakpoints we consider are of three types.Unconditional breakpoints comprise pre-established points speci�ed distributedly amongthe program's components. In contrast, the conditional breakpoints we consider are eitherconjunctive or disjunctive. The former specify a global condition as the logical conjunctionof a set of local conditions spread throughout the system (a conjunctive predicate), whilefor the latter the global condition is given by the logical disjunction of the local conditions(a disjunctive predicate). In the case of conjunctive breakpoints we also consider theparticular situation in which the breakpoint re
ects a stable predicate, that is, a predicatethat holds inde�nitely further on once it becomes true.Before we can be more speci�c about the nature of these breakpoints and the propertiesof the algorithms we propose in this paper, it is convenient to introduce the details of thecomputational model we assume in the sequel. The program to be debugged is representedby the undirected graph G = (N;E) with n = jN j and e = jEj. For i = 1; : : : ; n, pi 2 Nis a process which may communicate exclusively by message passing with those (and onlythose) processes pj 2 N such that (pi; pj) 2 E, where 1 � j � n. Processes with whichpi may communicate are called its neighbors; the set of pi's neighbors is denoted by Ni.Edges in E represent bidirectional communication channels, which we assume to havein�nite capacity (so that processes need never stop executing upon attempting to send amessage). We also assume full asynchronism, in the sense that processes are driven byindependent, local clocks, and that messages su�er �nite, though unpredictable, delays to3



be delivered among neighbors.One helpful abstraction is to model the computation that takes place locally at aprocess by a sequence of events. Associated with an event are then the identi�cation ofthe process where it takes place (although this identi�cation is not necessarily availableto the processes to compute on), the local time (as given by the process's local clock) atwhich the event takes place, as well as possible changes in the local state of the processand the sending (receipt) of messages to (from) neighbors. At most one message may bereceived in association with an event, although no such restriction is placed on the numberof messages sent in connection with the event. The distributed computation that takesplace over G is then naturally associated with the set of events occurring at all processes,which we henceforth denote by V .A binary relation on V , here denoted by ! and usually interpreted as a \happenedbefore" relation is de�ned as follows [18]. Two consecutive events, say �1 and �2, happeningin this order at the same processor, contribute to! with the pair (�1; �2). The other pairsin ! are (�1; �2) such that a message exists which is sent by a process in connection with�1 and received at a neighbor process in connection with �2. The transitive closure!+ of! is by de�nition an irre
exive transitive binary relation on V , and constitutes as such apartial order on V . The relation !+ is instrumental in the de�nition of a very importantentity in the context of this paper, namely a consistent global state, or more succinctly aglobal state. A global state is a partition (V1; V2) of V such that � 2 V1 only if every �0 suchthat �0 !+ � is a member of V1 as well [3]. Clearly, every global state is such that no pair(�; �0) 2!+ exists such that � 2 V2 and �0 2 V1. Loosely, then, this de�nition is meantto capture system-wide states that \may actually happen," although this interpretationimplicitly refers to a global clock, whose existence is ruled out by assumption.The problem of detecting a breakpoint and halting the program accordingly shouldthen be posed as the problem of detecting a global state (and then halting the program)at which the condition that speci�es the breakpoint holds. Failure to pose the problemlike this may lead to impossibilities like, for instance, requiring that a process halt afterreceiving a certain message, while the sender of that message is required to halt before themessage is sent.Algorithms to solve the breakpoint detection problem should never miss a global statewith the required properties if one exists. Under the global-state view of a breakpoint,an unconditional breakpoint is speci�ed for a subset of N as a set of local times, onefor each of the participating processes (we assume throughout that this subset has atleast one process). If this speci�cation does not constitute a global state, this should bedetected by the algorithm and reported as an error. Hereafter, the local time specifying4



the unconditional breakpoint at each of the participating processes is called the process'slocal unconditional breakpoint and denoted by lubi for pi 2 N . Conditional breakpoints,in their turn, are speci�ed as a set of local predicates, one for each of the participatingprocesses, of which we assume henceforth there is at least one. If no global state existsin which the required conjunctive or disjunctive predicate holds, then the program shouldsimply not halt before it terminates. The local predicate associated with pi is henceforthregarded as the boolean variable lpi.Often the problem, when posed for conditional breakpoints, comes with the additionalrequirement that the detected global state be the \�rst" global state for which the predicate(conjunctive or disjunctive) to be watched for holds during the computation. The notionone wishes to capture here is that of the earliest global state for which a certain propertyholds during the computation, and is formalized as follows. Say that a global state (V 01 ; V 02 )is earlier than a global state (V1; V2) if and only if V 01 � V1. Then a global state (V1; V2) isan earliest global state for which the property holds if and only if no global state (V 01 ; V 02 )for which the property holds is earlier than (V1; V2). It should be clear that this de�nitionallows more than one earliest global state to exist with respect to the same property, forexample (V1; V2) and (V 01 ; V 02) such that neither V1 � V 01 nor V 01 � V1. If the predicateunder consideration is a stable predicate, then the other global states at which it holds inaddition to (V1; V2) include all the global states (V 01 ; V 02) such that V1 � V 01 .In the case of unconditional breakpoints, requiring the earliest global state to bedetected is only meaningful if there is at least one process that does not participate in thebreakpoint. Processes like this have their local times for participation in the breakpointleft \unspeci�ed," and may then be required to appear in the detected global state withas early a local state as possible.A global state de�ned as a partition (V1; V2) of V is normally viewed as comprisinga local state for each process (the state at which the process is left immediately after theoccurrence of all pertinent events in V1) and one set of messages for each channel in eachdirection (messages sent in connection with events in V1 to be received in connection withevents in V2). However, all the breakpoints we consider are de�ned exclusively with respectto the local states of some processes, so a global state may in our context be regarded ascomprising n local states only. In addition, we do for simplicity make the assumptionthat local times always increase at the occurrence of events and remains constant betweenconsecutive events, so that a process's local state is unequivocally determined by theprocess's local time (local times are then in reality event counters). A global state is thenhenceforth viewed as an n-component array of local times. If ' is a global state andlti � 0 denotes (as it does henceforth) pi's local time for pi 2 N , then the component of '5



corresponding to pi is '[i] = lti for the appropriate value of lti.Under this view of a global state, an n-component array ' of local times is a globalstate if and only if no pi 2 N exists that ever receives a message earlier than (or at) '[i]which was sent by some pj 2 Ni later than '[j]. It should also be noted, still in connectionwith this view of a global state, that a global state ' is an earliest global state for which acertain property holds if and only if no other global state '0 for which the property holdsis such that '0[k] � '[k] for all pk 2 N .Distributed algorithms for breakpoint detection are evaluated with respect to the over-head incurred by the computation being monitored when they run. Following the custom-ary complexity measures adopted for asynchronous distributed algorithms, this overheadis given as asymptotic worst-case expressions for the number of additional message bitspassed between neighbors and the additional time for completion. (Accounting for thenumber of messages instead of bits is in most cases an equivalent approach. In this pa-per, however, additional communication is often incurred in the form of additional �eldsattached to messages of the computation proper, and this would not show if we adoptedmessage counts.)While counting the number of message bits to obtain themessage complexity is in mostcases a simple matter, the system's inherent asynchronism requires a little more elabora-tion for the de�nition of the time complexity. Normally local computation is assumed totake no time, and then the time complexity expresses the longest chain of the type \re-ceive a message and send a message as as consequence" occurring during the computation[19]. However, in reality such a causal chain is interspersed with the occurrence of eventsunrelated to messages, which at times may be signi�cant, and then the assumption thatlocal computation takes no time becomes erroneous. Our convention in this paper is thento express the time complexity as a pair of measures, one being the traditional measure,to which events unrelated to messages are assumed not to contribute (called global timecomplexity to evidence its system-wide signi�cance), and another to account, within a sin-gle process, for the causal chains involving events unrelated to messages only (called localtime complexity).Often we will need to refer to the message complexity of the computation proper,which we shall henceforth assume to be O�c(n; e)� messages, or more succinctly O(c)messages. Likewise, we shall assume that every process's local clock can only representlocal times up to a value T (i.e., lti � T for all pi 2 N), which can be arbitrarily largebut needs nevertheless be such that we can refer to it when computing our algorithms'complexities.Following a discussion of related work in Section 2 and some preliminary remarks and6



methodological issues in Section 3, in this paper we present four algorithms for breakpointdetection. The �rst (and simplest) algorithm detects breakpoints on disjunctive predicatesand is presented in Section 3 as algorithm Detect DP. This algorithm has a messagecomplexity of O(cn log T ) bits, a global time complexity of O(1), and a local time com-plexity of O(n) per message reception. In addition, O(n log T ) memory bits are requiredfor the maintenance of data structures per process.In Section 4, algorithm Detect UBP for the detection of unconditional breakpointsis introduced. It has a message complexity of O�(c + ne)n log T � bits, a global timecomplexity of O(n), and a local time complexity of O(n) per message reception. Itsmemory requirement per process is O(n log T ) bits.Algorithm Detect Stable CP is presented in Section 5 for the detection of break-points on stable conjunctive predicates. Its message and time complexities are the sameas algorithm Detect UBP's, and so is also its memory requirement.Our last algorithm is given in Section 6 for the detection of breakpoints on generic con-junctive predicates. This algorithm is called Detect CP, and has a message complexityof O�(c+Pne)n logT � bits, where P is the maximum number of times any local predicatebecomes true. The global and local time complexities of algorithm Detect CP are thesame as the previous two algorithms', and so is its memory requirement per process.Every one of our algorithms is fully distributed, and the detection-related processingperformed in connection with each process in N is exactly the same throughout all of N .In particular, no special processes are needed to which information originating from allover the system would be conveyed in order for those processes to perform the detection.Furthermore, what our algorithms detect are earliest global states in which the conditionsrequired for detection hold, and they need no trace of a previous execution to work on. Inat least one of these three aspects, all the algorithms we provide are the �rst to appear inthe literature.Another important characteristic of all four algorithms is that not every process isrequired to participate in the condition specifying the breakpoint to be detected. Processesthat do not participate in the breakpoint do nevertheless participate in the detection. Inthe case of unconditional breakpoints (which do not appear to have been treated in theliterature at all), the algorithm we provide is in addition capable of detecting errors in thespeci�cation of the breakpoint.Because our algorithms perform the detection of earliest global states in which theappropriate conditions hold, a system-wide dissemination of a halt order is needed forevery process to stop after the detection. However, in order to halt the computation at thedetected breakpoint a checkpointing and rollback-recovery mechanism is needed whereby7



every process is brought back to the local state with which it participated in the detectedglobal state. A �rst approach to this issue is discussed in Section 7, where we also discussstrategies to save memory while maintaining the checkpoints.In addition to these sections, this paper comprises an additional section with con-cluding remarks (Section 8) and two appendices. Appendix 1 contains a summary of thenotation utilized globally in the paper. Proofs of all the formal results stated throughoutthe paper are collected in Appendix 2.2. Related WorkExtensive though the literature on the debugging of distributed parallel programs is be-coming, very few authors have addressed the design of distributed algorithms to detect thetypes of breakpoints we have dealt with in this paper. However, the works of Miller andChoi [24] and of Manabe and Imase [21] deserve special mention for their proximity withthe topics we have considered.Miller and Choi's algorithms [24] are centered around a procedure to spread a haltinginstruction among the processes of the system, which emanates from a process decidingto halt the computation and reaches the others through a \snapshot"-type algorithm [3].Based on this procedure, a distributed algorithm is given to detect breakpoints on disjunc-tive predicates (without however any consideration as to whether the breakpoint detectedis the earliest possible), and attempts are also made toward algorithms to detect break-points on what the authors call \linked" predicates and on conjunctive predicates that canbe expressed as the former.The issue of detecting earliest global states appears to have been �rst brought to thefore by Manabe and Imase [21], who gave distributed algorithms to halt a distributed com-putation at the earliest global state at which a conjunctive predicate holds and to exhibitthe value of an expression calculated at the earliest global state at which a disjunctivepredicate holds. Both algorithms rely on the \replay" of a distributed computation basedon a trace of its execution, much in the style introduced by LeBlanc and Mellor-Crummey[20]. In the conjunctive-predicate case, for example, the trace is used so that processes canpoll other processes from which messages are known to be due to arrive. Processes whoselocal predicates have become true only send messages when thus requested to, and this iswhat ensures the detection of earliest global states.Other authors have addressed questions related to the ones that motivated this paper,although with considerably less similarity than the ones we just examined. For example,Spezialetti [28] has proposed a \semi-centralized" approach to detect breakpoints based onSpezialetti and Kearns's [29] concept of \simultaneous regions." Because such regions miss8



many of the possible global states in a distributed computation, their approach can onlybe applied to breakpoints on stable predicates, although without the assurance of �ndingearliest global states.Another related question was addressed by Cooper and Marzullo [5], who proposedcentralized algorithms to analyze global-state \lattices" in the search for properties thathold across the board from one execution of a distributed program to another. For ex-ample, they have an algorithm to detect whether an execution exists in which a givenpredicate holds at some global state. In the same vein, another algorithm is proposed todetect whether the predicate holds at a global state in every execution. Clearly, the gen-erality of considering multiple executions comes at the price of exceedingly large storagerequirements, as the number of possible global states may grow exponentially with thesystem's size for some computations.Another centralized approach was recently proposed by Garg and Waldecker [10, 11].What they have proposed is to employ a separate process (or to endow one of the system'sprocesses with special characteristics) to which information originating at all the otherprocesses is sent. Based on a manipulation of the information that is received, breakpointson generic conjunctive predicates can be detected by that process. The authors also claimthat this detection can be distributed by dividing the processes into hierarchically organizedgroups. In the algorithm that they present, one process serves as a checker and all otherprocesses keep their own arrays of local times. Whenever the local predicate of a processbecomes true for the �rst time since it last sent a message, it generates a debug messagecontaining its array and sends it to the checker, which then checks whether the conjunctivepredicate is satis�ed. The process is not required to send its array every time the localpredicate is detected, as it su�ces to do it only after messages are sent. The checker has aseparate queue for each process involved in the predicate. Incoming debug messages fromthose processes are enqueued in the appropriate queue. The task of the checker is to checkthe ordering among the arrays. For the conjunctive predicate to be satis�ed, the checkermust �nd a set of arrays, one from each queue, such that each is \incomparable" to allothers in the set.3. PreliminariesEach of the distributed algorithms we introduce in this paper is viewed as being repre-sented by another set of n processes, called q1; : : : ; qn, each executing mutually exclusivelywith its counterpart among the n processes of the computation proper that constitute N .Processes q1; : : : ; qn communicate with one another by means of messages sent over thecommunication channels corresponding to the edges in E as well, and are endowed with9



the following distinctive abilities for 1 � i � n.(i) Every message incoming to or outgoing from pi is intercepted by qi, which may attachnew �elds to the message or strip some �elds o� the message before passing it on topi or sending it out to some of pi's neighbors.(ii) Process qi is activated (and then pi is suspended, while lti remains constant) whenlti becomes equal to lubi (in the case of unconditional breakpoints) or upon the oc-currence of a change in the value of the local predicate lpi (in the case of conditionalbreakpoints), or yet upon the sending by pi of a message or the arrival of a messagefrom qj such that pj 2 Ni.(iii) Process qi may suspend the execution of pi at any time, as well as have it resumed(possibly after having altered its context).Each pair of processes pi and qi can then be viewed as sharing a single processor,which is switched between the two for execution. Process pi takes control only when qi isnot running, unless it has been explicitly suspended by qi. For simplicity, when necessarywe henceforth refer to such a pair of processes as a node. Also, henceforth N 0 denotes theset of processes qi such that pi 2 N and N 0i the set of processes qj such that pj 2 Ni.Our algorithms for breakpoint detection are based on the following general approach.For 1 � i � n, process qi maintains an array gsi of length n representing its view of theglobal state to be detected, similarly to the \time vectors" treated in [7, 22] and to thebasic representations adopted in other approaches related to ours (as those mentioned inSection 2). This array is initialized with zeroes (representing the earliest global state ofthe computation) and is updated when information is received concerning the other nodes'local unconditional breakpoints or local predicates. Such information is conveyed fromnode to node either by means of special broadcast-type messages or as additional �eldsattached to the computation-type messages that constitute the communication tra�c ofthe computation proper. This information, when sent by qi, comprises the array gsi, andmay, depending on the type of breakpoint to be detected, comprise additional data as well.In each of the cases we consider, this information is transported among nodes in such away as to allow at least one node, say the one comprising some qk 2 N 0, to detect locallythat the breakpoint has occurred at the global state recorded in its current gsk, which isin all cases the earliest global state at which the breakpoint can be said to have occurred.Once the breakpoint is detected, additional measures may be taken to halt the programand then roll it back to the appropriate global state as discussed in Section 7.Before we proceed, let us pause for a moment and examine algorithm Detect DPfor the detection of breakpoints on disjunctive predicates. Such a breakpoint is a global10



state at which for at least one of the participating processes the local predicate holds.Clearly, the earliest global state at which a disjunctive predicate holds does not have to beunique, as illustrated in Figure 1, so it is conceivable that more than one process detectsthe occurrence of the breakpoint, however at di�erent global states.In Figure 1, and in the �gures to appear in the remainder of the paper, processes arerepresented by local-time axes, in which the local times are to be regarded as increasingfrom left to right. On each axis, thick bars are used to indicate the periods during whichthe local predicates are true. Arrows represent messages. In the case of Figure 1, thereare clearly two earliest global states at which at least one of lpi or lpj is true.pipjigure 1. Two earliest global states at which the disjunctive predicate holdsBecause of the inherent ease with which disjunctive predicates can be detected ina distributed fashion, algorithm Detect DP is quite straightforward. It does not em-ploy any broadcast messages, and attaches the array gsi(lti), in addition to a \status bit"(to be discussed shortly), to the computation messages sent by qi 2 N 0. This array isidentical to gsi in all components except the ith, which is given by lti. Our earlier as-sumptions imply that the value of lti is in this case the local time at pi when it sent themessage that qi intercepted, and then corresponds to pi's local state immediately succeed-ing the sending of the message. The computation messages sent by qi are then triples like�\status bit"; gsi(lti); body �, where body is the content of the message received from pi byqi, denoted by (body ). Likewise, when qi receives a message (\status bit"; gsj ; body ) fromqj 2 N 0i , it is (body ) that gets forwarded to pi, so that the processes in N only get involvedwith messages of the computation proper.Attaching the modi�ed gsi to computation messages is a procedure with importantproperties in the context of this paper, not only for the algorithm we are beginning topresent, but also for other algorithms presented in the sequel. We then pause brie
yto introduce the following two supporting lemmas. They will only be used formally in11



Appendix 2, but are su�ciently simple that the reader can appreciate their signi�cance inthe design of the algorithms to come (this is why we present them at this early stage).Lemma 1. For all pi 2 N , if gsi is a global state such that gsi[i] < lti and no message isreceived at pi at time t such that gsi[i] < t � lti, then gsi(lti) is also a global state.Proof: See Appendix 2.Lemma 2. If ' and '0 are global states, then the component-wise maximum of the twois also a global state.Proof: See Appendix 2.The essence of algorithm Detect DP is the following for pi 2 N . Variable lpi isinitialized with false, and is assumed never to become true if pi does not participatein the breakpoint. Whenever qi detects that lpi has become true, it sets gsi[i] to ltiand declares the breakpoint on the disjunctive predicate detected at the global state gsi.Because every message it received from qj 2 N 0i prior to lti carried a copy of qj 's viewof the global state with jth component updated to the time the message was sent, gsimust indeed be a global state by Lemmas 1 and 2. In order to ensure that it is also anearliest global state with respect to the disjunctive predicate, the simple procedure we justdescribed must only be allowed to be performed if no other process has already detecteda global state that renders the one qi would detect not an earliest one. This is wherethe \status bit" comes in. This bit will indicate, upon arriving along with a computationmessage, whether any other such global state has already been detected.Algorithm Detect DP is presented next as a set of actions to be performed byqi. Two additional variables employed by the algorithm are the booleans found i andfound elsewhere i, both initially set to false, which indicate respectively whether qi hasdetected the breakpoint on the disjunctive predicate and whether such a breakpoint hasalready been detected elsewhere so that the one detected by qi would necessarily not bean earliest one.Actions at qi for algorithm Detect DP:(1) Upon detecting that lpi has become true:if not (found i or found elsewhere i) thenbegingsi[i] := lti;found i := trueend; 12



(2) Upon receipt of (body ) from pi destined to pj 2 Ni:Forward �found i or found elsewhere i; gsi(lti); body� to qj ;(3) Upon receipt of (bit j ; gsj ; body ) from qj 2 N 0i :found elsewhere i := bit j or found elsewherei;if not (found i or found elsewhere i) thenfor k := 1 to n doif gsi[k] < gsj [k] thengsi[k] := gsj [k];Forward (body ) to pi;Theorems 3 and 4 given next establish, respectively, the correctness and complexityof algorithm Detect DP.Theorem 3. There exist pi 2 N and t � 0 such that the following three conditions areequivalent to one another for algorithm Detect DP.(a) There exists a global state ' such that lpk = true at time '[k] for at least one pk 2 N ;(b) found i becomes true at time lti = t;(c) At time lti = t, gsi is the earliest global state at which lpk = true for at least onepk 2 N .Proof: See Appendix 2.Theorem 4. Algorithm Detect DP has message complexity of O(cn log T ) bits, globaltime complexity of O(1), local time complexity of O(n) per message reception, and requiresO(n log T ) bits of storage per process.Proof: See Appendix 2.Detecting the other types of breakpoints we consider in this paper is a consider-ably more intricate task in comparison with the detection of breakpoints on disjunctivepredicates. These other cases comprise unconditional breakpoints and breakpoints on con-junctive predicates (both in the stable case and in the general case), all of which requiresome sort of additional \global" information to be monitored. It is the propagation of thisglobal information that makes use of the broadcast messages we introduced earlier.In general, in addition to gsi process qi 2 N 0 also maintains another array of booleanswith its local view of the global condition to be monitored and detected. When dissemi-nated by qi, this array is always accompanied by gsi as well, so that whenever qi detects13



locally that the global condition has occurred (by examination of its array), it also asso-ciates the contents of gsi with the global state at which the condition occurred.Broadcast messages are sent by qi whenever pi is one of the processes participating inthe global condition to be detected and either its local unconditional breakpoint is reached(in the case of unconditional breakpoint detection) or its local predicate becomes true (inthe case of the detection of breakpoints on conjunctive predicates). The broadcast weemploy is of the \
ooding" type, that is, information is sent by qi to every qj 2 N 0i , andso forth until it reaches all nodes. During this propagation of information, an arrivinggsj from some qj 2 N 0i is used by qi to update gsi. In addition, gsj and the other arrayaccompanying it are used to update the local view at qi of the global condition beingmonitored.Some precautions are of course needed in addition to this simple propagation pro-cedure, such as never sending to a process the exact same information received from it,so that the dissemination of information can be guaranteed to terminate. In addition,we adopt a \forward-when-true" rule for the propagation of information. This rule statesthat a node participates in the broadcast (i.e., forwards the information it receives) onlywhen its local condition (local unconditional breakpoint reached or local predicate becometrue) holds. Clearly, if no messages were ever sent during the computation proper, thenthis broadcast would su�ce for the detection of the desired type of breakpoint. In such acase, whichever node produced an array with true values for all the participating processeswould declare the breakpoint detected at the global state given by the global-state arrayobtained along with it.Algorithm Broadcast when true does this detection in the absence of messagesrelated to the computation, so long as the global condition under monitoring is stable. Inthis algorithm, process qi maintains a boolean variable lci to indicate whether the localcondition with which pi participates (if at all) in the global condition to be detected istrue. It is initialized with false if pi does indeed participate in the global condition, orwith true otherwise. Stability then means that no pk 2 N exists such that lck is reset tofalse once it becomes true. The array associated with qi's view of the global condition isdenoted by gci. For 1 � k � n, gci[k] is initialized with the same value assigned initially tolck. Only broadcast messages are employed in this algorithm (as the computation properdoes not employ any), denoted by the pair (gci; gsi) when qi is the sender. As in the case ofalgorithm Detect DP discussed earlier, a boolean variable found i, set to false initially,is employed to indicate whether qi has detected the occurrence of the global condition.In addition, another boolean variable, changed i, is used by qi to ensure that a broadcastmessage is never sent to a node if not di�erent than the last message sent to that node.14



Actions at qi for algorithm Broadcast when true:(1) Upon detecting that lci has become true:gci[i] := lci;gsi[i] := lti;if gci[1] ^ � � � ^ gci[n] thenfound i := trueelse Send (gci; gsi) to every qk 2 N 0i ;(2) Upon receipt of (gcj ; gsj) from qj 2 N 0i :if not found i thenbeginchanged i := false;for k := 1 to n doif gsi[k] < gsj[k] thenbegingsi[k] := gsj [k];gci[k] := gcj[k];changed i := trueend;if lci and changed i thenif gci[1] ^ � � � ^ gci[n] thenfound i := trueelse Send (gci; gsi) to every qk 2 N 0iend;The following two theorems are related to properties of algorithm Broad-cast when true.Theorem 5. There exist pi 2 N and t � 0 such that the following three conditions areequivalent to one another for algorithm Broadcast when true.(a) There exists a global state ' such that lck = true at time '[k] for all pk 2 N ;(b) found i becomes true at time lti = t;(c) At time lti = t, gsi is the earliest global state at which lck = true for all pk 2 N .Proof: See Appendix 2.Theorem 6. AlgorithmBroadcast when true has message complexity of O(n2e log T )bits, global time complexity of O(n), local time complexity of O(n) per message reception,and requires O(n log T ) bits of storage per process.15



Proof: See Appendix 2.Algorithms Detect DP and Broadcast when true detect breakpoints in twoextreme situations, respectively when the breakpoint is on a disjunctive predicate andwhen the breakpoint is on a conjunctive predicate but the computation proper does notever send any message (it is simple to note that the case of unconditional breakpointsin the absence of computation messages is in fact a case of breakpoints on conjunc-tive predicates). In the former case only computation messages are employed, whereasin the latter case only broadcast messages are needed. Other situations between thesetwo extremes are examined in the sequel, and then the messages involved become 4-tuples of the type (computation ; gci; gsi; body ) for computation messages sent by qi, and(broadcast ; gci; gsi;nil) for broadcast messages sent by qi. The nil �eld is only used toproduce messages with the same number of �elds, with the leading type �eld used todi�erentiate between message types.4. Unconditional BreakpointsIn this section we introduce Detect UBP, a distributed algorithm to detect the oc-currence in a distributed computation of an unconditional breakpoint. As we discussedpreviously, this unconditional breakpoint is speci�ed, for each process actually participat-ing in the breakpoint, as a local time denoted by lubi for pi 2 N . For processes pi that donot participate in the breakpoint, we have chosen to adopt lubi =1, so that lti can neverequal lubi.Algorithm Detect UBP can be regarded as a mixture of algorithms Detect DPand Broadcast when true, discussed in the previous section, as it must operate some-where in-between the two extreme situations assumed by those algorithms. Put di�erently,the detection of unconditional breakpoints does require the detection of a global condition(which is ruled out by algorithm Detect DP) and must be applicable to the case whenmessages of the computation proper exist (which are disallowed by algorithm Broad-cast when true).The variables employed by algorithm Detect UBP are essentially the ones intro-duced in Section 3 for the other two algorithms, except that for qi 2 N 0 the booleanvariable lci is now replaced with the occurrence of the equality lti = lubi, and furthermorethe array ubi, used to indicate qi's view of the occurrence of the local unconditional break-points at all processes, is now used in lieu of the array gci. For pk 2 N , ubi[k] may beeither true, false, or unde�ned. It is true or false if pk participates in the unconditionalbreakpoint and is viewed at pi as having already reached its local unconditional breakpointor not, respectively, and is unde�ned if pk is not one of the processes participating in the16



unconditional breakpoint. Initially, ubi[k] is set to false for every participating pk and tounde�ned if pk does not participate.Algorithm Detect UBP proceeds as follows. Whenever qi detects that lti = lubi,it updates ubi[i] and gsi[i] accordingly and starts a broadcast to disseminate the updatedubi and gsi. This broadcast proceeds like the one in algorithm Broadcast when true,i.e., it is never forwarded by a node whose local unconditional breakpoint has not yet beenreached (unless the node does not participate in the unconditional breakpoint), and in ad-dition no duplicate information is ever forwarded by any node. Computation messages arealways sent with ubi and gsi(lti) attached to them, in the way of algorithm Detect DP,so that the global state that is eventually detected is indeed a global state. This detection,if achieved by qi, corresponds to the veri�cation that ubi[k] 6= false for all pk 2 N , that is,every process has either reached its local unconditional breakpoint or is not participatingin the unconditional breakpoint.One of the di�culties in designing algorithm Detect UBP is that it must be ableto detect situations in which the requested set of local unconditional breakpoints does notconstitute a global state. In such situations, an error must be reported and the computationproper must be allowed to progress normally. The detection of such a situation can beachieved along the following lines. Suppose qi receives a computation message, along withthe attached ubj and gsj , from some qj 2 N 0i . If ubj [j] = true and ubi[i] = false atthis moment, then clearly an error has occurred in the determination of the unconditionalbreakpoint, as pi will never reach its local unconditional breakpoint in such a way that isconsistent with the local unconditional breakpoint of pj from the point of view of a globalstate. This is illustrated in Figure 2, in which the partition of the event set indicated bythe dashed line cannot possibly be a global state.The possibility of having nodes for which no local unconditional breakpoint is speci�edcomplicates the treatment of these erroneous conditions a little bit. If a causal chain ofcomputation messages beginning at q` such that ub`[`] = true and going through a numberof nodes qk for which ubk[k] = unde�ned eventually leads to qi such that ubi[i] = false,then an error must be detected just as in the case discussed earlier. The way we approachthis is by arti�cially setting ubk[k] to true for all the qk's. A boolean variable in error i,initially set to false, is employed by qi to indicate whether an erroneous condition hasbeen detected.Nodes that do not participate in the unconditional breakpoint also complicate thedetection of earliest global states. If such nodes did not exist, or if we did not require theearliest global state to be detected when they did exist, then what we have outlined so farwould su�ce for algorithm Detect UBP to work as needed. However, the existence of17



pjpiigure 2. Error in setting local unconditional breakpointscausal chains of computation messages similar to the one we just described but beginningat q` such that ub`[`] = unde�ned may lead to distinct earliest global states, dependingon whether it leads to qi such that ubi[i] = false or ubi[i] = true, as illustrated inFigure 3, whose parts (a) and (b) depict, respectively, the two cases. Only in the formercase should qi take into account what it receives attached to the computation messagein updating gsi, but the senders of the preceding messages in the causal chain have noway of knowing this beforehand. The strategy we adopt to tackle this is the following.In addition to maintaining gsi as a local view of the global state to be detected, qi alsomaintains an alternative view, denoted by alt gsi, which is initialized like gsi but onlyupdated or attached to outgoing computation messages (the latter in place of gsi) if ubi[i] =unde�ned. Arriving computation messages at qi a�ect gsi if ubi[i] = false or alt gsi ifubi[i] = unde�ned. So for qi such that ubi[i] = unde�ned, gsi[k] � alt gsi[k] for allpk 2 N , and therefore gsi may constitute an earlier global state than alt gsi.
18
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Figure 3. Earliest global states and unconditional breakpoints
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Actions at qi for algorithm Detect UBP:(1) Upon detecting that lti = lubi:if not in error i thenbeginubi[i] := true;gsi[i] := lti;if ubi[k] 6= false for all k = 1; : : : ; n thenfound i := trueelse Send (broadcast ; ubi; gsi;nil) to every qk 2 N 0iend;(2) Upon receipt of (broadcast ; ubj ; gsj ;nil) from qj 2 N 0i :if not (in error i or found i) thenbeginchanged i := false;for k := 1 to n doif gsi[k] < gsj[k] thenbegingsi[k] := gsj [k];ubi[k] := ubj [k];changed i := trueend;if ubi[i] = unde�ned thenfor k := 1 to n doif alt gsi[k] < gsj [k] thenalt gsi[k] := gsj [k];if (lubi 6= false) and changed i thenif ubi[k] 6= false for all k = 1; : : : ; n thenfound i := trueelse Send (broadcast ; ubi; gsi;nil) to every qk 2 N 0iend;(3) Upon receipt of (body ) from pi destined to pj 2 Ni:if ubi[i] = unde�ned thenForward �computation ; ubi; alt gsi(lti); body � to qjelseForward �computation ; ubi; gsi(lti); body � to qj ;20



(4) Upon receipt of (computation ; ubj ; gsj ; body ) from qj 2 N 0i :if not (in error i or found i) thenbeginif �ubj [j] = true� and �ubi[i] = false� thenin error i := true;if �ubj [j] = true� and �ubi[i] = unde�ned� thenubi[i] := true;if �ubj [j] = unde�ned� and �ubi[i] = false� thenfor k := 1 to n doif gsi[k] < gsj [k] thenbegingsi[k] := gsj [k];ubi[k] := ubj [k]end;if �ubj [j] = unde�ned� and �ubi[i] = unde�ned� thenfor k := 1 to n doif alt gsi[k] < gsj [k] thenalt gsi[k] := gsj [k]end;Forward (body ) to pi;Next we give properties of algorithm Detect UBP related to its correctness andcomplexity.Theorem 7. There exist pi 2 N and t � 0 such that the following four conditions areequivalent to one another for algorithm Detect UBP.(a) There exists a global state ' such that '[k] = lubk for every pk 2 N such thatlubk <1;(b) in errork never becomes true for any pk 2 N ;(c) found i becomes true at time lti = t;(d) At time lti = t, gsi is the earliest global state at which gsi[k] = lubk for every pk 2 Nsuch that lubk <1.Proof: See Appendix 2.Theorem 8. AlgorithmDetect UBP has message complexity of O�(c+ne)n log T � bits,global time complexity of O(n), local time complexity of O(n) per message reception, andrequires O(n log T ) bits of storage per process.Proof: See Appendix 2. 21



5. Breakpoints on Stable Conjunctive PredicatesIn this section we discuss algorithm Detect Stable CP for the detection of breakpointson stable conjunctive predicates. Such predicates are speci�ed for each participating pro-cess pi 2 N as the local predicate lpi endowed with the property that it remains true onceit becomes true. Unconditional breakpoints are also breakpoints on stable conjunctivepredicates, but much more rigid than the ones we consider in this section, as in that casethe detected global state is required to match the local unconditional breakpoints spec-i�ed for the participating processes exactly. In contrast, the ones we are now beginningto consider only ask that the local predicates of the participating processes be true in thedetected global state, although in some processes they may have become true earlier thanthe local times given by the global state. Not surprisingly, then, the algorithm introducedin this section can be regarded as a slight simpli�cation of algorithm Detect UBP, aserror conditions no longer need to be addressed.Being in many senses related to algorithm Detect UBP, algorithm De-tect Stable CP can also be viewed as a conceptual mixture of the principles employedin algorithms Detect DP and Broadcast when true. With respect to the latter, thelocal condition for pi 2 N , lci, is now expressed by the very local predicate lpi we havebeen considering throughout, and qi's view of the global condition, gci, is now the arraycpi. For all pk 2 N , cpi[k] is initialized like lpk, that is, to false if pk is participatingin the breakpoint, and to true otherwise. All the other variables employed by algorithmDetect Stable CP have the same meaning they had when used in previous contexts.The simpli�cation of algorithmDetect UBP to yield Detect Stable CP does notgo any further than the elimination of error detection, as an alternative local view at qi ofthe global state to be detected, alt gsi, is still needed to aid in the detection of the earliestglobal state of interest. Similarly to the case of unconditional breakpoints, a causal chain ofcomputation messages beginning at q` such that cp`[`] = true, going through a number ofqk's, each with cpk[k] = true as well, and �nally reaching qi with cpi[i] = false requires qito take into account what it receives attached to the computation message in updating gsi.On the other hand, if no such qi is ever reached, then the detected global state has a chanceto be an earlier one. These two cases are illustrated in Figure 4, respectively in parts (a)and (b). Maintaining alt gsi has the function of allowing this earlier global state to besaved in gsi, to be used in case no causal chain of the sort we just described ever occurs.The array alt gsi is initialized like gsi and is attached to computation messages with itsith component modi�ed to lti. A computation message arriving at qi a�ects alt gsi andmay eventually a�ect gsi, which happens if cpi[i] = false upon arrival of the computationmessage, by simply updating gsi to alt gsi when lpi becomes true. Only in this situation,22



or upon the receipt of broadcast messages, does gsi get updated, but then so does alt gsi,so gsi[k] � alt gsi[k] for every pk 2 N .
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Figure 4. Earliest global states and breakpoints on stable conjunctive predicates
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Actions at qi for algorithm Detect Stable CP:(1) Upon detecting that lpi has become true:cpi[i] := lpi;alt gsi[i] := lti;for k := 1 to n dogsi[k] := alt gsi[k];if cpi[1] ^ � � � ^ cpi[n] thenfound i := trueelse Send (broadcast ; cpi; gsi;nil) to every qk 2 N 0i ;(2) Upon receipt of (broadcast ; cpj ; gsj ;nil) from qj 2 N 0i :if not found i thenbeginchanged i := false;for k := 1 to n doif gsi[k] < gsj[k] thenbegingsi[k] := gsj [k];cpi[k] := cpj [k];changed i := trueend;for k := 1 to n doif alt gsi[k] < gsj [k] thenalt gsi[k] := gsj [k];if cpi[i] and changed i thenif cpi[1] ^ � � � ^ cpi[n] thenfound i := trueelse Send (broadcast ; cpi; gsi;nil) to every qk 2 N 0iend;(3) Upon receipt of (body ) from pi destined to pj 2 Ni:Forward �computation; cpi; alt gsi(lti); body � to qj ;
24



(4) Upon receipt of (computation ; cpj; gsj ; body ) from qj 2 N 0i :if not found i thenfor k := 1 to n doif alt gsi[k] < gsj [k] thenbegincpi[k] := cpj[k];alt gsi[k] := gsj [k]end;Forward (body ) to pi;Correctness and complexity properties of algorithm Detect Stable CP are estab-lished in the following two theorems.Theorem 9. There exist pi 2 N and t � 0 such that the following three conditions areequivalent to one another for algorithm Detect Stable CP.(a) There exists a global state ' such that lpk = true at time '[k] for all pk 2 N ;(b) found i becomes true at time lti = t;(c) At time lti = t, gsi is the earliest global state at which lpk = true for all pk 2 N .Proof: See Appendix 2.Theorem 10. Algorithm Detect Stable CP has message complexity of O�(c +ne)n log T � bits, global time complexity of O(n), local time complexity of O(n) per messagereception, and requires O(n log T ) bits of storage per process.Proof: See Appendix 2.6. Breakpoints on Generic Conjunctive PredicatesIn this section we continue our treatment of breakpoints on conjunctive predicates, but nolonger assume stability, i.e., every local predicate is now allowed to switch back and forthbetween being false and true along the computation. This added generality apparentlyaggravates the problem's di�culties considerably, but an approach quite similar to the onewe adopted in Sections 4 and 5 su�ces as the basis of our solution. In those sections wewere led to the use of the array alt gsi by qi as a means of providing an additional view at qiof the global state to be detected, so that gsi could retain the characteristics of an earlierglobal state to be used when the fully updated alt gsi was not needed. In this sectiontoo this array is employed (with the same purpose), but the increased complexity of thegeneric conjunctive case requires that an additional array, called alt cpi, be also needed25



to accompany alt gsi. In contrast with the stable case, this array is needed because localpredicates are no longer guaranteed to remain true once they become true.Furthermore, not only do we need a means of storing potentially earlier global statesfor use when appropriate, but also we must have a means of coping with the possibilitythat the local predicates may become true and false several times before becoming true ata local time with which they can participate in a global state. This situation is depictedin Figure 5, in which the partition indicated by a dashed line cannot be a global state.pipkp`



........................................................................................................ ............. ............. ............. ............. ............. ............. ............. ............. ............. ...........................................................................................Figure 5. Global states and breakpoints on generic conjunctive predicatesOur approach to the design of algorithm Detect CP has been to obtain it as anextension to algorithm Detect Stable CP to deal with the instability of the local pred-icates. This extension relies heavily on the assumption, which we now make, that channelsin E are FIFO (First In, First Out), i.e., they deliver messages in the order messages aresent. The central issue in obtaining this extension is to ensure that global states at whichthe conjunctive predicate holds are never missed. Note that this would not be ensured if forpi 2 N we simply added the new array alt cpi to algorithm Detect Stable CP alongwith a new action to set alt cpi[i] to false (and �x alt gsi[i] accordingly) whenever lpibecame false. Such a na��ve extension would not work even in the absence of computationmessages, because earliest global states would surely be missed. Consider, for example,part (a) of Figure 6, in which two global states are shown. Of these, the one representedby a solid line is clearly the earliest global state at which the conjunctive predicate holds.Nevertheless, even with the aforementioned addition to algorithm Detect Stable CP,by action (1) of that algorithm, and depending on the timing of the broadcast messages,the global state represented by a dashed line might be the one to be detected.26



If computation messages were allowed, then the situation would be even worse, becauseglobal states at which the conjunctive predicate holds might be missed altogether, therebymaking the detection by some processes impossible. This is illustrated in part (b) of Figure6, in which, as in part (a), the global state represented by a solid line is the earliest globalstate at which the conjunctive predicate holds. If the computation message shown in the�gure arrives at qi before any of the broadcast messages originally propagated by q`, thenby actions (4) and (1) (in this order) of (the extended) algorithm Detect Stable CP,gsi becomes the global state shown in the �gure as a dashed line. What this means is thatthe detection by qi of any global state in which the conjunctive predicate holds is madeimpossible. While in all of our algorithms certain processes never come to actually detectthe global state of interest, this is so exclusively because the broadcast does not go beyonda process that does perform the detection. In the case of Figure 6(b), by contrast, qi wouldmiss all the global states of interest even if reached by a broadcast from a process havingalready made the detection.What is needed is to disallow cpi and alt cpi to be updated when qi is reached bya broadcast originated at qk 2 N 0 when, respectively, cpi[k] = true and alt cpi[k] =true. This includes the case in which pk = pi, that is, cpi[i] and alt cpi[i] are only to beupdated if, respectively, cpi[i] = false and alt cpi[i] = false. For this reason, it becomesessential for qi to know the origin of a broadcast when reached by the correspondingbroadcast messages, and then we can no longer employ, as we have been doing, algorithmBroadcast when true of Section 3. Our approach to broadcasts will then be to tagtheir messages with the type broadcast k for broadcasts originating at qk.One might be suspicious, however, that, by precluding cpi and alt cpi from beingupdated upon receipt of broadcast k messages (or upon the origination of this broadcast, ifpk = pi) because cpi[k] = true and alt cpi[k] = true, respectively, we might be missingglobal states at which the conjunctive predicate holds as well. The relevant aspects ofthis issue are twofold. First of all, such a broadcast k message must not be conveying anyinformation about another process's, say p`'s for p` 2 N , predicate that would not bereceived anyway through a broadcast ` message, so long as every broadcast is ensured toreach every node until the breakpoint is detected. Secondly, and this is where the FIFOassumption comes in, if the gsk accompanying the broadcast k message were to contribute tothe detected global state, then necessarily a causal chain of computation messages leavingqk while alt cpk[k] = false would exist destined to some qj 2 N 0, where it would arrivewhen alt cpj [j] = false. But then one of two situations would happen involving the gskthat qi ignored. If this gsk arrived at qj before lpj became true, then would be takeninto account by qj and participate in the broadcast that qj would generate when lpj27
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Figure 6. Earliest global states and breakpoints on generic conjunctive predicatesnext became true. If, on the other hand, the gsk arrived at qj after lpj became true,then it would be missed by the broadcast initiated by qj upon the detection that lpj hadbecome true, but would be taken into account by qj and participate in the forwardingby qj of the broadcast initiated by qk. However, in the latter case, this forwarding by qjcould only be expected to convey the gsk correctly to all processes if it were treated asa new broadcast initiated at qj . Then, aside from the already mentioned need to attacha broadcast initiator's identity to broadcast messages, the broadcasts that we need arevery similar to the ones we employed earlier in this paper, in the sense that a broadcast kmessage arriving at qi must be forwarded if it causes changes in either cpi[k] or alt cpi[k].28



The variables employed by qi in algorithm Detect CP are those employed in algo-rithm Detect Stable CP and the already mentioned array alt cpi. They are all initial-ized as in the previous algorithm, and alt cpi is initialized like cpi, i.e., for pk 2 N theirkth components are initially true if pk does not participate in the breakpoint or false ifpk does participate. A further assumption regarding variables' values is that lpi does notever become false if pi is not one of the processes participating in the breakpoint.Actions at qi for algorithm Detect CP:(1) Upon detecting that lpi has become true:if not found i thenbeginalt cpi[i] := lpi;alt gsi[i] := lti;Send (broadcast i; alt cpi; alt gsi;nil) to every qk 2 N 0iend;(2) Upon detecting that lpi has become false:if not found i thenbeginalt cpi[i] := lpi;alt gsi[i] := ltiend;
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(3) Upon receipt of (broadcast `; cp`; gs`;nil) from qj 2 N 0i :if not found i thenbeginchanged i := false;if not cpi[`] thenfor k := 1 to n doif gsi[k] < gs`[k] thenbegingsi[k] := gs`[k];cpi[k] := cp`[k];changed i := trueend;if not alt cpi[`] thenfor k := 1 to n doif alt gsi[k] < gs`[k] thenbeginalt gsi[k] := gs`[k];alt cpi[k] := cp`[k];changed i := trueend;if changed i thenif cpi[1] ^ � � � ^ cpi[n] thenfound i := trueelse Send (broadcast `; cp`; gs`;nil) to every qk 2 N 0iend;(4) Upon receipt of (body ) from pi destined to pj :Forward �computation; alt cpi; alt gsi(lti); body � to qj ;(5) Upon receipt of (computation ; cpj; gsj ; body ) from qj 2 N 0i :if not found i thenfor k := 1 to n doif alt gsi[k] < gsj [k] thenbeginalt gsi[k] := gsj [k];alt cpi[k] := cpj[k]end;Forward (body ) to pi;Theorems 11 and 12 given next relate to algorithm Detect CP's properties. Recall,in Theorem 12, that P stands for the maximum number of times any process's localpredicate becomes true. 30



Theorem 11. There exist pi 2 N and t � 0 such that the following three conditions areequivalent to one another for algorithm Detect CP.(a) There exists a global state ' such that lpk = true at time '[k] for all pk 2 N ;(b) found i becomes true at time lti = t;(c) At time lti = t, gsi is the earliest global state at which lpk = true for all pk 2 N .Proof: See Appendix 2.Theorem 12. Algorithm Detect CP has message complexity of O�(c + Pne)n log T �bits, global time complexity of O(n), local time complexity of O(n) per message reception,and requires O(n log T ) bits of storage per process.Proof: See Appendix 2.7. Checkpointing and Rollback RecoveryCheckpointing and rollback recovery are techniques that allow processes to properly con-tinue to execute after the occurrence of failures, without the need to restart from thebeginning [17]. Although originally conceived in this context of fault handling, these tech-niques can also be used in the debugging of message-passing programs, particularly inconjunction with the breakpoint detection algorithms we discussed throughout the paper.All of our algorithms detect global states with certain properties of interest, but after thedetection of such a global state by, say, process qi 2 N 0, information on this detectionmust be spread through the other processes so that they can halt their counterparts in Nfor whatever needs to be done that was the purpose of setting the breakpoint in the �rstplace. However, this spreading of a halt order does necessarily reach most nodes when theyare in local states further in time than those recorded in the detected global state. Thisis where checkpointing and rollback-recovery techniques come in, because most processeswill, upon receipt of a halt order, be forced to roll back so that the system can be stoppedat the desired global state.Recording checkpoints as the processes run constitutes a research area with its ownproblems, especially because the issue of whether the assembled sets of locally recordedcheckpoints (the system checkpoints) constitute global states must be dealt with. Twogeneral approaches to this issue are usually considered. The �rst approach proceeds tothe recording of checkpoints independently at each node, and upon the need to roll thesystem back to a previous global state the available collection of system checkpoints ischecked for those that do constitute global states (e.g., [2]). The second approach is more31



conservative, and attempts to ensure that every checkpoint recorded locally is part of asystem checkpoint that constitutes a global state. In this case, rolling the system back isa simple matter, as every one of the available system checkpoints is a global state (e.g.,[16, 27]).The technique that as a �rst approach we propose to use in conjunction with our break-point detection algorithms can be thought of as being of the �rst type we just described,although fortunately it does not su�er from the possibility that the resulting system check-points may not constitute global states. The general technique is rather simple, and takesadvantage of the fact that every component in the gsi that qi 2 N 0 detects falls into oneof the following categories. Either the component is equal to zero, or the component isthe local time at which a process had the local condition with which it participates in thebreakpoint satis�ed, or yet the component is the local time at which a computation mes-sage was sent. So if every process records a checkpoint at the beginning of its computation,another one whenever its local condition gets satis�ed, and another whenever it sends acomputation message, then once gsi is detected by qi every qk 2 N 0 has simply to roll pkback to local time gsi[k].Of course this strategy places storage requirements in addition to those given byTheorems 4, 8, 10 and 12, but often improvements can be made to the overall strategyto minimize the need for storage at each process. For example, for the detection of abreakpoint on a disjunctive predicate, qi records checkpoints only until lpi becomes true(if pi is indeed participating in the breakpoint) or until a computation message carryingbitj = true is received from qj 2 N 0i such that (regardless of whether pi participates inthe breakpoint). Upon either occurrence, only the checkpoint whose recording time is theupdated gsi[i] needs to be retained, while the others may be done away with. It shouldbe noted that processes that do not participate in the breakpoint may have to recordcheckpoints further on until a halt order is received.For the detection of an unconditional breakpoint, a process pi 2 N participatingin the breakpoint needs a single checkpoint at time lubi. If pi does not participate inthe breakpoint, then qi, upon receiving a broadcast message carrying gsj from qj 2 N 0isuch that, needs no longer record checkpoints upon sending computation messages to qj ifubj [j] = true, and may in addition discard every checkpoint recorded earlier than gsj [i].For the detection of breakpoints on conjunctive predicates, a process qi 2 N 0 recordscheckpoints when lpi becomes true and upon sending computationmessages, but only whilelpi = true (if pi does participate in the breakpoint) or at all times (if pi does not participatein the breakpoint, being therefore regarded as if its \predicate" were always true). If theconjunctive predicate is stable, then the receipt of a broadcast message carrying gsj from32



qj 2 N 0i allows qi to discard all the checkpoints recorded earlier than gsj [i]. This is similarto the case of unconditional breakpoints, but it should be noted that qi must proceed withthe recording of checkpoints upon sending computation messages to qj because, in contrastwith the former case, the local time with which pj participates in the desired global statemay not yet have occurred (even though it must already have reached a situation in whichits local predicate is true). If the conjunctive predicate is not stable, then all that may bedone upon receipt of the broadcast message is to discard every checkpoint recorded earlierthan the updated gsi[i], as they will de�nitely not take part in the global state at whichthe predicate holds.The overall strategy we have presented so far needs to be improved so that the globalcheckpoints include messages in transit as well. This measure, although inessential to therollback process, is essential to restart the execution after the system has been examinedat the breakpoint. Possible approaches have been discussed elsewhere [26, 30].8. Concluding RemarksIn this paper we have considered the problem of designing distributed algorithms for thedetection of breakpoints in message-passing programs. Along with the ability to determin-istically re-execute such programs, the setting of breakpoints where the program's contextcan be analyzed stands as a fundamental cornerstone of message-passing program debug-ging.We have introduced and analyzed (for both correctness and complexity) fourbreakpoint-detection algorithms, speci�cally one for the detection of unconditional break-points (algorithm Detect UBP) and three for the detection of conditional breakpoints.Of the latter, one is for the detection of breakpoints on disjunctive predicates (algorithmDetect DP), one for the detection of breakpoints on stable conjunctive predicates (algo-rithm Detect Stable CP), and �nally one for the detection of breakpoints on genericconjunctive predicates (algorithmDetect CP). To our knowledge, these are the �rst fullydistributed algorithms for the type of breakpoint detection they perform, in the sense thatno centralized entity needs to be singled out to handle the task. We have, nevertheless,added a brief discussion of other related algorithms, although we refrained from attemptingany deeper comparison (e.g., complexity-based), as the algorithms we presented and thoseavailable in the literature are inherently di�erent.Except for algorithm Detect DP, whose global time complexity is of O(1), all al-gorithms have O(n) global time complexity. All four algorithms have the same localtime complexity of O(n) per message reception. The storage requirement of all the algo-rithms is of O(n log T ) bits per process, where T is an upper bound on the local times33
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Appendix 1. Summary of NotationIn this appendix we provide a brief summary of the notation used throughout the paper.Included in this summary is only the notation de�ned relatively early in the paper, butwhose usage spans most of the sections.N : Set of processes of the computation proper;E: Set of bidirectional communication channels;n: The cardinality of N ;e: The cardinality of E;Ni: Set of neighbors of pi 2 N ;N 0: Set of processes that perform the breakpoint detection;N 0i : Set of processes qj 2 N 0 such that pj 2 Ni;lubi: Local time giving the unconditional breakpoint for pi 2 N ;lpi: Local predicate for pi 2 N ;lti: Local time for pi 2 N ;c(n; e): Message complexity (in number of messages) of the computation proper;T : Maximum local time for any process in N ;P : Maximum number of times a local predicate becomes true for any process in N .
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Appendix 2. Lemma and Theorem ProofsThis appendix is dedicated to the presentation of the proofs of Lemmas 1 and 2 and ofTheorems 3 through 12. Of these, the correctness-related theorems state the equivalenceamong several conditions. The proof strategy is then in all these cases to show that the�rst condition implies the second, which implies the third, and so on, and �nally to showthat the last condition implies the �rst.Proof of Lemma 1If gsi(lti) is not a global state, then there must exist pk; p` 2 N such that a computationmessage was sent by pk strictly later than gsi(lti)[k] and received at p` earlier than (orat) gsi(lti)[`]. By the de�nition of gsi(lti), and by hypothesis, it follows that the messagemust have been sent later than gsi[k] and arrived at p` earlier than (or at) gsi[`], and thengsi must not be a global state, which is a contradiction.Proof of Lemma 2Let '00 be the component-wise maximum of ' and '0, and suppose that it is not a globalstate. Then there must exist pk; p` 2 N such that a message was sent by pk strictlylater than '00[k] and received at p` earlier than (or at) '00[`]. Because '00[k] � '[k] and'00[k] � '0[k], then ' must not be a global state if '00[`] = '[`]. Likewise, if '00[`] = '0[`],then '0 must not be a global state. Either case yields a contradiction.Proof of Theorem 3(a)) (b):At least one of the processes pk 2 N for which lpk ever becomes true must by actions(2) and (3) have reached this state for the �rst time when found elsewherek = false. Theassertion then follows immediately by action (1), with pi being this particular process andt being the local time at which lpi becomes true for the �rst time.(b)) (c):By hypothesis and by action (1), found elsewherei can only have become true aftertime t. By Lemmas 1 and 2, the gsi produced by action (1), the gsi(lti) used in action(2), and the gsi yielded by action (3) must all be global states. As a consequence of this,by action (1) gsi is at time t a global state at which lpi = true. If gsi were not an earliestglobal state at which lpk = true for at least one pk 2 N , then either found elsewhereiwould by actions (2) and (3) have become true prior to t, and then found i would be false38



at t, which is a contradiction, or lpk would for some pk 2 N be true right from the start,which is ruled out by our assumption on the initial values of these variables.(c)) (a):This is immediate.Proof of Theorem 4Each of the O(c) computation messages carries an n-component array, each of whose com-ponents is an integer no larger than T , thence the message complexity of O(cn log T ) bits.Because only computation messages are employed, the global time complexity is of O(1).Each message reception requires O(n) comparisons, thence the local time complexity. Forpi 2 N , process qi needs to store the array gsi, which requires O(n log T ) bits.Proof of Theorem 5(a)) (b):If exactly one process participates in the global condition, then by action (1) found ibecomes true, with pi 2 N being this process and t the time at which lci becomes true.No messages are ever sent in this case. If at least two processes participate, then at leastone of them, say pk 2 N , is such that qk does by action (1) send a broadcast message to itsneighbors when lck becomes true, which by action (2) pass the updated information on, solong as the update introduced changes and their local conditions hold as well. Because thisbroadcast carries lck, it must introduce changes when reaching every node for the �rst timeand is therefore propagated. This happens to the local condition of every participatingnode, and then at least one process, say qi, upon having been reached by their broadcasts,and having lci = true, sets found i = true. The value of t here is either the time at whichthe last broadcast to reach qi does reach it by action (2) or the time at which lci becomestrue by action (1).(b)) (c):By Lemmas 1 and 2, the gsi produced in actions (1) and (2) are global states. Con-sequently, and by actions (1) and (2) as well, at time t gsi is a global state at whichlck = true for all pk 2 N . That gsi is the earliest such global state is immediate, becauseof the absence of computation messages, which implies that gsi[k] is either zero or the timeat which lck becomes true.(c)) (a): 39



This is immediate.Proof of Theorem 6The worst case is that in which all nodes start the algorithm concurrently, and furthermorethe broadcast started by a node traverses all channels. Because two n-component arraysare sent along with each message, one comprising single-bit components, the other integersbounded by T , the message complexity becomes O(n2e log T ) bits. No causal chain ofmessages comprises more than O(n) messages, because this is what it takes for a broadcastto reach all nodes, thence the global time complexity. The local time complexity and thestorage requirement are like those of algorithm Detect DP, therefore given by Theorem4.Proof of Theorem 7(a)) (b):Suppose that there does exist pk 2 N such that in errork becomes true. By action (4),this must happen upon receipt, when ubk[k] = false, of a computation message containedin a causal chain of computation messages started at, say, q` 2 N 0, sent when ub`[`] = true.No array ' such that '[k] = lubk and '[`] = lub` can then be a global state, and becauseboth lubk <1 and lub` <1, we have a contradiction.(b)) (c):If in errork never becomes true for any pk 2 N , then actions (1) and (2) are, so far asbroadcast messages are concerned, identical to actions (1) and (2), respectively, of algorithmBroadcast when true. This part of the proof is then analogous to the (a)) (b) partin the proof of Theorem 5.(c)) (d):By Lemmas 1 and 2, the gsi produced by action (1), the gsi(lti) and alt gsi(lti) usedin action (3), and the gsi and alt gsi produced by actions (2) and (4) are all global states.This implies, by actions (1) and (2) and at time t, that gsi is a global state at whichubi[k] 6= false for all pk 2 N , or, equivalently, a global state such that gsi[k] = lubk forevery pk 2 N such that lubk < 1. In order to show that gsi is the earliest global statewith these characteristics, consider any other n-component array of local times, call it', such that '[k] = gsi[k] for all pk 2 N such that lubk < 1, and '[k] < gsi[k] for atleast one pk 2 N such that lubk = 1. For this particular pk, in order for gsi[k] to havebeen assigned the value greater than '[k], a causal chain of computation messages must40



have existed from pk (leaving at time gsi[k]) to some p` 2 N , where by action (4) it musthave arrived at q` when ub`[`] = false (otherwise gs` would not have been updated, andso neither would gsi through the broadcast). In addition, because in error ` must haveremained false, every process involved in this chain (except for q` but including qk) musthave had an unde�ned in its local record of its local unconditional breakpoint (for qk,ubk[k] = unde�ned). But because ub`[`] was found to be false, ' cannot possibly be aglobal state such that 'k = lubk for all pk 2 N such that lubk <1.(d)) (a):This is immediate.Proof of Theorem 8The message complexity of this algorithm is the sum of the message complexities of algo-rithm Detect DP and algorithm Broadcast when true. By Theorems 4 and 6, weobtain O�(c + ne)n log T � bits. The remaining complexities and storage requirement areexactly those of algorithm Broadcast when true, and are then given as in Theorem6.Proof of Theorem 9(a)) (b):Actions (1) and (2) are, from the standpoint of broadcast messages alone, identical toactions (1) and (2), respectively, of algorithm Broadcast when true. This part of theproof then goes along the same lines as the (a) ) (b) part in the proof of Theorem 5, solong as no computation message overruns any broadcast message on any channel. When thishappens, however, propagation of the broadcast message may by action (2) be interruptedafter traversing the channel, speci�cally upon arriving, say at qk 2 N 0, and by action (2)�nding cpk[k] = true without causing changes to gsk or to cpk. This is so because the gsjcarried by the broadcast message is no greater than gsk in any component, which in turnwas updated by action (1) when lpk became true with the alt gsk produced by action(4) upon receipt of the computation message. The broadcast that by action (1) qk theninitiates when lpk becomes true allows the proof to proceed like that of the (a)) (b) partin the proof of Theorem 5 as well.(b)) (c):By Lemmas 1 and 2, the gsi and alt gsi produced by actions (1) and (2), thealt gsi(lti) used in action (3), and the alt gsi produced by action (4) must all be global41



states. A consequence of this is that, by actions (1) and (2), gsi is at time t a globalstate at which cpi[k] = true for all pk 2 N . To show that gsi is the earliest such globalstate requires that we consider any other n-component array of local times, call it ', suchthat lpk = true at time '[k] for all pk 2 N and such that '[k] < gsi[k] for at least onepk 2 N . For this particular pk, gsi[k] can only have been assigned the value greater than'[k] if a causal chain of computation messages existed from pk (leaving at time gsi[k]) tosome p` 2 N , which by action (1) must have arrived at q` when cp`[`] = false (otherwisegs` would not have been updated, and so neither would gsi by means of the broadcast).But because cp`[`] was found to be false, ' cannot possibly be a global state such thatlpk = true at time '[k] for all pk 2 N .(c)) (a):This is immediate.Proof of Theorem 10The complexities and storage requirement for this algorithm are the same as those ofalgorithm Detect UBP, therefore given as in Theorem 8.Proof of Theorem 11(a)) (b):Let '0 be the earliest global state such that lpk = true for all pk 2 N . If exactly oneprocess participates in the breakpoint, then by actions (1) and (3) the assertion followstrivially, with pi being any of that process's neighbors and t the time at which the broadcastreaches it. If more than one process participates in the breakpoint, then there are two majorcases to be considered.In the �rst major case, at '0, and for every participating process pk 2 N , lpk hasbecome true exactly once. If lpk never becomes true again for any participating pk 2 N ,then actions (1) and (3) ensure that at least one process pi 2 N is reached by all broadcastsand sets found i to true upon being reached, at time t, by the last broadcast. If, on theother hand, at least one of the participating processes, say pk 2 N , is such that lpkbecomes true at least twice, then no pi 2 N has cpi[k] = false upon being reached bythe broadcasts other than the �rst initiated by qk, and then by actions (1) and (3), aspreviously, at least one process pi 2 N sets found i to true at time t. To see why cpi[k]must be true when (and if) qi is reached by the broadcasts other than the �rst initiatedby qk, suppose for a moment that cpi[k] were found false when qi was reached by any of42



those broadcasts. By actions (1), (2), (3), and (5), cpi[k] can only have become false uponreceipt of a broadcast message, whose sending must have been in
uenced by the receipt ofa causal chain of computation messages starting at pk carrying the false value. Becausechannels are FIFO, this chain must have left pk after qk initiated its �rst broadcast, orthe broadcast that set cpi[k] to false would not have prevailed. But if this broadcast wasstarted at, say, q` 2 N 0, then qi must have had cpi[`] = false upon being reached by it,and then either this was the �rst broadcast started by q` or the entire argument must berepeated with p` in place of pk. Eventually, in this argument we would have to end up ina causal chain of computation messages (in
uencing one of those broadcasts) which wasstarted at a process after '0 and terminated at another process earlier than '0, and then'0 would not be a global state.In the second major case, at '0 at least one of the participating processes, say pk 2 N ,is such that lpk has become true at least twice. In this case, in each of the time intervalsduring which lpk = false preceding '0 a causal chain of computation messages exists leavingpk and arriving at another participating process, say p` 2 N , such that lp` becomes trueexactly once prior to '0. At q`, this chain has the e�ect of causing cp`[k] to be set to false,so that the broadcast initiated by qk when lpk becomes true to remain true through '0does by action (3) cause changes in cp` and is therefore propagated. This may happeneither before lp` becomes true, and then the broadcast initiated by q` when lp` becomestrue carries along with it the information on lpk's becoming true, or it may happenafter lp` becomes true, in which case the broadcast k messages that q` forwards follow thebroadcast ` messages sent previously, possibly setting to true whichever cpi[k] = false itmay �nd for some pi 2 N . The remaining of the argument proceeds like in the �rst majorcase.(b)) (c):By Lemmas 1 and 2, the alt gsi produced by actions (1) and (2), the gsi and alt gsiobtained in action (3), the alt gsi(lti) used in action (4), and the alt gsi obtained inaction (5) are all global states. Consequently, by action (3), at time t gsi is a global stateat which lpk = true for all pk 2 N . We show that gsi is the earliest global state withthese characteristics by considering any other n-component array of local times, call it ',such that lpk = true at time '[k] for all pk 2 N and furthermore '[k] < gsi[k] for at leastone pk 2 N . For this particular pk, gsi[k] can only have acquired the value greater than'[k] in one of two cases.In the �rst case, a causal chain of computation messages must have existed from pk tosome p` 2 N , which must have left pk at time gsi[k] when at qk alt cpk[k] was true andmust have arrived at q` when cp`[`] = false earlier than '[`], and consequently ' cannot43



be a global state at which lpk = true for all pk 2 N .In the second case, the causal chain of computation messages leaving pk was startedwhen alt cpk[k] = false at qk, although cp`[`] was as in the �rst case (in particular,cp`[`] = false earlier than '[`]). By action (5), and by the FIFO assumption, alt cp`[k]must have become false and remained so until a new broadcast was started by qk at timegsi[k], when alt cpk[k] became true. This broadcast may have reached q` either beforeor after lp` became true. In the former case, the broadcast that q` then started carriedalt cp`[k] = true, which upon reaching qi and �nding cpi[`] = false, by action (3) setcpi[k] = true. In the latter case, the broadcast that q` initiated carried alt cp`[k] = falseand caused cpi[k] to be set to false. But the forwarding that q` performed upon receivingthe broadcast originated by qk, which updated alt cp`[k] to true, carried this value on toqi, and then cpi[k] was set to true. But then as in the �rst case ' cannot be a global stateat which lpk = true for all pk 2 N .(c)) (a):This is immediate.Proof of Theorem 12Every node may start as many as P broadcasts, each of which is forwarded by every othernode no more than twice, by action (3) and considering that no message from a givenbroadcast arriving at qi alters either gsi or alt gsi (equivalently, cpi or alt cpi) more thanonce. The message complexity of O�(c + Pne)n log T � bits then follows from Theorem 4and from the fact that in the worst case each broadcast traverses every channel twice ineach direction. The remaining measures are given directly by Theorem 10.
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