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Abstract

The ability to set breakpoints stands, along with the possibility of deterministic re-
execution, as one of the most important issues in the debugging of message-passing pro-
grams. We consider in this paper the design of fully distributed algorithms for the detection
of breakpoints in such programs, and provide four algorithms, each for a different type of
breakpoint. One of the algorithms detects the occurrence of unconditional breakpoints,
while the other three detect the occurrence of breakpoints on disjunctive predicates, stable
conjunctive predicates, and generic conjunctive predicates. All the algorithms we present
detect breakpoints in the form of earliest global states with respect to the particular prop-
erty involved. In the case of unconditional breakpoints, such an earliest global state must
coincide exactly with the requested local unconditional breakpoints for the processes that
do actually participate in the breakpoint. In the case of the other (conditional) break-
points, what is detected is the earliest global state at which either the disjunctive or
conjunctive predicate under consideration is true. In order to actually halt the computa-
tion at the exact global state the algorithms detect, we suggest as a first approach the use
of checkpointing and rollback-recovery techniques, and indicate for each of the four cases
how to approach the recording of checkpoints so that the additional storage requirement

per process is not demanding beyond the actual needs.



1. Introduction

The problem we address in this paper is the problem of debugging message-passing pro-
grams written for distributed-memory parallel processing machines. This problem has
traditionally been treated from two distinct, although complementary, perspectives. The
first one concentrates on the ability to deterministically re-execute programs aiming at
the exact reproduction of the behavior observed in the previous execution. The second
perspective is that of setting breakpoints where the program is to be halted for its context
to be examined. Here breakpoints are distributed, comprising a collection of interrelated
conditions spread throughout the system. Because of the inherent asynchronism of those
machines, and aggravated by the assumed absence of a shared address space, both views of
distributed program debugging must of necessity depart significantly from the approaches
traditionally adopted in the debugging of sequential programs. Various contributions have
appeared in the literature in recent years [1, 4, 6, 8-15, 20, 21, 23-25], including the
technical report [6] of which this paper is an expanded and revised version.

Within the broad spectrum of problems associated with the debugging of distributed
programs, in this paper we concentrate on the design and analysis of distributed algorithms
to detect the occurrence of breakpoints. The breakpoints we consider are of three types.
Unconditional breakpoints comprise pre-established points specified distributedly among
the program’s components. In contrast, the conditional breakpoints we consider are either
conjunctive or disjunctive. The former specify a global condition as the logical conjunction
of a set of local conditions spread throughout the system (a conjunctive predicate), while
for the latter the global condition is given by the logical disjunction of the local conditions
(a disjunctive predicate). In the case of conjunctive breakpoints we also consider the
particular situation in which the breakpoint reflects a stable predicate, that is, a predicate
that holds indefinitely further on once it becomes true.

Before we can be more specific about the nature of these breakpoints and the properties
of the algorithms we propose in this paper, it is convenient to introduce the details of the
computational model we assume in the sequel. The program to be debugged is represented
by the undirected graph G = (N, E) with n = |N| and e = |E|. Fort=1,...,n, p; € N
is a process which may communicate exclusively by message passing with those (and only
those) processes p; € N such that (p;,p;) € E, where 1 < j < n. Processes with which
p; may communicate are called its neighbors; the set of p;’s neighbors is denoted by N;.
Edges in E represent bidirectional communication channels, which we assume to have
infinite capacity (so that processes need never stop executing upon attempting to send a
message). We also assume full asynchronism, in the sense that processes are driven by

independent, local clocks, and that messages suffer finite, though unpredictable, delays to
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be delivered among neighbors.

One helpful abstraction is to model the computation that takes place locally at a
process by a sequence of events. Associated with an event are then the identification of
the process where it takes place (although this identification is not necessarily available
to the processes to compute on), the local time (as given by the process’s local clock) at
which the event takes place, as well as possible changes in the local state of the process
and the sending (receipt) of messages to (from) neighbors. At most one message may be
received in association with an event, although no such restriction is placed on the number
of messages sent in connection with the event. The distributed computation that takes
place over G is then naturally associated with the set of events occurring at all processes,

which we henceforth denote by V.

A binary relation on V. here denoted by — and usually interpreted as a “happened
before” relation is defined as follows [18]. Two consecutive events, say ¢; and &3, happening
in this order at the same processor, contribute to — with the pair (£1,£3). The other pairs
in — are (&1,€&2) such that a message exists which is sent by a process in connection with
¢, and received at a neighbor process in connection with &;. The transitive closure —* of
— 18 by definition an irreflexive transitive binary relation on V', and constitutes as such a
partial order on V. The relation —7 is instrumental in the definition of a very important
entity in the context of this paper, namely a consistent global state, or more succinctly a
global state. A global state is a partition (V3,V2) of V such that £ € V; only if every ¢’ such
that ¢’ —7 £ is a member of V; as well [3]. Clearly, every global state is such that no pair
(£,€') €7 exists such that £ € V5 and &' € V5. Loosely, then, this definition is meant
to capture system-wide states that “may actually happen,” although this interpretation

implicitly refers to a global clock, whose existence is ruled out by assumption.

The problem of detecting a breakpoint and halting the program accordingly should
then be posed as the problem of detecting a global state (and then halting the program)
at which the condition that specifies the breakpoint holds. Failure to pose the problem
like this may lead to impossibilities like, for instance, requiring that a process halt after
receiving a certain message, while the sender of that message is required to halt before the

message 1s sent.

Algorithms to solve the breakpoint detection problem should never miss a global state
with the required properties if one exists. Under the global-state view of a breakpoint,
an unconditional breakpoint is specified for a subset of N as a set of local times, one
for each of the participating processes (we assume throughout that this subset has at
least one process). If this specification does not constitute a global state, this should be

detected by the algorithm and reported as an error. Hereafter, the local time specifying
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the unconditional breakpoint at each of the participating processes is called the process’s
local unconditional breakpoint and denoted by [ub; for p; € N. Conditional breakpoints,
in their turn, are specified as a set of local predicates, one for each of the participating
processes, of which we assume henceforth there is at least one. If no global state exists
in which the required conjunctive or disjunctive predicate holds, then the program should
simply not halt before it terminates. The local predicate associated with p; is henceforth

regarded as the boolean variable [p;.

Often the problem, when posed for conditional breakpoints, comes with the additional
requirement that the detected global state be the “first” global state for which the predicate
(conjunctive or disjunctive) to be watched for holds during the computation. The notion
one wishes to capture here is that of the earliest global state for which a certain property
holds during the computation, and is formalized as follows. Say that a global state (V{, V)
is earlier than a global state (V7,V3) if and only if V] C V;. Then a global state (V1, V) is
an earliest global state for which the property holds if and only if no global state (V{,V})
for which the property holds is earlier than (V;,V3). It should be clear that this definition
allows more than one earliest global state to exist with respect to the same property, for
example (V1,V3) and (V/,V3) such that neither V4 C V{ nor V{ C V. If the predicate
under consideration is a stable predicate, then the other global states at which it holds in

addition to (V1, V) include all the global states (V{, V)) such that V3 C V}.

In the case of unconditional breakpoints, requiring the earliest global state to be
detected is only meaningful if there is at least one process that does not participate in the
breakpoint. Processes like this have their local times for participation in the breakpoint
left “unspecified,” and may then be required to appear in the detected global state with

as early a local state as possible.

A global state defined as a partition (V;,V3) of V' is normally viewed as comprising
a local state for each process (the state at which the process is left immediately after the
occurrence of all pertinent events in V7 ) and one set of messages for each channel in each
direction (messages sent in connection with events in V3 to be received in connection with
events in V). However, all the breakpoints we consider are defined exclusively with respect
to the local states of some processes, so a global state may in our context be regarded as
comprising n local states only. In addition, we do for simplicity make the assumption
that local times always increase at the occurrence of events and remains constant between
consecutive events, so that a process’s local state is unequivocally determined by the
process’s local time (local times are then in reality event counters). A global state is then
henceforth viewed as an n-component array of local times. If ¢ is a global state and

It; > 0 denotes (as it does henceforth) p;’s local time for p; € N, then the component of ¢
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corresponding to p; is ¢[i| = It; for the appropriate value of 1¢;.

Under this view of a global state, an n-component array ¢ of local times is a global
state if and only if no p; € N exists that ever receives a message earlier than (or at) ¢[¢]
which was sent by some p; € N; later than ¢[j]. It should also be noted, still in connection
with this view of a global state, that a global state ¢ is an earliest global state for which a
certain property holds if and only if no other global state ¢’ for which the property holds
is such that ¢'[k] < @[k] for all p, € N.

Distributed algorithms for breakpoint detection are evaluated with respect to the over-
head incurred by the computation being monitored when they run. Following the custom-
ary complexity measures adopted for asynchronous distributed algorithms, this overhead
i1s given as asymptotic worst-case expressions for the number of additional message bits
passed between neighbors and the additional time for completion. (Accounting for the
number of messages instead of bits is in most cases an equivalent approach. In this pa-
per, however, additional communication is often incurred in the form of additional fields
attached to messages of the computation proper, and this would not show if we adopted
message counts.)

While counting the number of message bits to obtain the message complezity is in most
cases a simple matter, the system’s inherent asynchronism requires a little more elabora-
tion for the definition of the time complexity. Normally local computation is assumed to
take no time, and then the time complexity expresses the longest chain of the type “re-
ceive a message and send a message as as consequence” occurring during the computation
[19]. However, in reality such a causal chain is interspersed with the occurrence of events
unrelated to messages, which at times may be significant, and then the assumption that
local computation takes no time becomes erroneous. Qur convention in this paper is then
to express the time complexity as a pair of measures, one being the traditional measure,
to which events unrelated to messages are assumed not to contribute (called global time
complezity to evidence its system-wide significance), and another to account, within a sin-
gle process, for the causal chains involving events unrelated to messages only (called local
time complexity).

Often we will need to refer to the message complexity of the computation proper,
which we shall henceforth assume to be O(c(n,e)) messages, or more succinctly O(¢)
messages. Likewise, we shall assume that every process’s local clock can only represent
local times up to a value T (i.e., It; < T for all p; € N), which can be arbitrarily large
but needs nevertheless be such that we can refer to it when computing our algorithms’

complexities.

Following a discussion of related work in Section 2 and some preliminary remarks and

6



methodological issues in Section 3, in this paper we present four algorithms for breakpoint
detection. The first (and simplest ) algorithm detects breakpoints on disjunctive predicates
and 1s presented in Section 3 as algorithm DETECT_DP. This algorithm has a message
complexity of O(cnlogT) bits, a global time complexity of O(1), and a local time com-
plexity of O(n) per message reception. In addition, O(nlogT) memory bits are required
for the maintenance of data structures per process.

In Section 4, algorithm DETECT_UBP for the detection of unconditional breakpoints
is introduced. It has a message complexity of O((c + ne)nlog T) bits, a global time
complexity of O(n), and a local time complexity of O(n) per message reception. Its
memory requirement per process is O(nlogT) bits.

Algorithm DETECT_STABLE_CP is presented in Section 5 for the detection of break-
points on stable conjunctive predicates. Its message and time complexities are the same
as algorithm DETECT_UBP’s, and so is also its memory requirement.

Our last algorithm is given in Section 6 for the detection of breakpoints on generic con-
junctive predicates. This algorithm is called DETECT_CP, and has a message complexity
of O((c + Pne)nlog T) bits, where P is the maximum number of times any local predicate
becomes true. The global and local time complexities of algorithm DETECT_CP are the
same as the previous two algorithms’, and so is its memory requirement per process.

Every one of our algorithms is fully distributed, and the detection-related processing
performed in connection with each process in N is exactly the same throughout all of N.
In particular, no special processes are needed to which information originating from all
over the system would be conveyed in order for those processes to perform the detection.
Furthermore, what our algorithms detect are earliest global states in which the conditions
required for detection hold, and they need no trace of a previous execution to work on. In
at least one of these three aspects, all the algorithms we provide are the first to appear in
the literature.

Another important characteristic of all four algorithms is that not every process is
required to participate in the condition specifying the breakpoint to be detected. Processes
that do not participate in the breakpoint do nevertheless participate in the detection. In
the case of unconditional breakpoints (which do not appear to have been treated in the
literature at all), the algorithm we provide is in addition capable of detecting errors in the
specification of the breakpoint.

Because our algorithms perform the detection of earliest global states in which the
appropriate conditions hold, a system-wide dissemination of a halt order is needed for
every process to stop after the detection. However, in order to halt the computation at the

detected breakpoint a checkpointing and rollback-recovery mechanism is needed whereby
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every process is brought back to the local state with which it participated in the detected
global state. A first approach to this issue is discussed in Section 7, where we also discuss
strategies to save memory while maintaining the checkpoints.

In addition to these sections, this paper comprises an additional section with con-
cluding remarks (Section 8) and two appendices. Appendix 1 contains a summary of the
notation utilized globally in the paper. Proofs of all the formal results stated throughout
the paper are collected in Appendix 2.

2. Related Work

Extensive though the literature on the debugging of distributed parallel programs is be-
coming, very few authors have addressed the design of distributed algorithms to detect the
types of breakpoints we have dealt with in this paper. However, the works of Miller and
Choi [24] and of Manabe and Imase [21] deserve special mention for their proximity with
the topics we have considered.

Miller and Choi’s algorithms [24] are centered around a procedure to spread a halting
instruction among the processes of the system, which emanates from a process deciding
to halt the computation and reaches the others through a “snapshot”-type algorithm [3].
Based on this procedure, a distributed algorithm is given to detect breakpoints on disjunc-
tive predicates (without however any consideration as to whether the breakpoint detected
is the earliest possible), and attempts are also made toward algorithms to detect break-
points on what the authors call “linked” predicates and on conjunctive predicates that can
be expressed as the former.

The issue of detecting earliest global states appears to have been first brought to the
fore by Manabe and Imase [21], who gave distributed algorithms to halt a distributed com-
putation at the earliest global state at which a conjunctive predicate holds and to exhibit
the value of an expression calculated at the earliest global state at which a disjunctive
predicate holds. Both algorithms rely on the “replay” of a distributed computation based
on a trace of its execution, much in the style introduced by LeBlanc and Mellor-Crummey
[20]. In the conjunctive-predicate case, for example, the trace is used so that processes can
poll other processes from which messages are known to be due to arrive. Processes whose
local predicates have become true only send messages when thus requested to, and this is
what ensures the detection of earliest global states.

Other authors have addressed questions related to the ones that motivated this paper,
although with considerably less similarity than the ones we just examined. For example,
Spezialetti [28] has proposed a “semi-centralized” approach to detect breakpoints based on

Spezialetti and Kearns’s [29] concept of “simultaneous regions.” Because such regions miss
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many of the possible global states in a distributed computation, their approach can only
be applied to breakpoints on stable predicates, although without the assurance of finding
earliest global states.

Another related question was addressed by Cooper and Marzullo [5], who proposed
centralized algorithms to analyze global-state “lattices” in the search for properties that
hold across the board from one execution of a distributed program to another. For ex-
ample, they have an algorithm to detect whether an execution exists in which a given
predicate holds at some global state. In the same vein, another algorithm is proposed to
detect whether the predicate holds at a global state in every execution. Clearly, the gen-
erality of considering multiple executions comes at the price of exceedingly large storage
requirements, as the number of possible global states may grow exponentially with the
system’s size for some computations.

Another centralized approach was recently proposed by Garg and Waldecker [10, 11].
What they have proposed is to employ a separate process (or to endow one of the system’s
processes with special characteristics) to which information originating at all the other
processes is sent. Based on a manipulation of the information that is received, breakpoints
on generic conjunctive predicates can be detected by that process. The authors also claim
that this detection can be distributed by dividing the processes into hierarchically organized
groups. In the algorithm that they present, one process serves as a checker and all other
processes keep their own arrays of local times. Whenever the local predicate of a process
becomes true for the first time since it last sent a message, it generates a debug message
containing its array and sends it to the checker, which then checks whether the conjunctive
predicate is satisfied. The process is not required to send its array every time the local
predicate is detected, as it suffices to do it only after messages are sent. The checker has a
separate queue for each process involved in the predicate. Incoming debug messages from
those processes are enqueued in the appropriate queue. The task of the checker is to check
the ordering among the arrays. For the conjunctive predicate to be satisfied, the checker
must find a set of arrays, one from each queue, such that each is “incomparable” to all

others in the set.

3. Preliminaries

Each of the distributed algorithms we introduce in this paper is viewed as being repre-
sented by another set of n processes, called ¢1, ..., ¢y, each executing mutually exclusively
with its counterpart among the n processes of the computation proper that constitute V.
Processes ¢1, ..., ¢, communicate with one another by means of messages sent over the

communication channels corresponding to the edges in E as well, and are endowed with
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the following distinctive abilities for 1 <7 < n.

(i) Every message incoming to or outgoing from p; is intercepted by ¢;, which may attach
new fields to the message or strip some fields off the message before passing it on to

p; or sending it out to some of p;’s neighbors.

(ii) Process ¢; is activated (and then p; is suspended, while /t; remains constant) when
It; becomes equal to [ub; (in the case of unconditional breakpoints) or upon the oc-
currence of a change in the value of the local predicate Ip; (in the case of conditional
breakpoints), or yet upon the sending by p; of a message or the arrival of a message

from ¢; such that p; € N;.

(iii) Process ¢; may suspend the execution of p; at any time, as well as have it resumed

(possibly after having altered its context).

Each pair of processes p; and ¢; can then be viewed as sharing a single processor,
which is switched between the two for execution. Process p; takes control only when ¢; is
not running, unless it has been explicitly suspended by ¢;. For simplicity, when necessary
we henceforth refer to such a pair of processes as a node. Also, henceforth N’ denotes the
set of processes ¢; such that p; € N and N/ the set of processes ¢; such that p; € N;.

Our algorithms for breakpoint detection are based on the following general approach.
For 1 <1 < n, process ¢; maintains an array ¢s; of length n representing its view of the
global state to be detected, similarly to the “time vectors” treated in [7, 22] and to the
basic representations adopted in other approaches related to ours (as those mentioned in
Section 2). This array is initialized with zeroes (representing the earliest global state of
the computation) and is updated when information is received concerning the other nodes’
local unconditional breakpoints or local predicates. Such information is conveyed from
node to node either by means of special broadcast-type messages or as additional fields
attached to the computation-type messages that constitute the communication traffic of
the computation proper. This information, when sent by ¢;, comprises the array ¢s;, and
may, depending on the type of breakpoint to be detected, comprise additional data as well.
In each of the cases we consider, this information is transported among nodes in such a
way as to allow at least one node, say the one comprising some gr € N', to detect locally
that the breakpoint has occurred at the global state recorded in its current gsi, which is
in all cases the earliest global state at which the breakpoint can be said to have occurred.
Once the breakpoint is detected, additional measures may be taken to halt the program
and then roll it back to the appropriate global state as discussed in Section 7.

Before we proceed, let us pause for a moment and examine algorithm DETECT_DP

for the detection of breakpoints on disjunctive predicates. Such a breakpoint is a global
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state at which for at least one of the participating processes the local predicate holds.
Clearly, the earliest global state at which a disjunctive predicate holds does not have to be
unique, as illustrated in Figure 1, so it is conceivable that more than one process detects
the occurrence of the breakpoint, however at different global states.

In Figure 1, and in the figures to appear in the remainder of the paper, processes are
represented by local-time axes, in which the local times are to be regarded as increasing
from left to right. On each axis, thick bars are used to indicate the periods during which
the local predicates are true. Arrows represent messages. In the case of Figure 1, there

are clearly two earliest global states at which at least one of Ip; or Ip; is true.

Py

Figure 1. Two earliest global states at which the disjunctive predicate holds

Because of the inherent ease with which disjunctive predicates can be detected in
a distributed fashion, algorithm DETECT_DP is quite straightforward. It does not em-
ploy any broadcast messages, and attaches the array gs;(1t;), in addition to a “status bit”
(to be discussed shortly), to the computation messages sent by ¢; € N'. This array is
identical to g¢s; in all components except the ith, which is given by [¢;. Our earlier as-
sumptions imply that the value of It; is in this case the local time at p; when it sent the
message that ¢; intercepted, and then corresponds to p;’s local state immediately succeed-
ing the sending of the message. The computation messages sent by ¢; are then triples like
(“status bit”, gsi(It;), body), where body is the content of the message received from p; by
¢i, denoted by (body ). Likewise, when ¢; receives a message (“status bit”, gs;, body ) from
g; € N;. it is (body ) that gets forwarded to p;, so that the processes in NV only get involved
with messages of the computation proper.

Attaching the modified gs; to computation messages is a procedure with important
properties in the context of this paper, not only for the algorithm we are beginning to
present, but also for other algorithms presented in the sequel. We then pause briefly

to introduce the following two supporting lemmas. They will only be used formally in
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Appendix 2, but are sufficiently simple that the reader can appreciate their significance in

the design of the algorithms to come (this is why we present them at this early stage).

Lemma 1. For all p; € N, if gs; is a global state such that ¢gs;[i] < [t; and no message is
received at p; at time ¢ such that gs;[i] <t <[1t;, then g¢s;(Ilt;) is also a global state.

Proof: See Appendix 2. [ ]

Lemma 2. If ¢ and ¢’ are global states, then the component-wise maximum of the two

is also a global state.
Proof: See Appendix 2. [ ]

The essence of algorithm DETECT_DP is the following for p; € N. Variable Ip; is
initialized with false, and is assumed never to become true if p; does not participate
in the breakpoint. Whenever ¢; detects that Ip; has become true, it sets gs;[i] to [t;
and declares the breakpoint on the disjunctive predicate detected at the global state gs;.
Because every message it received from ¢; € N| prior to It; carried a copy of ¢;’s view
of the global state with jth component updated to the time the message was sent, ¢s;
must indeed be a global state by Lemmas 1 and 2. In order to ensure that it is also an
earliest global state with respect to the disjunctive predicate, the simple procedure we just
described must only be allowed to be performed if no other process has already detected
a global state that renders the one ¢; would detect not an earliest one. This is where
the “status bit” comes in. This bit will indicate, upon arriving along with a computation
message, whether any other such global state has already been detected.

Algorithm DETECT_DP is presented next as a set of actions to be performed by
¢;- Two additional variables employed by the algorithm are the booleans found; and
found _elsewhere;, both initially set to false, which indicate respectively whether ¢; has
detected the breakpoint on the disjunctive predicate and whether such a breakpoint has
already been detected elsewhere so that the one detected by ¢; would necessarily not be

an earliest one.

Actions at ¢; for algorithm DETECT_DP:

(1) Upon detecting that [p; has become true:

if not (found; or found_elsewhere;) then
begin
gsili] == lty;
found, := true

end;

12



(2) Upon receipt of (body) from p; destined to p; € N;:
Forward (foundi or found_elsewhere , gs;(lt;), body) to ¢;;

(3) Upon receipt of (bit;, gs;, body ) from ¢; € N/:

found_elsewhere; := bit; or found_elsewhere;;
if not (found, or found_elsewhere,) then
for k:=1 ton do
if gs;[k] < gs;[k] then

gsilk] == gs;[k];
Forward (body ) to p;;

Theorems 3 and 4 given next establish, respectively, the correctness and complexity

of algorithm DETECT_DP.

Theorem 3. There exist p; € N and ¢ > 0 such that the following three conditions are
equivalent to one another for algorithm DETECT_DP.

(a) There exists a global state ¢ such that Ip; = true at time @[k] for at least one py € N;
(b) found; becomes true at time [t; = t;

(¢) At time [t; = ¢, ¢gs; is the earliest global state at which Ipy = true for at least one
pr € N.

Proof: See Appendix 2. [ ]

Theorem 4. Algorithm DETECT_DP has message complexity of O(enlogT) bits, global
time complexity of O(1), local time complexity of O(n) per message reception, and requires

O(nlog T) bits of storage per process.
Proof: See Appendix 2. [ ]

Detecting the other types of breakpoints we consider in this paper is a consider-
ably more intricate task in comparison with the detection of breakpoints on disjunctive
predicates. These other cases comprise unconditional breakpoints and breakpoints on con-
junctive predicates (both in the stable case and in the general case), all of which require
some sort of additional “global” information to be monitored. It is the propagation of this
global information that makes use of the broadcast messages we introduced earlier.

In general, in addition to gs; process ¢; € N' also maintains another array of booleans
with its local view of the global condition to be monitored and detected. When dissemi-

nated by ¢;, this array is always accompanied by ¢s; as well, so that whenever ¢; detects
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locally that the global condition has occurred (by examination of its array), it also asso-

ciates the contents of ¢gs; with the global state at which the condition occurred.

Broadcast messages are sent by ¢; whenever p; is one of the processes participating in
the global condition to be detected and either its local unconditional breakpoint is reached
(in the case of unconditional breakpoint detection) or its local predicate becomes true (in
the case of the detection of breakpoints on conjunctive predicates). The broadcast we
employ is of the “flooding” type, that is, information is sent by ¢; to every ¢; € N!, and
so forth until it reaches all nodes. During this propagation of information, an arriving
gs; from some ¢; € N/ is used by ¢; to update gs;. In addition, gs; and the other array
accompanying it are used to update the local view at ¢; of the global condition being

monitored.

Some precautions are of course needed in addition to this simple propagation pro-
cedure, such as never sending to a process the exact same information received from it,
so that the dissemination of information can be guaranteed to terminate. In addition,
we adopt a “forward-when-true” rule for the propagation of information. This rule states
that a node participates in the broadcast (i.e., forwards the information it receives) only
when its local condition (local unconditional breakpoint reached or local predicate become
true) holds. Clearly, if no messages were ever sent during the computation proper, then
this broadcast would suffice for the detection of the desired type of breakpoint. In such a
case, whichever node produced an array with true values for all the participating processes
would declare the breakpoint detected at the global state given by the global-state array
obtained along with it.

Algorithm BROADCAST WHEN_TRUE does this detection in the absence of messages
related to the computation, so long as the global condition under monitoring is stable. In
this algorithm, process ¢; maintains a boolean variable l¢; to indicate whether the local
condition with which p; participates (if at all) in the global condition to be detected is
true. It is initialized with false if p; does indeed participate in the global condition, or
with true otherwise. Stability then means that no py € N exists such that lcj is reset to
false once it becomes true. The array associated with ¢;’s view of the global condition is
denoted by ge¢;. For 1 < k < n, g¢;[k] is initialized with the same value assigned initially to
leg. Only broadcast messages are employed in this algorithm (as the computation proper
does not employ any), denoted by the pair (gc;, gs;) when ¢; is the sender. As in the case of
algorithm DETECT_DP discussed earlier, a boolean variable found,, set to false initially,
is employed to indicate whether ¢; has detected the occurrence of the global condition.
In addition, another boolean variable, changed,, 1s used by ¢; to ensure that a broadcast

message is never sent to a node if not different than the last message sent to that node.
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Actions at ¢; for algorithm BROADCAST WHEN_TRUE:

(1) Upon detecting that l¢; has become true:

geilt] == ley;

gsili] == lty;

if gei[1] A -+ A gei[n] then
found, := true

else

Send (gc¢;, gs;) to every ¢x € N|;

(2) Upon receipt of (gcj,¢gs;) from ¢; € N|:

if not found, then
begin
changed ; := false;
for £ :=1ton do
if gs;[k] < gs;[k] then

begin
gsilk] := gs;[k];
geilk] = 901[ ]
changed, : ue
end;

if lc; and changed, then
if ge;[1] A -+ A gei[n] then
found, := true
else
Send (gc¢;, gs;) to every ¢x € N
end;

The following two theorems are related to properties of algorithm BROAD-
CAST_WHEN_TRUE.

Theorem 5. There exist p; € N and ¢ > 0 such that the following three conditions are
equivalent to one another for algorithm BROADCAST _WHEN_TRUE.

(a) There exists a global state ¢ such that lc; = true at time ¢[k] for all p; € N;
(b) found; becomes true at time [t; = t;

(¢) At time [t; = t, gs; is the earliest global state at which /¢ = true for all p; € N.

Proof: See Appendix 2. [ ]

Theorem 6. Algorithm BROADCAST_WHEN_TRUE has message complexity of O(n?elog T)
bits, global time complexity of O(n), local time complexity of O(n) per message reception,

and requires O(nlog T') bits of storage per process.
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Proof: See Appendix 2. [ ]

Algorithms DETECT_DP and BROADCAST_WHEN_TRUE detect breakpoints in two
extreme situations, respectively when the breakpoint is on a disjunctive predicate and
when the breakpoint is on a conjunctive predicate but the computation proper does not
ever send any message (it is simple to note that the case of unconditional breakpoints
in the absence of computation messages is in fact a case of breakpoints on conjunc-
tive predicates). In the former case only computation messages are employed, whereas
in the latter case only broadcast messages are needed. Other situations between these
two extremes are examined in the sequel, and then the messages involved become 4-
tuples of the type (computation,gc;, gs;, body) for computation messages sent by ¢;, and
(broadcast, gc;, gs;,nil) for broadcast messages sent by ¢;. The nil field is only used to
produce messages with the same number of fields, with the leading type field used to

differentiate between message types.

4. Unconditional Breakpoints

In this section we introduce DETECT_UBP, a distributed algorithm to detect the oc-
currence in a distributed computation of an unconditional breakpoint. As we discussed
previously, this unconditional breakpoint is specified, for each process actually participat-
ing in the breakpoint, as a local time denoted by lub; for p; € N. For processes p; that do
not participate in the breakpoint, we have chosen to adopt [ub; = oo, so that It; can never
equal lub;.

Algorithm DETECT_UBP can be regarded as a mixture of algorithms DETECT_DP
and BROADCAST_WHEN_TRUE, discussed in the previous section, as it must operate some-
where in-between the two extreme situations assumed by those algorithms. Put differently,
the detection of unconditional breakpoints does require the detection of a global condition
(which is ruled out by algorithm DETECT_DP) and must be applicable to the case when
messages of the computation proper exist (which are disallowed by algorithm BROAD-
CAST_WHEN_TRUE).

The variables employed by algorithm DETECT_UBP are essentially the ones intro-
duced in Section 3 for the other two algorithms, except that for ¢; € N’ the boolean
variable l¢; is now replaced with the occurrence of the equality /t; = lub;, and furthermore
the array ub;, used to indicate ¢;’s view of the occurrence of the local unconditional break-
points at all processes, is now used in lieu of the array gc¢;. For pp € N, ub;[k] may be
either true, false, or undefined. It is true or false if p; participates in the unconditional
breakpoint and is viewed at p; as having already reached its local unconditional breakpoint

or not, respectively, and is undefined if p; is not one of the processes participating in the
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unconditional breakpoint. Initially, ub;[k] is set to false for every participating p; and to

undefined if p; does not participate.

Algorithm DETECT_UBP proceeds as follows. Whenever ¢; detects that It; = lub;,,
it updates ub;[¢] and ¢s;[¢] accordingly and starts a broadcast to disseminate the updated
ub; and ¢s;. This broadcast proceeds like the one in algorithm BROADCAST_WHEN_TRUE,
i.e., 1t is never forwarded by a node whose local unconditional breakpoint has not yet been
reached (unless the node does not participate in the unconditional breakpoint), and in ad-
dition no duplicate information is ever forwarded by any node. Computation messages are
always sent with ub; and ¢s;(/t;) attached to them, in the way of algorithm DETECT_DP,
so that the global state that is eventually detected is indeed a global state. This detection,
if achieved by ¢;, corresponds to the verification that ub;[k] # false for all p; € N, that is,
every process has either reached its local unconditional breakpoint or is not participating

in the unconditional breakpoint.

One of the difficulties in designing algorithm DETECT_UBP is that it must be able
to detect situations in which the requested set of local unconditional breakpoints does not
constitute a global state. In such situations, an error must be reported and the computation
proper must be allowed to progress normally. The detection of such a situation can be
achieved along the following lines. Suppose ¢; receives a computation message, along with
the attached ub; and g¢s;, from some ¢; € N/. If ub;[j] = true and ub;i] = false at
this moment, then clearly an error has occurred in the determination of the unconditional
breakpoint, as p; will never reach its local unconditional breakpoint in such a way that is
consistent with the local unconditional breakpoint of p; from the point of view of a global
state. This is illustrated in Figure 2, in which the partition of the event set indicated by
the dashed line cannot possibly be a global state.

The possibility of having nodes for which no local unconditional breakpoint is specified
complicates the treatment of these erroneous conditions a little bit. If a causal chain of
computation messages beginning at ¢¢ such that ub,[¢] = true and going through a number
of nodes ¢ for which ubi[k] = undefined eventually leads to ¢; such that ub;[:] = false,
then an error must be detected just as in the case discussed earlier. The way we approach
this is by artificially setting wbg[k] to true for all the ¢;’s. A boolean variable in_error;,
initially set to false, is employed by ¢; to indicate whether an erroneous condition has
been detected.

Nodes that do not participate in the unconditional breakpoint also complicate the
detection of earliest global states. If such nodes did not exist, or if we did not require the
earliest global state to be detected when they did exist, then what we have outlined so far

would suffice for algorithm DETECT_UBP to work as needed. However, the existence of
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Figure 2. Error in setting local unconditional breakpoints

causal chains of computation messages similar to the one we just described but beginning
at g¢ such that ub¢[(] = undefined may lead to distinct earliest global states, depending
on whether it leads to ¢; such that ub;[:] = false or ub;[i] = true, as illustrated in
Figure 3, whose parts (a) and (b) depict, respectively, the two cases. Only in the former
case should ¢; take into account what it receives attached to the computation message
in updating ¢s;, but the senders of the preceding messages in the causal chain have no
way of knowing this beforehand. The strategy we adopt to tackle this is the following.
In addition to maintaining ¢gs; as a local view of the global state to be detected, ¢; also
maintains an alternative view, denoted by alt_gs;, which is initialized like ¢s; but only
updated or attached to outgoing computation messages (the latter in place of gs;) if ub;[1] =
undefined. Arriving computation messages at ¢; affect gs; if ub;[¢] = false or alt_gs; if
ub;[/] = undefined. So for ¢; such that ub;[:] = undefined, gs;[k] < alt_gs;[k] for all

pr € N, and therefore ¢s; may constitute an earlier global state than alt_gs;.
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Figure 3. Earliest global states and unconditional breakpoints
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Actions at ¢; for algorithm DETECT_UBP:

(1) Upon detecting that It; = lub;:

if not n_error; then

begin
ub;[i] := true;
gsili] == lty;

if ub;[k] # false for all k = 1,...,n then
found, := true
else
Send (broadcast,ub;, gs;, nil) to every g € N;
end;

?

(2) Upon receipt of (broadcast,ub;,gs;,nil) from ¢; € N!:

if not (in_error; or found;) then
begin
changed ; := false;
for k:=1ton do
if gs;[k] < gs;[k] then

begin
gsilk] = gs,[k);
k] = ub ]
changed, := true
end;

?

if ub;[:] = undefined then
for k:=1to n do
if alt_gs;[k] < gs;[k] then
alt_gsi[k] := gs;[k];
if (lub; # false) and changed, then
if ub;[k] # false for all k = 1,...,n then
found, := true
else
Send (broadcast, ub;, gs;, nil) to every g € N!
end;

?

(3) Upon receipt of (body) from p; destined to p; € N;:

if ub;[:] = undefined then

Forward (computation, ub;, alt_gsi(It;), body) to g¢;
else

Forward (computation,ubi,gsi(lti), body) to ¢;;

20



(4) Upon receipt of (computation,ubj,gs;, body) from ¢; € N|:

if not (in_error; or found,) then
begin

if (ubj[j] = true) and (ub;[i] = false) then
i _error; 1= true;

if (ubj[j] = true) and (ub;[i] = undefined) then
ub;[i] := true;

if (ubj[j] = undefined) and (ub;[i] = false) then
for £ :=1 to n do

if gs;[k] < gs;[k] then

begin
gsik] == gs;[k];
ub;[k] := ubj[k]
end;

if (ub;[j] = undefined) and (ub;[i] = undefined) then
for £ :=1 to n do
if alt_gs;[k] < gs;[k] then
alt_gs;[k] := gs;[k]

end;

Forward (body ) to p;;
Next we give properties of algorithm DETECT_UBP related to its correctness and
complexity.

Theorem 7. There exist p; € N and t > 0 such that the following four conditions are
equivalent to one another for algorithm DETECT_UBP.

(a) There exists a global state ¢ such that p[k] = lubg for every pr € N such that

luby < oo
(b) in_errory never becomes true for any pr € N;
(¢) found, becomes true at time [lt; = t;

(d) At time It; = t, gs; is the earliest global state at which ¢s;[k] = luby for every py € N
such that [ub, < oo.

Proof: See Appendix 2. [ ]
Theorem 8. Algorithm DETECT_UBP has message complexity of O((c+ne)nlogT) bits,

global time complexity of O(n), local time complexity of O(n) per message reception, and

requires O(nlog T') bits of storage per process.

Proof: See Appendix 2. [ ]
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5. Breakpoints on Stable Conjunctive Predicates

In this section we discuss algorithm DETECT_STABLE_CP for the detection of breakpoints
on stable conjunctive predicates. Such predicates are specified for each participating pro-
cess p; € N as the local predicate Ip; endowed with the property that it remains true once
it becomes true. Unconditional breakpoints are also breakpoints on stable conjunctive
predicates, but much more rigid than the ones we consider in this section, as in that case
the detected global state is required to match the local unconditional breakpoints spec-
ified for the participating processes exactly. In contrast, the ones we are now beginning
to consider only ask that the local predicates of the participating processes be true in the
detected global state, although in some processes they may have become true earlier than
the local times given by the global state. Not surprisingly, then, the algorithm introduced
in this section can be regarded as a slight simplification of algorithm DETECT_UBP, as
error conditions no longer need to be addressed.

Being in many senses related to algorithm DETECT_UBP, algorithm DE-
TECT_STABLE_CP can also be viewed as a conceptual mixture of the principles employed
in algorithms DETECT_DP and BROADCAST WHEN_TRUE. With respect to the latter, the
local condition for p; € N, le;, is now expressed by the very local predicate Ip; we have
been considering throughout, and ¢;’s view of the global condition, gc¢;, is now the array
cp;. For all p € N, ep;[k] is initialized like Ipg, that is, to false if pj is participating
in the breakpoint, and to true otherwise. All the other variables employed by algorithm
DETECT_STABLE_CP have the same meaning they had when used in previous contexts.

The simplification of algorithm DETECT_UBP to yield DETECT_STABLE_CP does not
go any further than the elimination of error detection, as an alternative local view at ¢; of
the global state to be detected, alt_gs;, is still needed to aid in the detection of the earliest
global state of interest. Similarly to the case of unconditional breakpoints, a causal chain of
computation messages beginning at ¢y such that c¢p[(] = true, going through a number of
qr’s, each with epglk] = true as well, and finally reaching ¢; with ¢p;[i] = false requires ¢;
to take into account what it receives attached to the computation message in updating gs;.
On the other hand, if no such g¢; is ever reached, then the detected global state has a chance
to be an earlier one. These two cases are illustrated in Figure 4, respectively in parts (a)
and (b). Maintaining alt_gs; has the function of allowing this earlier global state to be
saved in ¢s;, to be used in case no causal chain of the sort we just described ever occurs.
The array alt_gs; is initialized like gs; and is attached to computation messages with its
1th component modified to It;. A computation message arriving at ¢; affects alt_gs; and
may eventually affect ¢s;, which happens if ¢p;[¢] = false upon arrival of the computation

message, by simply updating ¢s; to alt_gs; when Ip; becomes true. Only in this situation,
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or upon the receipt of broadcast messages, does ¢s; get updated, but then so does alt_gs;,

so gs;|k] < alt_gs;[k] for every py € N.
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Figure 4. Earliest global states and breakpoints on stable conjunctive predicates
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Actions at ¢; for algorithm DETECT_STABLE_CP:

(1) Upon detecting that [p; has become true:

epi[t] := Ips;
alt gs;[1] := It;;
for k:=1ton do
gsi(k] := alt_gs;[k];
if epi[1] A -+ A epi[n] then
found, := true
else
Send (broadcast, cp;, gsi, nil) to every qx € N/;

(2) Upon receipt of (broadcast, cp;, gs;, nil) from ¢; € N|:

if not found, then
begin
changed ; := false;
for £ :=1ton do
if gs;[k] < gs;[k] then

begin
gsill] = gs;[K];
cpilk] == Cp][ ]
changed, : ue
end;

fork:zltondo
if alt_gs;[k] < gs;[k] then
alt_gsi[k] := gs;[k];
if ¢p;[i] and changed,; then
if epi[1] A -+ A epi[n] then
found, := true
else
Send (broadcast, cp;, gs;, nil) to every ¢x € N
end;

?

(3) Upon receipt of (body) from p; destined to p; € N;:
Forward (computation, epi, alt_gsi(1t;), body) to ¢;;

24



(4) Upon receipt of (computation,cp;,gs;, body) from ¢; € N

if not found, then
for k:=1ton do
if alt_gs;[k] < gs;[k] then

begin
cpilk] == cp;lkl;
alt_gs;[k] := gs;[k]
end;

Forward (body ) to p;;

Correctness and complexity properties of algorithm DETECT_STABLE_CP are estab-

lished in the following two theorems.

Theorem 9. There exist p; € N and ¢ > 0 such that the following three conditions are
equivalent to one another for algorithm DETECT_STABLE_CP.

(a) There exists a global state ¢ such that Ipy = true at time ¢[k] for all p; € N;
(b) found; becomes true at time [t; = t;
(¢) At time It; = t, gs; is the earliest global state at which Ip; = true for all p, € N.

Proof: See Appendix 2. [ ]

Theorem 10. Algorithm DETECT_STABLE_CP has message complexity of O((c +
ne)n log T) bits, global time complexity of O(n), local time complexity of O(n) per message

reception, and requires O(nlog T') bits of storage per process.

Proof: See Appendix 2. [ ]

6. Breakpoints on Generic Conjunctive Predicates

In this section we continue our treatment of breakpoints on conjunctive predicates, but no
longer assume stability, i.e., every local predicate is now allowed to switch back and forth
between being false and true along the computation. This added generality apparently
aggravates the problem’s difficulties considerably, but an approach quite similar to the one
we adopted in Sections 4 and 5 suffices as the basis of our solution. In those sections we
were led to the use of the array alt_gs; by ¢; as a means of providing an additional view at g;
of the global state to be detected, so that ¢gs; could retain the characteristics of an earlier
global state to be used when the fully updated alt_gs; was not needed. In this section
too this array is employed (with the same purpose), but the increased complexity of the

generic conjunctive case requires that an additional array, called alt_cp;, be also needed
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to accompany alt_gs;. In contrast with the stable case, this array is needed because local
predicates are no longer guaranteed to remain true once they become true.

Furthermore, not only do we need a means of storing potentially earlier global states
for use when appropriate, but also we must have a means of coping with the possibility
that the local predicates may become true and false several times before becoming true at
a local time with which they can participate in a global state. This situation is depicted

in Figure 5, in which the partition indicated by a dashed line cannot be a global state.

P

Pk

Pe

Figure 5. Global states and breakpoints on generic conjunctive predicates

Our approach to the design of algorithm DETECT_CP has been to obtain it as an
extension to algorithm DETECT_STABLE_CP to deal with the instability of the local pred-
icates. This extension relies heavily on the assumption, which we now make, that channels
in E are FIFO (First In, First Out), i.e., they deliver messages in the order messages are
sent. The central issue in obtaining this extension is to ensure that global states at which
the conjunctive predicate holds are never missed. Note that this would not be ensured if for
pi € N we simply added the new array alt_cp; to algorithm DETECT_STABLE_CP along
with a new action to set alt_cp;[i] to false (and fix alt_gs;[¢] accordingly) whenever Ip;
became false. Such a nalve extension would not work even in the absence of computation
messages, because earliest global states would surely be missed. Consider, for example,
part (a) of Figure 6, in which two global states are shown. Of these, the one represented
by a solid line is clearly the earliest global state at which the conjunctive predicate holds.
Nevertheless, even with the aforementioned addition to algorithm DETECT_STABLE_CP,
by action (1) of that algorithm, and depending on the timing of the broadcast messages,
the global state represented by a dashed line might be the one to be detected.
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If computation messages were allowed, then the situation would be even worse, because
global states at which the conjunctive predicate holds might be missed altogether, thereby
making the detection by some processes impossible. This is illustrated in part (b) of Figure
6, in which, as in part (a), the global state represented by a solid line is the earliest global
state at which the conjunctive predicate holds. If the computation message shown in the
figure arrives at ¢; before any of the broadcast messages originally propagated by ¢¢, then
by actions (4) and (1) (in this order) of (the extended) algorithm DETECT_STABLE_CP,
gs; becomes the global state shown in the figure as a dashed line. What this means is that
the detection by ¢; of any global state in which the conjunctive predicate holds is made
impossible. While in all of our algorithms certain processes never come to actually detect
the global state of interest, this is so exclusively because the broadcast does not go beyond
a process that does perform the detection. In the case of Figure 6(b), by contrast, ¢; would
miss all the global states of interest even if reached by a broadcast from a process having

already made the detection.

What is needed is to disallow ¢p; and alt_cp; to be updated when ¢; is reached by
a broadcast originated at ¢qr € N' when, respectively, ¢p;[k] = true and alt_cp;[k] =
true. This includes the case in which py = p;, that is, ep;[¢] and alt_cp;[i] are only to be
updated if, respectively, ¢p;[i] = false and alt_cp;[:] = false. For this reason, it becomes
essential for ¢; to know the origin of a broadcast when reached by the corresponding
broadcast messages, and then we can no longer employ, as we have been doing, algorithm
BROADCAST_WHEN_TRUE of Section 3. Our approach to broadcasts will then be to tag

their messages with the type broadcasty for broadcasts originating at g¢y.

One might be suspicious, however, that, by precluding ¢p; and alt_cp; from being
updated upon receipt of broadcast messages (or upon the origination of this broadcast, if
pr = pi) because cp;[k] = true and alt_cp;[k] = true, respectively, we might be missing
global states at which the conjunctive predicate holds as well. The relevant aspects of
this issue are twofold. First of all, such a broadcast; message must not be conveying any
information about another process’s, say p¢’s for py € N, predicate that would not be
received anyway through a broadcast, message, so long as every broadcast is ensured to
reach every node until the breakpoint is detected. Secondly, and this is where the FIFO
assumption comes in, if the gs; accompanying the broadcast  message were to contribute to
the detected global state, then necessarily a causal chain of computation messages leaving
qr while alt_cpi[k] = false would exist destined to some ¢; € N', where it would arrive
when alt_cp;[j] = false. But then one of two situations would happen involving the gsj
that ¢; ignored. If this gs; arrived at ¢; before Ip; became true, then would be taken

into account by ¢; and participate in the broadcast that ¢; would generate when Ip;
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Figure 6. Earliest global states and breakpoints on generic conjunctive predicates

next became true. If, on the other hand, the gs; arrived at ¢; after [p; became true,
then it would be missed by the broadcast initiated by ¢; upon the detection that [p; had
become true, but would be taken into account by ¢; and participate in the forwarding
by ¢; of the broadcast initiated by ¢z. However, in the latter case, this forwarding by ¢;
could only be expected to convey the ¢gsp correctly to all processes if it were treated as
a new broadcast initiated at ¢;. Then, aside from the already mentioned need to attach
a broadcast initiator’s identity to broadcast messages, the broadcasts that we need are
very similar to the ones we employed earlier in this paper, in the sense that a broadcasty,

message arriving at ¢; must be forwarded if it causes changes in either ¢p;[k]| or alt _cp;[k].

28



The variables employed by ¢; in algorithm DETECT_CP are those employed in algo-
rithm DETECT_STABLE_CP and the already mentioned array alt_c¢p;. They are all initial-
ized as in the previous algorithm, and alt_cp; is initialized like ¢p;, i.e., for py € N their
kth components are initially true if p; does not participate in the breakpoint or false if
pi does participate. A further assumption regarding variables’ values is that Ip; does not

ever become false if p; is not one of the processes participating in the breakpoint.

Actions at ¢; for algorithm DETECT_CP:

(1) Upon detecting that [p; has become true:

if not found, then
begin
alt_cpii] == Ips;
alt_gs;[1] == It;;
Send (broadcast;, alt _cp;, alt gs;, nil) to every g € N!

end;

(2) Upon detecting that [p; has become false:
if not found, then
begin
alt_cpii] == Ips;
alt_gs;[i] = It;
end;

?
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(3) Upon receipt of (broadcast, cpe, gse, nil) from ¢; € N|:

if not found, then
begin
changed ; := false;
if not ¢p;[(] then
for k:=1to n do
if gsi[k] < gse[k] then

begin
gsilk] == gselk];
cpilk] := cpelk];

changed ; := true
end;
if not alt_cp;[(] then
for k:=1to n do
if alt_gs;[k] < gs¢[k] then
begin
alt_gsi[k] := gse[k];
alt cpi[k] := cpe[k];
changed ; := true
end;
if changed; then
if epi[1] A -+ A epi[n] then
found, := true
else
Send (broadcasty, cpe, gse, nil) to every ¢r € N
end;

?

(4) Upon receipt of (body) from p; destined to p;:
Forward (computation, alt _cp;, alt_gsi(It;), body) to ¢;;

(5) Upon receipt of (computation,cp;,gs;, body) from ¢; € N

if not found, then
for k:=1ton do
if alt_gs;[k] < gs;[k] then
begin
alt_gsi[k] := gs;[k];
alt_ep;[k] == cp;[k]
end;
Forward (body ) to p;;

Theorems 11 and 12 given next relate to algorithm DETECT_CP’s properties. Recall,
in Theorem 12, that P stands for the maximum number of times any process’s local

predicate becomes true.
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Theorem 11. There exist p; € N and ¢ > 0 such that the following three conditions are
equivalent to one another for algorithm DETECT_CP.

(a) There exists a global state ¢ such that Ipy = true at time ¢[k] for all p; € N;
(b) found; becomes true at time [t; = t;
(¢) At time It; = t, gs; is the earliest global state at which Ip; = true for all p, € N.

Proof: See Appendix 2. [ ]

Theorem 12. Algorithm DETECT_CP has message complexity of O((c + Pne)nlogT)
bits, global time complexity of O(n), local time complexity of O(n) per message reception,

and requires O(nlog T') bits of storage per process.

Proof: See Appendix 2. [ ]

7. Checkpointing and Rollback Recovery

Checkpointing and rollback recovery are techniques that allow processes to properly con-
tinue to execute after the occurrence of failures, without the need to restart from the
beginning [17]. Although originally conceived in this context of fault handling, these tech-
niques can also be used in the debugging of message-passing programs, particularly in
conjunction with the breakpoint detection algorithms we discussed throughout the paper.
All of our algorithms detect global states with certain properties of interest, but after the
detection of such a global state by, say, process ¢; € N', information on this detection
must be spread through the other processes so that they can halt their counterparts in N
for whatever needs to be done that was the purpose of setting the breakpoint in the first
place. However, this spreading of a halt order does necessarily reach most nodes when they
are in local states further in time than those recorded in the detected global state. This
is where checkpointing and rollback-recovery techniques come in, because most processes
will, upon receipt of a halt order, be forced to roll back so that the system can be stopped
at the desired global state.

Recording checkpoints as the processes run constitutes a research area with its own
problems, especially because the issue of whether the assembled sets of locally recorded
checkpoints (the system checkpoints) constitute global states must be dealt with. Two
general approaches to this issue are usually considered. The first approach proceeds to
the recording of checkpoints independently at each node, and upon the need to roll the
system back to a previous global state the available collection of system checkpoints is

checked for those that do constitute global states (e.g., [2]). The second approach is more

31



conservative, and attempts to ensure that every checkpoint recorded locally is part of a
system checkpoint that constitutes a global state. In this case, rolling the system back is
a simple matter, as every one of the available system checkpoints is a global state (e.g.,
[16, 27]).

The technique that as a first approach we propose to use in conjunction with our break-
point detection algorithms can be thought of as being of the first type we just described,
although fortunately it does not suffer from the possibility that the resulting system check-
points may not constitute global states. The general technique is rather simple, and takes
advantage of the fact that every component in the gs; that ¢; € N’ detects falls into one
of the following categories. Either the component is equal to zero, or the component is
the local time at which a process had the local condition with which it participates in the
breakpoint satisfied, or yet the component is the local time at which a computation mes-
sage was sent. So if every process records a checkpoint at the beginning of its computation,
another one whenever its local condition gets satisfied, and another whenever it sends a
computation message, then once ¢s; is detected by ¢; every ¢ € N' has simply to roll pg

back to local time gs;[k].

Of course this strategy places storage requirements in addition to those given by
Theorems 4, 8, 10 and 12, but often improvements can be made to the overall strategy
to minimize the need for storage at each process. For example, for the detection of a
breakpoint on a disjunctive predicate, ¢; records checkpoints only until /p; becomes true
(if p; is indeed participating in the breakpoint) or until a computation message carrying
bit; = true is received from ¢; € N, such that (regardless of whether p; participates in
the breakpoint). Upon either occurrence, only the checkpoint whose recording time is the
updated g¢s;[i] needs to be retained, while the others may be done away with. It should
be noted that processes that do not participate in the breakpoint may have to record

checkpoints further on until a halt order is received.

For the detection of an unconditional breakpoint, a process p; € N participating
in the breakpoint needs a single checkpoint at time lub;. If p; does not participate in
the breakpoint, then ¢;, upon receiving a broadcast message carrying gs; from ¢; € N!
such that, needs no longer record checkpoints upon sending computation messages to ¢; if

ub;[7] = true, and may in addition discard every checkpoint recorded earlier than ¢s;[¢].

For the detection of breakpoints on conjunctive predicates, a process ¢; € N' records
checkpoints when Ip; becomes true and upon sending computation messages, but only while
Ip; = true (if p; does participate in the breakpoint ) or at all times (if p; does not participate
in the breakpoint, being therefore regarded as if its “predicate” were always true). If the

conjunctive predicate is stable, then the receipt of a broadcast message carrying ¢s; from
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¢; € N, allows ¢; to discard all the checkpoints recorded earlier than ¢s;[¢]. This is similar
to the case of unconditional breakpoints, but it should be noted that ¢; must proceed with
the recording of checkpoints upon sending computation messages to ¢; because, in contrast
with the former case, the local time with which p; participates in the desired global state
may not yet have occurred (even though it must already have reached a situation in which
its local predicate is true). If the conjunctive predicate is not stable, then all that may be
done upon receipt of the broadcast message is to discard every checkpoint recorded earlier
than the updated g¢s;[i], as they will definitely not take part in the global state at which
the predicate holds.

The overall strategy we have presented so far needs to be improved so that the global
checkpoints include messages in transit as well. This measure, although inessential to the
rollback process, is essential to restart the execution after the system has been examined

at the breakpoint. Possible approaches have been discussed elsewhere [26, 30].

8. Concluding Remarks

In this paper we have considered the problem of designing distributed algorithms for the
detection of breakpoints in message-passing programs. Along with the ability to determin-
istically re-execute such programs, the setting of breakpoints where the program’s context
can be analyzed stands as a fundamental cornerstone of message-passing program debug-
ging.

We have introduced and analyzed (for both correctness and complexity) four
breakpoint-detection algorithms, specifically one for the detection of unconditional break-
points (algorithm DETECT_UBP) and three for the detection of conditional breakpoints.
Of the latter, one is for the detection of breakpoints on disjunctive predicates (algorithm
DETECT_DP), one for the detection of breakpoints on stable conjunctive predicates (algo-
rithm DETECT_STABLE_CP), and finally one for the detection of breakpoints on generic
conjunctive predicates (algorithm DETECT_CP). To our knowledge, these are the first fully
distributed algorithms for the type of breakpoint detection they perform, in the sense that
no centralized entity needs to be singled out to handle the task. We have, nevertheless,
added a brief discussion of other related algorithms, although we refrained from attempting
any deeper comparison (e.g., complexity-based), as the algorithms we presented and those
available in the literature are inherently different.

Except for algorithm DETECT_DP, whose global time complexity is of O(1), all al-
gorithms have O(n) global time complexity. All four algorithms have the same local
time complexity of O(n) per message reception. The storage requirement of all the algo-

rithms is of O(nlogT) bits per process, where T is an upper bound on the local times
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at all processes. If the computation proper employs O(c) messages, then algorithm DE-
TECT_DP has a message complexity of O(cnlogT) bits, while algorithms DETECT_UBP
and DETECT_STABLE_CP have the same message complexity of O((c + ne)nlog T) bits.
Algorithm DETECT_CP has a message complexity of O((c + Pne)nlog T) bits, where P
is the maximum number of times any local predicate becomes true.

All the breakpoints our algorithms detect are earliest global states with respect to
the particular property involved. In order to actually bring the computation to a halt at
that exact global state, our suggestion has been to employ checkpointing and rollback-
recovery techniques. Clearly, additional memory requirements are involved then, and we
have pointed out a first approach to specific strategies for handling the checkpointing

efficiently in each of the four cases.
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Appendix 1. Summary of Notation

In this appendix we provide a brief summary of the notation used throughout the paper.
Included in this summary is only the notation defined relatively early in the paper, but

whose usage spans most of the sections.

N: Set of processes of the computation proper;
E: Set of bidirectional communication channels;
n: The cardinality of N;
e: The cardinality of F;
N;: Set of neighbors of p; € N;
N': Set of processes that perform the breakpoint detection;
N]: Set of processes ¢; € N' such that p; € Ny;
lub;: Local time giving the unconditional breakpoint for p; € N;
Ip;: Local predicate for p; € N;
It;: Local time for p; € N;
c(n,e): Message complexity (in number of messages) of the computation proper;
T: Maximum local time for any process in N;

P: Maximum number of times a local predicate becomes true for any process in N.
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Appendix 2. Lemma and Theorem Proofs

This appendix is dedicated to the presentation of the proofs of Lemmas 1 and 2 and of
Theorems 3 through 12. Of these, the correctness-related theorems state the equivalence
among several conditions. The proof strategy is then in all these cases to show that the
first condition implies the second, which implies the third, and so on, and finally to show

that the last condition implies the first.

Proof of Lemma 1

If ¢gsi(lt;) is not a global state, then there must exist pg,pr € N such that a computation
message was sent by py strictly later than gs;(It;)[k] and received at py earlier than (or
at) ¢gs;(It;)[(]. By the definition of gs;(I;), and by hypothesis, it follows that the message
must have been sent later than ¢s;[k] and arrived at p, earlier than (or at) ¢s;[(], and then

gs; must not be a global state, which is a contradiction. [ ]

Proof of Lemma 2

Let " be the component-wise maximum of ¢ and ¢, and suppose that it is not a global
state. Then there must exist pg,p¢ € N such that a message was sent by pj strictly
later than ¢"[k] and received at p, earlier than (or at) ¢'[(]. Because ¢"[k] > ¢[k]| and
©"[k] > ¢'[k], then ¢ must not be a global state if ©"[¢] = [l]. Likewise, if ¢"[(] = ©'[(],

then ' must not be a global state. Either case yields a contradiction. ]

Proof of Theorem 3

(a) = (b):

At least one of the processes py € N for which Ip ever becomes true must by actions
(2) and (3) have reached this state for the first time when found_elsewhere, = false. The
assertion then follows immediately by action (1), with p; being this particular process and

t being the local time at which Ip; becomes true for the first time.

(b) = (c):

By hypothesis and by action (1), found_elsewhere, can only have become true after
time t. By Lemmas 1 and 2, the ¢s; produced by action (1), the gs;(It;) used in action
(2), and the gs; yielded by action (3) must all be global states. As a consequence of this,
by action (1) gs; is at time ¢ a global state at which Ip; = true. If ¢gs; were not an earliest
global state at which Ipp = true for at least one p; € N, then either found_elsewhere,

would by actions (2) and (3) have become true prior to ¢, and then found,; would be false
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at t, which is a contradiction, or Ip; would for some pr € N be true right from the start,

which is ruled out by our assumption on the initial values of these variables.

(¢) = (a):

This is immediate. ]

Proof of Theorem 4

Each of the O(¢) computation messages carries an n-component array, each of whose com-
ponents is an integer no larger than T, thence the message complexity of O(enlogT') bits.
Because only computation messages are employed, the global time complexity is of O(1).
Each message reception requires O(n) comparisons, thence the local time complexity. For

pi € N, process ¢; needs to store the array ¢s;, which requires O(nlog T) bits. ]

Proof of Theorem 5

(a) = (b):

If exactly one process participates in the global condition, then by action (1) found,
becomes true, with p; € N being this process and ¢ the time at which l¢; becomes true.
No messages are ever sent in this case. If at least two processes participate, then at least
one of them, say p; € N, is such that ¢ does by action (1) send a broadcast message to its
neighbors when /¢y becomes true, which by action (2) pass the updated information on, so
long as the update introduced changes and their local conditions hold as well. Because this
broadcast carries lcg, it must introduce changes when reaching every node for the first time
and is therefore propagated. This happens to the local condition of every participating
node, and then at least one process, say ¢;, upon having been reached by their broadcasts,
and having lc; = true, sets found, = true. The value of ¢ here is either the time at which
the last broadcast to reach ¢; does reach it by action (2) or the time at which le¢; becomes

true by action (1).
(b) = (c):

By Lemmas 1 and 2, the gs; produced in actions (1) and (2) are global states. Con-
sequently, and by actions (1) and (2) as well, at time ¢ g¢s; is a global state at which
ley, = true for all pr € N. That ¢gs; is the earliest such global state is immediate, because

of the absence of computation messages, which implies that gs;[k] is either zero or the time

at which [c; becomes true.
(c) = (a):
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This is immediate. ]

Proof of Theorem 6

The worst case is that in which all nodes start the algorithm concurrently, and furthermore
the broadcast started by a node traverses all channels. Because two n-component arrays
are sent along with each message, one comprising single-bit components, the other integers
bounded by T, the message complexity becomes O(n?elogT) bits. No causal chain of
messages comprises more than O(n) messages, because this is what it takes for a broadcast
to reach all nodes, thence the global time complexity. The local time complexity and the
storage requirement are like those of algorithm DETECT_DP, therefore given by Theorem
4. |

Proof of Theorem 7

(a) = (b):

Suppose that there does exist pr € N such that in_error; becomes true. By action (4),
this must happen upon receipt, when ubg[k] = false, of a computation message contained
in a causal chain of computation messages started at, say, ¢¢ € N', sent when ub[(] = true.
No array ¢ such that ¢[k] = luby and ¢[¢] = lub; can then be a global state, and because

both lub < oo and lub, < 0o, we have a contradiction.

(b) = (c):

If in_errory never becomes true for any pr € N, then actions (1) and (2) are, so far as
broadcast messages are concerned, identical to actions (1) and (2), respectively, of algorithm
BROADCAST_WHEN_TRUE. This part of the proof is then analogous to the (a) = (b) part
in the proof of Theorem 5.

(c) = (d):

By Lemmas 1 and 2, the gs; produced by action (1), the gs;(It;) and alt_gs;(It;) used
in action (3), and the gs; and alt_gs; produced by actions (2) and (4) are all global states.
This implies, by actions (1) and (2) and at time ¢, that gs; is a global state at which
ub;[k] # false for all p, € N, or, equivalently, a global state such that ¢s;[k] = luby for
every pr € N such that luby < oco. In order to show that g¢s; is the earliest global state
with these characteristics, consider any other n-component array of local times, call it
@, such that ¢[k] = gs;[k] for all pr € N such that luby < oo, and @[k] < g¢s;[k] for at
least one pr € N such that lub; = oo. For this particular py, in order for ¢s;[k] to have

been assigned the value greater than ¢[k], a causal chain of computation messages must
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have existed from p; (leaving at time g¢s;[k]) to some p; € N, where by action (4) it must
have arrived at ¢¢ when ub/[(] = false (otherwise gs; would not have been updated, and
so neither would gs; through the broadcast). In addition, because in_error, must have
remained false, every process involved in this chain (except for ¢, but including ¢ ) must
have had an undefined in its local record of its local unconditional breakpoint (for ¢y,
ubi[k] = undefined). But because ub/[(] was found to be false, ¢ cannot possibly be a
global state such that ¢y = luby for all p;, € N such that lub; < co.

(d) = (a):

This is immediate. ]

Proof of Theorem 8

The message complexity of this algorithm is the sum of the message complexities of algo-
rithm DETECT_DP and algorithm BROADCAST WHEN_TRUE. By Theorems 4 and 6, we
obtain O((c + ne)nlog T) bits. The remaining complexities and storage requirement are
exactly those of algorithm BROADCAST_WHEN_TRUE, and are then given as in Theorem
6. |

Proof of Theorem 9

(a) = (b):

Actions (1) and (2) are, from the standpoint of broadcast messages alone, identical to
actions (1) and (2), respectively, of algorithm BROADCAST_WHEN_TRUE. This part of the
proof then goes along the same lines as the (a) = (b) part in the proof of Theorem 5, so
long as no computation message overruns any broadcast message on any channel. When this
happens, however, propagation of the broadcast message may by action (2) be interrupted
after traversing the channel, specifically upon arriving, say at ¢ € N', and by action (2)
finding epi[k] = true without causing changes to ¢gsj or to ¢py. This is so because the g¢s;
carried by the broadcast message is no greater than ¢s; in any component, which in turn
was updated by action (1) when Ip; became true with the alt_gs; produced by action
(4) upon receipt of the computation message. The broadcast that by action (1) ¢x then
initiates when Ip; becomes true allows the proof to proceed like that of the (a) = (b) part

in the proof of Theorem 5 as well.

(b) = (c):
By Lemmas 1 and 2, the gs; and alt_gs; produced by actions (1) and (2), the
alt_gsi(lt;) used in action (3), and the alt_gs; produced by action (4) must all be global

41



states. A consequence of this is that, by actions (1) and (2), ¢gs; is at time ¢ a global
state at which ep;[k] = true for all p, € N. To show that g¢s; is the earliest such global
state requires that we consider any other n-component array of local times, call it ¢, such
that Ip; = true at time ¢[k] for all p, € N and such that ¢[k] < gs;[k] for at least one
pr € N. For this particular pg, ¢gs;[k] can only have been assigned the value greater than
@lk] if a causal chain of computation messages existed from pj (leaving at time g¢s;[k]) to
some py € N, which by action (1) must have arrived at ¢ when cp,[(] = false (otherwise
gs¢ would not have been updated, and so neither would ¢gs; by means of the broadcast).
But because ¢p[(] was found to be false, ¢ cannot possibly be a global state such that
Ipr = true at time @[k] for all p, € N.

(¢) = (a):

This is immediate. ]

Proof of Theorem 10

The complexities and storage requirement for this algorithm are the same as those of

algorithm DETECT_UBP, therefore given as in Theorem 8. ]

Proof of Theorem 11

(a) = (b):

Let ¢’ be the earliest global state such that Ipy = true for all p;, € N. If exactly one
process participates in the breakpoint, then by actions (1) and (3) the assertion follows
trivially, with p; being any of that process’s neighbors and ¢ the time at which the broadcast
reaches it. If more than one process participates in the breakpoint, then there are two major
cases to be considered.

In the first major case, at ¢', and for every participating process pr € N, Ipy has
become true exactly once. If Ip; never becomes true again for any participating py € N,
then actions (1) and (3) ensure that at least one process p; € N is reached by all broadcasts
and sets found, to true upon being reached, at time ¢, by the last broadcast. If, on the
other hand, at least one of the participating processes, say py € N, is such that [py
becomes true at least twice, then no p; € N has ¢p;[k] = false upon being reached by
the broadcasts other than the first initiated by ¢k, and then by actions (1) and (3), as
previously, at least one process p; € N sets found, to true at time t. To see why ¢p;[k]
must be true when (and if) ¢; is reached by the broadcasts other than the first initiated

by qr, suppose for a moment that ¢p;[k] were found false when ¢; was reached by any of
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those broadcasts. By actions (1), (2), (3), and (5), ¢p;[k] can only have become false upon
receipt of a broadcast message, whose sending must have been influenced by the receipt of
a causal chain of computation messages starting at py carrying the false value. Because
channels are FIFO, this chain must have left p; after ¢; initiated its first broadcast, or
the broadcast that set ¢p;[k] to false would not have prevailed. But if this broadcast was
started at, say, ¢¢ € N', then ¢; must have had ¢p;[¢] = false upon being reached by it,
and then either this was the first broadcast started by ¢¢ or the entire argument must be
repeated with p in place of pi. Eventually, in this argument we would have to end up in
a causal chain of computation messages (influencing one of those broadcasts) which was

"and terminated at another process earlier than ¢, and then

started at a process after ¢
' would not be a global state.

In the second major case, at ' at least one of the participating processes, say py € N,
is such that Ip; has become true at least twice. In this case, in each of the time intervals
during which Ip;, = false preceding ' a causal chain of computation messages exists leaving
pir and arriving at another participating process, say p¢ € N, such that Ip, becomes true
exactly once prior to ¢'. At ¢, this chain has the effect of causing cp¢[k] to be set to false,
so that the broadcast initiated by ¢q; when Ip; becomes true to remain true through ¢’
does by action (3) cause changes in ¢py and is therefore propagated. This may happen
either before Ipy becomes true, and then the broadcast initiated by ¢, when [p;, becomes
true carries along with it the information on Ip;’s becoming true, or it may happen
after Ipy becomes true, in which case the broadcast; messages that ¢, forwards follow the
broadcast, messages sent previously, possibly setting to true whichever ¢p;[k] = false it
may find for some p; € N. The remaining of the argument proceeds like in the first major
case.

(b) = (c):

By Lemmas 1 and 2, the alt_gs; produced by actions (1) and (2), the gs; and alt_gs;
obtained in action (3), the alt_gs;(It;) used in action (4), and the alt_gs; obtained in
action (5) are all global states. Consequently, by action (3), at time ¢ ¢s; is a global state
at which Ip; = true for all pp € N. We show that gs; is the earliest global state with
these characteristics by considering any other n-component array of local times, call it @,
such that Ip; = true at time p[k] for all p; € N and furthermore ¢[k] < gs;[k] for at least
one pr € N. For this particular py, ¢gs;[k] can only have acquired the value greater than
©[k] in one of two cases.

In the first case, a causal chain of computation messages must have existed from py to
some pe € N, which must have left p; at time ¢s;[k] when at g alt_cpi[k] was true and

must have arrived at ¢, when ¢p[(] = false earlier than [(], and consequently ¢ cannot
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be a global state at which Ip; = true for all p;, € N.

In the second case, the causal chain of computation messages leaving p; was started
when alt_cpi[k] = false at ¢, although ep[(] was as in the first case (in particular,
epe[l] = false earlier than ¢[(]). By action (5), and by the FIFO assumption, alt_cpe[k]
must have become false and remained so until a new broadcast was started by ¢ at time
gsilk], when alt_cpi[k] became true. This broadcast may have reached g¢ either before
or after Ipy; became true. In the former case, the broadcast that ¢, then started carried
alt_cpe[k] = true, which upon reaching ¢; and finding ¢p;[(] = false, by action (3) set
cp;[k] = true. In the latter case, the broadcast that ¢, initiated carried alt_cp/[k] = false
and caused ¢p;[k] to be set to false. But the forwarding that ¢, performed upon receiving
the broadcast originated by ¢, which updated alt_cp¢[k] to true, carried this value on to
gi, and then cp;[k] was set to true. But then as in the first case ¢ cannot be a global state

at which Ip; = true for all p; € N.

(¢) = (a):

This is immediate. ]

Proof of Theorem 12

Every node may start as many as P broadcasts, each of which is forwarded by every other
node no more than twice, by action (3) and considering that no message from a given
broadcast arriving at ¢; alters either ¢s; or alt_gs; (equivalently, ep; or alt_cp;) more than
once. The message complexity of O((c + Pne)nlog T) bits then follows from Theorem 4
and from the fact that in the worst case each broadcast traverses every channel twice in

each direction. The remaining measures are given directly by Theorem 10. ]
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