
The Affinity Entry Consistency Protocol
�

Cristiana B. Seidel
���

, R. Bianchini
�
, and Claudio L. Amorim

�
�
COPPE Systems Engineering

�
Dept. of Systems Engineering

Federal Univ. of Rio de Janeiro (UFRJ) State Univ. of Rio de Janeiro (UERJ)

�
seidel,ricardo,amorim � @cos.u frj. br

Abstract

In this paper we propose a novel software-only distributed shared-
memory system (SW-DSM), the Affinity Entry Consistency (AEC)
protocol. The protocol is based on Entry Consistency but, unlike
previous approaches, does not require the explicit association of
shared data to synchronization variables, uses the page as its co-
herence unit, and generates the set of modifications (in the form
of diffs) made to shared pages eagerly. The AEC protocol hides
the overhead of generating and applying diffs behind synchroniza-
tion delays, and uses a novel technique, Lock Acquirer Prediction
(LAP), to tolerate the overhead of transferring diffs through the
network. LAP attempts to predict the next acquirer of a lock at the
time of the release, so that the acquirer can be updated even before
requesting ownership of the lock.

Using execution-driven simulation of real applications, we
show that LAP performs very well under AEC; LAP predictions
are within the 80-97% range of accuracy. Our results also show
that LAP improves performance by 7-28% for our applications.
In addition, we find that most of the diff creation overhead in the
AEC protocol can usually be overlapped with synchronization la-
tencies. A comparison against simulated TreadMarks shows that
AEC outperforms TreadMarks by as much as 47%. We conclude
that LAP is a useful technique for improving the performance of
update-based SW-DSMs, while AEC is an efficient implementation
of the Entry Consistency model.

1 Introduction

Software-only distributed shared-memory systems (SW-DSMs)
provide programmers with a shared-memory abstraction on top
of message-passing hardware. These systems provide a low-cost
alternative to shared-memory computing, since they can be built
with standard workstations and operating systems. However, sev-
eral applications running on SW-DSMs suffer high communica-
tion and coherence-induced overheads that limit performance.

SW-DSMs based on relaxed consistency models can reduce
these overheads by delaying and/or restricting communication and
coherence transactions as much as possible. The Munin system

�
This research was supported by Brazilian FINEP/MCT, CNPq, and

CAPES.

[5], for instance, delays the creation and transfer of diffs (encoded
modifications to shared pages) until lock release operations, so that
messages can be coalesced and the negative impact of false sharing
alleviated. TreadMarks [2] delays the coherence transactions even
further, until the next lock acquire operation. The Midway [3] sys-
tem also delays communication and coherence operations until a
lock acquire transaction, but restricts these operations to the data
that are associated with the lock.

Although effective at improving the performance of SW-DSMs,
these protocols still involve a substantial amount of overhead: In
Munin, updates are propagated to all processors sharing data mod-
ified within critical sections; on a page fault in TreadMarks, the
faulting processor has to wait for diffs to be computed, received,
and applied to the page before proceeding with its computation; in
Midway, the processor acquiring a lock can only resume execution
after the data associated with the lock become consistent locally.

Our work is based on the observation that all of these sources
of overhead can be alleviated by dynamically predicting the lock
acquisition order, and generating diffs away from the critical path
of the processors that need them. In this paper we propose a novel
SW-DSM, the Affinity Entry Consistency (AEC) protocol. The
protocol hides the overhead of generating and applying diffs be-
hind three types of synchronization delays: coherence processing
at lock and barrier managers, waiting for a lock to become avail-
able, or waiting for all processors to reach a barrier.

In addition, the AEC protocol uses a novel technique, Lock Ac-
quirer Prediction (LAP), for tolerating the overhead of transfer-
ring diffs through the network in Single Program Multiple Data
(SPMD) applications. LAP attempts to predict the next acquirer
of a lock at the time of the release, so that the acquirer can be
updated even before requesting ownership of the lock. When the
lock releaser makes a correct prediction, the protocol overlaps the
communication and coherence overheads on the releaser with use-
ful computation on the acquirer. In case of an incorrect prediction,
the overlapped updates are wasted and the overhead of bringing
data to the lock acquirer is exposed. When successful, LAP can
also reduce the synchronization overhead in the presence of lock
contention, since it effectively reduces the duration of critical sec-
tions and therefore the amount of time locks are held. LAP may
be applied in other update-based SW-DSMs. In release-consistent
systems such as Munin, LAP can be used to restrict the update
traffic, while in systems like Midway, it can be used to overlap
communication and computation.

As in protocols based on Entry Consistency and its descendant
Scope Consistency [9], in AEC a processor entering a critical sec-
tion only receives the data associated with the section. In addition,
the AEC protocol attempts to predict the lock acquisition order us-
ing LAP, hides coherence-related overheads, uses the page as its
coherence unit, automatically associates data in a critical section
with the lock that delimits it, and rarely requires program modifi-
cations to execute correctly.

Using execution-driven simulation of real applications, we
show that LAP performs very well under AEC; LAP predictions
are within the 80-97% range of accuracy. Our results also show
that LAP reduces the amount of time devoted to memory access
faults by as much as 62%. Overall, LAP improves performance by
7-28% for our applications. In addition, we find that most of the
diff creation overhead in the AEC protocol can usually be over-
lapped with synchronization latencies. A comparison against sim-
ulated TreadMarks shows that AEC outperforms TreadMarks by as
much as 47%. Most of this performance improvement is a result
of lower data access and synchronization overheads. We conclude
that LAP is a useful technique for improving the performance of
update-based SW-DSMs, while AEC is an efficient implementa-
tion of the Entry Consistency model.

The remainder of this paper is organized as follows. The next
section describes the three basic prediction techniques that com-
prise the LAP technique. Section 3 describes the AEC protocol in
detail. Section 4 presents our methodology, application workload,
and an overview of TreadMarks. In section 5 we present the results
of our evaluation of LAP and AEC. We relate our work to previ-
ous contributions in section 6. Finally, in section 7, we present our
conclusions and proposals for future improvements to AEC.

2 Predicting the Lock Acquisition
Order

Our Lock Acquirer Prediction (LAP) technique attempts to predict
the next acquirer of a lock based on three lower-level techniques:
waiting queue, virtual queue, and lock transfer affinity. The next
subsection describes these techniques in detail. Subsection 2.2 de-
scribes how these low-level techniques are combined to produce
our LAP strategy.

2.1 Low-Level Techniques

Our first and simplest low-level technique, waiting queue, relies on
the fact that the FIFO queue of processors waiting for access to a
certain lock is a perfect description of the lock’s acquisition order.
So, if there is contention for a lock, the first processor on the FIFO
queue will be the next acquirer of the lock.

However, a waiting queue for a lock might not exist at the time
of the lock release, if there is only light competition for the lock.
Thus, the idea behind our virtual queue technique is to create the
waiting queue in advance of the processors actually requesting ac-
quisition of the lock. We implement this strategy by inserting the
transfer of lock acquire notices to the lock manager in the source
code of applications. A virtual waiting queue is then created with

the notices sent by the processors that intend to grab the lock in
the near future. The next acquirer of the lock will likely be among
the first few processors in the virtual queue.

Note that the burden of implementing virtual queues need not
be placed on the programmer; a compiler can easily insert lock
acquire notices in the applications. In this study we insert the no-
tices manually to demonstrate that they are useful and therefore to
motivate their implementation in a compiler.

The previous strategies may fail to produce a potential next lock
acquirer, so we also define the lock transfer affinity technique. This
technique is based on the fact that, for some SPMD applications,
the next acquirer of a lock ��� released by processor ��� is fre-
quently part of a small set of processors. Our lock transfer affinity
technique uses the past history of lock ownership transfers to com-
pute a set of potential next acquirers of the lock.

More specifically, we define the affinity � � �	��
� of processor
��� for processor ��� , with respect to lock ��� , as the number of
previous ownership transfers of ��� from ��� to ��� . In addition, we
define the affinity set � ����
�� of processor � � with respect to lock � �
as the set of processors � � with affinity � � ����
� 60% greater than
the average affinity ��� has for other processors. �

2.2 The Lock Acquirer Prediction Technique

The LAP strategy combines the low-level techniques just de-
scribed to compute the update set ��� ��
� that potentially contains
the processor � � , the next acquirer of lock � � released by proces-
sor ��� . The size � of the update set is determined in advance by the
user. The algorithm used to combine the techniques and compute
��� ��
� proceeds as follows:

1. If the waiting queue is not empty then ��� ��
���� the processor
at the head of the queue; End.

2. Include the processors in ��� ��
� in ��� ��
� ;
3. If � ����
�� is not complete (i.e. the number of processors in

��� ��
�� is smaller than �), then include processors from the in-
tersection of the virtual queue and the set of processors such
that � � ����
������ ;

4. If � � ��
� is still not complete, then insert processors from the
virtual queue first and then the processors with �!� � �"� ;
End.

3 The AEC Protocol

In this section we describe our AEC protocol, which illustrates
how an Entry Consistency-based protocol can take advantage of
the LAP technique, while hiding the overhead of generating diffs
behind synchronization delays.

3.1 Overview

The basic idea of AEC is to have a lock releaser send all modifi-
cations ever made inside the critical section protected by the lock

� Our threshold of 60% is admittedly arbitrary; we plan a study of the
effect of varying this threshold for the near future.

to the processors in the update set (as determined by the lock’s
manager). These modifications are described by diffs, but diffs for
the same page are merged into a single diff. The acquirer attempts
to hide the overhead of applying these diffs and generating diffs
for any pages modified outside of critical sections behind the syn-
chronization overhead. Unfortunately, at the lock release point, the
generation of diffs of the pages modified inside a critical section
cannot be overlapped, in order to prevent the next lock acquirer
from seeing potentially stale data.

Shared data modified outside of critical sections pose an in-
teresting problem in this scheme, since the affinity concept does
not apply to barriers. For this reason, shared data protected by
barriers receive a different treatment than data protected by locks
in AEC; barrier-protected data are kept coherent via invalidates.
More specifically, diffs of barrier-protected data are generated ea-
gerly, at the time of a lock acquire or a barrier arrival, and propa-
gated to other processors only on access faults.

Thus, AEC attempts to hide the overhead of generating and ap-
plying diffs behind three types of delays:

� coherence processing at the lock and barrier managers;
� waiting for a lock to become available; or
� waiting for all processors to reach a barrier when there is load

imbalance.

Figures 1 and 2 present a summary of the protocol actions in-
volved in AEC, as a result of lock and barrier operations and on
access faults to shared data. The next few subsections detail these
actions.

3.2 Locks

On a lock acquire operation, the acquiring processor sends a mes-
sage to the lock manager requesting ownership of the lock. Right
after sending the request to the manager, the processor starts apply-
ing any diffs it has already received for being in the update set of a
previous lock owner. Diffs are only applied to pages that are cur-
rently valid at the acquiring processor, so that only the pages that
are likely to be used are updated; other diffs are saved for applica-
tion at the time of an access fault to the corresponding page. The
diffs are applied until they are exhausted or the manager’s reply is
received and the processor finds out who the last lock owner was.
If all these diffs are applied before the receipt of the manager’s re-
ply, the acquiring processor starts generating the diffs correspond-
ing to the shared data it modified outside of critical sections. Diffs
are created until there are no more modified pages or the man-
ager’s reply is received. The twins used to generate these diffs are
saved and all modified pages are write-protected. At this point, if
the manager’s reply has already arrived, the acquiring processor
continues applying the diffs received, but only if the processor that
sent them is indeed the last owner of the lock.

Upon receipt of the lock ownership request, the manager com-
putes the new update set of the acquiring processor. In case the
lock is currently taken by some other processor, the manager sim-
ply enqueues the id of the requesting processor at the end of a
waiting queue for the lock. In case the lock is currently available,
the manager replies to the acquiring processor’s request with its

new update set, the id of the last releaser, and a message informing
whether the acquiring processor is in the update set of the last re-
leaser. If the acquiring processor is not in the update set, the reply
from the manager also includes a list of pages to invalidate.

Obviously, the lock acquire operation becomes much simpler
when the last releaser of a lock is the acquiring processor itself,
since there is no need to apply diffs, invalidate pages, or deal with
a separate last owner.

On a lock release operation, the releasing processor generates
diffs corresponding to modifications made inside the critical sec-
tion it is about to leave, merges them with diffs received from the
last owner of the lock, and sends the resulting diffs to its update
set. After that, the releaser sends a message to the lock manager
with a list of all pages represented in the merged diffs. This mes-
sage also indicates that the releaser is giving up the ownership of
the lock. Finally, the releasing processor unprotects all pages that
had been modified outside the critical section and that were not
modified inside it. Any diffs for these pages can be thrown away
and their associated twins reutilized.

Note that the messages with the merged diffs must contain a
lock acquire counter, so that the processors receiving different sets
of diffs for the same lock can determine the most up-to-date one.
This capability is important in the following scenario: suppose
processor � holding a lock incorrectly guesses that processor � will
be the next acquirer of the lock. Later, the actual next acquirer �
correctly guesses � to be the next acquirer. Since processor � will
receive two sets of merged diffs, in no particular order, it must be
able to discard the outdated set.

3.3 Barriers

On a global synchronization event such as a barrier, each processor
has to receive information on modifications performed inside and
outside of critical sections. Our protocol implements barriers by
dividing program execution into steps; a new step begins each time
the processors depart from the barrier. Every processor has a step
counter.

On the arrival at a barrier, each processor sends three lists to the
barrier manager describing the step: a list of all lock variables it
owned, a list of all pages accessed in the critical sections corre-
sponding to these locks; and a list of all pages modified outside of
critical sections. After these lists are sent to the barrier manager,
the local processor starts to create the diffs corresponding to mod-
ifications made outside of critical sections. In effect, processors
overlap the diff generation with barrier waiting time. However, in
order to avoid generating diffs for pages that no other processor
shares, a diff is only created for a page that was accessed by other
processors in the previous barrier step and for which the local pro-
cessor has received at least one request.

After the manager has received the messages from all proces-
sors, it determines, for each processor � , the set of processors to
which � must send its diffs (corresponding to modifications made
within critical sections) and/or notices that pages have been written
outside of critical sections, the so-called write notices. A proces-
sor � is a candidate to receive diffs or write notices only if it has a
valid copy of the page. A processor � sends a diff to processor � if

� was the last owner of the lock under which the page was modi-

receive the diffs

free the lock

create inside diffs

send msg to manager
send diffs to p’s update set
merge diffs received+diffs created

RELEASE diffs

msg

receive request
send the diffs

Last Owner

...

...

...

...

if lock is available
send reply

compute p’s update set

Lock Manager

...

...

send the diff

receive request

Diff Owners

else
ask last owner for diffs

apply other diffs
if there are write notices

request the diffs

if p not in up-set of last owner

wait and apply diffs
if diffs requested

else ...

ACCESS FAULT

Update Set

Lock Manager

if did access on previous step
if page modified outside

req

diffs

create outside diff

diffs
req

Processor p

ACQUIRE

reply

request

invalidate pages modified inside CS
else

continue to apply diffs received
if p in update-set of last owner

apply diffs received until reply arrives
create outside diffs until reply arrives

send request to manager

Figure 1: Actions Involved in Lock Operations and Access Faults Inside Critical Sections.

...

...

...

...

send lists to manager
create outside diffs

send diffs and write notices

send message to manager

BARRIER

determine senders and receivers
send lists to all processors

send completion message

send diffs and/or

wait for list

apply diffs and/or inval pages

wait for all lists

wait for all messages

wait for completion

wait for diffs and/or write-notices

lists

lists

msg

msg

diffs
+

wn

diffs
+

wn

Barrier Manager

Others

Others

write notices

receive diffs and/or
write notices

ACCESS FAULT

receive request
send the diff

ask home for page
wait for page

if did not access on previous step

if there are write notices

apply the diffs
request and wait for diffs

req

page

Home

diffs

Diff Owners

send the page+write notices
receive request

Processor p

Figure 2: Actions Involved in Barrier Operations and Access Faults Outside Critical Sections.

fied. A processor � sends a write notice about a page to processor
� if � modified the page outside of a critical section. In effect, this
strategy avoids sending messages to processors that have not used
the page, or that have already seen a write notice for it.

Since processors without valid copies of a page receive neither
diffs nor write notices for it, they will need help at the time of
an access fault to the page. The barrier manager, at the end of
each step, chooses one of the processors with a valid copy of the
page on arrival at the barrier to be the page’s home processor; the
processor that will help other processors reconstruct the page on
access faults to it. The id of the home processor for each page is
sent to all processors along with the set of processors they must
communicate with.

After receiving these messages from the manager, the proces-
sors exchange diffs and write notices as specified by the manager.
All diffs received are applied, while write notices cause the inval-
idation of the corresponding pages. After having completed these
actions, processors communicate again with the manager, which
can then determine the successful completion of the barrier event.

3.4 Access Faults

At the time of an access fault, the faulting processor must decide
when it accessed the page last. If the processor did not access the
page on the previous barrier step, it is not able to reconstruct the
page independently, and must ask the page’s current home node
for help. In case the home node has a valid copy of the page, it
sends it to the faulting processor. Otherwise, it sends the page and
the write notices to be used by the requesting processor in bringing
its copy of the page up-to-date. If the processor accessed the page
on the previous step, the fault occurred as a result of one or more
write notices received. In this case, the processor does not need to
fetch a new copy of the page.

With a copy of the page in memory, the faulting processor can
now collect the diffs it needs to validate the page. If the processor
took the access fault while in a critical section and it was not in the
update set of the last releaser, it asks the last releaser for the diffs it
needs and applies them. If the faulting processor was in the update
set of the releaser, it must apply any diff it previously received
for the page but was unable to apply as it did not have a copy of
the page at the time. Write faults inside of critical sections must
be treated carefully, since the same page may have been modified
outside of the critical section also. If a diff has not been created
for the page before entering the critical section, the diff must be
created and the corresponding twin eliminated.

For both inside and outside faults, if there are write notices (re-
ceived during a barrier event in the past) for the page faulted on,
the processor must then collect the necessary diffs according to the
write notices.

4 Methodology and Workload

4.1 Multiprocessor Simulation

Our simulator consists of two parts: a front end, Mint [13], that
simulates the execution of the processors and their registers, and

Constant Name Default Value
Number of procs 16
TLB size 128 entries
TLB fill service time 100 cycles
All interrupts 4000 cycles
Page size 4K bytes
Total cache 256K bytes
Write buffer size 4 entries
Cache line size 32 bytes
Memory setup time 9 cycles
Memory access time 2.25 cycles/word
I/O bus setup time 12 cycles
I/O bus access time 3 cycles/word
Network path width 16 bits (bidir)
Messaging overhead 400 cycles
Switch latency 4 cycles
Wire latency 2 cycles
List processing 6 cycles/element
Page twinning 5 cycles/word + mem accesses
Diff appl/creation 7 cycles/word + mem accesses

Table 1: Defaults for System Params. 1 cycle = 10 ns.

Appls # locks # acq events # barrier events
IS 1 80 21
Raytrace 18 3111 1
Water-ns 518 28128 33
FFT 1 16 7
Ocean 4 3328 900
Water-sp 6 533 33

Table 2: Synchronization events in our applications.

a back end that simulates the SW-DSM protocol and the memory
system in great detail. The front end calls the back end on every
shared data reference. The back end decides which computation
processors block waiting for memory (or other events) and which
continue execution.

We simulate a network of workstations with 16 nodes in de-
tail. Each node consists of a computation processor, a write buffer,
a first-level direct-mapped data cache (all instructions and private
data accesses are assumed to take 1 cycle), local memory, an I/O
bus, and a mesh network router (using wormhole routing). Net-
work contention effects are modeled both at the source and des-
tination of messages. Memory and I/O bus contention are fully-
modeled. Table 1 summarizes the default parameters used in our
simulations. All times are given in 10-ns processor cycles.

4.2 Workload

Our applications follow the SPMD model. Five of them come from
the Splash-2 suite [14], while IS comes from Rice University. The
applications exhibit widely different synchronization characteris-
tics, as can be observed in table 2.

Appl var # # of lock % of total success rate
events lock events LAP waitQ waitQ+affinity waitQ+virtualQ

IS 0 80 100.0% 92.0% 87.0% 92.0% -
Raytrace 1 2049 65.9% 96.0% 96.0% 96.0% -

2-17 1046 33.6% 87.0% 3.4% 87.0% -
Water-ns 4-515 27696 98.4% 80.4% 0.0% 66.0% 49.6%
FFT 0 16 100.0% 87.0% 87.0% 87.0% -
Ocean 0 3200 96.2% 89.0% 78.0% 89.0% -
Water-sp 0 240 47.2% 97.0% 95.0% 97.0% -

Table 3: LAP Success Rates for � = 2.

IS uses bucket sort to rank an unsorted sequence of keys. In the
first phase of the algorithm, each processor ranks its set of keys and
updates a shared array with the rankings computed. In the second
phase, each processor accesses the shared array to determine the
final rankings of its keys. IS sorts 64K keys. The only lock in IS
protects the shared array.

Raytrace renders a three-dimensional scene (teapot) using ray
tracing. A ray is traced through each pixel in the image plane. The
image plane is partitioned among processors in contiguous blocks
of pixel groups, and distributed task queues (one per processor)
are used with task stealing for load balancing. There is one lock
to protect each task queue and one lock for memory management;
the lock to assign an id to each ray has been eliminated, since id’s
are not really used.

Water-nsquared evaluates forces and potentials that occur over
time in a system of water molecules. Water-nsquared uses an� ����� � algorithm to compute these forces and potentials. The al-
gorithm is run for 5 steps and the input size used is 512 molecules.
Some locks accumulate global values but the majority of locks are
used to update molecule forces. There is one lock for each water
molecule.

FFT performs a complex 1-D FFT that is optimized to reduce
interprocessor communication. The data set consists of 1M data
points to be transformed, and another group of 1M points called
roots of units. Each of these groups of points is organized as a 256� 256 matrix. Locks are only used for initializing process ids.

Ocean studies large-scale ocean movements based on eddy and
boundary currents. The input size we use is a 258 � 258 grid.
Locks are used to identify processors and when processors com-
pute local sums.

Water-spatial solves the same problem as Water-nsquared, but
with an

� �����
	����� algorithm. The algorithm is also run for 5
steps with 512 molecules. Locks are used for accessing only global
values rather one lock per molecule.

Like under Scope Consistency, parallel applications might need
slight modifications under AEC in two situations: a) when data
are written within a critical section and are subsequently accessed
without acquiring the corresponding lock; and b) when data are
written outside of critical sections and must be visible before the
next barrier. However, none of the applications in this study re-
quired modifications.

4.3 TreadMarks

In section 5 we compare the performance of our protocol against
the one of TreadMarks. We chose to compare against TreadMarks
instead of Midway, since, just like AEC, TreadMarks does not re-
quire the explicit association between shared data and synchro-
nization variables. TreadMarks implements a lazy release consis-
tency protocol in which the propagation of the modifications made
to a shared page (diffs) is deferred until a processor suffers an ac-
cess miss on the page. TreadMarks divides the program execution
in intervals and computes a vector timestamp for each interval so
that, on an acquire operation, it can determine the set of invali-
dations (write notices) the acquiring processor needs to receive.
This vector describes a partial order between intervals of different
processors. More details about TreadMarks can be found in [2].

5 Evaluating LAP and AEC

In this section we evaluate the performance of the LAP technique,
the overlapping of diff generation and application with synchro-
nization, and the AEC protocol.

5.1 Evaluating the LAP Technique

The lock managers in AEC compute update sets and maintain the
waiting and virtual queues, and the affinity matrix � � � . We eval-
uated LAP under AEC with the size � of the update set ��� ��
��
varying from 1 to 3. Due to space limitations, however, we only
present results for � ��� .

For each lock variable ��� , the lock manager computes the LAP
success rate � ��
� as follows:

� ��
� � ��������������� ��! ��" � � � � � �$#%�&���� � ����
���(' � ��)*�+�&�+� � � �
��������! ��" � � ����+,-�+! " �.�+/����0)1��!
 ���

In Table 3, we evaluate the contribution of each low-level pre-
diction technique to the overall LAP success rate for the appli-
cations in our suite. The table shows, for each application and
lock variable, the number of lock acquire events the variable is
responsible for, the percentage of this number of events with re-
spect to the total number of lock acquires, and the LAP success
rates for each of its low-level techniques. The column labeled
LAP presents � ��
� , which combines the waiting queue, virtual

0

20

40

60

80

100

120

Application

IS Raytrace Water−ns
noLAP LAP noLAP LAP noLAP LAP

(%
)

Memory Access Fault Overhead

100

38

100

84

100

59

Figure 3: Access Fault Overheads Under AEC without LAP
(noLAP) and AEC (LAP).

0

20

40

60

80

100

120

Application

IS Raytrace Water−ns
noLAP LAP noLAP LAP noLAP LAP

(%
)

Execution Time Breakdown

100

72

100

83

100

93

busy
data
synch
ipc
others

Figure 4: Running Time Under AEC without LAP (noLAP)
and AEC (LAP).

queue, and affinity techniques; column waitQ presents the suc-
cess rate of the waiting queue technique when applied in isola-
tion; column waitQ+affinity presents the success rate of the
combination of the affinity and waiting queue techniques; column
waitQ+virtualQ presents the success rate of the combination
of the waiting and virtual queue techniques � .

Note that, due to the large number of lock variables in some of
our applications, our table only presents data for variables with
a reasonably high percentage of events. In addition, the table
groups the variables that are logically related in the applications. A
group’s success rate is computed as the average success rate of the
group variables weighted by the number of events of each variable.
In Raytrace, all variables that protect the different task queues are
put in a single group (var2-17). Water-nsquared, variables 4-515
protect the water molecules’ structure.

As can be seen in the table, the LAP success rate is high, varying
between 80% and 97% for the more important lock variables in our
applications. For IS, one of the lock variables of Raytrace, FFT,
Water-spatial, and Ocean, the waiting queue is the most effective
technique. The virtual queue technique has a significant impact on
the LAP success rate of Water-nsquared. The lock transfer affinity
technique is effective for most lock variables of Raytrace, Water-
nsquared, and Ocean.

In order to investigate the robustness of our results, we experi-
mented with values of � in the range 1-3 and found that, increasing
� from 1 to 2, increases the LAP success rate significantly. How-
ever, further increasing � to 3 improves the accuracy of LAP by
very little; no more than 10%. Since a larger update set means that
more data must be transferred through the network, � � � seems
to be the best size.

In addition, we compared the LAP results taken from our
simulated AEC to similar simulation-based implementations of
the technique in TreadMarks and in a locally-developed release-

� Virtual queues were only implemented when the success rate of the
waiting queue technique was not high enough (less than 85%) and when
the variable had a significant number of lock acquire events.

consistent SW-DSM. Our results show that the LAP success rate
does not vary significantly for applications with a large number
of synchronization events per lock variable, even though the tim-
ing and ordering of these events (and therefore the outcome of the
low-level techniques that comprise LAP) do change under the the
different DSMs. Comparing LAP under AEC and TreadMarks, for
instance, we find that success rates do not vary by more than 10%
for our lock-intensive applications. This result demonstrates the
robustness of the LAP technique.

5.2 Evaluating LAP Under AEC

Since we apply LAP in our implementation of AEC to reduce the
number of times processors are required to fetch remote diffs, it
should have a direct effect on the overhead of memory access
faults as observed by each processor. Thus, in figure 3, we eval-
uate the effectiveness of LAP under AEC, in terms of the over-
head of access faults under AEC without LAP (left bar) and AEC
(right bar) on a simulated 16-processor system. In AEC without
LAP the data modified inside of a critical section are not eagerly
transferred from releasers to acquirers of the corresponding lock.
Instead, these transfers are done lazily at access faults.

In figure 3 we only plot data for the applications for which most
of the synchronization overhead comes from lock operations. The
bars in the figures are normalized with respect to the AEC without
LAP results. The figure shows that LAP reduces the overhead of
access faults by as much as 62% for IS. The smallest improvement,
16%, is achieved for Raytrace, since in this application almost 80%
of the access fault overhead comes from cold-start access faults
and twin generation latencies. LAP does not address these two
types of overhead.

Whether improvements in access fault overhead significantly
influence the overall execution time depends on the relative im-
portance of this type of overhead and on the (indirect) effect of
these improvements on other types of overheads. More specifi-
cally, a reduction in access fault overhead inside a critical section

significantly influences the lock waiting time when the application
suffers from heavy lock contention.

In figure 4 we plot the simulated execution time of the same
applications under AEC without LAP (left) and AEC (right) run-
ning on 16 processors. The bars in the figures show execution
time broken down into busy time (busy), memory access fault
overhead (data), synchronization time (synch), IPC overhead
(ipc), and other overheads (others). The latter category is com-
prised by TLB miss latency, write buffer stall time, interrupt time,
and the most significant of them, cache miss latency. The busy
time represents the amount of useful work performed by the pro-
cessor. Data fetch latency is a combination of coherence process-
ing time and network latencies involved in fetching data as a result
of page faults. Synchronization time represents the delays involved
in waiting at barriers and lock acquires/releases. IPC overhead ac-
counts for the time spent servicing requests coming from remote
processors.

A running time comparison between AEC and AEC without
LAP shows that the LAP improvements in fault overheads for
IS and Raytrace have a significant effect on overall performance;
LAP improves the performance of IS by 28% and the performance
of Raytrace by 17%. The main reason for these results is that these
applications exhibit heavy lock contention (as seen in table 3), and
thus any improvement in fault overhead entails a similar reduction
in lock synchronization latency. For instance, in IS the 62% reduc-
tion in access fault overhead induces a 42% reduction in the length
of the critical section, which in turn produces a 37% improvement
in lock synchronization overhead.

In addition, IS barriers are more efficient in the presence of
LAP, again as a side-effect of the shorter critical sections entailed
by the technique. In this application the barrier event occurs right
after the highly-contended critical section, which serializes the ex-
ecution of all processors. Thus, any extra cycles spent in the sec-
tion contribute to greater waiting times at the barrier. More specif-
ically, AEC without LAP entails 9 M more cycles in critical sec-
tion time per processor than AEC. These extra cycles and the 66 M
extra cycles spent waiting to acquire the lock under AEC without
LAP account for the difference in barrier performance between the
two versions of our protocol.

The running time improvement achieved by LAP on Water-
nsquared comes solely from a reduction in the access fault over-
head, as this application exhibits virtually no lock contention.

5.3 Evaluating the Benefits of Hiding Diff-
Related Overheads

The overlapping of diff generation and application with synchro-
nization overheads is also an important technique in the AEC pro-
tocol. A barrier event usually provides a good opportunity for
overlapping as a result of load imbalance, while a lock acquire
operation can significantly hide overheads when the acquiring pro-
cessor is blocked as a result of lock contention. Lock release oper-
ations do not allow for overlapping overheads.

Table 4 presents data on the size of diffs and the extent to
which our protocol is able to hide their generation cost. The left-
most column of the table lists our applications, while the other

Appl Size Merged Merged Create Hidden
Size

IS 6140 6102 94% 5M 1.7%
Raytrace 351 83 22% 23M 85.6%
Water-ns 2332 104 34% 116M 74.6%
FFT 5280 6 0.02% 15M 99.9%
Ocean 2964 11 0.06% 107M 99.3%
Water-sp 727 15 6% 12M 96.9%

Table 4: Diff statistics in AEC.

columns present the average size of diffs in bytes (Size), the
average size of the diffs resulting from merges at lock release
points (Merged Size), the percentage of diffs that are merged
(Merged), the overall cost (in cycles) per processor of generating
diffs (Create), and the percentage of this cost that is hidden by
AEC (Hidden).

The table shows that diffs are generally large in our applica-
tions, except for Raytrace and Water-spatial. For these applica-
tions, processors are only responsible for relatively small chunks
of data in each page, such as a small number of water molecules in
Water-spatial. The merged diffs are almost always very short; the
exception here is IS in which processors write the whole shared
array inside critical sections. Merged diffs only represent a non-
negligible percentage of the total number of diffs in the three appli-
cations where the synchronization overhead is dominated by lock
operations: IS, Raytrace, and Water-nsquared. The time it takes
to generate diffs may represent a large percentage of the overall
running time of applications. The results in the table show that
a significant percentage of the diff creation cost is hidden in all
applications except IS. The reason for this result is that in IS the
vast majority of diffs are created at lock release points, where diff
creation cannot be overlapped with other overheads.

AEC also allows for hiding the overhead of applying diffs in
applications with lock synchronization. However, only Water-
nsquared benefits from this characteristic of AEC, as the protocol
hides 13% of the program’s diff application cost.

5.4 Comparing AEC vs. TreadMarks

In this section we compare the performance of AEC against that
of TreadMarks. We compare performance against TreadMarks in-
stead of Midway, since, differently from Midway, both AEC and
TreadMarks do not require the explicit association between shared
data and synchronization variables. In figures 5 and 6, we plot the
simulated execution time of each of our applications under Tread-
Marks (left) and AEC (right) running on 16 processors. The bars
in the figures are broken down into the same categories as in figure
4. These figures show that our protocol outperforms TreadMarks
for all but one application. The performance differences in favor
of AEC range from 4% for Ocean to 47% for Raytrace. AEC and
TreadMarks perform virtually the same for Water-nsquared.

Most of the improvement achieved by AEC comes from great
reductions in synchronization and access fault times. Regarding
the data access time improvement, there are two reasons why AEC
leads to lower overhead than TreadMarks: a) the most important

0

20

40

60

80

100

120

Application

FFT Ocean Water−sp
TM AEC TM AEC TM AEC

(%
)

Execution Time Breakdown

100

75

100
96

100

80
busy
data
synch
ipc
others

Figure 5: Execution Times Under TM and AEC.

0

20

40

60

80

100

120

Application

IS Raytrace Water−ns
TM AEC TM AEC TM AEC

(%
)

Execution Time Breakdown

100

65

100

53

100 102

busy
data
synch
ipc
others

Figure 6: Execution Times Under TM and AEC.

one is that in TreadMarks diff creation is part of the critical path of
both the generator and requester of the diff (thus, the diff creation
overhead shows up under both data and ipc times in Tread-
Marks); and b) when LAP can correctly predict lock acquisition
order, the lock acquirer does not take page faults within the critical
section and thus need not fetch diffs from other processors.

For FFT, Ocean, Water-spatial, and Water-nsquared, the differ-
ences in access fault times are mostly a result of performing diff
creation away from the critical path of processors. For IS, Ray-
trace, and to some extent Water-nsquared, these differences come
from LAP’s elimination of most page faults within the applica-
tions’ critical sections.

The synchronization overhead of IS, Raytrace, and Water-
spatial is much greater under TreadMarks than under AEC. IS,
Raytrace, and Water-spatial exhibit more efficient lock synchro-
nization under AEC again as a result of shorter critical sections
and heavy lock contention. In addition, barriers are more efficient
under AEC for IS and Water-spatial, again as a side-effect of the
shorter critical sections entailed by LAP and the program structure
with a barrier following a highly-contended critical section.

Synchronization overheads are not always smaller under AEC
however, as seen in the Water-nsquared, FFT, and Ocean results.
For all these applications the barrier performance is degraded un-
der AEC, while the lock performance is roughly the same under
the two protocols. For applications such as Water-nsquared, LAP
generates load imbalance in the initial phases of computation, as
the technique requires a certain number of lock transfers before it
can predict them correctly. The problem is that during these phases
some processors predict transfers correctly and others do not. The
resulting load imbalance hurts the performance of barriers.

For FFT and Ocean, the performance of barriers is worse under
AEC for a different reason. In these applications, AEC generates a
large number of diffs during most barrier events, increasing the uti-
lization of the local memory buses, which in turn degrades AEC’s
messaging performance. This is a serious problem for AEC, given
that it requires more messages than TreadMarks at barrier events.

6 Related Work

Current SW-DSMs rely on relaxed memory consistency models
that require the virtual shared memory to be consistent only at
special synchronization events. In Release Consistency (RC) [7],
operations on shared data are only guaranteed to be seen by all
processors at lock release operations. Lazy Release Consistency
(LRC) [10] further relaxes RC by delaying coherence actions until
the next lock acquire operation. Entry consistency (EC) [3] pro-
poses an even more relaxed model of memory consistency that ex-
plores the relationship between synchronization objects that pro-
tect critical sections and the shared data accessed within the sec-
tions. Like LRC, EC delays propagation of updates until the next
acquire operation. Scope Consistency (ScC) [9] proposes a mem-
ory consistency model (and associated protocol) that attempts to
achieve the advantages of EC without having to explicitly bind
data to synchronization objects. The ADSM protocol [11] imple-
ments a variation of EC that does not require explicit bindings ei-
ther. Both the ScC and AEC protocols assume update-based coher-
ence protocols, while ADSM only uses updates for single-writer
data protected by locks.

SW-DSM protocols vary mainly in the way they manage
the propagation of coherence information at the synchronization
points; Munin [5], TreadMarks [2] and its Lazy Hybrid varia-
tion [6], and Midway [3] are important examples. AEC leads to
much less communication than in Munin, since updates are only
sent to the update set of the lock releaser, as opposed to all pro-
cessors that shared the modified data. Like AEC, TreadMarks and
Midway seek to avoid communication, but expose all the overhead
of generating, fetching, and applying diffs to bring pages up-to-
date. The Lazy Hybrid protocol avoids the overhead of fetching
diffs by piggybacking them on a lock grant message when the last
releaser of the lock has up-to-date data to provide and knows that
the acquirer caches the data. AEC tackles the cost of diff handling
more aggressively than these systems, using overlapped diffs and
the LAP technique. In addition, AEC provides a simpler program-
ming interface for EC than Midway.

The AEC protocol is based on a memory consistency model

equivalent to ScC. However, AEC differs from the ScC protocol in
two important ways. AEC is a software-only algorithm, whereas
the ScC protocol, as evaluated in [8], uses automatic update hard-
ware (even though an all-software implementation of ScC is also
possible). In addition, AEC tackles several overheads of tradi-
tional SW-DSMs by overlapping coherence and communication
operations with useful work or other overheads. AEC [1] and ScC
were developed simultaneously and independently.

AURC [8] and the protocol controller-based DSMs in [4] also
seek to overlap communication and coherence overheads with use-
ful computation. Both of these approaches also require a small
amount of custom hardware.

The optimization of critical sections has also been the object of
study in the context of cache-coherent multiprocessors. Trancoso
and Torrellas [12] have studied the use of data prefetching and
forwarding to reduce the number of cache misses occurring inside
of critical sections. Forwarding in this context is used to send the
data modified by a lock holder to the first processor waiting at the
lock’s queue; no data is sent out when there is no lock contention.
Thus, their strategy has a similar effect to our LAP technique, but
only when processors contend for lock access.

7 Conclusions

In this paper we proposed the AEC protocol, which relies heavily
on the novel LAP technique and on overlapping diff generation and
application overheads. Our analysis of the LAP technique showed
that LAP is very successful at correctly predicting the next acquirer
of a lock, which leads to a significant performance benefit to AEC.
Hiding the generation of diffs behind synchronization overheads
also improves performance significantly. However, most of the
overhead of applying diffs is still exposed in AEC. A comparison
against TreadMarks shows that AEC outperforms TreadMarks for
5 out of our 6 applications, mostly as a result of lower data access
and synchronization overheads.

In summary, our main contributions have been the proposal and
evaluation of AEC and LAP. AEC has been shown an efficient SW-
DSM protocol. LAP is a general technique for predicting the lock
acquisition order and can potentially be used for optimizing other
update-based SW-DSMs.

Acknowledgements
The authors would like to thank Leonidas Kontothanassis and Raquel Pinto
for their help with our simulation infrastructure. We would also like to
thank Liviu Iftode, who helped us with applications. Luis Favre suggested
the virtual queues technique, we thank him also. Finally, Raquel Pinto,
Paula Maciel, and Luis Monnerat suggested modifications that helped im-
prove the text.

References

[1] C. L. Amorim, C. B. Seidel, and R. Bianchini. The Affin-
ity Entry Consistency Protocol. Tech. Report ES-388/96,
COPPE Systems Engineering, Federal University of Rio de
Janeiro, May 1996.

[2] C. Amza, A. Cox, S. Dwarkadas, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. TreadMarks: Shared Memory Comput-
ing on Networks of Workstations. IEEE Computer, 29(2),
Feb 1996.

[3] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The
Midway Distributed Shared Memory System. In Proc. of the
IEEE COMPCON’93 Conference, Feb 1993.

[4] R. Bianchini, L. Kontothanassis, R. Pinto, M. De Maria,
M. Abud, and C. L. Amorim. Hiding Communication La-
tency and Coherence Overhead in Software DSMs. In Proc.
of the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems, Oct
1996.

[5] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Tech-
niques for Reducing Consistency-Related Information in
Distributed Shared Memory Systems. ACM Transactions on
Computer Systems, 13(3), Aug 1995.

[6] S. Dwarkadas, P. Keleher, A. Cox, and W. Zwaenepoel. Eval-
uation of Release Consistent Software Distributed Shared
Memory on Emerging Network Technology. In Proc. of the
20nd Annual International Symposium on Computer Archi-
tecture, May 1993.

[7] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. L. Hennessy. Memory Consistency and
Event Ordering in Scalable Shared-Memory Multiproces-
sors. In Proc. of the 17th International Symposium on Com-
puter Architecture, May 1990.

[8] L. Iftode, C. Dubnicki, E. W. Felten, and K. Li. Improv-
ing Release-Consistent Shared Virtual Memory Using Au-
tomatic Update. In Proc. of the 2nd IEEE Symposium on
High-Performance Computer Architecture, Feb 1996.

[9] L. Iftode, J. P. Singh, and K. Li. Scope Consistency: A
Bridge between Release Consistency and Entry Consistency.
In Proc. of the 8th Annual ACM Symposium on Parallel Al-
gorithms and Architectures, June 1996.

[10] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy Release Con-
sistency for Software Distributed Shared Memory. In Proc.
of the 19th International Symposium on Computer Architec-
ture, May 1992.

[11] L. R. Monnerat and R. Bianchini. ADSM: A Hybrid DSM
Protocol that Efficiently Adapts to Sharing Patterns. Tech.
Report ES-425/97, COPPE Systems Engineering, Federal
University of Rio de Janeiro, March 1997.

[12] P. Trancoso and J. Torrellas. The Impact of Speeding up Crit-
ical Sections with Data Prefetching and Forwarding. In Proc.
of the 1996 International Conference on Parallel Processing,
Aug 1996.

[13] J. E. Veenstra and R. J. Fowler. MINT: A Front End for
Efficient Simulation of Shared-Memory Multiprocessors. In
Proc. of the 2nd International Workshop on Modeling, Analy-
sis and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS ’94), 1994.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proc. of the 22nd Annual Inter-
national Symposium on Computer Architecture, May 1995.

