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Abstract

Parallel logic programming systems exhibit several forms of data sharing during execution.
Systems that exploit dependent and-parallelism exhibit the one producer-many consumers
sharing pattern for logical variables. Scheduling exhibits migratory sharing when accessing
shared data structures for fetching work and synchronising processes. Producer—consumer
sharing favours update-based coherence protocols; as opposed to the currently-dominant in-
validate protocols. Migratory sharing can also profit from update-based protocols, but only
at the cost of useless update messages that ultimately might degrade performance. Thus, to
determine the best coherence protocol for parallel logic programming systems, we must inves-
tigate whether the substantial increase in message traffic caused by update-based protocols
outweighs their benefits.

In this paper we use execution-driven simulation of a scalable multiprocessor to evaluate the
performance of the Andorra-I parallel logic programming system under invalidate and update-
based protocols. We study a well-known invalidate protocol and two different update-based
protocols. Our results show that for our sample logic programs the update-based protocols
outperform their invalidate-based counterparts. The detailed analysis of these results shows
that update-based protocols outperform invalidate-based protocols regardless of the type of
parallelism exhibited by the benchmarks. The reasons for this behaviour are explained in
detail. We conclude that parallel logic programming systems can benefit from update-based
protocols and that multiprocessors designed for running these systems efficiently should adopt

some form of update or hybrid protocol.

*On leave from the Universidade do Porto, Portugal.



1 Introduction

One of the most important advantages of logic programming is the availability of several forms
of implicit parallelism that can be naturally exploited on shared-memory multiprocessors. These
forms include: or-parallelism, as exploited in Aurora [21] and Muse [1]; independent and-parallelism,
as in &-Prolog [16] and &-ACE [15]; dependent and-parallelism, as in Parlog’s JAM [9], KLIC [27],
and DDAS [26]; data-parallelism, as in Reform Prolog [4]; and combined and—or parallelism, as
in Andorra-I [25] and Penny [23]. All these systems have been able to obtain good performance
on bus-based systems, such as the Sequent Symmetry multiprocessors.

As modern architectures are developed and the gap between CPU and memory speeds widens,
the issue arises of whether the current parallel logic programming systems can also perform well
on the new, scalable, architectures. In modern multiprocessors, performance depends heavily on
the miss rates and may be limited by the communication overhead that is involved in sharing of
writable data.

Sharing in parallel logic programming systems occurs under several circumstances. The use
of logical variables for communication in dependent and-parallel applications, for instance, is an
example of producer—consumer sharing of data, where the processor that instantiates a logical
variable writes it and one or more processors read it.

A second major form of sharing, migratory sharing, arises from synchronisation between pro-
cessors. Synchronisation occurs in tasks such as fetching work from other processors, and on being
the leftmost goal or branch to execute cuts or side-effects. As an example, because of the high
cost of suspending and restarting processors, it is very common that idle processors will be cycling
through shared data structures searching for work. A processor that produces a piece of work
writes to one of these data structures, which later will be modified by one of the idle processors.

The sharing of writable data structures introduces the problem of coherence between the
processors’ caches. Most parallel machines have used a write invalidate (WI) protocol [14] in
order to keep caches coherent. In this protocol, whenever a processor writes a data item, copies
of the cache block containing the item in other processors’ caches are invalidated. If one of the
invalidated processors later requires the same item, it will have to fetch it from the writer’s cache.

Write update (WU) protocols [22] are the main alternative to invalidate-based protocols. In
WU protocols, whenever an item is written, copies of the new value are sent to the other processors
that share the item. More specifically, consider the case of dependent and-parallelism, where a
processor A suspended on a variable and still keeps the variable in its cache. If processor B binds
the variable, and processor A is the one to restart the goal, an update protocol ensures that
processor A will already have the variable’s value in its cache when it restarts. With an invalidate
protocol, processor A would need to fetch the item from processor B, which requires several tens
(maybe hundreds) of processor cycles. The update protocol is most beneficial for programs where
many goals suspend on the same variable. In this case, it is likely that most processors will have
the variable in their cache, and also that they will restart goals suspended on the variable.

Synchronisation can also benefit from an update-based protocol. As aforementioned, idle



processors typically loop through shared data structures searching for work. With an update-
based protocol, as soon as a processor writes a shared variable, the new value will be sent to the
idle processors’ caches. One of these processors can then start working immediately. The problem
is that all other processors sharing the variable will receive an update that they cannot utilise.
With an invalidate protocol, the new data will only reach the other processors when they fetch

the shared variable, hence delaying their execution.

WI protocols have been more popular than WU protocols because of the extra traffic updates
introduce. Quite often the updates sent will not be used by their recipients. This introduces
extra, useless, traffic that consumes bandwidth and can actually degrade performance. However,
the nature of sharing in parallel logic programming systems suggests that update-based protocols
might be more appropriate than their invalidate-based counterparts. In order to confirm this
hypothesis, in this paper we evaluate the performance of update and invalidate-based protocols

for parallel logic programming systems.

We use execution-driven simulation of a scalable multiprocessor running the Andorra-I sys-
tem [25]. Andorra-Iis an ideal subject for our experiments because it supports two rather different
forms of parallelism in logic programs, and-parallelism and or-parallelism. We study a well-known
invalidate protocol and two different update-based protocols. OQur results show that for our sample
logic programs the update-based protocols outperform their invalidate-based counterparts. The
detailed analysis of these results shows pure WU performing better than WI for small numbers
of processors, both for or-parallel and and-parallel benchmarks. Our results also suggest that a
hybrid (WU+WI) protocol can obtain best performance for larger numbers of processors. We
conclude that parallel logic programming systems can benefit from update-based protocols and
that multiprocessors designed for running these systems efficiently should adopt some form of

update protocol.

Our approach contrasts with previous studies of the performance of coherence protocols for
parallel logic programming systems. Tick and Hermenegildo [29] studied caching behaviour of in-
dependent and-parallelism in bus-based multiprocessors. Other researchers have studied the per-
formance of parallel logic programming systems on scalable architectures, such as the DDM [24],
but did not evaluate the impact of different coherence protocols. Our goal in this study is to eval-
uate the performance implications of different protocols for parallel logic programming systems

on scalable multiprocessors, while categorising cache misses and update messages in the system.

The paper is organised as follows. Section 2.1 presents the methodology used to obtain
our results. Section 2.2 describes the Andorra-I parallel logic programming system. Section 3
presents speedup results for the or-parallel, and-parallel, and combined parallel benchmarks ran
in Andorra-I under WI and WU protocols. Section 4 evaluates the performance of a hybrid proto-
col for the same benchmarks. Section 5 discusses message coalescing as a technique for improving

update-based protocols. Finally, Section 6 draws our conclusions and suggests future work.



2 Methodology

In this section we detail the methodology used in our experiments. The experiments consisted of

the simulation of the parallel execution of Andorra-I, compiled for the MIPS architecture [18].

2.1 Multiprocessor Simulation

We use a detailed on-line, execution-driven simulator that simulates a 24-node, DASH-like [20],
directly-connected multiprocessor. Each node of the simulated machine contains a single proces-
sor, a write buffer, cache memory, local memory, a full-map directory, and a network interface.
The simulator was developed at the University of Rochester and uses the MINT front-end [30]
(developed by Veenstra and Fowler) to simulate the MIPS architecture, and a back-end [5] (devel-
oped by Bianchini, Kontothanassis, and Veenstra) to simulate the memory and interconnection
systems.

In our simulated machine, each processor has a 64-KB direct-mapped data cache with 64-byte
cache blocks. All instructions and read hits are assumed to take 1 cycle. Read misses stall the
processor until the read request is satisfied. Writes go into a 16-entry write buffer and take 1
cycle, unless the write buffer is full, in which case the processor stalls until an entry becomes
free. Reads are allowed to bypass writes that are queued in the write buffers. Shared data are
interleaved across the memories at the block level.

A memory bus clocked at half of the speed of the processor connects the main components
of each machine node. A memory module can provide the first word of a cache line 20 processor
cycles after the request is issued. The other words are delivered at 2 cycles/word bandwidth.

The interconnection network is a bi-directional wormhole-routed mesh, with dimension-ordered
routing. The network clock speed is the same as the processor clock speed. Switch nodes introduce
a 4-cycle delay to the header of each message. Network paths are 16-bit wide, which matches the
memory bandwidth. In these networks contention for links and buffers is captured at the source
and destination of messages.

Our WI protocol keeps caches coherent using the DASH protocol with release consistency [20].
In our WU implementation, a processor writes through its cache to the home node. The home
node sends updates to the other processors sharing the cache block, and a message to the writing
processor containing the number of acknowledgements to expect. Sharing processors update their
caches and send an acknowledgement to the writing processor. The writing processor only stalls
waiting for acknowledgements at a lock release point.

Our WU implementation includes two optimisations. First, when the home node receives
an update for a block that is only cached by the updating processor, the acknowledgement of
the update instructs the processor to retain future updates since the data is effectively private.
Second, when a parallel process is created by fork, we flush the cache of the parent’s processor,
which eliminates useless updates of data initialised by the parent but not subsequently needed by
it.



2.2 Andorra-1

The Andorra-I parallel logic programming system is based on the Basic Andorra Model [31]. The
system was developed at the University of Bristol by Beaumont, Dutra, Santos Costa, Yang, and
Warren [25, 33]. To the best of the authors’ knowledge, Andorra-I was the first parallel logic
programming system that exploited both and- and or-parallelism, and yet could run real-world
applications with significant parallel performance. This is the main motivation for using this
system in our experiments.

Andorra-I employs a very interesting method for exploiting and-parallelism in logic programs,
namely to execute determinale goals first and concurrently, where determinate goals are the ones
that match at most one clause in a program. Thus, Andorra-I exploits determinate dependent
and-parallelism. Eager execution of determinate goals can result in a reduced search space, be-
cause unnecessary choicepoints are eliminated. The Andorra-I system also exploits or-parallelism
that arises from the non-determinate goals. Its implementation is influenced by JAM [10] when
exploiting and-parallelism, and by Aurora [21] when exploiting or-parallelism.

The Andorra-I system consists of several components. The preprocessor is responsible for
compiling the program and for the sequencing information necessary to maintain the correct
execution of Prolog programs. The engine is responsible for the execution of the Andorra-I
programs. The two schedulers manage and- and or-work. The reconfigurer allows workers to
migrate between teams to find better sources of work.

A processing element that performs computation in Andorra-Iis called a worker. In practice,
each worker corresponds to a separate processor. Andorra-Iis designed in such a way that workers
are classified into masters and slaves. One master and zero or more slaves form a team. Each
master in a team is responsible for creating a new choicepoint, while slaves are managed and
synchronised by their master. Workers in a team cooperate with each other in order to share
available and-work. Different teams of workers cooperate to share or-work. Note that workers
arranged in teams share the same set of variables used in a given branch of the search tree.

Most of the execution time of workers should be spent executing engine code [34], i.e., per-
forming reductions. Andorra-I is designed in such a way that data corresponding to each worker
is as local as possible, so that each worker tries to find its own work without interfering with
others. Scheduling in Andorra-I is demand-driven, that is, whenever a worker runs out of work,
it enters a scheduler to find another piece of available work.

The or-scheduler is responsible for finding or-work, i.e., an unexplored alternative in the or-
tree. Our experiments used the Bristol or-scheduler [3], originally developed for Aurora.

The and-scheduler is responsible for finding eligible and-work, which corresponds to a goal in
the run queue (list of goals not yet executed) of a worker in the same team. Each worker in a
team keeps a run queue of goals. This run queue of goals has two pointers. The pointer to the
head of the queue is only used by the owner. The pointer to the tail of the queue is used by other
workers to “steal” goals when their own run queues are empty. If all the run queues are empty,

the slaves wait either until some other worker (in our implementation, the master) creates more



work in its Tun queue or until the master detects that there are no more determinate goals to be

reduced and it is time to create a choicepoint.

2.3 The MIPS Port

In order to use Andorra-I with the simulator we needed to port the system to the MIPS architec-
ture. We used the FSF’s gcc 2.7.2 C compiler and binutils-2.6 assembler and linker under
a Solaris 2.4 environments as cross development tools for this purpose. Andorra-1 was compiled
with -02.

Most of the port was straightforward. The only difficulties arose with shared memory al-
location and locking. For shared memory allocation we use the shmalloc library supported by
MINT. For locking in modern MIPS machines, we would use the 11, sc, and sync machine instruc-
tions [18] to implement locks and atomic operations. Unfortunately, these instructions are not yet
supported by the back-end. The alternative is to use the lock library routines, as implemented by
the simulator, which allow us to control the synchronisation overhead. In our simulations, these
routines were implemented as atomic instructions.

To ensure correct execution under the release consistency model, we guarantee that all accesses
to shared data are surrounded by lock and unlock operations. The only exception to this rule
is the detection of the end of the determinate phase. Here we maintained the original protocol
because any action after detection requires the slaves to grab a lock previously released by the

master.

3 Application Performance Under WI and WU Protocols

In this section we present speedup results for Andorra-I under both kinds of protocol, WI and WU.
We experimented with applications representing predominantly and-parallelism, or-parallelism,
and both and- and or-parallelism. The benchmarks represent real applications used by companies
or in academia. We tried to select applications with good parallelism, whilst avoiding applications
with too much parallelism that would scale well regardless of architecture.

All results, except for the or-parallel application, were obtained using the reconfigurer to
automatically adapt to the available parallelism. The or-parallel application used a fixed all-
masters configuration. We also obtain times for the first run of an application (results would be

somewhat better for other runs).

3.1 And-Parallel Applications

As an example and-parallel application, we used the clustering algorithm for network management
from British Telecom [8]. The program receives a set of points in a three dimensional space and
groups these points into clusters. Basically, three points belong to the same cluster if the distance
between them is smaller than a certain limit. To obtain best performance, we rewrote the original

application to become a determinate-only computation. And-parallelism in this case naturally



stems from running the calculations for each point in parallel. The test program uses a cluster
of 400 points as input data. This program has very good and-parallelism, and, being completely

determinate, no or-parallelism.
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Figure 1: Speedups for bt-cluster Figure 2: WU versus WI for bt-cluster

Figure 1 shows the speedups for both protocols. Figure 2 presents the execution time ratio
between the WU and WI protocols. The application has excellent and-parallelism, resulting in
almost linear speedups for the perfect curve. This curve is obtained for an ideal shared-memory
machine, where data items can always be found in cache, and gives an idea of the maximum
available parallelism in the application.

Performance for a realistic machine is acceptable. The invalidate protocol (WI curve) starts
with an efficiency of 87% for 2 processors. Efficiency smoothly decreases as the number of proces-
sors increases, but is still over 50% for 16 processors. The update protocol (WU curve) has a very
interesting behaviour. It starts with excellent efficiency of about 90% up to four processors. Then
performance starts degrading, and after 16 processors there is a smooth slowdown. We discuss

this problem in detail in the next section.

3.2 Or-Parallel Applications

As our or-parallel application we use an example from the well-known natural language question-
answering system chat-80, written at the University of Edinburgh by Pereira and Warren [32].
This version of chat-80 operates on the domain of world geography. The program chat makes

queries to the chat-80 database. This is a small scale benchmark with good or-parallelism, and



it has been traditionally used as one of the or-parallel benchmarks for both the Aurora and Muse

systems.
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Figure 3 shows the speedups and execution time ratios for both protocols, from 1 to 24
processors, and figure 4 shows the relative performance of WU versus WI. The perfect curve
gives almost linear speedup up to 4 processors, after which the speedup starts to level off. These
speedups are very similar to the ones obtained under the Sequent Symmetry architecture [13].
The main difference is that the speedup on the Symmetry levels-off at a maximum speedup of
10. This comparison shows that the Symmetry behaves almost as if memory accesses were free of
cost, which for state-of-the-art processor and memory speeds is unrealistic.

A comparison between the perfect and realistic curves proves this point. On this small-scale
benchmark, the invalidate protocol manages to obtain a maximum speedup of 4. Up to sixteen
workers, performance for the update protocol is from 20% to 27% better for this benchmark,
obtaining a maximum speedup of 4.9 for 16 workers. It is very interesting to notice that, as the
number of workers increases up to 24, performance for the update protocol quickly deteriorates,

whereas the invalidate protocol manages to sustain performance.

3.3 And/Or-Parallel Applications

We used a program to generate naval flight allocations, based on a system developed by Software
Sciences and the University of Leeds for the Royal Navy. It is an example of a real-life resource

allocation problem. The program allocates airborne resources (such as aircraft) whilst taking



into account a number of constraints. The problem is solved by using the technique of active
constraints as first implemented for Pandora [2]. In this technique, the co-routining inherent in
the Andorra model is used to activate constraints as soon as possible. The program has both
or-parallelism, arising from the different possible choices, and and-parallelism, arising from the
parallel evaluation of different constraints. The input data we used for testing the program consists
of 11 aircrafts, 36 crew members and 10 flights needed to be scheduled. The degree of and- and
or-parallelism in this program varies according to the queries, but all queries give rise to more

and-parallelism than or-parallelism.
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Figure 5 and 6 shows the speedups and execution time ratios for pan2. The perfect speedups
are acceptable. The application performs well up to 8 workers, and then parallelism starts to level

off. The performance of pan2 on the Symmetry is slightly worse than perfect [13].

The performance on a realistic machine demonstrates effects similar to the previous applica-
tions. Andorra-I on a modern machine cannot match speedups it would obtain under a machine
with one-cycle memory access time. The invalidate protocol starts with an efficiency of about 80%
for two workers. Efficiency then decreases quickly, but the machine is able to improve speedups
up to 16 workers. The update protocol starts with an advantage of 5% for two workers over

invalidate. This advantage improves up to 8 workers, and then starts decreasing.



3.4 Analysis of Results

According to the results shown in the previous section, the WU protocol invariably performs better
than the WI protocol for small numbers of processors. As we increase the number of processors,
performance of the WU protocol starts to degrade. Figures 7, 8, and 9 help to understand this
phenomenon. Figure 7 shows the shared read miss rates for the three applications, with WI as
the left bar and WU as the right one. The percentage at the top of each column represents the
percent of all shared reads that result in a miss. For WI, within a column, misses are classified

as:

e Cold start misses. A cold start miss happens on the first reference to a block by a

Processor.

e True sharing misses. A true sharing miss happens when a processor references a word
belonging in a block it had previously cached but has been invalidated, due to a write by

some other processor to the same word.

¢ False sharing misses. A false sharing miss occurs in roughly the same circumstances as
a true sharing miss, except that the word written by the other processor is not the same as

the word missed on.

¢ Eviction misses. An eviction (replacement) miss happens when a processor replaces one
of its cache blocks with another one mapping to the same cache line and later needs to

reload the block replaced.

This classification uses the algorithm described in [12], as extended in [5]. Note that the WU
protocol does not have sharing misses.

As expected, WU always results in lower read miss rates, even though WI usually exhibits
lower replacement miss rates as invalidations effectively free up cache space. The reason is that
for WI most misses are sharing misses (from 55%, in chat-80, to 70%, in bt-cluster). This is
sufficient to compensate for the increase in eviction misses from WU, which increases up to 17%
for bt-cluster. Ultimately, by avoiding sharing misses, WU more than halves the total miss rate
for the benchmark set.

Note that for all applications Andorra-I demonstrates a very high percentage of false sharing
misses, ranging from 24% of total misses in pan2 to 34% in bt-cluster. False sharing hurts
performance under both the WI protocol, by increasing the miss rate, and the WU protocol,
by generating unnecessary update messages. False sharing may arise from shared variables in
the schedulers, or from two logical variables that were created in sequence, say, within the same
compound term.

Although WU produces lower miss rates than WI, it is at the cost of a large increase in network
traffic. This increase can cause several forms of performance degradation due to an increase in

network and memory congestion. Figure 8 shows this difference for 16 processors. Basically,

10



Read Miss Rates for 64—byte Cache Block Network Traffic for 64-byte Cache Blocks

4 300
0.0 .
requests

[ 332
false — L |
0.035- true coherence
’ cold 250+ appl data
evict
0.031 28
0.025-
ozl 2.0 19 3
0.015- | 102
1.0
0.01- 1.0 n
501 51
0.005
11 10
w ‘ 0 ‘ )

I .
Bt_cluster Chat-80 Pan2 Bt_cluster Chat-80 Pan2

)
=3
S

Miss Rate
)
(=]
N

MBytes Transferred
&
<)

N
1<}
=)

Figure 7: Read miss rate under WI (left) vs.  Figure 8: MBytes transferred under WI
WU (right), 16 processors. (left) vs. WU (right), 16 processors.

WU causes an increase in network traffic with respect to WI that ranges from a factor of 3 in
bt-cluster to 40% in pan2 and 11% in chat-80.

It is important to note that most of the traffic generated by the WU protocol is coherence-
related, i.e. update messages. However, as previous studies have shown [6], most of these updates
are useless, at least for scientific applications. In order to determine whether the same is true
for Andorra-I, we classify updates as either useful, which are needed for correct execution of the

program, or useless. The latter category of updates includes:

¢ True sharing updates. The receiving processor references the word modified by the

update message before another update message to the same word is received.

¢ False sharing updates. The receiving processor does not reference the word modified by
the update message before it is overwritten by a subsequent update, but references some

other word in the same cache block.

¢ Proliferation updates. The receiving processor does not reference the word modified by
the update message before it is overwritten, and it does not reference any other word in

that cache block either.

¢ Replacement updates. The receiving processor does not reference the updated word until

the block is replaced in its cache.

¢ Termination updates. A termination update is a proliferation update happening at the

end of the program.

11
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This classification uses the algorithm described in [5]. The categorisation is fairly straight-
forward, except for the false update class. Successive (useless) updates to the same word in a
block are classified as proliferation instead of false sharing updates, if the receiving processor is
not concurrently accessing other words in the block. Thus, the algorithm classifies useless up-
dates as proliferation updates, unless active false sharing is detected or the application terminates
execution.

We can observe from figure 9 that for 16 processors more than 90% of the update messages
are indeed useless, with the actual percentage of useful updates varying from only 2.5% in the
bt-cluster application, to 4.4% in chat-80, and 6% in pan2. The main culprits are by far the
proliferation updates, which grow quickly with the number of processors and eventually become
77% of the useless updates in chat-80, 81% in pan2, and 93% in bt-cluster for 16 processors.
A high rate of proliferation updates is typical of migratory sharing of data such as in shared
counters, or shared work queues: data structures that are updated very often during execution,
and which are indeed very common in both and- and or-schedulers and in memory allocation
within a team.

The second most important category of useless updates in all applications is false updates. For
16 processors they are 4% of the total number of useless updates in bt-cluster, 7.5% in pan2,
and 16% in chat-80. These updates are the direct consequence of the widespread false sharing
in the system. bt-cluster is an interesting example where processors do falsely share data, but
not simultaneously.

This excessive increase in useless update traffic for large numbers of processors degrades WU
performance significantly by increasing memory access times due to network and memory con-

gestion. These results suggest that reducing the number of useless updates should improve WU

12



performance and therefore improve its scalability.

4 A Hybrid Protocol for Andorra-I

In order to reduce the number of update messages of the WU protocol, we experimented with a
dynamic hybrid protocol (WUh2) [19] based on the coherence protocols of the bus-based multi-
processors using the DEC Alpha AXP21064 [28]. In these multiprocessors, each node makes a
local decision to invalidate or update a cache block when it sees an update transaction on the bus.
We associate a counter with each cache block and invalidate the block when the counter reaches
the threshold. References to a cache block reset the counter to zero. We used counters with a
threshold of 2 updates.

We would expect this threshold to perform quite well for the sharing of logical variables,
because, if a processor writes on a shared logical variable, it will do so only once during forward
execution. For migratory variables, this strategy should reduce the number of useless updates
significantly, but may also increase the read miss rate. Whether the hybrid protocol can improve
overall performance depends on the relative impact of an increase in miss rate versus a significant
reduction in update messages.

Figures 10, 11, and 12 show speedup curves for the WUI2 protocol. The perfect, WI, and WU
curves are repeated for comparison.

The application bt-cluster that contains only dependent and-parallelism (figure 10) has its
speedups enormously improved with the hybrid protocol. Speedups for 24 processors increased
from 8 with the WU protocol to 13.4 with the WUh2 protocol. Moreover, the knee of the speedup
curve, which is reached for 16 workers with WU, is not reached with WU2 up to 24 processors.

The chat-80 benchmark (figure 11) performs well under the hybrid protocol. This protocol
achieves the best performance overall, being comparable to the WU protocol for smaller numbers
of processors, while maintaining rising speedups for the largest number of processors.

Finally, we would expect the pan2 application (figure 12) to also improve speedups with a
change of protocol, as it contains a reasonable amount of and-parallelism. This is indeed the case,
although the difference is not as impressive as for bt-cluster. WU2 performs closely to WU
up to 16 processors, and then obtains slightly better performance for 24 processors. WU2 also

has better performance than WI for all numbers of processors.

4.1 Analysis of Results

Figure 13 compares the shared read miss rate for WU (left) and WUh2 (right). The cache
miss categorisation now includes an extra class, drop misses, to account for cache misses resulting
from excessively eager self-invalidations. The results show that the price to pay for WU2 is a
significant number of drop misses: 46% of total misses with chat-80, 50% for pan2, and 58% of
total misses for bt-cluster. As a result, the read miss rate about doubles in comparison to WU

for all applications. In the case of bt-cluster the total shared read miss rate is still significantly

13
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lower than for W1, 2.2% versus 2.8%. The difference is smaller in chat-80 and pan2. For chat-80
it is 1.7% versus 2.0%, and for pan2 it is 3.7% versus 4.4%.

Figure 14 shows the network traffic for all applications under the WU (left) and WU2 (right)
protocols for 16 processors. In all cases there is an increase in application data transfer. The
increase is most substantial in bt-cluster, where application data transfer more than doubles.
However, in bt-cluster the major effect is the decrease in coherence traffic. The pan2 bench-
mark also benefits from the same effect, but in chat-80 the reduction in coherence traffic is less
significant as a percentage of the total traflic. This behaviour of chat-80 is due to the fact that
data sharing is not widespread in or-parallel execution; the vast majority of update operations
have a single recipient for all numbers of processors.

In figure 15 we present the categorisation of update messages for the WUh2 protocol. The
categorisation of updates shown in the figure includes an additional category, drop updates, to
account for the updates that cause blocks to be invalidated. A comparison between figures 15
and 9 shows that the total number of update messages in WUh2 versus WU at 16 processors has
been reduced by a factor of 2 for chat-80, 3 for pan2, and 6 for bt-cluster. This is a direct result
of the fact that WUA2 has been very effective at reducing the number of proliferation messages:
for 16 processors, the proliferation updates dropped by 90% in bt-cluster, by 82% in pan2, and
by 69% in chat-80.

In summary, WUh2 seems to be the most appropriate coherence protocol, as it consistently
achieves better scalability than the other protocols, and performs acceptably for small numbers

of processors.

5 Coalescing of Updates for Andorra-I

An alternative approach for reducing update traflic that has been successful for scientific applica-
tions [11] is coalescing of update messages. A coalescing buffer [17] is simply a cache-block-wide
buffer capable of merging writes to the same cache block. In the context of a WU protocol, this
feature reduces the number of update messages propagated outside the processor.

We repeated the same experiments we performed for the WU and WUA2 protocols using a
coalescing buffer. OQur implementation of these buffers assumes 4 entries. We associate a dirty bit
vector with each entry in write buffer indicating the words that were written. Unlike traditional
write buffers, our coalescing buffer does not attempt to write its entries out immediately; it
waits until there are 2 valid entries in the buffer or until it is forced to flush all entries at a
synchronisation point. When a write is issued from the buffer, only the dirty words are sent in
the message.

Although this protocol reduced the network traffic, it proved to be relatively inefficient for
Andorra-I, having worse performance than the other protocols. As a data point, for pan2 at
16 processors, performance of the WU + coalescing is about 23% worse than pure WU and
25% worse than WUh2. The poor coalescing performance stems from the fact that coalescing

increases cache lockout overhead and delays the reception of acknowledgements. Taking the same
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pan2 example, we find that cache lockouts and acknowledgement delays increase by factors of 20
and 1.3, respectively, when going from pure WU to WU 4+ coalescing. These effects occur when
coalescing is effective at combining several update messages belonging to the same cache block,

and therefore increase the average size of messages significantly.

6 Conclusions and Future Work

We studied the performance of the Andorra-I parallel logic programming system under different
coherence protocols used for distributed shared-memory machines. Up to a certain number of
processors the sharing behaviour of the system favours WU protocols, but excessive traflic de-
grades performance of pure WU protocols for larger number of processors. In order to tackle this
problem we then evaluated a hybrid (WU+WI) protocol, according to its cache miss rate and
network traffic characteristics. Our results show that the hybrid strategy delivers the best overall
performance of all protocols. Pure WU and hybrid perform comparably for small numbers of
processors, but the hybrid protocol does not suffer as much performance degradation for a large

number of processors.

The main conclusion of our work is that parallel logic programming systems that aim at
good performance on scalable machines will benefit from some form of update-based protocol.
In our benchmarks this was clear both for applications with dependent and-parallelism and or-
parallelism. The trend towards faster CPUs, larger caches, and more available bandwidth also

favours update-based protocols.

Our results have given a better perspective into the performance of the current version of
Andorra-1 and how it can be improved. A major result from our analysis is that migratory
sharing in the system, not data sharing in the applications, is the most significant form of sharing
in Andorra-I. We have also noticed that a substantial part of this sharing is false, and it must
come from accesses to static scheduler data structures. We confirmed these results by performing
an in-depth analysis of the caching behaviour of the system’s shared data structures [7]. This
result suggests that to obtain better scalability in Andorra-I the key effort should be on improving
scheduling and synchronisation. This is good news, as reducing sharing in the applications would
require work from Andorra-1 users. We have noticed that the system can be easy improved by
reducing false sharing in the schedulers’ data structures. More distributed algorithms for fetching
work and synchronisation within and between teams, will require substantial changes to the
Andorra-I’s schedulers and to the system’s memory management. We are currently investigating

new scheduling algorithms for Andorra-I.

In the near future, we will be performing a similar analysis for other parallel logic programming
systems. Besides confirming the generality of our claims, such an analysis will give us further

insight into the current performance and scalability of parallel logic programming systems.
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