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Abstract

The study of Euclidean Steiner Trees is one of the alternative meth-
ods to unveil Nature’s plans for the internal architecture of biomacro-
molecules. Recently, the minimum surface structure of the A-DNA
and of the Tobacco Mosaic Virus was shown to be described by a
“strake” surface. These results have been substantiated by an explicit
calculation of the Steiner Ratio Function in a very restrictive model-
ling scheme. In the present work, we also introduce the measure of
chirality as an essential part of a thermodynamical approach to model
biomolecular structure. In a certain sense, the Steiner Ratio function
is constrained by the chirality measure to assume a value dictated by
Nature. This value is a measure of the free energy of the molecular
configuration.
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1 Introduction

Steiner points and Steiner Trees are now considered as an essential recipe for
studying the internal molecular architecture. The skeleton structure which is
a popular device in biometrical studies (Bookstein, 1978) can be also related
to the consideration of a Steiner Tree if molecular structure is concerned.
This reflects its double essence of geometrical structure (form) and thermo-
dynamical organization (store of information) as applied to structural stud-
ies of molecular biology. In the case of biomolecules, the average position of
atoms and the euclidean distances among them is taken as the candidate for
a minimum spanning tree. However, it does not carry any information about
molecular structure. This role is played by the minimum Steiner Tree which
allows for additional average position of atoms in order to have a problem
which solution is also a solution of minimization of potential energy of the
atomic configuration. In section 2, we show that if a plausible assumption
is made, i.e, the equality of interaction strength of an atom with its nearest
neighbours, the potential energy minimization problem is going to be solved
by the length minimization of this extended tree. Section 3 stresses the im-
portance of the ratio of the length of the Steiner Minimal Tree to the length
of the Minimum Spanning Tree (Smith and MacGregor Smith, 1995) defined
in the sets of atoms positions of all biomolecules with the same number of
atoms. This is the famous Steiner Ratio for this set and we emphasize its im-
portance as an essential parameter in the geometrical and thermodynamical
construction of molecular structure and its stability. In section 4, we present
a formula for the Steiner Ratio, which was obtained by assuming a simple
helix pattern for the spanning tree. The Steiner points are found to belong
to another helix of lesser radius and the same pitch. This is characteristic
of two parallel curves of the same helicoidal surface (Mondaini, 2001, 2002,
2003). In section 5, we emphasize the introduction of a proposal to measure
chirality. A chirality parameter is then proposed to be a necessary parameter
together with the Steiner Ratio, in a unified geometrical description of molec-
ular structure. This corresponds to the introduction of variables with real
physical motivation in a global optimization formulation. In section 6, after
introducing the Optimization problem, we characterize it by the constraints
related to the measures of area and chirality in molecular configurations.
Section 7 is then the place for some concluding remarks and the analysis of
possibility of future work.
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2 The Potential Energy Minimization and the

Steiner Problem

The following calculations are based on the fishbone structure as in figure 1
below,

Figure 1: The fishbone structure for a Steiner tree with p leaves and p− 2 nodes
(Steiner points)

The Steiner Problem is characterized by the p equations below

r̂p+1,1 + r̂p+1,2 + r̂p+1,p+2 = 0 (1)

r̂j,j−1 + r̂j,j−p+1 + r̂j,j+1 = 0, p + 2 ≤ j ≤ 2p− 3 (2)

r̂2p−2,2p−3 + r̂2p−2,p−1 + r̂2p−2,p = 0 (3)

where a hat above a letter stands for unit vector which is given by

r̂k,l =
~rl − ~rk

Rk,l

and Rk,l, with 1 ≤ k, l ≤ 2p − 2 stands for the euclidean distance between
the kth Steiner point and the lth leaf or between kth and lth Steiner points,
or

Rk,l =
[
(x1

k − x1
l )

2 + (x2
k − x2

l )
2 + (x3

k − x3
l )

2
]1/2

(4)

Each equation in the set (1)-(3) has a consequence the equality of the angles
around a node (Steiner point).
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Let ı̂s be the unit vector in the direction of the sth coordinate axis, we have
from eqs. (1)-(3)

3∑

s=1


x

(s)
p+1 − x

(s)
1

Rp+1,1

+
x

(s)
p+1 − x

(s)
2

Rp+1,2

+
x

(s)
p+1 − x

(s)
p+2

Rp+1,p+2


 ı̂s = 0 (5)

3∑

s=1


x

(s)
j − x

(s)
j−1

Rj,j−1

+
x

(s)
j − x

(s)
j−p+1

Rj,j−p+1

+
x

(s)
j − x

(s)
j+1

Rj,j+1


 ı̂s = 0 (6)

3∑

s=1


x

(s)
2p−2 − x

(s)
2p−3

R2p−2,2p−3

+
x

(s)
2p−2 − x

(s)
p−1

R2p−2,p−1

+
x

(s)
2p−2 − x(s)

p

R2p−2,p


 ı̂s = 0 (7)

where p + 2 ≤ j ≤ 2p− 3.

Equations (4)-(6) can be collected in the expression below

3∑

s=1

[δp+1
m

x
(s)
p+1 − x

(s)
1

Rp+1,1

+
x(s)

m − x
(s)
m−p+1

Rm,m−p+1

+
(
1− δ2p−2

m

) x(s)
m − x

(s)
m+1

Rm,m+1

+
(
1− δp+1

m

) x(s)
m − x

(s)
m−1

Rm,m−1

+ δ2p−2
m

x
(s)
2p−2 − x(s)

p

R2p−2,p

]̂ıs = 0 (8)

where the δn
m is the Kronecker index, with p + 1 ≤ m,n ≤ 2p− 2.

From the linear independence of the unit vectors ı̂1, ı̂2, . . . ı̂s, we can write

δp+1
m

∂Rp+1,1

∂x
(s)
p+1

+
∂Rm,m−p+1

∂x
(s)
m

+
(
1− δ2p−2

m

) ∂Rm,m+1

∂x
(s)
m

+
(
1− δp+1

m

) ∂Rm,m−1

∂x
(s)
m

+ δ2p−2
m

∂R2p−2,p

∂x
(s)
2p−2

= 0 (9)

These are 3(p − 2) equations which are enough to solve the problem of de-
termination of 3(p− 2) coordinates of the (p− 2) Steiner points.

We should note that eq. (9) can be also written as

∂

∂x
(s)
m


R1,p+1 + R2,p+2 +

2p−2∑

m=p+1

Rm,m−p+1 +
2p−3∑

m=p+1

Rm,m+1


 = 0 (10)
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These equations can be also obtained by direct observation of the fishbone
tree, fig. (1).

We now go back to fig. (1) and we suppose that each leaf or node there is an
associated “weight” µk, characteristic of the sort of interaction (i.e, electric
charges for electrostatic coulombian interactions) among the atoms whose
average positions are given by the positions of nodes and leaves. Let K be
the universal interaction constant. By assuming that the leaves are fixed, we
write these potential energy function for this fishone configuration

U = Kµp+1

(
µ1

Rp+1,1

+
µ2

Rp+1,2

+
µp+2

Rp+1,p+2

)
+ Kµp+2

(
µ3

Rp+2,3

+
µp+3

Rp+2,p+3

)

+ · · ·+ Kµ2p−3

(
µp−2

R2p−3,p−2

+
µ2p−2

R2p−3,2p−2

)
+ Kµ2p−2

(
µp−1

R2p−2,p−1

+
µp

R2p−2,p

)
(11)

The positions corresponding to equilibrium are then given by

0 =
∂U

∂x
(s)
p+1

= −Kµp+1(
µ1

(Rp+1,1)
2

∂Rp+1,1

∂x
(s)
p+1

+
µ2

(Rp+1,2)
2

∂Rp+1,2

∂x
(s)
p+1

+
µp+1

(Rp+1,p+2)
2

∂Rp+1,p+2

∂x
(s)
p+1

)

0 =
∂U

∂x
(s)
m

= −Kµm(
µm−1

(Rm,m−1)
2

∂Rm,m−1

∂x
(s)
m

+
µm−p+1

(Rm,m−p+1)
2

∂Rm,m−p+1

∂x
(s)
m

+
µm+1

(Rm,m+1)
2

∂Rm,m+1

∂x
(s)
m

) (12)

0 =
∂U

∂x
(s)
2p−2

= −Kµ2p−2(
µ2p−3

(R2p−1,2p−3)
2

∂R2p−2,2p−3

∂x
(s)
2p−2

+
µp−1

(R2p−2,p−1)
2

∂R2p−2,p−1

∂x
(s)
2p−2

+
µp

(R2p−2,p)
2

∂R2p−2,p

∂x
(s)
2p−2

)

These are 3(p − 2) equations for 3(p − 2) variables an they are enough to
describe an equilibrium solution of the fishbone configuration. We restrict
the search for equilibrium to a special tree. This is specified by the equality
of the interaction strengths of each node to their adjacent leaves and nodes.
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If we choose the Coulombian interaction as the only which is fundamental
for this Steiner Tree configuration, we have,

µp+1µ1

(Rp+1,1)
2 =

µp+1µ2

(Rp+1,2)
2 =

µp+1µp+2

(Rp+1,p+2)
2

µmµm−1

(Rm,m−1)
2 =

µmµm−p+1

(Rm,m−p+1)
2 =

µmµm+1

(Rm,m+1)
2 , p + 2 ≤ m ≤ 2p− 3 (13)

µ2p−2µ2p−3

(R2p−2,2p−3)
2 =

µ2p−2µp−1

(R2p−2,p−1)
2 =

µ2p−2µp

(R2p−2,p)
2

After substituting eqs. (13) into eqs. (12), we get

0 =
∂U

∂x
(s)
p+1

= −Kµp+1
µ2

(Rp+1,2)
2

∂

∂x
(s)
p+1

(Rp+1,1 + Rp+1,2 + Rp+1,p+2)

0 =
∂U

∂x
(s)
m

= −Kµm
µm−p+1

(Rm,m−p+1)
2

∂

∂x
(s)
m

(Rm,m−1 + Rm,m−p+1 + Rm,m+1) (14)

0 =
∂U

∂x
(s)
2p−2

= −Kµ2p−2
µp−1

(R2p−2,p−1)
2

∂

∂x
(s)
2p−2

(R2p−2,2p−3 + R2p−2,p−1 + R2p−2,p)

This last set of equations can be also written as

0 =
∂U

∂x
(s)
m

= −K
µmµm−p+1

(Rm,m−p+1)
2 (δp+1

m

∂Rp+1,1

∂x
(s)
p+1

+
∂Rm,m−p+1

∂x
(s)
m

+
(
1− δ2p−2

m

) ∂Rm,m+1

∂x
(s)
m

+
(
1− δp+1

m

) ∂Rm,m−1

∂x
(s)
m

+ δ2p−2
m

∂R2p−2,p

∂x
(s)
2p−2

(15)

The last set of equations is the same set of eqs.(9), which was written in
the form of eq.(10). This is enough to proof the equivalence of the problems
posed by eqs.(5)-(7) and the problem of potential energy minimization as
constrained by relations (13).
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3 The Steiner Ratio in Euclidean Space

All the molecular structures which we are considering are taken as atomic
configurations immersed in the 3-dimensional euclidean space. However, the
interpretation of distances in the internal manifold of the molecule in terms
of other geometries is an open problem. In the present work, we assume the
strict validity of euclidean geometry for simplicity. A Steiner Minimal Tree
(SMT) is the minimal length network if we allow for additional points (nodes)
to reach the minimum. A full Steiner Tree has (p−2) additional points for p
given points. Figure (1) above which was necessary for our calculations, is an
example of a full Steiner Tree. If we not allow for additional points, the min-
imal length network is realized in the Minimal Spanning Tree (MST). These
two problems are completely different in terms of computational complexity.
The former is linear and the later NP-hard.

Usually the MST length is taken as the “worst cut” in the set of 2p−2 points
to approximate the length of the minimal network. An important concept
is that of Steiner Ratio Function (Mondaini, 2002) which is the ratio of the
two lengths defined above.

lSMT = ρ lMST (16)

We look for the set of points in which we get the greatest lower bound of this
function. The lowest upper bound is also important and the present research
in 3-dimensional sets has not given any way of merging the two bounds as in
the 2-dimensional case, with its value of ρ =

√
3/2 (Du and Hwang, 1990).

We think this is a characteristic of the 3-dimensional space and essential for
the structure of a macrobiomolecule.

Nature has many ways of building possible molecular structures with the
values of their Steiner Ratios filling this gap. In the following section we
shall derive a formula based on a simple modelling like that of fig. (1).

If we choose a configuration of points which is inspired by molecular con-
formations, i.e, a helical configuration, with points evenly spaced along the
helix, the length of the Steiner minimal tree, or its ratio to the corresponding
minimal spanning tree, is in a sense a measure of the minimum value of po-
tential energy function as it was proved in section 2. Geometrical constraints
to be imposed on the former problem will corresponds to thermodynamical
requirements used to define a free energy function and to test the stability
of the molecular conformation to be modelled. We shall develop these ideas
in section 6.
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4 A Simple Modelling for the Steiner Ratio

Function

The characterization of the Steiner Problem in the form given into eqs.(5)-(7)
has a consequence the equality of the angles (2π/3) among the edges forming
a node . This can be written as (Mondaini, 2002)

r̂p+1,1 · r̂p+1,2 = r̂p+1,1 · r̂p+1,p+2 = −1

2

r̂j,j−1 · r̂j,j−p+1 = r̂j,j−1 · r̂j,j+1 = −1

2
(17)

r̂2p−2,2p−3 · r̂2p−2,p−1 = r̂2p−2,2p−3 · r̂2p−2,p = −1

2

Our modelling for the vertices of the spanning tree was

~rj = (cos jω, sin jω, αjω) , 1 ≤ j ≤ p (18)

which means a configuration of p points evenly spaced along a right circular
helix of unit radius.

The results of this modelling were expressed by points evenly spaced along
a right circular helix of lesser radius but the same pitch value (Mondaini,
2001), or

~rk = (r(ω, α) cos kω, r(ω, α) sin kω, αkω) , p + 1 ≤ k ≤ 2p− 2 (19)

From eqs. (17), we can then write for the radius of the configurations

r(ω, α) =
αω√

2(1− cos ω)(1− 2 cos ω)
, ω 6= 0,

π

3
(20)

The last results are enough to write general formulae for the length of the
spanning and Steiner trees. We then have the Steiner ratio function for this
case ρ(ω, α), as defined into eq. (16), given by

ρ(ω, α) =
(p− 2)(1− r) + (p− 3)

√
α2ω2 + λr2 + 2

√
α2ω2 + (1− r)2 + λr2

(p− 1)
√

α2ω2 + λ
(21)
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where r = r(ω, α) is given by eq. (19) and λ = λ(ω) is

λ = 2(1− cos ω) (22)

Figure 2: The surface ρ(ω, α). There is a curve of maxima represented by a full
line. The global minimum is (π, 0)

We have used these results for deriving a new upper bound for the Steiner
Ratio in E3 (Mondaini, 2003). We now think to use them to propose a
definition for measuring geometric chirality of molecular configurations. In
order to formulate these ideas, we shall analyze the behaviour of an usual
definition of chirality in the next section. However, we can advance that
our problem should be better formulated when we learn how to restrict the
representative of length of the Steiner Tree, i.e, the function ρ(ω, α). In our
analogy of section 2, this means how to formulate the problem of potential
energy minimization as a constrained problem.
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5 An Example of Chirality Definition and its

behaviour

According to Kelvin’s definition of chirality, if after translating and rotating
a body, we cannot make it to coincide with its mirror image, we can say that
the body and its image are chiral to each other. This definition just says
if an object is chiral or not. It does not specify how chiral is an object to
its mirror image. The problem of chirality measure is still an open problem
(Gilat, 1994). In the present work we give two examples and we analyze their
behaviour in a geometric and thermodynamical formulation of biomolecular
conformation.

Let us consider two helices as representatives of atomic chains in a macro-
molecule. We take xz as the mirror plane. The helices are then mirror images
and the corresponding evenly spaced points in them can be written as

r̂jD = (cos jω, sin jω, αjω)

1 ≤ j ≤ p (23)

r̂jL = (cos jω,− sin jω, αjω)

The sum of the squared distances distances between corresponding is then
given by

S(ω) = 4
p∑

j=1

sin2 jω = 2
[
p− sin pω

sin ω
cos(p + 1)ω

]
(24)
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Figure 3: The squared sum of distances on a candidate for geometric chirality,
p = 300.

The function S(ω) has a global minimum at x = π. Its derivative changes
from (-) to (+) in this neighbourhood. There are serious doubts about the
efficiency of the sum of squared distances as a candidate for a measure of
chirality (Gilat, 1994) in terms of our modelling, the behaviour of the function
S(ω) shows its inconvenience.

We have, in the neighourhood of ω = π,

lim
ε→0

dS(ω)

dω

∣∣∣ω=π±ε = lim
ε→0

∓2(p− 1) cot ε = ∓∞ (25)

This behaviour seems to be enough to discard this definition as a good rep-
resentative of chirality’s measure as far as our modelling is concerned.

It will be enough to characterize geometric chirality by a pseudoscalar quan-
tity (de Gennes, 1992). We take as a representative, the volume of the tetra-
hedra cells formed by the edges of length Rj,j+1, Rj+1,j+2, Rj+2,j+3, Rj+3,j+4,
1 ≤ j ≤ p in the structure of fig. (1) and we have

χ(ω, α) =
1

6
~C · ~A× ~B =

2

3
αω sin ω(1− cos ω)2 (26)

where ~A = ~rj+1−~rj, ~B = ~rj+2−~rj, ~C = ~rj+3−~rj and ~rj, ~rj+1, ~rj+2, ~rj+3 are
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given by

~rj+l = (cos(j + l)ω − cos jω, sin(j + l)ω − sin jω, lαω) , l = 0, 1, 2, 3

The advantage of taking χ(ω, α) as given into eq. (26) as the representative
of geometrical chirality will be seen at the next section.

Figure 4: The surface χ(ω, α) – volume of a tetrahedron unit cell – the chirality
constraint

6 The Buried Area and Geometric Chirality

as Constraints - The Optimization Problem

One of the essential contributions to the understanding of molecular interac-
tions and its thermodynamical description was the discovery of the influence
of the area of intramolecular cavities in the free energy calculations. These
cavities (Rashin, 1984) are substructures formed by non-covalent processes
with a free energy attribution. It is a kind of hydrophobic effect in the
molecular structure caused in part by the non-polar Van der Waals inter-
action. This contribution to the free energy is usually called the cavitation
free energy. It is considered as a good description of this hydrophobic effect
by keeping the cavities open in order to bury partially the side chains of the
aminoacids in a protein. It can be given by

12



∆GCav = γ∆A (27)

where γ is the interfacial tension and ∆A the area measure of the cavity.
The consideration of this new free energy contribution corresponds also to
molecular stability.

We consider as the representative of the area measure, the area of helicoidal
surface between the helix of unit radius and the internal helix of radius r(ω, α)
by unit of polar angle ω, in the modelling of section 4. We have, from the
Monge representation of the area element

dS =

√√√√1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy

with z = α arctan y
x
; x2 + y2 = r2 we get

∂S

∂ω
= s(ω, α) =

∫ 1

r(ω,α)

√
α2 + r2 dr (28)

where r(ω, α) is given by eq. (20).

We then get for the measure of area by unit of polar angle,

s(ω, α) =
1

2

[√
α2 + 1 + α2

(
ln

(
1 +

√
α2 + 1

α

)
−M(ω)

)]
(29)

where
M(ω) = u

√
u2 + 1 + ln

(
u +

√
u2 + 1

)

and
u = u(ω) =

ω√
2(1− cos ω)(1− 2 cos ω)
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Figure 5: The surface s(ω, α). The area measure constraint.

We are now able to formulate a thermodynamically inspired optimization
problem. Since we are planning to describe the transition to more stable
structures in the process of molecular formation with the contribution of
chirality and this one is represented by a measure of volume, the objective
function to be minimized is a Helmholtz-like free energy or,

H = ρ(ω, α) + P χ(ω, α)− Ts(ω, α) (30)

and ρ, χ, s are given by eqs. (21), (26) and (29), respectively. P and T are
Lagrange multipliers.

The structure of an algorithm can be now planned as

∆nH = ∆nρ + Pn∆nχ− Tn∆ns (31)

and we have for consecutive steps

∆n+1ρ = ρ− ρ(ωn, αn)

∆n+1χ = χ− χ(ωn, αn) (32)

∆n+1s = s− s(ωn, αn)

with (ωn, αn) as the point determined in the previous step of the calculation.
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7 Concluding Remarks

Our fundamental aim in this work was to derive an optimization process in
order to minimize the Steiner Ratio function. We think this process will
correspond to the work done by Evolution in its search for more stable struc-
tures. The minimization of the free energy of macromolecular structures,
with a geometrical characterization of the terms corresponding to volume
and conformational entropy seems to be a reasonable scheme. Nevertheless,
we have to improve these ideas by taking into consideration a more real-
istic modelling. This could be based on the existence of peptide planes in
the macromolecular conformation of a protein. We expect to have a greater
value for the lower bound of the new Steiner Ratio Function. We also expect
to have a function which is also reliable as the present one with its preci-
sion at reproducing up to 38 decimal places the results advanced by direct
calculation with the assumption of symmetry of the molecular conformation.
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