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Abstract

A homogeneous set is a non-trivial module of a graph, i.e. a non-unitary, proper subset H
of a graph’s vertices such that all vertices in H have the same neighbors outside H. Given
two graphs G1(V, E1),G2(V, E2), the Homogeneous Set Sandwich Problem asks whether there
exists a sandwich graph Gs(V, Es), E1 C Es C E,, which has a homogeneous set. Two years
ago, Tang et al. [8] proposed an interesting O(A; - n?) algorithm for this problem, which has
been considered its most efficient algorithm since. We show the incorrectness of their algorithm
and present a new deterministic algorithm for the Homogeneous Set Sandwich Problem, whose
O(my1mz) time complexity becomes its current upper bound.

1 Introduction

A graph Gg(V, Eg) is said to be a sandwich graph of graphs G1(V, E1), Go(V, E3) if and only if
E, C Es C Ey. A homogeneous set H for a graph G(V, E) is a subset of V such that 1 < |H| < |V|
and for all v € V' \ H, either (v,h) € E for all h € H or (v,h) ¢ E for all h € H. Given two
graphs G1(V, E1), G2(V, Es) such that E; C Fs, the Homogeneous Set Sandwich Problem (HSSP)
comprises the search for a sandwich graph Gg(V, E) of (G1,G2) which contains a homogeneous
set. Such a homogeneous set is called a sandwich homogeneous set of pair (G1,G2).

Throughout this paper, we denote the number of vertices in the input graphs by n, the number
of edges in graph G; by m; and the number of edges not in G; by m;. Additionally, the degree
of vertex z in graph G; is represented by d;(z), the degree of vertex z in G;’s complement G; is
represented by d;(z) and, finally, A; stands for G;’s maximum vertex degree.

Notwithstanding the existence of linear-time algorithms for solving the problem of finding ho-
mogeneous sets in a single graph [2, 3, 4, 5, 6, 7], the known HSSP algorithms are considerably less
efficient.

The first polynomial-time algorithm for this problem was presented by Cerioli et al. [1], which
set HSSP’s upper bound at their algorithm’s O(n*) time complexity. We refer to this algorithm
as the Ezhaustive Bias Envelopment Algorithm (EBE algorithm, for short). A few years later,
Tang et al. [8] tailored a brand new algorithm, based on a quite beautiful idea of theirs, which
would have largely diminished HSSP’s upper bound. This algorithm is referred to as the Bias
Graph Components Algorithm (BGC algorithm, for short). We show, with brief counterexamples,
that this algorithm is unfortunately not correct. Consequently, the most efficient algorithm that
correctly solves the HSSP would turn back to be former EBE algorithm presented in [1], resetting
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HSSP’s upper bound at O(n*). A careful study of the underlying ideas contained in both [1] and
[8], though, has led us to the development of a faster deterministic algorithm, which establishes a
new upper bound to the problem.

We summarize the EBE algorithm, in Section 2, and refine its analysis. Actually, we show
that its time complexity can be more precisely bounded by O(n? - (m1 + 73)), which is somewhat
better. This result will be particularly useful in the analysis of our algorithm. In Section 3, we give
a brief description of the BGC algorithm and point out where its basic flaw lies. Finally, Section 4
introduces our new algorithm. It is not altogether original, it must be said, for it bears essentially
on the main ideas of both preceding algorithms.

2 The Exhaustive Bias Envelopment algorithm

Before describing the EBE algorithm, presented in [1], we define some notation which will be used
henceforth.

Let Gs(V, Es) be a sandwich graph of graphs G1(V, E1), Go(V, E»). The edges in E; are called
mandatory edges, once each and every sandwich graph of (G1,G2) has to contain them. On the
other hand, the edges not in Fy are said to be forbidden edges, meaning that no sandwich graph
of (G1,Gy) is allowed to contain them. A vertex b € V is called a bias vertez of a vertex set
S C V' \ {b} if there exists at least one mandatory edge (b,v) and at least one forbidden edge (b, w),
for some v, w € S. The set B(S) contains all bias vertices of S, thereby it is called the bias set of
S [8].

The following theorem, based on the concept of bias sets, gives a characterization of sandwich
homogeneous sets and is implicit in the proof of correctness of the EBE algorithm, presented in [1].

Theorem 1. The set S C V is a sandwich homogeneous set of a pair (G1,G2) if and only if its
bias set B(S) is the empty set.

Proof. Suppose B(S) # @. Thus, in all possible sandwich graphs of (G1, G2), any vertex t € B(S)
must be adjacent to at least one vertex v € S and also non-adjacent to at least one vertex w € S.
This clearly prevents S from being a sandwich homogeneous set. If we suppose, on the other hand,
that B(S) = &, we are able to build a sandwich graph Gg(V, Eg) of (G1,G2) in such a way that S
is a homogeneous set of Gg. We do this by adding all mandatory edges (u,v) € E; to an initially
empty Eg. Then, for every vertex € V' \ S such that (z,y) is mandatory for some y € S, we add
to Eg the edges (z,z) from z to each and every vertex z € S. Notice that this is always possible,
once z is not a bias vertex of S. O

Given Theorem 1, it is quite simple to understand the EBE algorithm. It starts by choosing
a sandwich homogeneous set candidate {z,y}. Then it successively determines the candidate’s
bias vertices and adds all of them to the current candidate. We refer to this procedure as bias
envelopment. The bias envelopment continues until either a candidate with an empty bias set has
been found, whereby the algorithm stops with an yes answer, or else the candidate set has become
equal to the input vertex set V', in which case the algorithm restarts the process with another initial
pair of vertices. If no sandwich homogeneous set has been found by the time all possible pairs have
been investigated, the algorithm answers no.

Figure 1 presents the pseudo-code for the EBE algorithm.

Theorem 2. [1] The EBE algorithm is a complete, correct method for solving the HSSP.



The Exhaustive Bias Envelopment algorithm (G1(V, E1), G2(V, E2))

1. For each pair of vertices {z,y} C V do

1.1. H + {z,y}.

1.2, Find the bias set B(H).

1.3. While H # V do

1.3.1. If B(H) = & then return yes and H. End.
1.3.2. H « HUB(H).

1.3.3. Update B(H).

2, Return no.

Figure 1: The EBE algorithm [1]

The time complexity of this algorithm is undoubtedly O(n*), as in [1]. However, we can tighten
this bound a little bit by allowing m to take place in the analysis.

Let G1(V,E1), G2(V, E3) be an input for the HSSP. At a first glance, each iteration of the
algorithm’s inner loop (lines 1.3.1 to 1.3.3) would take O(n?) time, for computing a bias set B(H)
from scratch demands that all vertices v that are not in H are investigated (in order to check out
whether there exists both mandatory and forbidden edges between v and whichever vertices in H).
Notice, however, that each bias set (except for the first one, which is outside the inner loop) is
not computed from scratch, but updated (line 1.3.3), instead, from the bias set of the preceding
iteration. This is accomplished with the introduction of three auxiliary, dynamically maintained
sets, as described in [1]. Each update in the current bias set is, then, achieved as a result of a
constant number of unions, differences and intersections of sets, none of which containing more
than n vertices. Along with the fact that no vertex enters the bias set more than once, this allows
that the whole loop (i.e. all its iterations) can be carried on in O(n?) time. Thus, the complexity
of the EBE algorithm, which runs the bias envelopment on O(n?) candidates in the worst case, is
certainly O(n? - n?) = O(n*). Nevertheless, this analysis can be slightly improved.

The point is, one of the sets involved in each of those unions, differences and intersections
described in [1] is always the set of neighbors, in G (resp. non-neighbors, in G5), of vertices b in the
bias set of the preceding iteration. We remark that any union, difference or intersection of any two
subsets S1, Sy of some finite set S with pre-ordered elements can be achieved in O(Min{|S1|,|S2|})
time, granted an adequate data structure is used. Thus, the time complexity of any operation
involving the set Ni(b) (resp. N3(b)) of neighbors of b in G (resp. non-neighbors of b in Gy),
during a bias set update, is correctly bounded by a linear function of the cardinality of Ny(b)
(resp. N2(b)). On this basis, each iteration of the inner loop (lines 1.3.1 to 1.3.3) can be done in
O venm) N1 (0)| + |N2(b)|) time. As each vertex v € V appears in B(H) only once, the whole

bias envelopment loop (line 1.3) takes O(}" ¢y |N1(v)| + [N2(v)|) = O(my + m3) time. Therefore,
the whole EBE algorithm runs in O(n? - (m; + mm3z)) time.

3 The Bias Graph Components algorithm

The main idea of the BGC algorithm, presented in [8], is to use the bias relation introduced in
Section 2 to construct a directed graph, called bias graph. The bias graph exhibits at once these



The Bias Graph Components algorithm (G1(V, E1), Go(V, E3))

Construct the bias graph G of (G1,G5).

Find an end strongly connected component C of Gp.

Let H denote the set of vertices in V that label the vertices in C.
If H =1V then return no. End.

Return yes and H.

Al e

Figure 2: The BGC algorithm [8]

relations, allowing interdependent vertices to be quickly grouped in a number of disjoint sets, some
of which likely to be associated with sandwich homogeneous sets.

The bias graph Gg(Vp,Ep) of a pair of graphs G1(V, E1),Go(V, E3) has vertex set Vg =
{[z,y] | z,y € V,z # y} and there are two outgoing edges from vertex [u,v] to vertices [u,w] and
[v,w] in Gp if and only if vertex w is a bias vertex of vertex set {u,v} with respect to the pair
(G1,G2). Notice that vertices [z,y] and [y, z] in Gp are the same.

Once the bias graph has been constructed, the algorithm runs Tarjan’s method [9] to find all its
strongly connected components and then looks for an end strongly connected component (ESCC)
among them, i.e. a strongly connected component with no outgoing edges. If only one ESCC is
found and it embraces all input vertices (as part of its vertices’ labels), the algorithm returns no.
Otherwise, the algorithm translates one of the bias graph’s ESCCs, say component C, into the set
H C V of input vertices that are used to label C’s vertices. Then it returns yes and H, for H is
allegedly a sandwich homogeneous set.

The summarized steps of the BGC algorithm are shown in Figure 2.

Claim 3. [8] The BGC algorithm correctly solves the HSSP.

Tang et al. present Claim 3 as a theorem whose proof is based on the validity of the next two
lemmas, one for the algorithm’s correctness and the other for its completeness. We show that both
are incorrect.

Lemma 4. [8] The set H of vertices found in line 2 of the BGC algorithm is a sandwich homoge-
neous set of the input graphs (G1,G2).

To begin with, Figure 3(a) shows a very simple refutation. It presents a pair of graphs (G, G2)
that produce the bias graph Gg(Vg, Eg) in Figure 3(b). It is easy to see that the set S of vertices
on the left of the dashed line constitutes an ESCC. (The bold edges in S stress the existence of
cycles providing a path from each vertex in S to every other vertex in S. Notice, also, that all edges
that come across the dashed line reach S, which makes an end strongly connected component out
of it.) The set H = {1,2,...,7} C V that labels the vertices in S, however, is not a sandwich
homogeneous set of (G1,G2). (Notice that vertex 8 is a bias vertex of H, once the input instance
presents mandatory edge (1,8) € E; and forbidden edge (2,8) ¢ E>.) As the BGC algorithm might
possibly choose S (among other existing Gg’s ESCCs) in line 2, it is likely to answer yes along
with set H = {1,2,...,7}, which is definitely not a sandwich homogeneous set of (G1, G2).



Tang et al. seem to have overlooked the possibility that an ESCC C does not comprise all
possible vertices [z,y] such that z and y appear in some of its vertices’ labels. In other words,
there may exist two vertices z,yy € V which appear in some labels of C’s vertices, without vertex
[z,y] € Vs being a necessary element of C. This may cause the set H C V, associated with C C Vp,
to contain both vertices z and y, but not some bias vertex b of {z,y} that happened not to label
any of C’s vertices. In such cases, H is not a sandwich homogeneous set, despite the fact that C
is an ESCC. The bias graph in Figure 3(b) illustrates it. Although vertices 1 and 2 do appear in
the labels of some vertices in the ESCC (on the left of the dashed line), the very vertex [1,2] € Vp
is not itself in this ESCC. That is why vertices [1, 8],[2, 8] € Vp, which are respectively incident to
edges ([1,2],[1,8]) and ([1,2],[2,8]) are not seen by the ESCC, therefore preventing vertex 8 from
taking part in H, contrarily to what Tang et al. may have expected it to. (Notice that vertex 8 is
a bias vertex of {1,2} and, consequently, of H D {1, 2}, once H 2 {8}).

It is true that the HSSP instance in Figure 3(a) does have some sandwich homogeneous sets,
although set H, which might possibly have been returned by the BGC algorithm, is not among
them. (E.g. set {1, 8} is a homogeneous set of sandwich graph G5(V, E), where Eg = E1U{(3,8)}.
Interesting enough, Figure 4(a) shows an instance which does not admit any sandwich homogeneous
sets at all. Still its bias graph G g, shown in Figure 4(b), has two proper ESCCs, which causes the
BGC algorithm to incorrectly answer yes. (In Figure 4(b), we removed the commas from all vertex
labels in order to save some space.) Vertex S (resp. S’) condensates Gg’s induced subgraph with
vertex set {1,2,...,7} (vesp. {1',2/,...,7}). S and S’ are both isomorphic to the ESCC on the
left of the dashed line in Figure 3(b), which grants they are still strongly connected. Also, there
are not any outgoing edges from neither S nor S’. (This is highlighted, in the figure, by means of
three big arrowheads towards both S and S’). The bold edges in the leftmost half of the figure (and
their counterparts in the other half, for the graph is noticeably symmetrical) stress the existence
of a path from every Gp’s vertex v ¢ S U S’ to one of the ESCCs S or S’. This clearly prevents
the existence of ESCCs other than S and S’, in Gg. Thus, being the only ESCCs in Gg, S and
S’ are the only possible choices in line 2 of the BGC algorithm. However, neither S nor S’ can
be associated to any sandwich homogeneous sets whatsoever (in fact, there does not exist any!),
thence an incorrect answer is inevitable.

Lemma 5. [8] If graphs (G1,G2) admit a sandwich homogeneous set, then the BGC algorithm can
find one.

Unfortunately, this is not correct either. Figure 5(a) illustrates the pair G1(V, E1), Go(V, E3),
which has sandwich homogeneous set H = {1,2, ...,9, 1,2/,... ,9’} (and no other). However,
this sandwich homogeneous set simply cannot be found by the BGC algorithm, for it is not as-
sociated with any of the two existing ESCCs in the bias graph of (G1,G2). The point is that it
is neither sufficient (as we saw in the refutation of Lemma 4) nor necessary that a set of vertices
in Gp constitute an end strongly connected component in order to be associated with a sandwich
homogeneous set. Figure 5(b) shows the bias graph Gg(Vp, Ep) of input instance in Figure 5(a),
which has 210 vertices and 1684 edges. For obvious reasons, its graphic representation is rather
condensed here. The vertex labelled K comprises a 153-vertex induced subgraph of Gpg’s that is
isomorphic to the whole bias graph in Figure 4(a) and holds all vertices [z,y] € Vg such that
z,y € {1,2,...,9,1,2' ... )9'}. (To save space, all commas in the vertices’ labels were again
suppressed.)

We know already that there are two (and only two) ESCCs inside K, namely S and S’, which
happen to be the only ESCCs in the whole Gp. This can be easily verified by noticing that (i)



there are not any outgoing edges leaving K and (ii) there is a path to K from each and every
vertex outside K. Again, because of the huge number of edges in this bias graph, we have wrapped
similar groups of vertices in three bounding boxes with 17 vertices each. An edge that leaves (resp.
reaches) one of these boxes towards (resp. coming from) a vertex v stands for 17 converging (resp.
diverging) edges towards (resp. coming from) v, one from (resp. to) each vertex inside the origin
box. Irrelevant edges have not been drawn.

In this case, the BGC algorithm would certainly answer yes, giving one of the two fake sandwich
homogeneous sets F = {1,2,...,7} or F' ={1',2',... 7'}, associated with S and ', respectively.
It is easy to see that vertices 8 and 8 forbid them to be sandwich homogeneous sets, invalidating
such answers. More than that, this instance’s one and only sandwich homogeneous set H cannot
be found by the BGC algorithm. Recall that K stands for the induced subgraph of G that holds
all vertices [z,y] such that z,y € H. In spite of being an end subgraph of Gp (i.e. a subgraph
that does not have any outgoing edges), K is not strongly connected, hence cannot be found by
Tarjan’s SCC-partitioning method. However, it is easy to see that H is indeed a homogeneous set
of sandwich graph Gg which contains the (mandatory) edges in E; plus edge (4,9) € E,.

4 A new O(m;m3) algorithm

Theorem 6 that follows gives a correct characterization, based on Tang et al.’s bias graphs, of
sandwich homogeneous sets. It corrects Lemmas 4 and 5 in a row, supporting the new HSSP
algorithm which we will introduce, in this section.

Let Gg(Vp, Ep) be the bias graph of input graphs G1(V, E1),G2(V, E3). A subset K C Vg is
said to be a pair-closed set if and only if there do not exist two vertices z,y € V, among those which
label K’s vertices, such that vertex [z, y] is not an element of K. The set A = {[1,2],[1, 3], [2,3]} is
a pair-closed set. The set B = {[1,2],[1,3],[1,4], 2, 3], [2,4]} is not pair-closed, for vertices 3 and 4
appear in the label of some vertices in B but [3,4] ¢ B.

Theorem 6. A set H C V is a sandwich homogeneous set of graphs G1(V, E1),G2(V, Es) if and
only if the pair-closed set K = {[z,y] | z,y € H} C Vp induce an end subgraph in bias graph Gpg
Of (G1, Gg)

Proof. Let K C Vg be the pair-closed set that holds all vertices [v, w] € Vg such that v,w € H C V.
Assume, by hypothesis, that K induces an end subgraph in Gp. Now suppose, by contradiction,
that H is not a sandwich homogeneous set of (G1,G2). Then, H must have a bias vertex b € V'\ H,
which means that there exists a mandatory edge between b and some vertex h; € H and also a
forbidden edge between b and some other vertex he € H. But this implies that vertex [hy, ho] € K
has outgoing edges to vertices [hi,b] and [hg, b], which cannot be in K. This is an absurd, for K
induces an end subgraph. Conversely, if H is a sandwich homogeneous set, then it does not have
any bias vertices. Consequently, if a pair of vertices hi,ho € H has a bias vertex u then u also
belongs to H. (Otherwise, u would be a bias vertex of H.) Once K is pair-closed in the vertices of
H, vertices [h1,ul, [h2,u] € Vg must belong to K, so that the subgraph of Gp induced by K does
not have any outgoing edges. O

Theorem 6 does not lead directly to an efficient algorithm for the HSSP, for there is not any
quick means of finding pair-closed sets which induce end subgraphs in the bias graph. Corollary 7,
however, brings about the central inspiration for the algorithm that follows.



Corollary 7. If H C V is a sandwich homogeneous set of graphs G1(V, E1), Go(V, E»), then either
the subgraph Gp(K), induced by the pair-closed set K = {[z,y| | z,y € H} C Vg in the bias graph
Gp(Vg, E) of (G1,G2), is itself an end strongly connected component or else it contains, properly,
some end strongly connected component of Gp.

Proof. From Theorem 6, we know that Gg(K) is an end subgraph of Gp. If it is strongly connected,
then the statement holds trivially. If it is not, then there must exist two vertices z,y € Gp(K)
such that there is not any path from z to y. The set R(xz) of all vertices that are reachable from z
certainly induces an end subgraph, for it cannot contain any outgoing edges to vertices u ¢ R(z),
otherwise z would reach u. Also, y ¢ R(z), so that R(x) is a proper subgraph of Gg(K). Thus,
the fact that Gp(K) is not strongly connected implies that it contains some end, proper subgraph
Gp(K'). This subgraph, in turn, must either be itself strongly connected (which would end the
proof) or contain an end, proper subgraph Gg(K"), and so on and so forth. As Gp is finite, this
ought to stop at some point, whereupon we will finally have found an end subgraph of Gp(K)
which is strongly connected. O

The new algorithm we propose is rather simple. It can be regarded as either (i) an improved
version of the EBE algorithm which just does not run the bias envelopment on all O(n?) input
vertices’ pairs, but on a shorter number of initial candidates, instead; or (ii) an improved version
of the BGC algorithm, which only does not translate the bias graph’s ESCCs directly into alleged
sandwich homogeneous sets (for this is just not possible), but instead into subsets of the input
vertices such that one of them has to be contained in a sandwich homogeneous set, in case there
exists one. We prefer to consider it a hybrid between its two equally important predecessors.

The new algorithm has two distinct phases. We called it the Two-Phase algorithm (2-P algo-
rithm, for short). The first phase of the 2-P algorithm builds the bias graph of the input instance,
as in the BGC algorithm, and locates all its ESCCs Gg(C;). Each of these ESCCs is then used
to determine a subset H; of the input vertices such that H; contains all vertices which appear in
the labels of the bias graph’s vertices that belong to Gg(C;). The second phase simply runs the
bias envelopment procedure of the EBE algorithm on each of those subsets H;, returning yes and
a sandwich homogeneous set H that contains H;, in case there exists one, or no in case none of the
subsets H; happen to be contained in any sandwich homogeneous sets of the input instance.

Figure 6 appropriately depicts the mechanics of the Two-Phase algorithm.

4.1 Proof of correctness / completeness

The validity of the 2-P algorithm as a HSSP solver comes directly from Corollary 7 and from
the fact that the bias envelopment procedure rightly determines whether there exists a sandwich
homogeneous set which contains a given subset of the input vertices [1]. Let G1(V, E1), Ga(V, E2)
be the input graphs for the 2-P algorithm, and Gg(Vp, Ep) their bias graph. First, if the algorithm
returns yes and a sandwich homogeneous set H, then 1 < |H| < n and the bias graph of H is the
empty set. Thus, by Theorem 1, H is a sandwich homogeneous set. Second, if the pair (G1,G2)
admits a sandwich homogeneous set H, then, by Corollary 7, the subgraph G g(K) which is induced
in G g by the pair-closed subset K C Vp (comprising all vertices [z, y] labelled by z,y € H) contains
an ESCC of Gp, say Gp(C;). If all vertices in K belong to Gg(C;), then the set H itself is the
initial candidate of some bias envelopment iteration (lines 4 to 4.3.3). As its bias set is empty, the
algorithm discovers (line 4.3.1) that it is a sandwich homogeneous set of (G1,G2) and stops. If, on



the other hand, not all vertices in K belong to ESCC Gg(C;) of Gp(K), then a subset H; C H is
the initial candidate of some bias envelopment iteration. In this case, there will exist at least one
sandwich homogeneous set, namely H, which contains H;. So, the proof of completeness of the
EBE algorithm [1] assures that the bias envelopment iteration which starts with candidate H; can
find a sandwich homogeneous set of (G1,G2).

4.2 Complexity analysis

The first phase of the 2-P algorithm takes O(A; - n?) time to build the bias graph Gg(Vs, Eg)
of input graphs G1(V, E1),G2(V, E2) and locate its ESCCs [8]. Actually, the number of edges in
Ep can be more precisely bounded by O (n - (m1 +3)) than by O(A; - n?), as in [8]. It is true
that the number of outgoing edges of a vertex [z,y] € Vg is twice the number of bias vertices
of set {z,y} € V. The point is, a vertex b € V is a bias vertex of {z,y} only if edge (z,b) is
mandatory and edge (y,b) is forbidden, or vice-versa. In other words, either (i) (z,b) € E; and
(y,b) & Ep or (ii) (y,b) € Ey and (z,b) ¢ Ep. The number of bias vertices of {z,y} is therefore
O(Min{dy(z),d2(y)} + Min{di(y),ds(z)}) = O(d1(x) +da(z) + d1(y) +da(y)), which consequently
bounds the number of outgoing edges of vertex [z,y] € V. Thus, the total number of edges in Ep
is

O > di(e)+da(z) +dily) +day) | =
[ay}EVB

— (Zdl +d2):

eV
= O(n-(m +73)).

As the time complexity of all steps in the first phase is bounded by the number of edges in the
bias graph [8], we arrive at a final complexity of O (n - (m; + m3)) for the whole first phase.

The second phase of the 2-P algorithm runs several successive bias envelopments (one for each
ESCC of the bias graph, in the worst case). The time demanded by each bias envelopment is, as we
saw in the end of Section 2, O(m; +mmz). The question is, how many times, in the worst case, does
the bias envelopment procedure have to be run? That is, what is the maximum size of a sequence
of ESCC-associated input vertices’ subsets that fail to be contained in any sandwich homogeneous
sets of (G1,G2)?

The answer comes straight from Theorem 6, which grants that all end subgraphs of Gg whose
vertices perform a pair-closed set are associated to a sandwich homogeneous set. Consequently, the
ESCC Gg(C;), whose associated set H; € V fails to be contained in any sandwich homogeneous
sets, has to be induced by a non-pair-closed vertex set C; C Vp. The number of executions of the
bias envelopment procedure is therefore bounded by the maximum number of ESCCs, in the bias
graph, that are induced by non-pair-closed sets of vertices.

Lemma, 8 establishes an upper bound to such ESCCs and allows us to determine the total time
complexity of the 2-P algorithm.

Lemma 8. In any bias graph, there are O(Min{mi,m3}) end strongly connected components that
are induced by non-pair-closed vertex sets.



Proof. Let Gg(Vp, Ep) be the bias graph of graphs G1(V, E1), G2(V, E2) and let C; C Vg be a non-
pair-closed vertex set that induces ESCC Gg(C;) in Gp. Now let [z,y] be a vertex that belongs to
C;. Vertex [z,y] necessarily presents an outgoing edge, otherwise [z, y] would induce an ESCC and
could not be properly contained in C;. (Clearly, C;\ {[z, y]} is nonempty, for {[z,y]} is pair-closed,
whereas C; is not.) Let ([x,y],[z,t]) be an edge in Gp(C;). Vertex t € V is therefore a bias vertex
of set {z,y} C V, so that edge (z,t) is mandatory and edge (y,t) is forbidden (or vice-versa).
Without loss of generality, let edge (z,t) be the mandatory one. We define a function //(C) that
associates ESCC Gp(C) with such a mandatory edge (i.e. a mandatory edge, belonging to the
input instance, which is necessary for the existence of some bias relationship that appears inside
Gp(C)). This chosen mandatory edge, returned by I3/(C), becomes Gg(C)’s label. In the current
example, “(z,t)” is a possible label for Gg(C;). Notice that no other ESCC G5(C}) can possibly
be assigned the same label “(z,t)”. Otherwise, because of the way a label is chosen by [, there
would necessarily have to be an edge ([z,w],[z,t]) (or ([t,w],[z,t])) in Gp(C}), for some w € V.
Because Gg(Cj) is an ESCC, [z,t] must be in Gg(C;). But this is an absurd, for [z,t] already
belongs to Gp(C;) and the intersection between two ESCCs has to be empty (recall that a digraph’s
strongly connected components constitute a partition of its vertex set). Thus, labelling function
Iar is bijective, for every ESCC C; C Vp can be designated a label and no two distinct ESCCs
can share the same label. But every distinct label generated by ;s depends on the existence of
a mandatory edge, which implies that the number of ESCCs that are induced by non-pair-closed
vertex sets is bounded by the number of mandatory edges, namely m;. We reason that a similar
labelling bijective function [, which only names each non-pair-closed ESCC after some forbidden
edge (instead of a mandatory one, as in function /5;) implies that the number of such special ESCCs
is also bounded by the number of forbidden edges in the input instance, namely 73, which ends
the proof. O

The time complexity of the second phase of the 2-P algorithm is therefore O (Min{m1,m3} - (m1 + m3)).
We remark that the time complexity of the first phase — O(n - (m1 + m3)) — has been clearly
overtaken by the second’s, for n = O(Min{m,m3}). Otherwise, either m; < n (implying that
G is not connected) or iz < n (implying that G’s complement Gy is not connected) would
characterize trivial HSSP instances, for the existence of a vertex v € V with either no incident
edges in G or n—1 incident edges in G4 effortlessly testifies the existence of a trivial (n — 1)-vertex
sandwich homogeneous set of (G1,G2), namely V' \ {v}.
We finally rewrite the time complexity of the whole 2-P algorithm as follows:

O (Min{mi,m3} - (m1 +mg)) =
= O (Min{mi,mz} - Maz{mi,mz}) =

= 0 (mlm_Q) .

5 Conclusion

In this article, we invalidated the current upper bound for the Homogeneous Set Sandwich Problem,
which had been set too low by an incorrect, recently published algorithm. Also, we presented a
new O (m1m3) algorithm, which is better than all previously known ones.

An open question is whether O(Min{m1,mz}) is a good bound for the number of non-pair-
closed ESCCs in a bias graph. So far we still have not succeeded in finding any HSSP instance whose
bias graph had a number of non-pair-closed ESCCs that was not O(nlogn), clearly a better (albeit



unproven) bound. For the time being, either a proof that O(nlogn) is indeed an upper bound or
the exhibition of an instance with more ESCCs in its bias graph shall be equally welcome.
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Figure 4: Counterexample 2 (to Lemma 4 [8])
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The Two-Phase algorithm (G1(V, E1), G2(V, E»))

1 Construct the bias graph G of (G1,G5).

2. Find all end strongly connected component Gg(C;) of Gp.

3. Let H; denote the set of vertices in V' that label the vertices in G (C;).
4. For each set H; C V do

4.1. H « H;.

4.2. Find the bias set B(H).

4.3. While H # V do

4.3.1. If B(H) = @ then return yes and H. End.
4.3.2, H <+ HUB(H).

4.3.3. Update B(H).

5. Return no.

Figure 6: The 2-P algorithm
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