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Abstract. Most ILP systems use a greedy covering algorithm to find a set of
clauses that best model positive examples. This set of clauses is called a theory
and can be seen as an ensemble of clauses. It turns out that the search for a theory
within the ILP system is very time consuming and often yields overly complex
classifiers. One alternative approach to obtain a theory is to use the ILP system to
non deterministically learn one clause at a time, several times, and to combine the
obtained clauses using ensemble methods. This can be a much faster approach, as
this work shows, and produces better classifiers than the theories produced with
greedy covering algorithms.
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1 Introduction

Inductive Logic Programming (ILP) systems have been quite successful in extracting
comprehensible models of relational data. Indeed, for over a decade, ILP systems have
been used to construct predictive models for data drawn from diverse domains. These
include the sciences,engineering, language processing, environment monitoring, soft-
ware analysis, and pattern learning and link discovery. Most ILP systems use a greedy
covering algorithm that repeatedly examines candidate clauses (the “search space”) to
find good rules (or theories). Ideally, the search will stop when the rules cover nearly
all positive examples with only a few negative examples being covered.

This algorithm poses some challenges, since the search space can grow very quickly,
sometimes turning unfeasible the search for a good solution. Several techniques have
been proposed to improve search efficiency of ILP algorithms. Such techniques include
improving computation times at individual nodes [3, 19], better representations of the
search [2], sampling the search space [20, 21, 24], parallelism [6, 11, 16, 23, 24, 8], and
utilisation of ensemble methods [9].

Ensembles are classifiers that combine the predictions of multiple classifiers to pro-
duce a single prediction [7]. Several researchers have been interested in the use of
ensemble-based techniques for ILP. To our knowledge, the original work in this area is
Quinlan’s work on the use of boosting in FOIL [18]. His results suggested that boosting
could be beneficial for first-order induction. More recently, Hoche proposed confidence-
rated boosting for ILP with good results [13]. Zemke proposed bagging as a method for
combining ILP classifiers with other classifiers [25]. Dutra et al [9] studied bagging in



the context of the ILP system Aleph [22] learning theories. Their results showed that
the applications benefitted from ensembles to a limited extent.

In this work we argue that learning a single clause at a time rather than learning
whole theories (or sets of clauses) at a time can be more cost-effective and produce
simpler classifiers. Our alternative approach then is to use ensembles of clauses. To
some extent, an induced theory is an ensemble of clauses. However, finding an induced
theory is very time consuming and can produce very complex classifiers. In this work
we learn single clauses, and use ensemble methods to combine them, which produce
classifiers that are better than any single clause or theory, in much less time than finding
a theory.

The paper is organised as follows. First, we present in more detail the ensemble
methods used in this work. Next, we discuss our experimental setup and the applications
used in our study. We then discuss how ensembles of clauses compare with ensembles
of theories. Last, we offer our conclusions and suggest future work.

2 Ensemble Methods

In general, ensemble methods work by combining the predictions of several (hopefully
different) weak classifiers to produce one final strong classifier.

Ensemble generation assumes two distinct phases: (1) training, and (2) combining
the classifiers. The ensemble methods vary according to the constraints imposed to the
training phase, and to the kind of combination used.

Figure 1 shows the structure of an ensemble of logic programs. This structure can
also be used for classifiers other than logic programs. In the figure, each program
P1, P2, . . . , PN is trained using a set of training instances. At classification time each
program receives the same input and executes on it independently. The outputs of each
program are then combined and an output classification reached. Figure 1 illustrates
that in order to obtain good classifiers one must address three different problems:
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Fig. 1. An Ensemble of Classifiers.

– how to generate the individual programs;
– how many individual programs to generate;



– how to combine their outputs.

Regarding the first problem, research has demonstrated that a good ensemble is one
where the individual classifiers are accurate and make their errors in different parts of
the instance space [14, 17]. Obviously, the output of several classifiers is useful only
if there is disagreement between them. Hansen and Salamon [12] proved that if the
average error rate is below 50% and if the component classifiers are independent, the
combined error rate can be reduced to 0 as the number of classifiers goes to infinity.
In this work, we argue that ensembles of clauses produce rather independent classifiers
than ensembles of theories as studied by Dutra et al [9].

Methods for creating the individual classifiers therefore focus on producing classi-
fiers with some degree of diversity. In the present work, we follow two approaches to
produce such classifiers. We produce clauses and theories (sets of clauses). We believe
that clauses have a greater degree of diversity than theories.

The second issue we had to address was the choice of how many individual clas-
sifiers to combine. Previous research has shown that most of the reduction in error for
ensemble methods occurs with the first few additional classifiers [12]. Larger ensem-
ble sizes have been proposed for decision trees, where gains have been seen up to 25
classifiers.

The last problem concerns the combination algorithm. An effective combining scheme
is often to simply average the predictions of the network [1, 5, 14, 15]. An alternate ap-
proach relies on a pre-defined voting threshold. If the number of clauses or theories that
cover an example is above or equal to the threshold, we say that the example is positive,
otherwise the example is negative. Thresholds may range from 1 to the ensemble size.
A voting threshold of 1 corresponds to a classifier that is the disjunction of all theo-
ries. A voting threshold equal to the ensemble size corresponds to a classifier that is the
conjunction of all theories. This voting scheme was used in [9].

Individual classifiers that compose an ensemble can be obtained from different sam-
ples of the dataset or from the same dataset. They can also be obtained from one single
ILP algorithm (homogeneous classifiers) or from different ILP algorithms (heteroge-
neous algorithms). In this work we use homogeneous classifiers and the two kinds of
datasets: same dataset and different datasets. The classifiers can be independent or de-
pendent, depending on the ensemble method employed.

Several methods have been presented for ensemble generation. The two most popu-
lar are bagging and boosting [10]. Bagging works by training each data set on a random
sample from the training set. Classifiers in this case are totally independent from each
other. Boosting works by assigning penalties to misclassified examples, and refining the
search for clauses that try to cover the misclassified examples. Therefore, in boosting,
the classifiers are dependent. The current classifier is dependent on the previous in the
training sequence.

We evaluate bagging and two variations of boosting when producing ensembles of
clauses. We also use an ensemble method we name different-seeds (also used in [9]),
which takes advantage of the non-determinism in seed-based search by simply combin-
ing different clauses obtained from experimenting with different seed examples, while
always using the original training set. We then contrast the results obtained with clause-
based learning to the results obtained with theory-based learning, using different-seeds-



theories. It is important to note that we implemented the ensemble methods without
modifying the ILP system. We take advantage of non deterministic seed selection to
implement all ensemble methods.

In this work, we implemented two kinds of boosting, one based on arcing [4] and
the other one based on AdaBoost [10] by selecting all examples for all training sets
Arcing chooses a training set of size N for classifier K+1 by probabilistically selecting
(with replacement) examples from the original N training examples. Unlike bagging,
however, the probability of selecting an example is not equal across the training set.
This probability depends on how often that example was misclassified by the previous
K classifiers. Arcing uses a simple mechanism for determining the probabilities of in-
cluding examples in the training set. For the ith example in the training set, the value
mi refers to the number of times that example was misclassified by the previous K clas-
sifiers. The probability pi for selecting example i to be part of classifier K+1 ’s training
set is defined as

pi =
1 + m4

i
∑N

j=1
(1 + m4

j )
(1)

Breiman chose the value of the power (4) empirically after trying several different
values [4]. This is also known in the literature as arcing-x4.

AdaBoost can use the approach of (a) selecting a set of examples based on the
probabilities of the examples, or (b) simply using all of the examples and weight the
error of each example by the probability for that example (i.e., examples with higher
probabilities have more effect on the error). We chose to use all the examples and weight
the error according to equation 1.

3 Methodology

We studied 5 different ensemble methods:

1. pure-boosting: based on AdaBoost, works by selecting all examples every iteration.
Each training set is the same at each training/test iteration.

2. hybrid-boosting1: selects examples with replacement as the arcing method.
3. bagging: uses different training sets taken from the original dataset with replace-

ment.
4. different-seeds-clauses: use the same training set at each iteration and takes advan-

tage of the seed-based algorithm of the ILP system to generate varying clauses.
5. different-seeds-theories: the same as different-seeds-clauses, but the training phase

generates theories instead of clauses.

We could have chosen bagging or different-seeds to generate theories. We included
only different-seeds because all runs for theories take a huge amount of time to finish. 2

1 we named it like that because the selection of examples for the next training set is similar to
bagging

2 [9] shows some results for one of our benchmarks using bagging of theories.



Both implementations of boosting compute new probabilities using the probability
function used by arcing.

Figure 3 shows an overview of our general algorithm to perform boosting without
making modifications to the ILP system. The syntax used in the algorithm is Prolog-
like. Arguments with a plus sign are input, and with a minus sign are output.

boosting(+ILPOut,+Exs,+Errors,+Weights):-
1. read_ILP_output(+ILPOut),
2. read_examples(+Exs),
3. calc_errors(+Errors,-Sum_pos,-Sum_neg,-P,-N),
4. write_new_errors(+Errors,+Sum_pos,+Sum_neg),
5. calc_weights(+Sum_pos,+Sum_neg,-Weigth_P, -Weights_N),
6. write_new_weights(+Weigths,+Weights_P,+Weights_N),
7. find_min_weight(+Weights_P, +Weights_N,-Min_P,-Min_N),
8. generate_new_exs(+P,+Weights_P,+Min_P,-Exs_P,

+N,+Weights_N,+Min_N,-Exs_N),
9. write_new_examples(+Exs,+Exs_P,+Exs_N).

Fig. 2. General boosting algorithm

This algorithm is used for both pure-boosting and hybrid-boosting. Pure-boosting
does not execute steps 7 to 9, because the training set is not modified from one iteration
to the next. The algorithm uses four files: ILPOut is an output generated by a filter,
after the learning finishes. It basically, collects the clause that was generated by the
ILP system, with a map of the coverage for that clause. This is necessary, because later
we need to compute new probabilities to the examples. Exs is the prefix file name for
the examples. Errors contains the errors obtained with the previous iteration (this is
needed to use the arcing-x4 formula to compute probabilities). Weights contains the
previous weights of the examples classified by the previous clause.

Steps 1 and 2 read in, respectively, the file that contains the positive and negative
examples covered by the current classifier, and the file containing the whole set of ex-
amples. Step 3 calculates the errors using the previous Errors file, and produces new
errors related to the positive (Sum pos) and negative (Sum Neg) examples. It also re-
turns the total number of positive (P) and negative (N) examples. Step 4 writes the new
errors to disk. Steps 5 and 6 calculate and write new weights to disk, using the arcing-x4
formula. Steps 7 to 9, used only by our hybrid-boosting implementation apply a sam-
pling with replacement to the previous data set to generate a new training set based on
the errors of the current classifier.

Bagging was implemented starightfowardly. We only needed to generate the bags
and run the training/test experiments independently.

Aleph tries to find one hypothesis H in a description language L, such that: (1) H

respects the constraints I ; (2) The positive examples, E+, are derivable from B, H ,
where B is the background knowledge, and (3) The negative examples, E−, are not
derivable from B, H . By default, Aleph uses a simple greedy set cover procedure that
constructs such a hypothesis one clause at a time. The final classifier is a collection



of clauses (a theory). In the search for any single clause, Aleph randomly selects an
uncovered positive example as the seed example, saturates this example, and performs
an admissible search over the space of clauses that subsume this saturation, subject to
a user-specified clause length bound. As it was mentioned before this is a very time-
consuming process. We contrast this approach with the approach of generating one
single clause and stopping, using a randomly chosen example as a seed. In the case of
boosting, the example with higher probability is chosen as a seed. If there are many
examples with the same high probability, we random select one of them.

These steps are done through a script that runs outside the Aleph code. We wrote
our own Prolog code to randomly select a seed, based on the examples weights.

In the case of pure-boosting, we simply compute the errors produced in one itera-
tion, and, in the next iteration, select the example that has higher probability weight to
start a search for a new clause. The training set is not modified. In the case of hybrid
boosting, a new training set is created from one iteration to another, as in the conven-
tional arcing algorithm.

A possible run of our hybrid-boosting implementation is as follows. Assume a set of
positive examples {A,B,C,D,E}, and suppose an iteration that calculated probabilities
{.25, .25, .3, .1, .1}. We look for the examples with higher probability (in this case, it
is example C, with probability .3), and decrement its weight from the least weight (.1).
In this example, the weight of example C (.3) will be decreased by .1 becoming .2. C is
then, the first example chosen to be in the next training set. At this time we have a new
weight list {.25, .25, .2, .1, .1}. Now A or B are candidate examples to be included in
the training set. We select one of them randomly. The algorithm proceeds like that until
the new training set is complete.

We have elected to perform a detailed study on five datasets, corresponding to
five non-trivial ILP applications. For each application we ran Aleph with random re-
ordering of the positive examples and hence of seeds. We call this experiment different-
seeds. Next, we created bagged training sets from the original set, and called Aleph
once for each training set. We call this experiment bagging. The hybrid boosting exper-
iment creates a new training set at each iteration. The number of runs of different-seeds
and boosting is the same as the number of bags.

Aleph allows the user to set a number of parameters. We always set the following
parameters as follows:

– search strategy: search. We set it to be breadth-first search, bf. This enumerates
shorter clauses before longer ones. At a given clauselength, clauses are re-ordered
based on their evaluation. This is the Aleph default strategy that favours shorter
clauses to avoid the complexity of refining larger clauses.

– evaluation function:evalfn. We set this to be coverage. Clause utility is measured
as P − N , with P and N being the number of positive and negative examples
covered by the clause, respectively.

– chaining of variables: i. This Aleph parameter controls variable chaining during
saturation: chaining depth of a variable that appears for the first time in a literal
Li, is 1 plus the maximum chaining depth of all variables that appear in previous
literals Lj , j < i. We used a value of 5 instead of the default value of 2 in order to
obtain more complex relations between literals in a clause.



– max number of nodes allowed: maxnodes. This corresponds to the number of
clauses in the search space. We set this to be 100,000.

– maximum number of literals in a clause: maxclauselength. This was chosen
based on some previous experiments and was set to 5.

– minimum clause accuracy: this is the minimum accuracy acceptable when generat-
ing a new clause. It was set to 0.9 (i.e., accuracy of 90%).

We used the same set of parameters used by Dutra et al [9] in order to compare
some results.

Next, we organise our discussion of methodology into experimentation and evalua-
tion.

Experimentation. Our experimental methodology employs five-fold cross-validation.
For each fold, we consider ensembles with size varying from 1 to 25. Thus each appli-
cation ran 25 times. This step generates 25 files with one clause per file in the case of
all experiments that learn clauses, and 25 files with one theory per file (set of clauses),
in the case of the different-seeds experiment.

Evaluation. For the evaluation phase, we used two techniques to evaluate the quality
of the ensembles. First, we studied how average accuracy varies with ensemble size.
We present accuracy as Tp+Tn

Total of exs
, where Tp and Tn, are respectively, the number of

positive and negative examples, and Total of exs is the dataset size.
Second, we studied Receiver Operating Characteristic (ROC) curves for the ensem-

bles. Each point on the ROC plot represents a sensitivity/specificity pair corresponding
to a particular decision threshold. A test with perfect discrimination (no overlap in the
two distributions) has a ROC plot that passes through the upper left corner (100% sen-
sitivity, 100% specificity). Therefore the closer the ROC plot is to the upper left corner,
the higher the overall accuracy of the test [26].

When we have many ROC curves to be analysed, we can look instead to the area
under those curves. The value for the area under the ROC curve can be interpreted as
follows: an area of 0.84, for example, means that a randomly selected individual from
the positive group has a test value larger than that for a randomly chosen individual from
the negative group 84% of the time. When the variable under study cannot distinguish
between the two groups, i.e. where there is no difference between the two distributions,
the area will be equal to 0.5 (as is the case when the ROC curve coincides with the
diagonal). When there is a perfect separation of the values of the two groups, i.e. there
is no overlapping of the distributions, the area under the ROC curve equals 1 (the ROC
curve will reach the upper left corner of the plot).

We wish to test the effectiveness of different sizes of ensembles, from 1 to 25.
Again, we do not repeat the ILP runs themselves to learn entirely new theories for each
different ensemble size. Rather, we use the theories from the previous step. Because
our results may be distorted by a particularly poor or good choice of these theories,
we repeat this selection process 7 times (30% of the total number of ensembles) and
average the results.

Figure 3 shows the general algorithm to perform the evaluation step. The loop that
goes from line 2 to 8 computes the points for the ROC curves using the pair (Fp,Tp),
where Fp is the rate of false positives and Tp is the rate of true positives. This is done



for 7 sets, where each set contains ensSize clauses (or theories) that are selected
randomly from the 25. The loop that goes from line 9 to line 14 computes the average
of the 7 sets (across the false positives and true positives).

1. for ensSize = 1 to 25 do
2. randomly select 7 sets of size ensSize;
3. for s = 1 to 7 do
4. sum[s] = 0
5. for v = 1 to ensSize do
6. pointROC[s,v]= pair (Fp,Tp)
7. endfor
8. endfor
9. for v = 1 to ensSize do
10. for s = 1 to 7 do
11. sum[s] = sum[s] + pointROC[s,v]
12. endfor
13. avgROC[v] = sum[v]/7
14. endfor
15. accuracy[ensSize] = better value of avgROC
16. areaROC[ensSize] = area under avgROC
17.endfor

Fig. 3. General algorithm for evaluation step.

Accuracies across the folds are obtained by averaging the sum of all positives and
negatives for every fold. Areas across the folds are obtained by simply averaging areas
computed for each ensemble size. ROC curves across the folds are obtained by averag-
ing the rates of positives and negatives of each fold.

All experiments were performed using Yap Prolog 4.4.2, and Aleph 3.0. We used
three machines to run all experiments: (1) Intel Pentium III 750 MHz, with 256 MBytes
of RAM, with Red Hat Linux 7.2, (2) Intel Pentium III 600 MHz, with 256 MBytes
of RAM, with Red Hat Linux 9.0, and (3) Intel Pentium IV 1.2 GHz, with 1 GByte of
RAM. Although these machines have different characteristics, all experiments for the
same application were performed in the same machine. Slower runs were launched in
the more powerful machine.

3.1 Benchmark Datasets

Our benchmark set is composed of five datasets that correspond to five non-trivial ILP
applications that are also used in other works. We next describe the characteristics of
each dataset with its associated ILP application, and present a dataset summary table.
The datasets were taken from http://web.comlab.ox.ac.uk/oucl/research/

areas/machlearn/applications.html

Amine. Our first learning task is to predict amine re-uptake inhibition to discover new
drugs for the Alzheimer disease.



Carcinogenesis. Our second application concerns the prediction of carcinogenicity test
outcomes on rodents. This application has a number of attractive features: it is an im-
portant practical problem; the background knowledge consists of large numbers of non-
determinate predicate definitions; previous experience suggests that a fairly large search
space needs to be examined to obtain a good clause.

Choline. This application is also related to drug discovery for the Alzheimer disease.
The learning task is to identify the inhibition of the aceto-choline-esterase enzyme.

Mutagenesis. The prediction of mutagenesis is important as it is relevant to the un-
derstanding and prediction of carcinogenesis. Not all compounds can be empirically
tested for mutagenesis, e.g. antibiotics. The considered dataset has been collected with
the intention to search for a method for predicting the mutagenicity of aromatic and
heteroaromatic nitro compounds.

Protein. Our last dataset consists of a database of genes and features of the genes or
of the proteins for which they code, together with information about which proteins
interact with one another and correlations among gene expression patterns. This dataset
is taken from the function prediction task of KDD Cup 2001. While the KDD Cup
task involved 14 different protein functions, our learning task focuses on the challeng-
ing function of “metabolism”: predicting which genes code for proteins involved in
metabolism. This is not a trivial task for our ILP system.

Table 1. Datasets Characteristics.

Dataset E+ E- BK Size
Amine 343 343 232
Carcinogenesis 182 148 24,988
Choline 663 663 232
Mutagenesis 114 57 15,113
Protein 172 690 6,913

Table 1 summarises the main characteristics of each application. The second and
third columns correspond to the size of the full datasets. Bags are created by randomly
picking elements, with replacement, from the full dataset. Therefore the number of pos-
itives or negatives of each bag are not the same as of the full dataset used for different-
seeds, although the total size is the same. The last column indicates the size of the
background knowledge (number of facts and rules). The test sets for each 5-fold cross-
validation experiment is obtained by a round-robin distribution of the full dataset. For
example, application Carcinogenesis will have 5 positive test sets of sizes: 37, 37, 36,
36 and 36.



4 Results

This section presents our results and analyses the performance of each application. We
divided this section into two subsections. The first one presents a qualitative analysis,
where for each application we show the average accuracy for positives and negatives,
and the area under ROC curves built from 1 to 25 ensemble sizes. In the second subsec-
tion, we discuss about execution time and size of the final ensemble, providing a quan-
titative analysis. We report results for different-seeds-theories, different-seeds, bagging,
pure-boosting and hybrid-boosting. We also show the ROC curve for an ensemble size
of 25.

Accuracies presented in the graphs are averaged across all folds, and for each en-
semble size, a different voting threshold is used. The voting threshold is the one that
produced the best accuracy. For clarity’s sake, these parameter values are not shown in
the curves.

4.1 Qualitative Analysis

Figure 4 shows the average accuracies for all applications with all ensemble methods.
Figure 4(a) shows the accuracies obtained by the five ensemble methods for the

application Amine. In this figure all methods based on clause learning produce good
accuracies between 70% and 83% for ensemble sizes greater than 15. Different-seeds-
theories achieves accuracies above 80% even with ensemble of size 1. Each point of the
curve can have a different voting threshold.

The first ppoint to observe in this application is that theory-based learning does
not benefit much from ensembles keeping an average accuracy of 83% across all en-
semble sizes starting from 2. In contrast, the methods based on ensembles of clauses
have a clear improvement as the ensemble sizes increase. Bagging is the method that
achieves better performance of all, almost reaching the best performance of different-
seeds-theories. Pure-boosting improves linearly when we increase the size of the en-
semble. The performance of hybrid-boosting also increases linearly achieving better
accuracy values than pure-boosting up to ensemble of size 15. After that, accuracies
still improve but not in a so good rate as pure-boosting. This happens because, this
method generates very specific clauses to the misclassified examples that get repeated
in the training set. Figure 5 shows an example of this situation happening in fold 1. This
figure shows the accuracy obtained for each clause generated at each iteration for the
training set and for the test set. We can observe that after iteration 19, both accuracies
(train and test) start to fall apart. Clauses learned after iteration 19 become too specific
for the training set, and therefore fail to cover examples of the test set.

One important thing to note at this point is that, for this application, each individual
theory has an average size of 70 clauses. When we generate the ensemble of theories
this can become a very complex classifier that is difficult to interpret. In the case of
clause-based learning, each individual classifier is composed by only one clause. So in
the worst case, our final classifier will have size 25.

The accuracy, as presented in Figure 4(a), may lead to an interpretation that all
methods are doing well when classifying positive and negative examples. In order to
have a more detailed picture of the behaviour of the methods on both positive and



(a) Amine (b) Protein

(c) Choline

(d) Carcinogenesis (e) Mutagenesis

Fig. 4. Average Accuracies for the Five Applications.



Fig. 5. Amine: Accuracies - fold 1.

negative classification, we show the ROC curve for this application with ensemble size
25. In this figure, hybrid boosting is clearly classifying very well positive examples
(covering almost 90% of them for ensemble size 1) at the cost of misclassifying negative
examples, for small ensemble sizes. The other methods are behaving quite well, with
bagging behaving better than the other methods.

In Figure 7(a) we give a summarised picture of the behaviour of all methods for all
ensemble sizes by presenting the areas under the ROC curves for each ensemble size,
for the application Amine. In this figure, the greater the area, the more precise is the
classifier. From this picture we can observe that different-seeds-theories benefit very
little from ensembles, as mentioned before, starting at ensemble size 5, and does not
seem that will get better after ensemble size 25. The other methods have the tendency
of always improving with the increase of the ensemble, with bagging being the best
method.

Figure 4(b) shows the average accuracies obtained by the application Protein for all
ensemble methods. Contrary to the results produced by the application Amine, where
different-seeds-theories produced slightly better accuracies than the other ensembles,
the results produced by the application Protein shows similar performance (approxi-
mately 80%) to all ensemble methods. These results were obtained before in a previ-
ous work with different-seeds-theories and bagging applied to theories, using the same
Aleph parameters [9]. Surprisingly, ensembles of single classifiers produce the same
performance. Even a single clause (ensemble of size 1 in Figure 4(b)) produced similar
performance to the other ensemble sizes. The reason for that is the similarity among the
clauses and theories found by Aleph, and confirms that ensembles do not do very well
when the classifiers do not vary.

Although Protein has achieved 80% of accuracy with all ensemble methods for all
ensemble sizes, this result was obtained from a good classification of negative examples
only. Protein misclassified most of the positive examples, with all ensemble methods, as
it can be seen in Figure 6(b). The average accuracies were good because Protein has 4



(a) Amine (b) Protein

(c) Choline

(d) Carcinogenesis (e) Mutagenesis

Fig. 6. ROCs for the Five Applications.



(a) Amine (b) Protein

(c) Choline

(d) Carcinogenesis (e) Mutagenesis

Fig. 7. Areas under the ROCs for the Five Applications.



times more negative than positive examples. According to Figure 6(b), different-seeds-
theories is the best at classifying positive examples, but results are still poor.

If we look at the area under the ROC curves (Figure 7(b)), we confirm that different-
seeds-theories produces the best result, but areas are only slightly over 60%. All meth-
ods had a small improvement from the ensemble of size 1 to ensemble of size 25.

Accuracies for the dataset Choline are shown in Figure 4(c). Similarly to the dataset
Amine, Choline has a significant improvement in performance as we increase the en-
semble size, for all methods that combine single clauses. The gain in performance is
approximately 33% when we compare the accuracies of ensemble of size 1 with en-
semble of size 25. Once more, different-seeds-theories does not benefit much from
ensembles, although achieves slightly better performance than the other methods for
ensemble of size 25. From the methods that combine clauses, the two ones based on
boosting seem to have better behaviour with a linear gain in performance. Bagging and
different-seeds have better behaviour to small ensemble sizes, but start to flatten out
after ensemble of size 20. In the ROC curve (Figure 6(c)), different-seeds-theories is
the method that achieves better performance by correctly classifying 75% of the pos-
itive examples and misclassifying only 18% of the negatives, for ensemble of size 1.
Bagging performs a better classification of the negative examples for small ensemble
sizes, but it does not perform so well as different seeds at the positive examples. The
same happens to different-seeds, and pure boosting. Hybrid-boosting starts well for the
positive examples, but as we increase the ensemble size, it starts to loose performance.

Figure 7(c) shows the overall performance of all methods, for all ensemble sizes.
Different-seeds-theories slightly benefitted from ensembles, but seems to flatten out
after ensemble of size 10. All the other methods improve linearly as we increase the
ensemble size. Although different-seeds-theories, for ensemble of size 1, presents an
accuracy that is similar to the accuracies produced by the other ensemble methods, at
ensemble size 25, the time taken to obtain the first theory with different-seeds-theories
was much higher than the time taken, for training and ensemble generation, by the other
methods.

If we look at the average accuracies achieved by the Carcinogenesis application 4(d),
we can observe that all methods are behaving similarly. This somehow contradicts re-
sults in the literature that say that a fairly large search space is needed to obtain a
good clause. Different-seeds-theories exploited a very large search space and results
are somewhat similar to the ones produced when learning single clauses where a much
smaller search space was explored.

4.2 Quantitative Analysis

In the previous subsection we discussed about the quality of the implemented methods,
and concluded that different-seeds-theories produced the best results, although it did
not benefit much from the ensemble methods. However the difference between the best
accuracy of different-seeds-theories and the best accuracy of the other methods is only
0.02% (ref. accuracy of Amine, ensemble size 25, with bagging).

Table 2 shows that the price to pay to have this 0.02% better value is too high when
we look at the time spent by the ILP system to obtain the classifiers. This table shows
the execution times of the cross-validation for all applications (we are not counting the



time to generate the final classifier, through the voting mechanism. This would add a
proportional extra time to all slots of the table).

Table 2. Execution Times.

The datasets Amine and Protein were executed on the Pentium III, 750 MHz ma-
chine, Choline was executed on a Pentium III, 600 MHz, and the other datasets were
executed on the Pentium IV, 1.2 GHz.

In general, the fastest method was hybrid-boosting, while different-seeds-theories
is by far the worst of all methods taking more than 10 days to learn theories only for
fold 1 for our slowest applications, carcinogenesis and mutagenesis. These are the only
slots where we only count time for fold 1. All other slots show the learning times for all
folds.

A second disadvantage of a theory as a classifier, and of ensemble of theories, is its
complexity. Some of our results produced theories of size 70. Learning single clauses
and iterating 25 times, as we did in this work, produces classifiers whose length is at
most 25.

5 Discussion

The results shown before demonstrate several important facts in ILP learning:

– Ensembles are very powerful methods to obtain good accuracies in a small amount
of time;

– Boosting methods are effective on obtaining good quality classifiers, even when the
individual classifier is as weak as a single clause;

– Ensemble sizes greater than 25 may produce better accuracies for methods that
learn clauses;

– Learning theories can be unfeasible depending on the application, and learning
clauses can produce equal or better results;

– Theories do not benefit much from ensembles. We believe that this is because a
theory is already an ensemble;

– Very weak individual classifiers such as single clauses can benefit significantly from
ensembles, and producing a final classifier takes time that is several orders of mag-
nitude less than the time spent to learn theories;



– Clauses are classifiers simpler than theories. Consequently, an ensemble of clauses
is simpler than an ensemble of theories, which may help an expert to interpret the
results.

6 Conclusions and Future Work

This work presented an empirical study of ensemble methods, in the Inductive Logic
Programming setting. We chose to apply ensembles to two different individual classi-
fiers: (1) classifiers composed of one single clause, faster to obtain; and (2) classifiers
composed of one or more clauses (theory), that take a huge amount of time to obtain.
We applied ensemble methods to classifiers obtained with the Aleph system. We im-
plemented four different kinds of ensembles: different seeds (takes advantage of the
random choice of seed of Aleph to produce clauses or theories), bagging, and two kinds
of boosting. We tested five ILP applications already used in the literature.

Our results show that ensembles built from single clauses are more cost-effective
than ensembles built from theories. Clauses are much faster to be learned, and an en-
semble of clauses produces more readable classifiers.

As future work we intend to extend this methodology to other applications and
investigate other ensemble approaches. We also would like to study how boosting in-
corporated to the Aleph system would behave when compared to the experiments per-
formed here, without any modifications to the Aleph system.

References

1. E. Alpaydin. Multiple networks for function learning. In IEEE International Conference on
Neural Networks, pages 9–14, 1993.

2. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele. Ex-
ecuting query packs in ILP. In J. Cussens and A. Frisch, editors, Proceedings of the 10th
International Conference on Inductive Logic Programming, volume 1866 of Lecture Notes
in Artificial Intelligence, pages 60–77. Springer-Verlag, 2000.

3. H. Blockeel, B. Demoen, G. Janssens, H. Vandecasteele, and W. Van Laer. Two advanced
transformations for improving the efficiency of an ILP system. In J. Cussens and A. Frisch,
editors, Proceedings of the Work-in-Progress Track at the 10th International Conference on
Inductive Logic Programming, pages 43–59, 2000.

4. L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, UC-Berkeley,
Berkeley, CA, 1996.

5. L. Breiman. Stacked Regressions. Machine Learning, 24(1):49–64, 1996.
6. L. Dehaspe and L. De Raedt. Parallel inductive logic programming. In Proceedings of the

MLnet Familiarization Workshop on Statistics, Machine Learning and Knowledge Discovery
in Databases, 1995.

7. T. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli, editors, First
International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science,
pages 1–15. Springer-Verlag, 2000.

8. I. C. Dutra, D. Page, V. Santos Costa, J. Shavlik, and M. Waddell. Toward Automatic Man-
agement of Embarrassingly Parallel Applications. In Proceedings of the EUROPAR’03,
pages 509–516, Aug 2003. Klagenfurt, Austria.



9. I. C. Dutra, D. Page, and J. Shavlik V. Santos Costa. An empirical evaluation of bagging in
inductive logic programming. In Proceedings of the 12th International Conference on In-
ductive Logic Programming, Lecture Notes in Artificial Intelligence, pages 48–65. Springer-
Verlag, September 2002.

10. Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Proceedings of
the 14th National Conference on Artificial Intelligence, pages 148–156. Morgan Kaufman,
1996.

11. J. Graham, D. Page, and A. Wild. Parallel inductive logic programming. In Proceedings of
the Systems, Man, and Cybernetics Conference, 2000.

12. L. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 12(10):993–1001, October 1990.

13. S. Hoche and S. Wrobel. Relational learning using constrained confidence-rated boosting.
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