
Execution Context Migration with ZOS

Roberto F. Ligeiro Marques and Felipe M. G. França

Universidade Federal do Rio de Janeiro/COPPE
{ligeiro,felipe}@cos.ufrj.br

Vı́tor Santos Costa
University of Wisconsin-Madison and Universidade Federal do Rio de Janeiro/COPPE

vitor@biostat.wisc.edu

Abstract

It is nowadays common to find users that have to
use different machines at work, home, and travel.
Such users often spend significant amounts of
time sychronising and restarting their work en-
vironments. Often, they eventually have to cope
with inconsistent data at different locations. ZOS
(Zombie Operating System) proposes that users
should have a main execution context (oranima)
containing not only the user’s data, but also appli-
cation images. Ideally, theanimashould reside in
a small server, themaster. In ZOS, masters take
over other machines, thezombies, and then take
advantage of their resources, such as better CPU,
better interfaces, more disk, or extra connectiv-
ity. We describe our first implementation of ZOS,
which, we believe, demonstrates that the idea is
practical and worthwhile.

1 Introduction

It is nowadays common to find users with a per-
sonal computer at home, a workstation in the
workplace, a laptop to travel, and a palmtop for
light work. Such users often find synchronis-
ing data between different computers in very dif-
ferent working environments to be difficult and
error-prone. Moreover, quite often they will
spend significant amounts of time just restarting
their work environment, either because they are
using a new machine, or just because they may
have to restart several applications every time
they start up.

Arguably, the major problem is data synchro-
nisation. One problem about current tools [12,
10, 35, 8, 36, 25] is that, unfortunately, they are
not entirely transparent. One issue is just the de-
lay in synchronising through the network: hard-

pressed users will just go ahead and use their
applications, thus making synchronisation much
harder. A second issue is that such tools can be
used to break protection boundaries (often unwit-
tingly). An alternative which is gaining popu-
larity is to always rely on a central Internet con-
nected server [34, 26, 4, 30]. Note that such plat-
forms rely on excellent, always-on, connectivity.
Moreover, they do raise questions on privacy and
data-ownership issues.

Progress on component miniaturization,
namely the ever-shrinking RAM and Hard-Disk,
suggests a third alternative. Instead of synchro-
nising with huge servers or between peers, why
not make each user responsible for hers or his
own data? Users would have their own servers,
ideally small devices [37, 38], and these devices
should be able to transport the user’s whole
execution context. By execution context, we
mean not just the user’s data, but also application
state, so that users could quickly recover their
environment, instead of having to always go
through the painful application bootup cycle.

The ZOS project aims at reaching that goal.
ZOS (Zombie Operating System) is based on the
idea that a machine contains an user’s execution
context. We call such a machine themaster. Mas-
ters take over other machines, thezombies. Ex-
ecution on a zombie isdominatedby the mas-
ter: graphical applications will be a copy of what
is going on the master, whereas batch jobs may
temporarily migrate to a brawnier slave. Zombi-
fying a machine should be fully transparent. To
achieve these goals, we need to design a commu-
nication protocol, update applications and or op-
erating systems, while considering performance
and security issues.

Our goals are more ambitious than process mi-
gration tools, such as Condor [16], Nomad [5],



Libckpt [23] or Zap [19]. Migration is a part of
ZOS, as we shall discuss, but we fully want to du-
plicate the working environment from the main
server to the host. Last, ZOS is not a remote en-
vironment control system, such as VNC [27]. We
do not just want to peek over a remote machine,
we want to take advantage of the zombie’s abil-
ities, as much as we possibly can. On the other
hand, process migration and remote environment
control are a part of ZOS, and we shall try to use
currently available technology as much as possi-
ble.

Next, we describe ZOS in some detail. We first
introduce the major components of ZOS design.
Next, we describe our first prototype. We then
report some performance data, compare with re-
lated work, and present our conclusions.

2 The Design of ZOS

It should be by now clear that ZOS sees the world
as divided into two sorts of machines:

• Masters– machines that contain the user’s
environment, and that will take over other
machines. A master contains ananimawith
the user’s execution context.

• Zombies(or slaves– hosts that the mas-
ter needs to take over, either because they
have more computing power; or because
they have a faster connection; or because
they can access other data (e.g., work data);
or just because they have a better screen and
keyboard.

Figure 1: Zombie Operating System

In a nutshell, the key idea of ZOS is that a Mas-
ter spends some of its time scanning for machines
that it candominate, that is, that it can export
its anima to. We call such a processdiscovery.
During discovery, the master will extract infor-
mation from the possible zombie and decide on

the type of domination. We envisage two forms
of domination. Domination may becomplete,
where ZOS would fully take over the slave ma-
chine, exporting an operating system and restart-
ing the hardware; orpartial, where ZOS relies on
the slave’s operating environment.

At finding a zombie, ZOS initiates a two step
process:

1. The master sends to the zombie the relevant
components of its working environment. It
will share some of its storage, and it will
move some of its applications (tasks), in-
cluding their graphical interface.

2. The Master and the Zombie work together
in a step-by-step fashion. That means that
zombies operating on an application will
ripple through to the master (and vice-
versa). Such effects should not be immedi-
ate: the user should see the same context or
anima, but now available from different ma-
chines.

Clearly, security is a fundamental issue here.
At least, secure authentication must be used.
Cryptographic techniques would be required
in an unreliable world. Trust is an issue: can
we believe a zombie is really a zombie?

Last, notice that the roles of master and zom-
bie need not be hardwired, and that a master may
eventually have several available zombies.

The major questions in ZOS should by now be
clear:

1. What is and how to share theanima.

2. How to keep the user’s work safe.

3. How to guarantee acceptable performance,
as otherwise the system will be useless.

First, we focus on defining what is theanima.
Abstractly, aanima is static information, that is,
a partial mapping over a set of files containing
data, plus dynamic information, a set of tasks or
processes. Each task or process may be at a spe-
cific state which will include handles to the static
information, plus an interaction context, usually
represented as a set of windows over some win-
dowing system.

Both tasks and file systems issues are funda-
mental to ZOS. Tasks are particularly important
because they describe what we expect from such
a system. We have different expections for differ-
ent kind of tasks, say, we just want performance



Figure 2: ZOS Anima

from a batch task, but we want consistency and
interactiveness from a GUI application. We thus
believe that a one size fits all is not adequate to
represent all tasks in ZOS. Instead, we classify
tasks as being either:

• Shared – these are tasks that logically should
be executing both at the master and the zom-
bie(s). Examples include interactive appli-
cations, such as a terminal window, a web
browser, and office-like applications.

• Migrant – these are tasks whose home is at
the master, but who can temporarily migrate
to a zombie. A typical example would be
a background process which requires heavy
computational power. Such a process can
perform better at a zombie, but will go back
to the master when domination ends.

• Decoupled – these are processes that may
execute detached from the master, but that
communicate with the master and/or the
slaves if it is connected. One example would
be processes running on a grid.

• Kernel – tasks that manage ZOS or that
perform critical user operations, and which
should only run at the master.

Second, we discuss the major security prob-
lems in ZOS. Four issues are crucial:

• File Systems – one must check and con-
trol how files and directories are exported
and imported by master and by zombies.
The user should be able to define which
files/directories he want to export and in
what context.

• Communication Protocols – Data traveling
through the network should be protected.

• Trust – Is someone snooping our data? Are
we leaving something behind? Is a zombie
really a zombie? How much can we trust

a zombie, and if we cannot absolutely trust,
how to cope with it?

In general, we would start by assuming a context
where we can mostly trust. Ultimately, for ZOS
to be useful we must be able to work in situations
where both the communication medium and the
slave system will not be trustworthy.

Last, it comes without saying that acceptable
performance must be guaranteed, otherwise ZOS
would be worthless. As we shall see, shared tasks
are critical in this case, as they required most
communication.

A full implementation of ZOS thus
touches many research areas in Operating
System technology, such as migrating pro-
cesses [22] [19] [23], distributed computa-
tion [16] [1], trusted computing [20, 9]. In this
work, we report on an initial prototype. We
believe that the initial design demonstrate the
usefulness and practicality of the key concepts.
Throughout, we tried to use available technology
when possible. We believe that the paper’s
contributions are a proposal for a new approach
to managing user’s data and tasks, and the
demonstration of the proposal feasibility through
the implementation and evaluation of different
approaches in the prototype.

3 ZOS Architecture

Next, we discuss the major issues on the first ZOS
prototype. We focus on system organisation, ac-
tual implementation issues are presented in Sec-
tion 4.

ZOS assume several computing systems con-
nected through an underlying network. Systems
are classified as either being:

• Free, that is, they are neither masters nor
zombies.

• Connected - they are either masters or zom-
bies.



A free system may become a master and/or a
zombie depending on how the user have been the
host configured. Indeed, it is possible for the
same system to be both a zombie and a slave,
which has at least been useful for debugging pur-
poses.

Dominationis the process where a system be-
comes a zombie to some master. Dominations as-
sumes that systems are pre-configured to work as
masters and or zombies. As we have explained,
domination may be complete, or may only be par-
tial. This largely depends on the access permis-
sions that are activated in the zombie host, and on
the trust we have between machines.

Figure 3: Control Transparency

An implementation of ZOS may thus be di-
vided into two subsystems: one supports master
mode execution, and the other supports zombie
mode. Both subsystems have a similar structure,
as they must work together. They are organised
into four components, managing:

• Slave Discovery and Setup.

• File System.

• Process.

• Graphical Interface.

We shall assume that in all implementations of
ZOS communication between master and slave
subsystems must be encrypted. This is a mini-
mal security requirement. Table 1 shows these
modules graphically.

Table 1: ZOS Modules
Security Modules and Functions

Slave FS Zombie FS
Discovery Manager Listening Manager
Process GUI Process GUI
Manager Manager Manager Manager

Master Subsystem Zombie Subsystem

Zombie Management Slave Discovery and
Setup is performed by theSlaveDiscoverymaster
module and by theZombieListenzombie module.
SlaveDiscoverysearches the current local net-
work for possible target-zombies and performs
domination. TheZombieListenmodule runs on
systems that are predisposed to become zombies.
It receives domination requests from a master,
and authenticates them against a local database.
The two modules work together while the session
is active, and they are also the ones that actually
close down a domination.

Users eventually ask for termination. The re-
quest is sent to theSlaveDiscovery, which in turn
notifies theZombieListen. Each ZombieListen
carries shutdown activities at its node. These ac-
tivities follow three steps: closing down of each
other module, e.g., access to network file systems
should be disconnected, cleaning up, and session
detachment. Cleanup should guarantee that no
master data will remain in the zombie. In the
simplest case this would require removal of tem-
porary files and of or consistency checks. Se-
cure environments will require local file system
checking, memory checking, and a machine re-
boot.

File System Management We use distributed
file systems so that users can export some points
in their file system to slaves. Users should also
be able to use the zombie’s file system, so that the
master can take advantage of extra disk space or
of better connectivity. The File System Manager
is responsible to start sharing at domination, to
disable sharing at disconnection, and to control
the actual amount of sharing that goes on.

We would like the file system manager to be
very fine-grained. An user may have directories
which should not be exportable to some zombies,
but which may be exportable to others. Some
user directories might never be exportable. It may
also be undesirable to allow some information
to get in the master, e.g., confidential work data
should be removed from the system at leaving the
work environment.

The file system manager also serves ZOS by
providing shared storage for system state.

Process Management Every ZOS aware pro-
cess must have a type, which indicates how to
perform during domination. As previously dis-
cussed, ZOS processes will be shared, migrant,
decoupled or kernel. In this prototype we shall
not discuss decoupled processes, as they are not



a core issue in ZOS. Kernel processes include all
ZOS tasks that run in the master.

Shared processes must be copied into the zom-
bie and must be synchronised during domination.
Migrant processes must be transferred to zom-
bie and return at disconnection. Decoupled pro-
cesses must be informed that they can commu-
nicate with the zombie, and must be allowed to
upload to the slave.

GUI Management Maybe one of the hardest
issues is how to keep the graphical interface of
master and zombies synchronised. Input devices
at the slave (namely mouse and keyboard) must
act as if placed at the master. Shared processes
must display consistently between master and
slave. This is the major issue we discuss in our
prototype.

4 The First ZOS Prototype

A first prototype for ZOS has been built based
on GNU/Linux Red Hat9, kernel 2.4.20. A set
of processes/threads controls each ZOS modules
presented in the previous section. Figures 4 and
5 illustrates the basic structure of the prototype.

Figure 4: Master Modules

Figure 5: Zombie Modules

Slave discovery, domain management
and file system management is carried out
by the zdiscovery application. The
zombielisten daemon deals with the
identification of zombie hosts, user authentica-
tion and the management of the slave file system.
Process management is performed byzdaemon
in the master hosts, and byzslave in the
zombies. The master also requiresctrlgui
to perform GUI control. Otherwise, the current
prototype relies on the X windowing system [28].

4.1 Remote Sessions

The main objective of ZOS is to allow one to re-
open an execution context in a remote host ma-
chine which would is not in use by another user.
This way, our first goal is to be to able to open
an execution context, e.g., an ongoing desktop,
over a previously established working environ-
ment. To our knowledge, the best support for
functionality close to our goals is available from
the Gnometoolkit. More specifically, we rely
on Gnome’sgdmflexiserver [21]. This ap-
plication allows one to open an user session as
a new window over an already opened session.
gdmflexiserver itself relies on the X win-
dowsXnest service [14].

We modifiedgdmflexiserver to support
the ZOS’ authentication protocol. Once a user
gets authenticated by ZOS (how this is performed
will be shown in detail in the next section),
gdmflexiserver receives a request from
the correspondingzombielisten daemon and
immediately opens a session. Furthermore,
once the graphical session has been opened,
gdmflexiserver informs thezslave dae-
mon to request migration for the execution con-
text.

4.2 Zombie possession protocol -
ZAP and ZIP

Migration of a execution environment is carried
out in two distinct phases performed byZAP –
zombie attraction protocol –and byZIP – zombie
install protocol. The first phase is actually the
default state for a master. In this phase, a master
is on the lookout for target devices/machines until
an initial contact with such devices is done. The
second phase consists of remote session opening
and transfer of the execution context.

The ZAP Protocol Migration requires finding
target slave hosts throughout the network. To
do so we trust thezdiscovery application.
This application currently sends broadcast pack-
ets through the local network. Each packet con-
tains user information, device information (host-
name), and also information about the intended
level of control, whetherzcompleteor zpartial.
It is up to the user to request the level of con-
trol wanted. These configurations are kept in a
text file. Applicationzdiscovery provides a
graphical user interface to change it but the user
can also edit it using a generic text editor.



Machines configured as possible slaves snoop
the network looking forzdetectpackets. This
is performed by runningzombielisten as a
daemon. On receiving azdetectpacket, a ma-
chine starts the authentication process based on
the<user,hostname,control> tuple. The
current prototype uses Unix style authentifica-
tion. Then, in case user/password gets authen-
ticated, one checks if such user is enabled for
the level of control intended for that host. File
zpasswdcontains such information, which is or-
ganized as<user:hostname:control> . If
a valid user/host asks for complete control and
has not that status in that particular host, partial
control is ensured as default.

In order to save time due to the pre-
emptive nature of the authentication process,
module zombielisten caches a list of
<user,hostname,control> tuples from
previous uses, so that repeated tuples do not get
through the full authentication process twice. In
order to allow that new configurations of the
passwdandzpasswdfiles update tuples already
authenticated, thezombielisten module pe-
riodically refreshes the tuple list.

After user authentication,zombielisten
sends aslavedetectedpacket to the master host
containing the slave description, i.e., machine
user, hardware description, and hostname. The
zdiscovery interface then presents users with
a list of available slaves. Right now, it is up to
users to decide on what set (one or more) of hosts
to dominate. Once a host is chosen for domina-
tion, zdiscovery sends aznotifypacket to the
target host, triggering the machine submission. In
case the target slave machine is still available, a
znotifyok packet is returned back to the master
and the domination process starts.

File System The file system mounting is the
first step of the domination process. To do
so, zdiscovery sends anfs mountpacket to
zombielisten . This packet informs which
points of the master’s file system should be
mounted in the slave host. The export/mounting
of the file system is realized by thezdiscov-
ery/zombielistenapplications through the use of
primitives offered by the NFS file system [31].
We currently rely on ZAP for host and user au-
thentification. The users also have the choice
of encrypting NFS traffic by using SSH tunnels
(IPSec will be available in the future).

Independently of the control level established
(complete or partial) at a given domination pro-

cess, at least one point of the zombie’s (master)
file system – by default/mnt/zos/ – should
be exported and mounted in the slave host, where
the user files in use are stored. The user can spec-
ify other points of the file system to be shared
throughzdiscovery .

Figure 6: ZIP and ZAP Protocols

Once the file systems are mounted,
zombielisten starts theXnest application
authenticated by the user sent byzdiscovery .
Next, zdiscovery notifies zdaemon about
the hostname of the slave machine. Then,
zdaemon andzslave start copying the user’s
working environment in the target slave host,
in such a way that the machines involved can
guarantee consistency.

4.3 Process Management

Process control is arguably the most critical area
of ZOS. As we explained above, we focus on
shared and migrating processes. Process man-
agement is carried out by bothzdaemon at the
master, and byzslave , at the zombie slave.

Shared and migrating processes originally exe-
cute in the master host. At the beginning of zom-
bie possession they should be replicated and/or
migrated to the zombie host.

Every shared or migrating process must be
registered with zdaemon first. To do so,
we link such processes to a process loader,
the preloader . In order to initiate a pro-
cess,preloader first registers the process with
zdaemon : given the process’ name and type
thepreloader initiates it with the appropriate
role and notifieszdaemon about the new pro-
cess. Thezdaemon daemon thus keeps a list of
processes executing in the master, including pro-
cesses’ type – shared or migrating – and state –
exported or not exported.



Upon receiving a message about the start of
zombie possession,zdaemon establishes com-
munication with thezslave daemon at zombie.
The first step is to send a list of participating pro-
cesses, theZDAEMONLIST. All shared processes
are exported to the slave host. Migrating pro-
cesses are just exported once, currently to the first
dominated slave. The slave’szslave , upon re-
ceivingZDAEMONLIST, dispatches each process
according to their respective role.

Shared processes initiated during a zombie
possession are immediately informed tozslave
by zdaemon (ZDAEMONAPPENDLIST), after
registration of the corresponding application. By
the end of a domination,zslave takes charge
of redirect migrating processes which could have
been sent to the slave host (and that are still run-
ning) back to the zombie host.

4.4 Shared Processes

Shared Processes are available both at at the mas-
ter and at the zombie: updates to the state of a
shared process in either machine are recognised
in both processes. A typical example would be a
shared text editor. Typing at the slave should be
immediately visible at the master, and vice-versa.
Domination thus must guarantee that the editor is
open at both hosts and that all events recognised
by each process must be recognised by the other
(e.g., keyboard, mouse, and so on).

Next we report on our experiments with the ex-
ecution of shared processes. We followed two
different approaches:

1. Port the application to be ZOS-aware: that
is, actually run two processes and make
them keep in synch.

2. Execute the application in a single machine
but under a single GUI manager, so that it
appears as if executing on the slave.

The first approach is closest to our goal in
ZOS. Namely, it allows users to take advantage
of the extra capabilities of the zombie slave, say
more memory for larger spreadsheet calculations
or access to private networks. On the other hand,
it requires considerable effort to adapt the appli-
cation to our needs. The major issues are ap-
plication startup and synchronisation. Applica-
tion startup is hard because we need to start the
application on the zombie with a very accurate
simulation of the master. Synchronisation is sur-
prisingly simpler, as we can always manage the

streams for both slave and master so that they re-
ceive much the same input.

The second approach can take an application
as is. Essentially, we always run the application
on the master, but we allow its interface to be
exported to the zombie slave. We have used the
well-known VNC system [27] to implement this
approach. In this case we do provide some of
the advantages of ZOS, such as quick setup, but
we cannot take advantage of all resources avail-
able at the master. We experimented the first ap-
proach withgnome-terminal. This is a non-trivial
application with a limited (but existing) graphical
interface. We experimented the second approach
using VNC.

4.4.1 Truly Shared Processes: Gnome-
terminal

An important case of shared processes are termi-
nals. These processes receive text input and out-
put the result of system commands. They thus
reflect the state of the machine they are executing
on. In this case, it makes sense that commands
typed at the zombie will execute at the master.
Thus a shared process will give you the status of
the master, and never the slave (of course, users
are still allowed to have local processes at the
slave).

The gnome-terminal application is the major
terminal manager for the well-known Gnome
toolkit. Although a text-based application, it
does supportxmouseevents and it does manage a
graphical context, albeit limited. We define three
roles for this application: themaster, the slave,
and theinslave. Themasterrole corresponds to
a shared process launched at the master. Given
the flag--szos master , gnome-terminal will
take this role. In this case, the first step is to con-
tact thezdaemon telling him that there is a new
gnome-terminal around, and that this new pro-
cess must be migrated at domination. Gnome-
terminal does not require pre-loading: the appli-
cation talks directly withzdaemon .

zdaemon next registers the new process and
sends extra parameters for execution. The param-
eters are: a place to store data to be exported at
domination, a place to store the terminal’sdiff,
that is, all input received after domination started
but before the slave is actually executing, and
pipes to control the application streams. In the
case of gnome-terminal the data to export at dom-
ination is basically a buffer with the terminal’s
history (such buffers may in fact grow to be quite



large).
At domination,zdaemon gives the zombie’s

zslave a list with shared processes. The list
contains the parameters required to execute the
slave’s gnome terminal, that is--szos slave ,
plus handles to the remote terminals connected
to the zombie’s terminal via the history, diff and
pipes. We currently use NFS for this purpose.

The interaction during domination follows the
following algorithm:

• The slave opens the history and sets up a
matching display

• A thread in gnome-terminal will periodi-
cally check the diff, send it out to its display,
and clean it up. Master and slaves synchro-
nise through a lock.

• A secondthread at the slave periodically
reads an input buffer and sends it out to the
pipe. Athreadin the master gnome-terminal
in turn reads and empties the remote buffer,
executing corresponding commands.

Figure 7: Shared Processes: Gnome-terminal

New ZOS gnome-terminals may be created at
any time, even during dominion. They are imme-
diately exported to the slave.

The last role that gnome-terminals can play is
inslave. The inslaveoption is intended to cover
the alternative of opening a gnome-terminal in
the slave during a domination. In this case, a
request for opening a new gnome-terminal must
be sent tozslave which, by its turn, will redi-
rect the request tozdaemon . From this point on,
zdaemon will start the installation of the new
terminal as usual.

4.4.2 Virtually Shared Processes

Our second approach requires much less effort:
we mainly guarantee that an application at the

master can interact with different devices at dif-
ferent hosts. This particular problem has been
the subject of significant effort, and we shall take
advantage of previous work for the VNC sys-
tem [27], designed to allow remote control of a
host. We briefly discuss the key ideas in VNC,
and then we explain how to use them in ZOS.

The key idea is to use an hidden display for
VNC. Virtually shared applications work with
this display, which is then distributed by the VNC
client,vncviewer, to other machines.

In ZOS, applications are configured as virtu-
ally shared through the GUI interface, or through
directly editing a configuration file. Virtually
shared applications must use the services of the
preloader . This application will set up a VNC
file saying that the application must be started by
a new VNC server, and that it will be shared by
several VNC clients. When the process starts, the
preloader starts a new VNC server for this spe-
cific application and notifies ZOS about process
startup and the server’s display. Note that each
application will have its own VNC server, and
thus its own virtual display.

To make the application visible in the master
host,zdaemon just has to start up a VNC client
using the server given by the preloader. The ap-
plication is now available to the server’s display.
The process is repeated for every zombie. At
dominationzdaemon sends out a list of avail-
able VNC servers, andzslave starts up a VNC
client for each application. Each process thus has
one localvncviewerclient at the master, andn re-
mote clients for each zombie, wheren takes the
number of slave hosts.

Figure 8: Shared Processes: VNC

4.5 Migrating Processes

Migratory processes are those that move to the
zombie at domination. When domination ends



they would return back to the host. Example of
such processes include not only computationally
intensive applications, but also applications that
may benefit from a zombie’s larger bandwidth. In
our specific case a motivation would be machine
learning tasks that would run slow on a laptop,
but that could take advantage of larger machines,
even if only temporarily.

Several approaches to migrating processes are
available in the literature. EPCKPT [22] does
not require recompilation of applications, but it
does require changes to the operating system ker-
nel. Alternatively, Condor [16], libckpt [23], and
the Dynamite chekpointer [11] do not require op-
erating systems updates, but force recompilation
against a library. Zap [19] is a particularly inter-
esting approach in that it does not require kernel
or application modification.

In our current prototype we use the Dynamite
checkpointer. We use Dynamite because it is well
supported and because it works with our Linux
setup. Dynaminate uses the signalUSR1 to in-
form processes that they must be checkpointed.
At receiving the signals, processes will die stor-
ing an executable image in disk. To continue the
process it is sufficient to execute the image on (as
long as one uses the same OS and Kernel ver-
sion).

We use this mechanism as follows: at domina-
tion, zdaemon sends each migrating processes
receive aUSR1signal, and the processes dump
their image on a temporary directory. The im-
ages are then collected and executed byzslave .
The process is reversed when domination ends.
zslave will send aUSR1to the processes, and
zdaemon collects their images

4.6 GUI Control

Managing the Graphical User Interface is fun-
damental in ZOS. Thectrlgui daemon per-
forms this task.ctrlgui is activated from the
zdiscovery manager, and it is responsible for
guaranteeing that dominated hosts have their In-
put/Output synchronised. The key idea is that all
events at the master host are directed to the zom-
bie host. Therefore, all input to ZOS-aware ap-
plications is at the slave: the user may keep on
using the master as a workstation. This avoids in-
put synchronisation issues between different ma-
chines. Note that all events directed from a mas-
ter host to a zombie host are restricted to the
Xnest session opened by ZOS. This limits the
actions of a ZOS user over a dominated session

to his own environment.
We rely on Xwindows functionality to perform

this task. Namely we use the libraries Xlib e
Xtest [33, 29, 7, 17]. These libraries take advan-
tage of the fact that all communication with the
Xwindows server is through streams, so it is rela-
tively straightforward to direct events elsewhere,
and to receive events from other sources.

Figure 9: X Window System

5 Results

To evaluate whether ZOS would be feasible,
we measured ZOS performance under sever dif-
ference performance loads. Results were ob-
tained in a the Laboratório de Arquiteturas e Mi-
croeletr̂onica (LAM). We used as master a note-
book AMD Athlon XP 2.6 GHz with 512 MB
main memory. The zombie was a desktop Pen-
tium 4 2.4 GHz with 512 MB main memory. The
network is a relatively slow switched 10 Mbps
Ethernet.

We first measure the amount of time it takes
to migrate an environment from master to zom-
bie. The total time can be divided into three com-
ponents: (i) zip/zap time,zt consists of user au-
thentification and setting up the file systems; (ii)
graphical setup time,xt, consists of the time re-
quired to set up the zombie’s graphical interface,
in this implementation usingXnest , and last;
(iii) we consider the amount of timept we need
to migrate processes in the dominion. The total
time tm given for setting up a zombie is thus:

tm = zt + xt +
n∑

k=0

pt

Wheren is the total number of processes in the
domain. This number thus ranges over all shared



and migrant processes. We would expectzt to
be independent ofn, depending instead on net-
work load and on the total number of file system
points to export. We also observe that in the cur-
rent prototype processes may only migrate after
the graphical environment is setup.

We estimatext, the total time spent setting up
the zombie’s graphical environment to be con-
stant. To obtain an actual value we instrumented
the applicationgdmflexserver to report on
how much time it takes to create a graphical en-
vironment. Our results indicate total time to be
close to 10 seconds. In real life,xt varies with
different machines, and with different environ-
ments.

Our first results are thus obtained by experi-
menting with the migration of shared processes.
The number of shared processes ranges from1 to
16. Figure 10 presents the results.

Figure 10: Migration Time (time x no. processes)

Figure 10 shows migration times around 20
seconds, which is observable but still much less
than what would be required to manually setup
an environment. Unsurprisingly,xt is the ma-
jor contributor to system setup time. In contrast,
zip/zapping time is almost negligible. The system
copes well with a significant increase in shared
processes: going from1 to 16 processes results
in a two second slowdown, on a relatively slow
network.

The second experiment consists of migratory
processes. Again we experimented with up to 16
processes. Figure 11 shows the actual results.

The results are similar to the first experiment.
Times are still dominated byxt. We also re-
mark that the actual overhead of sending migra-
tory grows a bit faster, as we must send the full
process.

The last experiment shows performance with
an equal mix of shared and migratory processes,

Figure 11: Migration Time (time x no. processes)

ranging from2 up to 16 processes. Figure 12
shows the results. Actual overhead is dominated
by xt, and growth is dominated by the migratory
processes.

Figure 12: Migration Time (time x no. processes)

The time to shut-down a slave is similar to
the time to create/dominate a new one. As ex-
pected, process migration overhead is similar in
both directions. However, a small difference in
time, favouring master-to-slave process migra-
tion times, could be observed due to the way the
file system mounting is done, i.e., in the master-
to-slave migration case the copying of a process
image is performed locally and then exported to
the slave. On the other hand, in the case of pro-
cesses returning from slaves to the master, the
copying of a process image is done in a remote
machine, i.e., in the master file system.

6 Conclusions and Future Work

We propose a system that can distribute an user’s
computing environment to other machines. Our
motivation was the authors’ own problems in try-
ing to use several computing platforms with dif-



ferent characteristics and have the same envi-
ronment throughout. What happens when one
started work on the laptop and the plane is land-
ing? What happens when we are writing a
project, and the bell rings to fetch the kids from
school? The key idea of ZOS is that there is
an user environment which we should be able to
move around. Ultimately, one should be able to
take advantage of progress in the miniaturization
of storage to contain such storage in a very small
device.

To our knowledge, Intel’s personal server
project [37, 38] is closest to our work. We be-
lieve our goals are more ambitious: we intend
to move the whole environment to the personal
server, whereas their project considers other ma-
chines as mainly Input/Output devices. A dif-
ferent approach to our problem is to have all
storage in the Internet, say as in the Oceanstore
project [26, 4, 30]. We do not feel comfortable
with such approaches for personal data.

The whole ZOS project is rather ambicious.
Our approach was to first implement really essen-
tial functionality, that is, process management,
throughout using available tools. Our hope is that
such a prototype can be useful by itself and to
motivate future work. This has led us to focus
on shared processes, namely interactive applica-
tions. Interactive applications are a hard prob-
lem, but our experiments with two different ap-
proaches show that our ideas are practical, and
relevant to users.

In the continuation, we will focus on three
major issues: security, improved file systems,
and improved sharing operations. Next, we dis-
cuss each one briefly, starting with security. Ul-
timately, taking over a machine requires some
amount of trust from both sides. Security issues
cut through all this work, but in the case of the
master, three issues are paramount: communica-
tion should not be tapped; data should not remain
on the machine; and, the slave should be what it
says it is. Encrypting communication is a well
known problem, and we can take advantage of
well-known technology ranging from tunneling
to IPSec. We would like to require for data not
to remain in the zombie slave, or if it does to be
unreadable. Progress in this component will be
based on the huge amount of work on encrypting
file systems [39, 6]. More recently, there is inter-
esting work on encrypting memory itself [24].

Regarding file system issues, our main goal
will be to allow users to fine tune how much and
what they want to export. This feature will re-

quire a grammar and a graphical interface. Im-
plementation should not be too difficult: we can
use annotations over standard file systems such
as EXT2 [2], or we can try to develop a kind of
translucent file system.

Improving process migration would include
not just to experiment other alternatives to check-
pointing, but how to solve some questions con-
cerning when and which processes should be mi-
grated, including the exchange of previously mi-
grated processes among slaves. This problem re-
lates to the issues discussed in Agile [18], which
proposes a dynamic approach to the adaptation of
applications (in terms of resource usage) running
in mobile devices. Regarding process syncrhon-
isation, our current work is to try to use an extra
layer over Input/Output so that applications can
actually run on the slave with little change. This
work will expandctrgui. We have so far avoided
changing OS functionality. Our more ambicious
goals are to be able to copy masters to machines
where one may not trust the available Operating
System. One such approach would be to simply
copy the whole master’s OS, as long as one can
trust the underlying hardware [15]. A middle-of-
the road alternative would be to extend work on
the migration of virtual machines [32], although
this would also require trusting on the Virtual
Machine Manager [13, 3].

7 Availability

Complete information about ZOS, including the
sources for the first ZOS prototype is available
from the ZOS’ home page:

http://www.cos.ufrj.br/˜ligeiro/zos

Acknowledgments

The authors would like to thank Edil Fernandes
for kindly allowing access to the LAM’s compu-
tational resources. Roberto F. Ligeiro Marques
was supported by a CNPq grant. We also want to
thank Anderson Borges for some discussions in
the early design of ZOS.

References

[1] Amon Barak and Oren LaZadan. The mosix
multicomputer operating system for high perfor-
mance computing.Journal of Future Generation
of Computer Systems, 3(1), March 1998.



[2] Rémy Card, Theodore Ts’o, and Stephen
Tweedie. Design and implementa-
tion of the second extended filesystem.
http://e2fsprogs.sourceforge.net/ext2intro.html.

[3] Grzegorz Czajkowski, Laurent Daynès, and Ben
Titzer. A multi-user virtual machine. InProceed-
ings of USENIX Annual Technical Conference,
June 2003.

[4] Frank Dabek, M. Frans Kaashoek, David Karger,
Robert Morris, and Ion Stoica. Wide-area coop-
erative storage with cfs. InProceedings of the
eighteenth ACM Sysmposium on Operating Sys-
tems Principles, 2001.

[5] Eduardo Souza de Albuquerque Pinheiro. No-
mad: Um sistema operacional eficiente para
clusters de uni e multiprocessadores. Master’s
thesis, Federal University of Rio de Janeiro -
UFRJ/COPPE, 1999.

[6] Roland C. Dowdeswell and John Loannidis. The
cryptographic disk driver. InProceedings of
the USENIX 2003 Annual Technical Conference,
FREENIX Track, pages 179–186, June 2003.

[7] Kieron Drake.XTest: Extention Protocol. X Con-
sortium Standard.

[8] Dane Dwyer and Vaduvur Bharghavan. A
mobility-aware file system for partially con-
nected operation. Operating System Review,
31(1), January 1997.

[9] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel
Rosenblum, and Dan Boneh. Terra: A virtual
machine-based platform for trusted computing.
In Proceedings of the 19th ACM Sysmposium on
Operating Systems Principles, pages 193–206,
October 2003.

[10] P. Honeyman and L.B. Huston. Comunications
and consistency in mobile file system. Techni-
cal Report CITI 95-11, Center for Information
Technology Integration - University of Michigan,
1995.

[11] K. A. Iskra, G. D. van Albada, and P. M. A. Sloot.
The implementation of dynamite - an enviroment
fot migrating pvm tasks. Technical report, Infor-
matics Institute, Universiteit van Amsterdam.

[12] Anthony D. Joseph, Alan F. deLespinasse,
Joshua A. Tauber, David K. Gifford, and
M. Frans Kaashoek. Rover: A toolkit for mo-
bile information acess. InProceedings of the
Fifteenth ACM Sysposium on Operating Systems
Principles, 1995.

[13] Samuel T. King, George W. Dunlap, and Peter-
Peter M. Chen. Operating system support for vir-
tual machines. InProceedings of USENIX An-
nual Technical Conference, June 2003.

[14] George Lebl.Using and Managing GDM.

[15] David Lie, Chandramohan A. Thekkath, and
Mark Horowitz. Implementing an untrusted oper-
ating system on trusted hardware. InProceedings
of the 19th ACM Sysmposium on Operating Sys-
tems Principles, pages 178–192, October 2003.

[16] Michael Litzkow and Marvin Solomon. Support-
ing checkpointing and process migration outside
the unix kernel. InProceedings of USENIX Win-
ter conference, 1992.

[17] George Sachs Mark Patrick.X Input Device Ex-
tention Library.

[18] Brian D. Noble, M. Satyanarayanan, Dushyanth
Narayanan, James Eric Tilton, Jason Flinn, and
Kevin R. Walker. Agile application-aware adap-
tation for mobility. InProceedings of 16th ACM
Sysmposium on Operating Systems Principles,
October 1997.

[19] Steven Osman, Dinesh Subhraveti, Gong Su, and
Jason Nieh. The design and implementation of
zap: A system for migrating computing envi-
ronments. InProceedings of 5th Symposium on
Operating Systems Design and Implementation
(OSDI’02). USENIX, December 2002.

[20] David S. Peterson, Matt Bishop, and Raju Padey.
A flexible contaiment for execution of untrusted
code. InProceedings of 11th USENIX Security
Symposium, 2002.

[21] Martin K. Peterson. Gnome Display Manager
Reference Manual.

[22] Eduardo Pinheiro. Truly-transparent checkpointg
of parallel applications. Technical report, Fed-
eral University of Rio de Janeiro - UFRJ/COPPE,
1999.

[23] James S. Plank, Micah Beck, and Gerry Kings-
ley. Libckpt: Transparent chekpointing under
unix. In Proceedings of USENIX Winter confer-
ence, 1995.

[24] Niels Provos. Encrypting virtual memory. In
Proceedings of 9th USENIX Security Symposium,
2000.

[25] David Rasch, Randal Burns, and Johns. In-place
rsync: File synchronization for mobile and wire-
less devices. InProceedings of the USENIX 2003
Annual Technical Conference, FREENIX Track,
pages 91–100, June 2003.

[26] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim
Weathrspoon, Ben Zhao, and John Kubiatowicz.
Pond: the oceanstore prototype. InProceedings
of USENIX Conference on File and Storage Tech-
nologies, 2003.

[27] Tristan Richardson, Quentin Stafford-Fraser,
Kenneth R. Wood, and Andy Hopper. Virtual
network computing. IEEE Internet Computing,
2, January/February 1998.



[28] James Gettys Robert W. Sheifler.X Window Sys-
tem: The Complete Reference to Xlib, X Protocol,
ICCCM, XLFD. X Consortium Standard.

[29] James Gettys Robert W. Sheifler.Xlib: C Lan-
guage X interface. X Consortium Standard.

[30] A. Rowstron and P. Druschel. Past: A large-
scale, persistent peer-to-peer storage utility. In
Proceedings of HotOS VIII, November 2001.

[31] Russel, Sandberg David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon. Design and
implementation of the sun network filesystem.
In Proceedings of USENIX Conference, 1985.

[32] Constantine P. Sapuntzakis, Ramesh Chandra,
Ben Pfaff, Jim Chow, Monica, S. Lam, and
Mendel Rosenblum. Optimizing the migration
of virtual computers. InProceedings of 5th
Symposium on Operating Systems Design and
Implementation (OSDI’02). USENIX, December
2002.

[33] Robert W. Sheifler.X Window System Protocol.
X Consortium Standard.

[34] Edward Swierk, Emre Kiciman, Vince Laviano,
and Mary Baker. The roma personal metadata
service. InProceedings of the Third IEEE Work-
shop on Mobile Computing Systems, 2000.

[35] Carl Tait, Hui Lei, Swarup Acharya, and Henry
Chang. Intelligent file hoarding for mobile com-
puters. InACM Conference on Mobile Comput-
ing and Networking (Mobicom’95), 1995.

[36] A. Tridgell and P. Mackerras. The rsync
algorithm. Technical Report TR-CS-96-
05, Australian National University, De-
partment of Computer Science, June 1996.
(http://rsync.samba.org).

[37] Roy Want, Trevor Pering, Gunner Danneels,
Muthu Kumar, Murali Sundar, and John Light.
The personal server: Changing the way we think
about ubiquitous computing. InProceedings of
Ubicomp 2002: 4th International Conference on
Ubiquitous Computing, volume 2498 ofLNCS,
pages 194–209, Gotebog, Sweden, September
2003. Springer-Verlag.

[38] Roy Want, Trevor Pering, James Kardach, and
Graham Kirby. The personal server: The cen-
ter of your ubiquitous world. Technical report,
2003.

[39] Charles P. Wright, Michael C. Martino, and Erez
Zadok. Ncryptfs: A secure and convenient
cryptographic file system. InProceedings of
USENIX Annual Technical Conference. in pro-
ceedings of USENIX Annual Technical Confer-
ence, June 2003.


