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Abstract. The decision problem concurrency (con) is stated as follows:
Given a graph G = (V, E), and a pair of positive integers m and p, decide
whether there exists an acyclic orientation ω over E associated to an amount
of concurrency γ(ω) ≥ m

p
, where m is the number of times every vertex of V

becomes a sink inside a period of lenght p repeated acyclic orientations resulting
from the graph dynamics known as scheduling by edge reversal (SER). Barbosa
and Gafni have shown that con is NP-complete for graphs in general based on
an instance with an universal vertex. It is established here the NP-completeness
of con for graphs with maximum degree 4. In addition, it is shown, via an
L-reduction, that the well-known negative result of the non-approximability

of colouring within n
1

7
−ε, unless P=NP, is also valid for an optimisation

equivalent version of con. Moreover, a 1

2
-approximation algorithm for finding

acyclic orientations in graphs with maximum degree 4 is given and, more
generally, given a graph G with maximum degree ∆, it is shown how to design
a polynomial time

(

2

∆

)

-approximation.

Keywords: complexity classes; computational difficulty of problems; NP-

complete; L-reduction; concurrency; distributed algorithms; approximation
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1 Introduction

A natural question when studying the complexity of a graph-theoretical decision
problem is to determine for which special graph classes and upper bounds on
the vertex degrees the problem remains NP-complete and, ideally, provide a
polynomial approximation algorithm for it. The decision problem considered in
this work is concurrency (con), which is stated as follows: Given a graph
G = (V, E) and a pair of positive integers m and p, decide whether there exists
an acyclic orientation ω over E, from which a scheduling by edge reversal (SER)
graph dynamics, associated to an amount of concurrency γ(ω) ≥ m

p
, starts from.

G = (V, E), or simply G, represents a distributed system where processing
nodes, represented by V , operate upon scarce atomic shared resources in a mu-
tual exclusion style. In order to complete the representation of this neighborhood-
constrained system, E is defined by the set of edges resulting from representing
each atomic shared resource by a clique in G. SER works in the following way:
all (and only) sink vertices in ω reverse the orientation of their edges, each one
becoming a source. This ensures that neighboring nodes in the target distributed
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system cannot operate simultaneously upon shared resources. Another acyclic
orientation ω’ is formed and it is easy to see that a new set of sinks will be
enabled to operate in the next step. SER consists of such consecutive acyclic
orientations being defined over G through time. Considering G finite and, con-
sequently, a finite number of acyclic orientations over G, eventually a repetition,
i.e., a period of lenght p, will occur. Another interesting property of SER lies
in the fact that, inside any given period, each vertex operates, i.e., becomes a
sink, the same number m of times [3]. Hence, another important aspect of the
SER dynamics is on the definition of a distributed scheduling scheme ensuring
fairness in the operation among all processing elements of the target system.

Depending on the initial acyclic orientation ω over a given graph G, different
periods can be reached [2] through the SER dynamics. So, different combinations
of m and p can exist for a given graph G so that Barbosa and Gafni defined the
measure m

p
as the concurrency γ(ω) associated to the orientation ω. Barbosa and

Gafni showed that con is a NP-complete problem for graphs in general reducing
con from colouring [3]. That transformation used an instance of con which
had a graph G = (V, E) with maximum degree ∆ = n − 1, where n = |V |.

In the present work, it is proven that con remains NP-complete restricted
to graphs with maximum degree 4. This NP-completeness result is obtained
by first showing, in Section 2, the NP-completeness of a version of the decision
problem not all equal 3sat (naeq3sat), where each variable occurs exactly
three times, each literal occurs, and each sized two clause has at least one literal
which occurs once. An instance I = (U, C) with set of variables U and collection
of clauses C of this version of (naeq3sat) is used to obtain, in polynomial time,
an instance of con G = (V, E) with maximum degree 4 and the pair of positive
integers m = 1 and p = 3, such that I is satisfiable if and only if G allows an
acyclic orientation of E associated to an amount of concurrency γ = m

p
.

Bellare et al. [4] showed that minimum graph colouring for general graphs

is not approximable within n
1

7
−ε, for any ε > 0. On the other hand, a result of

Halldórsson [7] establishes that minimum graph colouring for general graphs

is approximable within O(n (log log n)2

(log n)3 ). In Section 3, Bellare’s negative result for

minimum graph colouring is extended to con via an L-reduction.

Up to the present date, no approximation algorithm for finding maximum
concurrency in general graphs is known. By restricting the universe to connected
graphs with maximum degree 4, Section 4 introduces a 1

2 -approximation algo-
rithm for finding maximum concurrency in this class of graphs. Actually, this
algorithm has as input a connected graph G = (V, E) with maximum degree ∆
and outputs an acyclic orientation leading to concurrency 2

∆
.

1.1 Defining problems

We describe next all decision and optimisation problems adressed in this work.

1. con - concurrency (decision)
instance: Graph G = (V, E) and positive integers m and p.
question: Is there an acyclic orientation over E with concurrency γ(ω) ≥ m

p
?



2. maxcon - maximum concurrency (optimisation)
instance: Graph G = (V, E).
goal: Find an acyclic orientation ω over E which maximizes the concurrency
γ(ω) = m

p
.

3. min−1con - minimum of the inverse of the concurrency (optimisa-
tion)
instance: Graph G = (V, E).
goal: Find an acyclic orientation ω over E which minimizes the value p

m
.

4. naeq3sat - not all equal 3 sat (decision)
instance: Set U of variables, collection C of clauses over U such that each
clause c ∈ C has |c| = 3 literals.
question: Is there a satisfying truth assignment for U such that each clause
in C has at least one true literal and one false literal?

5. naeq3satk̄ - not all equal 3 sat (decision)
instance: Set U of variables, collection C of clauses over U such that each
clause c ∈ C has 2 ≤ |c| ≤ 3 literals, each variable occurs exactly k times
in C, each literal occurs and each clause of size 2 has a literal which occurs
once, i.e., each clause of size 2 contains a literal, such that the other two
occurrences of the corresponding variable in C appear as the negation of
that literal.
question: Is there a satisfying truth assignment for U such that each clause
in C has at least one true literal and one false literal?

Given an optimisation problem Π and I an instance of Π , the optimal value of
Π for I is denoted here by OptΠ (I). It is observed that are defined here two op-
timisation problems: maxcon and min−1con, both associated with the decision
problem con. In this paper it is established a negative result for min−1con and
an approximation algorithm for maxcon. Although min−1con and maxcon

are related, Optmaxcon = 1
Opt

min−1con

, when dealing with approximation theory

not necessarily a result for one of the problems holds for other.

2 concurrency is NP-complete for graphs with

maximum degree 4.

In Lemma 1 is proven that naeq3sat3̄ is an NP-complete problem. naeq3sat3̄

is used later to prove that con is NP-complete for maximum degree 4 graphs.

Lemma 1. naeq3sat3̄ is NP-complete.

Proof. Let I = (U, C) be an instance of the NP-complete problem naeq3sat.
One yields in polynomial time, in the size of I , the instance I ′ = (U ′, C ′) of
naeq3sat3̄ such that I is satisfiable if and only if I ′ is satisfiable. One starts by
setting U ′ := U and C ′ := C and updating U ′ and C ′ according to the number
of occurrences of each variable u of U . Let u be a variable of U which occurs
k = k1 + k2 times in C, where k1 is the number of times u appears positively in
C, and k2 the number of times u appears negated in C. Three cases are to be
considered: cases (1) and (2) which are, when k ≤ 2; and case (3), when 3 ≤ k.
It is observed that in cases (1) and (2), I ′ is adjusted, such that u appears 3



times in C. On the other hand, it is adjusted the over 3 occurrence of u in case
(3), where the construction serves the purpose of forcing all literals of a same
type to take the same value (items (a) and (b)), and opposite type literals to
receive opposite values(item (c)).

1. (k = 1) in this case (u ∨ u) is added to C ′.
2. (k = 2) this case leads to 2 subcases:

(a) (k1 = 2) in this case u1 is added to U ’ and (u1∨u), (u1∨u1) added to C’.
(b) (k2 = 2) in this case u1 is added to U ’ and (u1∨u), (u1∨u1) added to C’.
(c) (k1 = k2 = 1) in this case u1, u2 are added to U ’ and (u1∨u∨u2), (u1∨u2),

(u1 ∨ u2) added to C’.
3. (k1 ≥ 3 or k2 ≥ 3) in this case one replaces the k1 occurrences of u by

the new literals u1, u2, u3, . . . , uk1
, and one replaces the k2 occurrences of

ū by the new literals v1, v2, v3, . . . , vk2
. Moreover, we add the 2 new sets

of variables T = {t1, t2, t3, . . . tk1
} and W = {w1, w2, w3, . . . wk2

}, which are
added to C’, respectively, according to k1 6= 0, or k2 6= 0.

(a) If u occurs positively one adds to C ′ the collection (I) of clauses below:
order of occurrence of u clauses of (I)

↓ ↓

(I) =























1 (u1 ∨ t1 ∨ t2), (u1 ∨ t2)
2 (u2 ∨ t2 ∨ t3), (u2 ∨ t3)
3 (u3 ∨ t3 ∨ t4), (u3 ∨ t4)
...

...
k1 − 1 (uk1−1 ∨ tk1−1 ∨ tk1

), (uk1−1 ∨ tk1
)

(b) If u occurs negatively one adds to C ′ the collection (II) of clauses below:
order of occurrence of u clauses of (II)

↓ ↓

(II) =























1 (v1 ∨ w1 ∨ w2, (v1 ∨ w2)
2 (v2 ∨ w2 ∨ w3, (v2 ∨ w3)
3 (v3 ∨ w3 ∨ w4, (v3 ∨ w4)
...

...
k2 − 1 (vk2−1 ∨ wk2−1 ∨ wk2

, (vk2−1 ∨ wk2
)

(c) Further, the following clauses are added according to k1 = 0 or k2 = 0,
or k1 6= 0 and k2 6= 0,

i. If(k2 = 0), then one adds (uk1
∨ tk1

∨ t1), (uk1
∨ t1) to C ′.

ii. If(k1 = 0), then one adds (vk2
∨ wk2

∨ w1), (vk2
∨ w1) to C ′.

iii. If((k1 6= 0) and (k2 6= 0)), then one adds
(uk1

∨ tk1
∨ t1), (uk1

∨ w1), (vk2
∨ wk2

∨ w1), (vk1
∨ t1) to C ′.

This concludes the construction of the instance I ′ = (U ′, C ′) of naeq3sat3.

Suppose that I = (U, C) is a satisfiable instance of naeq3sat. One proceeds by
extending a satisfiable truth assignment of U to the corresponding variables of
U ′. Obviously, every corresponding clause of C in C ′ is satisfied and it is not
difficult to see that once the truth value assigned to a variable u ∈ U is fixed,
then the same value is assigned to the new variables added to U ′ (due to u),
satisfying all the new clauses added to C ′ (due to u).



Suppose I ′ = (U ′, C ′) is a satisfiable instance of naeq3sat3. Consider η a satis-

fiable truth assignment of U ′. If u ∈ U occurs more than three times in C, then,
because η is satisfiable, all the variables u1, u2, u3, . . . , uk1

and v1, v2, v3, . . . , vk1

as well as the variables of T and W must have the same truth value in η. Hence
this truth value shared by all these new variables can be assigned to the variable
u in order to be a satisfiable truth assignment of U . ut

Note that, in respect to finding Optcon(G), the following types of graphs are
known [3] to have polynomial algorithms: bipartite graphs and trees
(Optcon(G) = 1

2 ); complete graphs ((Optcon(G) = 1
n
); cycles (Optcon(G) =

b n

2
c

n
). Moreover, if G has a clique Ks of size s as a subgraph, any acyclic orien-

tation ω over E is associated to concurrency m
p
≤ 1

s
[3].

From a general instance I for naeq3sat3, a special instance G for mincon

can be constructed in polynomial time in the size of I = (U, C). The special in-
stance G = (V, E) for mincon constructed from a general instance I = (U, C) for
naeq3sat3 satisfies: I is satisfiable if and only if E admits an acyclic orientation

ω such that the concurrency γ(ω) satisfies γ(ω) = 1
3 .

2.1 Building the special instance G

Graph G = (V, E) contains 2 types of subgraphs: the Truth Setting (Ti) and the
Satisfaction Testing (Sj) subgraphs defined in Figures 1(a) and 1(b).

Let U = {u1, u2, u3, . . . , un} and C = {c1, c2, c3, . . . , cm} be the correspond-
ing set of variables and collection of clauses of I . For each variable ui, i ∈
{1, 2, 3, . . . , n} of U there is one corresponding subgraph Ti of G as defined in
Figure 1(a) in vertices ui, ui, ai, bi and di. For each clause cj , j ∈ {1, 2, 3, . . . , m}
of C there is one corresponding subgraph Sj of G as defined in Figure 1(b),
a complete graph on 3 vertices. There is an additional set of vertices W =
{w1, w2, w3, . . . , wn−1}, and an additional set of edges EW = {wiai, wibi : i ∈
1, 2, 3, . . . , n−1}∪{wn−1an, wn−1bn} of edges emanating from the vertices of W .

The only part in the construction of G that depends on which literals occur
in which clauses are the following sets of edges. For each clause cj ∈ C, we select
a different vertex x of Sj corresponding to a literal y of cj and add the edge xy
to E(G). If cj has only two literals and x is the vertex of Sj not yet connected
to a vertex of a Ti, then the edge xy is added to E(G), where y is the literal
of cj which occurs once. This concludes the construction of the special instance
of con. Figure 1(c) shows an example of a special instance G obtained from
the satisfiable naeq3sat3 instance I = (U, C) = ({u1, u2, u3, u4}, {(u1 ∨ u4),

(u1 ∨ u2 ∨ u3), (u2 ∨ u3), (u3 ∨ u4), (u1 ∨ u2 ∨ u4)}).

Lemma 2. Let G = (V, E) be a graph, such that there is an acyclic orientation

ω with concurrency γ(ω) = m
p

= 1
3 . If for all x ∈ V there is a triangle T on

vertices x, y, z, such that T is a subgraph of G then, for each acyclic orientation

of the associated SER dynamics, there is one vertex operating in T . Moreover

m = 1 and p = 3.

Proof. Let ω1, ω2, ω3, . . . ωp be the consecutive acyclic orientations of the SER
dynamic, where ωi is obtained from the reversion of the set of sinks of ωi−1,
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Fig. 1. Truth Setting (a) and Satisfaction Testing (b) subgraphs. And (c), instance
G = (V, E) of concurrency obtained from the naeq3sat

3
instance I = (U, C)

= ({u1, u2, u3, u4}, {(u1 ∨ u4), (u1 ∨ u2 ∨ u3), (u2 ∨ u3), (u3 ∨ u4), (u1 ∨ u2 ∨ u4)}).

i ∈ {2, 3, 4, . . . , p} and ω1 is obtained from the reversion of the set of sinks of
ωp. Given i a positive integer, we call ti

x the index of the orientation ω(ti
x
) where

x operates by the ith time, i ∈ {1, 2, 3, . . . , m}. Because x, y and z belong to T ,
then ti+1

x ≥ tix+3, ti+1
y ≥ tiy+3 and ti+1

z ≥ tiz +3. It is assumed that tix < tiy < tiz .
Suppose m = α and p = 3α. Since any pair in x, y, z cannot operate at the

same time and each vertex operates α times, by the Dirichlet’s Box Principle
one has that, for each acyclic orientation of the associated SER dynamics, there
is only one vertex operating in T . Since each vertex of G belongs to at least one
triangle, after 3 operations one has the same set of sinks which defines α = 1. ut

Theorem3. concurrency is NP-complete for graphs with maximum degree 4.

Proof. Given a general graph G = (V, E), where n = |V | and an acyclic orien-
tation ω over E, Barbosa and Gafni [3] showed a n6 polynomial algorithm to
determine the associated γ(ω), hence the problem belongs to NP. It is shown
here that, given an instance I = U, C of naeq3sat3 and the special instance

G of con, then I is satisfiable if and only if G has an acyclic orientation ω
associated to a concurrency 1

3 . First, it is supposed that I is satisfiable. Let η
be a satisfiable truth assignment for U . From η, the construction of an acyclic
orientation ω over E associated to an amount of concurrency 1

3 is defined by the
following three steps:

1. If the literal x in η has value true, then vertex x in G is a sink in ω and
vertex x is a source in ω.

2. For each j ∈ {1, 2, 3, . . . , m} select the vertex x of Sj corresponding to a non
satisfied literal to be a sink and select the vertex y of Sj corresponding to a
satisfied literal to be a source.

3. For all i ∈ {1, 2, 3, . . . , n} vertex ai is a source and vertex bi is a sink in ω.

This concludes the construction of ω. Next, it is proved that ω has concurrency
exactly 1

3 by defining the three orientations of the period.



Observe that by item 1, all vertices corresponding to true literals operate in ω.
As η is a satisfiable truth assignment of an instance I = (U, C) of naeq3sat3̄, by
item 2 there is a vertex operating in each Sj . By item 3 all vertices bi operate in ω.

When the sinks of ω are reversed, an orientation ω1 in which, by item 3, all
vertices wi operate, is obtained. Due to itens 1 and 3 all vertices wi operate in
ω1. Since all vertices corresponding to the literals with value true were sinks in ω,
one has that one additional vertex of each Sj is sink in ω1. Observe that in ω1 all
vertices of all Sj ’s corresponding to the false literals of η have already operated.
When the sinks of ω1 are reversed an orientation ω2 is obtained in which in each
Sj , an additional vertex corresponding to a true literal is operating, and because
all vertices di have operated in ω1, the vertices of each Ti corresponding to the
false literal in ω2 are operating. Note also that the vertices ai operate in ω2.

Hence, all vertices of G operate once in these three orientations and the set
of sinks and the set of sources of the orientation obtained from the reversion of
the set of sinks of ω2 is the same as ω. Thus, one has defined that ω belongs to
a SER dynamics having concurrency m

p
= 1

3 .
For the convenience of the reader, it is offered, in Figure 2, an example show-

ing how to obtain an orientation ω Figure 2(a), and the corresponding orienta-
tions ω1 Figure 2(b) and ω2 Figure 2(c) defining a SER period characterised by
m = 1 and p = 3. Next, it is proven that if there is an acyclic orientation ω
over E with concurrency 1

3 , then I is satisfiable. Suppose that there is an acyclic
orientation ω over E with concurrency 1

3 . Next, ω is used in order to yield a
satisfiable truth assignment η for U .

Let ω1, ω2, ω3 be the consecutive acyclic orientations of the SER dynamics.
Assume that a vertex wi ∈ W, i ∈ {1, 2, 3 . . . , n− 1} operates in ω1. It is claimed
that all vertices of W operate in ω1. Assume for a moment that wi+1 is not a
sink in ω1. Then, neither ai+1 nor bi+1 is a sink in ω1, so the triangle on vertices
ai+1, bi+1, wi+1 contradicts Lemma 2.

Since all vertices of W operate in a same orientation, consequently all vertices
of C operate in ω1. Hence, there is one literal vertex operating in ω1 for each
variable of U . This defines a truth assignment η for U by setting a literal as true
if and only if the corresponding vertex of G is operating in ω1.

Next, it is proven that η is a satisfiable truth assignment. Suppose by con-
tradiction that there is a non satisfied clause cj in C, j ∈ {1, 2, 3, . . . , m}. Then,
cj either has all literals true or all literals false. Now suppose that the literals
of cj are all true. Let Sj be a clique on vertices x, y, z. Assume that x, y and z
are sinks, respectively, in ω1, ω2 and ω3. Hence, the vertex correponding to the
literal of z does not operate, contradicting Lemma 2. Suppose that all literals of
cj are false. Then there is one vertex of Sj which does not operate, contradicting
again Lemma 2. ut

3 concurrency: a negative result for general graphs

Given a graph G = (V, E), Bellare et al. proved in [4] that, unless P=NP,

colouring cannot be approximable in a ratio less than n
1

7
−ε, for every ε > 0.

Theorem 4. Given a graph G = (V, E) with n vertices, then, unless P=NP,

min−1con cannot be approximable in a ratio less than n
1

7
−ε, for every ε > 0.
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Fig. 2. Acyclic orientation ω with concurrency 1

3
(a) defined for the instance

G = (V, E) of concurrency obtained from the satisfiable naeq3sat
3

instance

I = (U, C) = ({u1, u2, u3, u4}, {(u1 ∨ u4), (u1 ∨ u2 ∨ u3), (u2 ∨ u3), (u3 ∨ u4),
(u1 ∨ u2 ∨ u4)}), with the truth assignment u1 = u2 = u3 = u4 = T ; and corre-
sponding SER dynamics (ω,ω1, ω2) (a), (b) and (c). Black vertices depict operating
vertices (sinks) and white vertices depict idle vertices.

Proof. It is enough to exhibit an L-reduction [9] from colouring to min−1con,
because if a problem P1 L-reduces to a problem P2 and the problem P2 has a
polynomial r-approximation algorithm one has that, up to the constants, prob-
lem P1 has a polynomial r-approximation algorithm.

According to the fundamental paper of Papadimitriou and Yannakakis [9],
for L-reducing colouring to min−1con, one must yield f and g a pair of
polynomial time algorithms in the size of G and a pair of positive reals α and β,
such that, given an instance G = (V, E) of colouring, algorithm f produces
f(G) = H = (VH , EH) an instance of min−1con, satisfying:

1. Optmin−1con(H) ≤ αOptcolouring(G) = αχ(G) and;
2. that given a feasible solution ηH for min−1con in H , algorithm g obtains a

feasible solution ξG for colouring in G such that
|χ(G) − ξG| ≤ β |Optmin−1con(H) − ηH |.

Algorithm f , which yields the instance H = f(G) of min−1con, is defined by
adding an universal vertex v to G, v /∈ V (G) and for all u ∈ V (G), vu ∈ E(H),
i.e., V (H) = V (G) ∪ {v}, and E(H) = E(G) ∪ {vu : u ∈ v(G)}. This turns
possible to prove the first and easiest part of the L-reduction.

Given a colouring of G with colours 1, 2, 3, . . . , χ(G), one can extend this
colouring to H by assigning an extra colour χ + 1 to v. Next, consider an ori-



entation for the edges of G by setting the orientation of uw from u to w if u
has colour cu, w has colour cw and cw < cu. Observe that the universal vertex
v will be a single sink in a particular acyclic orientation in the period and the
orientations of the edges from all vertices of G to v force that each set of sinks,
respectively, with the colours 1, 2, 3, . . . , χ operate in sequence following the v
operation and restart again with a new operation of v. This defines a period of
length p = χ+1. Hence, Optmin−1con(H) ≤ p = χ+1 ≤ 2χ = 2Optcolouring(G).
Hence, α = 2 suffices and this conclude the first part of the L-reduction.

If ηH is a solution for min−1con in H with cost p
m

, then necessarily m = 1.
Because at the moment the universal vertex is a sink none vertex can operate
too, one has that the vertices of V (H) \ {v} become sinks in a sequence until
v becomes sink again and none vertex operates twice before v. Hence, the sinks
of H \ {v} define a partition into p − 1 independent sets for V (G) and this
is the definition of algorithm g. Hence, |χ(G) − (p − 1)| ≤ |χ(G) + 1 − p| =
|Optmin−1con(H) − p| , which shows that β = 1 suffices. ut

4 An approximation algorithm for concurrency in

graphs with maximum degree ∆

In 1941, Brooks [5] proved that if a graph G = (V, E) has maximum degree ∆,
chromatic number χ, is connected and is neither an odd cycle nor a complete
graph, then χ ≤ ∆. Later in 1975, Lovász [8] exhibited an polynomial algorithm
which obtains a ∆-colouring of G. The algorithm introduced here is strongly
based in the algorithm of Lovász and is defined as follows.

Algorithm A

Input: Graph G = (V, E) with maximum degree ∆, where G is neither a com-
plete graph nor an odd cycle on n vertices.
Output: Acyclic orientation A(G) over E associated to concurrency 2

∆
.

1. Run the Lovász’s Algorithm obtaining the partition into independent sets
(V1, V2, V3, . . . , V∆) to V .

2. For each edge e = uv ∈ E, where u ∈ Vi and v ∈ Vj with i < j orient e from
v to u.

Lemma 5. Let G = (V, E) be a connected graph with maximum degree ∆, where

G is neither an odd cycle nor a complete graph, let ω be an acyclic orientation

over E and γ(ω) = m
p

its associated concurrency, then 1
∆

≤ m
p
≤ 1

2 .

Proof. The first inequality shall be proven first. Note that, the transformation of
sink vertices into source vertices of an acyclic orientation does not increase the
maximum oriented path of the graph. Note also that a oriented path in A(G)
has size at most ∆. Then, the maximum number of consecutive steps of SER
containing A(G) in which a vertex is not a sink, is ∆. Hence, after m∆ steps all
vertices of G will have operated at least m times, and so the p orientations of the
period must have been concluded, i.e., m∆ ≥ p. The second inequality is proved
by the observation that a vertex cannot operate in 2 consecutives orientations of
a period with length p. Hence, 2m ≤ p and this concludes the second inequality.

ut



Theorem6. The performance ratio of the algorithm A is at most 2
∆

.
Proof. By Lemma 5 one has that 1

∆
≤ m

p
≤ 1

2 . Hence, the performance ratio of

A is bounded by, RA = |A(G)|
|Optmin−1con(G)| ≥

1

∆
1

2

= 2
∆

. ut

5 Conclusion
Although one could consider that knowing in advance the degree of a target
network to be scheduled by SER would facilitate the finding of its associated
maximum concurrency, the first contribution of this work was to show that such
a problem would still belong to NP-complete from maximum degree 4 input.
Moreover, this is the first NP-completeness reduction of con which had not
been made from colouring.

Also, a negative result for con in general graphs was introduced here: there
is no approximation algorithms within n

1

7
−ε, unless P=NP. This result was ob-

tained from the same well-known result for colouring, reinforcing the corre-
lation between these two problems. From Brook’s Theorem [5], it follows that
colouring is a polynomial problem for instances with maximum degree 3 and
it is well-known that colouring is NP-complete even for maximum degree 4
graphs [6]. It is left as an open problem whether concurrency is a polinomial or
a NP-complete problem for instances with maximum degree 3.

Finally, notice that no approximation algorithm with a fixed ratio for finding
maximum concurrency in general graphs is still not known. This paper has also
introduced a 2

∆
-approximation algorithm for finding maximum concurrency in

general connected graphs and, in particular, a 1
2 -approximation algorithm for

finding maximum concurrency in connected graphs with maximum degree 4.
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