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Flávia Morgana de O. Jacinto∗

Departamento de Matemática, ICE, UFAM,
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Abstract

We introduce a Generalized Equilibrium Problem (GEP) that ex-
tends previous formulations given in the literature. We show that the
(GEP) formulation contains problems not included in other equilib-
rium schemes, like the mixed variational inequality and the generalized
quasi-variational inequality. We define a dual scheme for (GEP) based
on the theory of conjugate functions that gives a unified dual analysis
for interesting problems. Indeed, the lagrangian duality of a nonlinear
program is a particular case of our dual scheme. We also establish
necessary and sufficient optimality conditions for (GEP). These con-
ditions become a well-known theorem given by Mosco and the dual
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results obtained by Morgan and Romaniello, which extend those intro-
duced by Auslender and Teboulle for a variational inequality problem.

Key words: Equilibrium problems, Duality analysis, Conjugate func-
tions.

1 Introduction

In this work, we introduce the following Generalized Equilibrium Problem:

(GEP )

{
find x̄ ∈ domXf such that

f(x̄, y) + ϕ(x̄, y) + h(y) ≥ ϕ(x̄, x̄) + h(x̄) for all y ∈ X, (1.1)

where X is a real Hausdorff topological vector space, f, ϕ : X ×X →
(−∞,+∞] and h : X → (−∞,+∞] are functions satisfying:

1. domXf := {x ∈ X : f(x, x) < +∞} 6= φ;

2. f(x, x) ≤ 0 for all x ∈ domXf ;

3. h is a convex function;

4. domf(x, .) ∩ domϕ(x, .) ∩ domh 6= φ for all x ∈ domXf .

Remark 1.1 The function h is proper convex. In fact, it is a direct conse-
quence of conditions (1), (3) and (4).

Problem (GEP) extends the equilibrium problem given in [3] and generali-
zations appearing in the literature ([8], [10], [14]). The aim of this paper is
twofold. Firstly, we present the advantage of (GEP) formulation that covers
a wide range of important problems. Secondly, we introduce a dual scheme
for the generalized equilibrium problem based on the theory of conjugate
functions [20]. It gives a unified dual analysis for interesting problems that
can be regarded as special cases of (GEP) like convex programming ([17],
[18]), variational inequality problem ([1], [6], [9], [11], [13], [16]) and general-
ized quasi-variational inequality problem ([5], [15], [19]).
This paper is organized as follows. In section 2, we verify that the (GEP)
problem contains previous equilibrium schemes. Furthermore, we show that
there are problems belonging to our scheme but they are not included in
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previous formulations. We start section 3 by considering basic definitions
and results related to (GEP) problem. We also introduce a dual scheme
for (GEP) and establish necessary and sufficient optimality conditions for
primal-dual solutions. Finally, section 4 is devoted to ilustrate the powerful
of our dual scheme. Indeed, we obtain the classical lagrangian dual prob-
lem of a nonlinear program as a particular case of it. Moreover, we get a
well-known theorem given by Mosco in [16] and the dual results obtained by
Morgan and Romaniello in [15] as special cases of the optimality conditions
for (GEP) problem.
In this paper, any undefined terms or usage should be taken as in the Ekeland
and Temam book [6] and the Van Tiel book [20].

2 The (GEP) problem and others schemes

In this section, we show that the (GEP) formulation provides a unified frame-
work. Actually, the equilibrium problems given by Flores-Bazán in [8] and
by Mart́ınez-Legaz and Sosa in [14] can be considered particular schemes of
(GEP). We also present two problems justifying our generalization.
Throughout this paper, we denote by X∗ the topological dual space of X
and by 〈. , .〉 the duality pairing between X∗ and X.
Let us consider the Flores-Bazán formulation [8] defined by:

(FB) find x̄ ∈ K such that f1(x̄, y) + ϕ1(x̄, y) ≥ ϕ1(x̄, x̄) for all y ∈ K,

where X is a reflexive Banach space, K is a nonempty closed convex set of
X, f1 : K ×K → IR and ϕ1 : K ×X → (−∞,+∞] are functions satisfying
f1(x, x) = 0 and K ∩ domϕ1(x, .) 6= φ for all x ∈ K. Observe that the vari-
ables x and y are in the same set.
This formulation corresponds to a (GEP) problem by taking f(x, y) :=
f1(x, y) + δK×K(x, y), ϕ(x, y) := ϕ1(x, y) + δK(x) and h(y) := δK(y), where
δK denotes the indicator function of K. We note that the (FB) problem
includes a class of quasi-variational inequality problems given by f1(x, y) =
〈F (x)−x∗, y−x〉, where x∗ is an element of the dual space X∗, F is an oper-
ator from K into X∗ and ϕ1(x, y) = δQ(x)(y) with Q a point-to-set operator
from K into K. It is natural to assume that there exists x ∈ K such that
x ∈ Q(x). In fact, this condition is satisfied when the problem has a finite
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solution, which is the interesting case.
The Mart́ınez-Legaz and Sosa formulation [14] is given by:

(MLS) find x̄ ∈ K such that f1(x̄, y) ≥ 0 for all y ∈ K,

where X is a real Hausdorff topological vector space, K is a nonempty convex
set of X, f1 : X ×X → [−∞,+∞] is a function such that f1(x, x) = 0 and
f1(x, .) : X → (−∞,+∞] is a lower semicontinuous proper convex function
for all x ∈ K. In this problem the variables x and y are also in the same set.
There is no loss of generality if we assume f1 : X × X → (−∞,+∞]. So,
we can consider the (MLS) problem as a particular case of (GEP) with
f(x, y) := f1(x, y) + δK(x), ϕ ≡ 0 and h ≡ δK . We note that the (MLS)
formulation is an extension of the equilibrium problem given by Blum-Oettli
in [3], which contains as special cases several problems, such as: convex opti-
mization, complementarity, fixed point and variational inequality (see [3] for
more details).

Now, we show the advantage of the (GEP) problem over the schemes above.
First, we consider the Variational Inequality problem focused by Mosco in
[16]:

(V I) find x̄ ∈ domA such that 〈A(x̄), y − x̄〉+ z(y) ≥ z(x̄) for all y ∈ X,

where A is an operator from a locally convex Hausdorff topological vector
space X into its dual X∗ and z : X → (−∞,+∞] is a lower semicontinuous
proper convex function. It is natural to assume that domA ∩ domz 6= φ
because this condition occurs when the problem has a nontrivial solution.
Observe that domains of A and z may be different. So, neither (FBF) nor
(MLS) formulations include this problem since variables x and y may not be
in the same set.
The (VI) problem is a specific instance of the (GEP) problem for f(x, y) :=
〈A(x), y − x〉 + δdomA∩domz(x), ϕ ≡ 0 and h ≡ z. We recall that (VI) is also
called mixed variational inequality problem [12].
Finally, let us consider the Generalized Quasi-Variational Inequality problem
([5], [15], [19]) given by:

(GQV I)

{
find x̄ ∈ G(x̄) such that there exists ξ̄ ∈ A(x̄)

satisfying 〈ξ̄, y − x̄〉 ≥ 0 for all y ∈ G(x̄),
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where X is a locally convex Hausdorff topological vector space, G and A
are point-to-set operators from X into X and from X into its dual X∗,
respectively, such that G(x) is a convex set for all x ∈ X. It is also natural
to assume {(x, ξ) : x ∈ G(x), ξ ∈ A(x)} 6= φ. Again, neither (FBF) nor
(MLS) formulations include this problem since variables x and y may not be
in the same set.
This problem is a particular case of the (GEP) problem by considering the
whole space by E := X ×X∗ and the functions f, ϕ : E × E → (−∞,+∞]
and h : E → (−∞,+∞] by f(v, w) = f((x, ξ), (y, ρ)) := 〈ξ, y−x〉+δA(x)(ξ)+
δG(x)(x), ϕ(v, w) = ϕ((x, ξ), (y, ρ)) := δG(x)(y) and h ≡ 0.

3 A dual scheme

We start this section by presenting basic results related to the solution set of
(GEP), denoted by S. We introduce a dual scheme for the (GEP) problem
that maintains classical duality properties. We conclude this part by estab-
lishing optimality conditions that extend a primal-dual result given in [14].
From now on, we consider the following condition.

Assumption 3.1 Set S is nonempty.

3.1 Preliminaries

Lemma 3.1 For every x̄ ∈ S it holds that x̄ ∈ domϕ(x̄, .) ∩ domh.

Proof. Let x̄ ∈ S. By condition (4) of (GEP) there exists y ∈ X such
that +∞ > f(x̄, y) + ϕ(x̄, y) + h(y) ≥ ϕ(x̄, x̄) + h(x̄). So, we conclude that
x̄ ∈ domϕ(x̄, .) ∩ domh.

Lemma 3.2 If x̄ ∈ S, then it verifies that f(x̄, x̄) = 0.

Proof. Let x̄ ∈ S, that is, x̄ ∈ domXf and f(x̄, y) + ϕ(x̄, y) + h(y) ≥
ϕ(x̄, x̄) + h(x̄) for all y ∈ X. Taking y = x̄ in this inequality and using the
Lemma above, we obtain that f(x̄, x̄) ≥ 0. On the other hand, from condition
(2) of (GEP) it holds that f(x̄, x̄) ≤ 0. So, we obtain that f(x̄, x̄) = 0.

Let us consider the bifunction F from X into X which assigns to each x ∈ X
the function Fx : X → (−∞,+∞] given by the sum of f and ϕ, that is,
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Fx(y) := F (x, y) = f(x, y) + ϕ(x, y). We also consider the function v : X →
(−∞,+∞] defined by v(x) := ϕ(x, x) + h(x).

Remark 3.1 Condition (4) of (GEP) implies that Fx and v are proper func-
tions for all x ∈ domXf .

The result below extends the one given in [14]. It characterizes a solution of
(GEP) as a solution of an optimization problem.

Lemma 3.3 Let f, ϕ and h be functions verifying conditions (1)-(4) of (GEP).
The point x̄ is a solution of (GEP) if and only if it holds that

inf
y∈X

{Fx̄(y) + h(y)} = Fx̄(x̄) + h(x̄) = v(x̄) < +∞. (3.1)

Proof. Let x̄ ∈ S. Therefore, x̄ ∈ domXf and f(x̄, y) + ϕ(x̄, y) + h(y) ≥
ϕ(x̄, x̄) + h(x̄) = v(x̄) for all y ∈ X. Hence

inf
y∈X

{Fx̄(y) + h(y)} ≥ v(x̄).

On the other hand, by Lemmas 3.1 and 3.2 we obtain that

+∞ > v(x̄) = ϕ(x̄, x̄) + h(x̄) = Fx̄(x̄) + h(x̄) ≥ inf
y∈X

{Fx̄(y) + h(y)}.

Therefore, it results that infy∈X{Fx̄(y)+h(y)} = Fx̄(x̄)+h(x̄) = v(x̄) < +∞.
Conversely, assume that (3.1) holds. Hence,

Fx̄(y) + h(y) ≥ inf
y∈X

{Fx̄(y) + h(y)} = v(x̄) = ϕ(x̄, x̄) + h(x̄) for all y ∈ X.

The second equality in (3.1) implies that f(x̄, x̄) = 0, so, x̄ ∈ domXf . There-
fore, we obtain that x̄ ∈ S.

3.2 A dual scheme for (GEP)

Let X∗ be the dual space of X and let f ∗ be the conjugate of a function f
defined on X (see for example [20]). Consider the (GEP) problem. According
to Lemma 3.3, the function v(.) can be called the primal function of (GEP).
Next, we introduce dual concepts related to the (GEP) problem.
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Definition 3.1 The primal-dual function L : X×X∗ → [−∞,+∞] is given
by

L(x, ξ) =


−h∗(−ξ)− F ∗

x (ξ), if Dξ 6= φ and x ∈ Dξ

+∞, if Dξ 6= φ and x 6∈ Dξ

−∞, if Dξ = φ,

where Dξ := {x ∈ domXf : F ∗
x (ξ) < +∞}.

Definition 3.2 The dual problem of (GEP) is

(DGEP )

{
sup g(ξ)
ξ ∈ X∗,

where g : X∗ → [−∞,+∞) is the dual function defined by

g(ξ) = inf
x∈X

L(x, ξ) =

{
−h∗(−ξ)− supx∈Dξ

F ∗
x (ξ), if Dξ 6= φ

−∞, otherwise.

We observe that Remarks 1.1 and 3.1 imply that h∗(ξ) > −∞ for all ξ ∈ X∗

and F ∗
x (ξ) ∈ IR whenever x ∈ Dξ. So, if Dξ 6= φ then supx∈Dξ

F ∗
x (ξ) > −∞.

Therefore, the functions L and g are well defined.

Definition 3.3 A point (x, ξ) ∈ X×X∗ is called a primal-dual feasible point
whenever x ∈ Dξ.

The next results show that our dual scheme preserves classical dual charac-
teristics.

Proposition 3.1 (weak duality) Let (x, ξ) ∈ X×X∗ be a primal-dual feasible
point. Then, for every y ∈ X it holds that

L(x, ξ) ≤ Fx(y) + h(y) and L(x, ξ) ≤ v(x). (3.2)

Moreover, g(ξ) ≤ Fx(y) + h(y) and g(ξ) ≤ v(x).

Proof. Let x ∈ Dξ. So, it must x be in domxf and F ∗
x (ξ) ∈ IR. By

Fenchel’s inequality [20] (or Generalized Young inequality [21]) we have

Fx(y) ≥ 〈ξ, y〉 − F ∗
x (ξ) for all y ∈ X.
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So, it holds that

Fx(y) + h(y) ≥ 〈ξ, y〉+ h(y)− F ∗
x (ξ) for all y ∈ X.

Thus, we obtain that

inf
y∈X

{Fx(y) + h(y)} ≥ inf
y∈X

{〈ξ, y〉+ h(y)} − F ∗
x (ξ) =

− sup
y∈X

{〈−ξ, y〉 − h(y)} − F ∗
x (ξ) = −h∗(−ξ)− F ∗

x (ξ).

Therefore, by Definition 3.1, we get

L(x, ξ) ≤ Fx(y) + h(y) for all y ∈ X.

Now, taking y := x in the inequality above and using condition (2) of (GEP)
it follows that

L(x, ξ) ≤ Fx(x) + h(x) ≤ ϕ(x, x) + h(x) = v(x).

Then, we obtain (3.2). Moreover, for every y ∈ X, x ∈ Dξ we have

Fx(y) + h(y) ≥ inf
x∈Dξ

{Fx(y) + h(y)} ≥ inf
x∈Dξ

{L(x, ξ)} = inf
x∈X

{L(x, ξ)} = g(ξ),

where the first equality holds since Dξ 6= φ and the last one corresponds to
the definition of g(.). Again, taking y := x we get the inequality g(ξ) ≤ v(x).

Remark 3.2 Observe that L(x, ξ) < +∞ whenever x ∈ Dξ. In fact, it is a
consequence of the first inequality of (3.2) and condition (4) of (GEP).

The next statement gives necessary optimality conditions to (GEP).

Theorem 3.1 (Necessary optimality conditions) Assume that f , ϕ and
h are functions satisfying conditions (1)-(4) of (GEP). If x̄ ∈ X is a solution
of (GEP) such that verifies the following conditions:

(H1) Fx̄ is a convex function.
(H2) ∂(Fx̄ + h) = ∂Fx̄ + ∂h.

Then there exists ξ̄ ∈ X∗ such that

(x̄, ξ̄) is a primal-dual feasible point and L(x̄, ξ̄) ≥ v(x̄). (3.3)
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Proof. Let x̄ ∈ S verifying conditions (H1) and (H2). By conditions
(1)-(4) of (GEP), Lemmas 3.1 and 3.3 and the characterization of a solution
of a convex problem [20] we obtain that

0 ∈ ∂(Fx̄(x̄) + h(x̄)) = ∂Fx̄(x̄) + ∂h(x̄).

So, there exists ξ̄ ∈ X∗ such that ξ̄ ∈ ∂Fx̄(x̄) and −ξ̄ ∈ ∂h(x̄). Applying the
characterization of a subgradient in terms of the conjugate function ([6], p.
21, Proposition 5.1) we have

F ∗
x̄ (ξ̄) + Fx̄(x̄) = 〈ξ̄, x̄〉 and h∗(−ξ̄) + h(x̄) = 〈−ξ̄, x̄〉. (3.4)

Summing these two equalities and considering (3.1) we get

−F ∗
x̄ (ξ̄)− h∗(−ξ̄) = Fx̄(x̄) + h(x̄) = v(x̄).

Moreover, since x̄ ∈ domXf the first equality in (3.4) implies that x̄ ∈ Dξ.
The desired result follows from Definitions 3.1 and 3.3.

Remark 3.3 Condition (H2) is a qualification constraint that is satisfied
under different assumptions. For example, it holds in the following situations:
(a) X is a real Hausdorff topological vector space and there exists y ∈ domFx∩
domh where Fx (or h) is continuous ([20], Theorem 5.38);
(b) X is a Banach space, Fx and h are lower semicontinuous convex functions
with domFx∩domh 6= φ and (epiF ∗

x )+(epih∗) is a weak closed set in X× IR,
where epif means the epigraph of the function f [4];
(c) X = IRn and ir(domFx)∩ir(domh) 6= φ, where ir(C) denotes the relative
interior of the set C [18].

Now, we establish sufficient optimality conditions to (GEP).

Theorem 3.2 (Sufficient optimality conditions) Assume that f , ϕ and
h are functions satisfying conditions (1)-(4) of (GEP). If a point (x̄, ξ̄) ∈
X×X∗ satisfy (3.3) and the condition (H1) holds for x̄, then x̄ is a solution
of (GEP).

Proof. Using (3.3) and the first inequality in (3.2), we obtain that

Fx̄(y) + h(y) ≥ L(x̄, ξ̄) ≥ v(x̄) for all y ∈ X. (3.5)
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Taking the infimum on y in (3.5), we get

+∞ > inf
y∈X

{Fx̄(y) + h(y)} ≥ v(x̄), (3.6)

where the first inequality above results from condition (4) of (GEP) since
x̄ ∈ Dξ̄ = {x ∈ domXf : F ∗

x (ξ̄) < +∞}. Moreover, by condition (2) of
(GEP) it follows that

v(x̄) = ϕ(x̄, x̄) + h(x̄) ≥ Fx̄(x̄) + h(x̄),

which together with (3.6) imply that

inf
y∈X

{Fx̄(y) + h(y)} = Fx̄(x̄) + h(x̄) = v(x̄) < +∞.

Therefore, by Lemma 3.3 we conclude that x̄ is a solution of (GEP).

Let us observe that Theorem 3.2 given in [14] is obtained from Theorems 3.1
and 3.2 when they are applied to the (MLS) problem.

4 Applications

In this section, we consider problems that belong to Optimization, Varia-
tional Inequalities and Generalized Quasi-Variational Inequalities. We give a
suitable (GEP) formulation for each of them. We show that our dual scheme
applied to nonlinear programming gives the classical lagrangian dual program
(see for example [17]). When we use our necessary and sufficient conditions
to the other problems we obtain the dual results introduced in [16] and [15].
Through this section, given two Hausdorff topological vector spaces V and
W , the pairing between V ×W and V ∗ ×W ∗ is written, classically, as

〈(ξ, ρ), (x, y)〉V×W = 〈ξ, x〉V + 〈ρ, y〉W .

Since in general there is no possibility of ambiguity, the pairing between any
Hausdorff topological vector space and its dual space will be denoted by 〈. , .〉.
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4.1 Convex Optimization

Let us consider the following primal nonlinear programming problem [17]:

(P ) min
y∈K⊂IRn

ψ(y) such that gi(y) ≤ 0, i = 1, ...,m,

where the functions ψ, gi : IRn → IR are convex and K is a nonempty closed
convex set such that K ∩ {y ∈ IRn : gi(y) ≤ 0, i = 1, ...,m} 6= φ. We replace
(P) by the following problem:

(P1)

{
find v̄ = (x̄, z̄) ∈ X such that

ϕ(v̄, w) + h(w) ≥ ϕ(v̄, v̄) + h(v̄) for all w = (y, u) ∈ X, (4.1)

where X = IRn × IRm, ϕ(v, w) = ψ(y) + δIRm
−
(g(y) + u) + δK(y) and h(w) =

δIRm
+
(u). The i-component of g(y) + u : IRn × IRm → IRm is (gi(y) + ui).

Problems (P) and (P1) are equivalent in the following way: x̄ ∈ IRn is a
solution of (P) if and only if there exists z̄ ∈ IRm such that (x̄, z̄) solves
(P1). Observe that u is not a classical slack variable since we do not require
g(y) + u = 0 but g(y) + u ≤ 0. We say that u is a quasi-slack variable.
Problem (P1) is a (GEP) problem where f ≡ 0. Let us observe that Fv(w) =
ϕ(v, w) does not depend on v. Therefore, we can drop v in Fv and in F ∗

v . For
each ν ∈ X∗ = IRn × IRm it holds that Dν 6= φ if and only if F ∗(ν) < +∞.
Thus, we have that Dν = X, or Dν = φ.
Now, we determine the primal-dual function associated with (P1). We denote
ν = (ξ, η) ∈ X∗ = IRn × IRm. If Dν = φ then L(v, ν) = −∞ for all v ∈ X,
otherwise, it holds that L(v, ν) = −h∗(−ν) − F ∗(ν) for all v ∈ X. In order
to obtain L(v, ν), we calculate:

h∗(−ν) = h∗(−ξ,−η) = sup
(y,u)∈IRn×IRm

{〈−ξ, y〉+ 〈−η, u〉 − δIRm
+
(u)}.

Therefore, it results that

h∗(−ν) =

{
0, if ξ = 0 and η ≥ 0

+∞, otherwise.

So, L(v, ν) = −∞ if ξ 6= 0 or η < 0 and Dν 6= φ. Thus, it is enough to
calculate F ∗(ν) for ν = (0, η) with η ≥ 0:

F ∗(0, η) = sup
y,u
{〈η, u〉−F (y, u)} = sup

y,u
{〈η, u〉−ψ(y)−δIRm

−
(g(y)+u)−δK(y)}.
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Taking s = g(y) + u it follows that u = s− g(y) and

F ∗(0, η) = sup
y,s
{〈−η, g(y)〉−ψ(y)−δK(y)+〈η, s〉−δIRm

−
(s)} = sup

y∈K
{〈−η, g(y)〉−ψ(y)}.

So, we find that the primal-dual function is

L(v, ν) = L(v, (ξ, η)) =

{
infy∈K{ψ(y) + 〈η, g(y)〉}, if ξ = 0, η ≥ 0 and Dν 6= φ

−∞, otherwise.

Thus, the dual function associated to (P1) is given by

g(ν) = inf
v∈X

L(v, ν) =

{
infy∈K{ψ(y) + 〈η, g(y)〉}, if ν = (0, η), η ≥ 0, Dν 6= φ

−∞, otherwise.

Therefore, the following result holds:

Proposition 4.1 The dual problem (DGEP) of (P1) is the classical lagrangian
dual problem of (P).

Remark 4.1 The linear programming problem defined by

(LP ) min
y∈IRn

〈c, y〉 such that Ay ≥ b, y ≥ 0,

is a particular case of (P), where the involved functions are linear and K is
the whole space. Hence, its classical dual program is obtained as above.

4.2 Variational Inequality

In this subsection, we consider the variational inequality problem (VI) given
in section 2. We show that Theorems 3.1 and 3.2 applied to the associated
(GEP) problem give the sufficient and necessary conditions established by
Mosco [16].
Here, we consider the (VI) problem in a more general framework where we
drop the injectivity assumption on A, that is, A−1 defined by A−1(ξ) = {y ∈
domA : A(y) = ξ} can be a point-to-set operator from X∗ into X. Under the
blanket assumption domA∩ domz 6= φ, we can replace (VI) by the following
(GEP) problem:

(V I1)

{
find x̄ ∈ domXf such that

f(x̄, y) + h(y) ≥ h(x̄) for all y ∈ X, (4.2)

where f(x, y) := 〈A(x), y − x〉 + δdomA(x) + δdomz(x), ϕ ≡ 0, h ≡ z and
domXf = domA ∩ domz.
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Remark 4.2 The function z∗ is proper and convex. In fact, since z is a
lower semicontinuous proper convex function, we have that z∗∗ = (z∗)∗ = z
([6], p. 18, Proposition 4.1) and z∗(ξ) > −∞ for all ξ ∈ X∗. In addition
z∗ is not identically +∞ because if z∗ ≡ +∞ then z = z∗∗ ≡ −∞, what is a
contradiction.

In order to examine the necessary and sufficient optimality conditions for
(VI 1), we calculate its primal-dual function L. We have that Fx(y) = f(x, y).
Let x ∈ domA ∩ domz. Then, it results that

F ∗
x (ξ) = sup

y∈X
{〈ξ−A(x), y〉}+〈A(x), x〉 =

{
〈ξ, x〉, if x ∈ A−1(ξ) ∩ domz
+∞, if x 6∈ A−1(ξ), x ∈ domA ∩ domz.

Hence Dξ = {x ∈ domA ∩ domz : F ∗
x (ξ) < +∞} = {x ∈ X : x ∈ A−1(ξ) ∩

domz}. So, Dξ 6= φ if and only if A−1(ξ) ∩ domz 6= φ. Therefore, the
primal-dual function associated to (VI 1) is given by

L(x, ξ) =


−z∗(−ξ)− 〈ξ, x〉, if x ∈ A−1(ξ) ∩ domz

+∞, if x 6∈ A−1(ξ) ∩ domz 6= φ
−∞, if A−1(ξ) ∩ domz = φ.

(4.3)

Theorems 3.1 and 3.2 allow us to associate to (VI) a Dual Variational In-
equality defined by

(DV I)

{
find ξ∗ ∈ domA′ such that there exists u∗ ∈ A′(ξ∗)

satisfying 〈ξ − ξ∗, u∗〉+ z∗(ξ) ≥ z∗(ξ∗) for all ξ ∈ X∗,
(4.4)

where A′ : X∗ → P(X) is given by A′(η) := −A−1(−η) = {v ∈ X : η =
−A(−v)}. Actually, we establish the following property:

Proposition 4.2 Let x̄ ∈ X. The point x̄ is a solution of (VI) if and
only if ξ̄ = −A(x̄) is a solution of (DVI) with u∗ = −x̄ ∈ A′(ξ̄) verifying
the inequality of (4.4). Moreover, x̄ and ξ̄ are solutions of (VI) and (DVI),
respectively, if and only if x̄ ∈ −A′(ξ̄) or ξ̄ = −A(x̄) and z(x̄)+z∗(ξ̄) = 〈x̄, ξ̄〉
holds.

Proof. Let x̄ be a solution of (VI), then x̄ solves (VI 1). Hence, x̄ ∈
domA∩ domz. Since A(x̄) ∈ X∗ we get Fx̄ be a continuous linear functional
on X. Therefore, Fx̄ is convex and ∂(Fx̄ + h) = ∂Fx̄ + ∂h ([20], Theorem
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5.38). So, we can apply Theorem 3.1 to conclude that there exists ξ̃ ∈ X∗

such that (x̄, ξ̃) is a primal-dual feasible point and

L(x̄, ξ̃) ≥ v(x̄). (4.5)

From x̄ ∈ Dξ̄, we have that x̄ ∈ A−1(ξ̃)∩domz and L(x̄, ξ̃) = −z∗(−ξ̃)−〈ξ̃, x̄〉.
Since ϕ ≡ 0, inequality (4.5) becomes

−z∗(−ξ̃)− 〈ξ̃, x̄〉 ≥ z(x̄). (4.6)

Using the relation z ≡ z∗∗ and the definition of z∗∗ we obtain that

z(x̄) = z∗∗(x̄) ≥ 〈ξ, x̄〉 − z∗(ξ) for all ξ ∈ X∗. (4.7)

Thus, (4.6) and (4.7) imply

〈−ξ̃, x̄〉 − z∗(−ξ̃) ≥ 〈ξ, x̄〉 − z∗(ξ) for all ξ ∈ X∗.

By Remark 3.2 we have that −z∗(−ξ̃) is finite. So, it holds that

〈−ξ̃ − ξ, x̄〉+ z∗(ξ) ≥ z∗(−ξ̃) for all ξ ∈ X∗. (4.8)

Taking ξ̄ := −ξ̃ and u∗ := −x̄ we obtain that u∗ ∈ −A−1(ξ̃) = −A−1(−ξ̄) =
A′(ξ̄) and

〈−ξ̃ − ξ, x̄〉 = 〈ξ̄ − ξ, x̄〉 = 〈ξ − ξ̄, u∗〉. (4.9)

It follows from (4.8) and (4.9) that ξ̄ = −A(x̄) ∈ domA′ with u∗ = −x̄ ∈
A′(ξ̄) is a solution of (DVI).
On the other hand, assume that ξ̄ = −A(x̄) is a solution of (DVI) with
u∗ = −x̄ ∈ A′(ξ̄). Taking ξ̃ := −ξ̄, we obtain that x̄ ∈ A−1(ξ̃) and the
inequality of (DVI) is equivalent to

〈−ξ − ξ̃, x̄〉+ z∗(ξ) ≥ z∗(−ξ̃) for all ξ ∈ X∗.

Using that z∗ is a proper convex function (see Remark 4.2), the last inequality
implies that z∗(−ξ̃) is finite. Hence, it holds that

+∞ > 〈−ξ̃, x̄〉 − z∗(−ξ̃) ≥ 〈ξ, x̄〉 − z∗(ξ) for all ξ ∈ X∗. (4.10)

From the last inequality and the definition of z∗∗ it results that

〈−ξ̃, x̄〉 − z∗(−ξ̃) ≥ z∗∗(x̄). (4.11)
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The relation z∗∗ ≡ z together with (4.10) and (4.11) imply that x̄ ∈ domz.
So, we obtain that x̄ ∈ Dξ̃, that is, (x̄, ξ̃) is a primal-dual feasible point.
Furthermore, it holds that

L(x̄, ξ̃) = −z∗(−ξ̃)− 〈ξ̃, x̄〉 ≥ z(x̄) = v(x̄).

Then, by Theorem 3.2 we have that x̄ solves (VI 1). So, x̄ is a solution of
(VI).
Now, we prove the last part. If x̄ is a solution of (VI), that is, it solves
(VI 1), then ξ̄ = −A(x̄) with ū = −x̄ solves (DVI). On the other hand, if ξ̄
is a solution of (DVI) with ū ∈ A′(ξ̄), then x̄ = −ū solves (VI 1 ). Moreover,
x̄ solves (VI) and ξ̄ solves (DVI) if and only if inequalities (4.2) and (4.4)
are hold which are equivalent to ξ̄ ∈ ∂z(x̄), x̄ ∈ ∂z∗(ξ̄) with x̄ ∈ A′(ξ̄) or
ξ̄ = −A(x̄). Thus, using the characterization of a subgradient in terms of
the conjugate function ([6], p. 21, Proposition 5.1) we have

z(x̄) + z∗(ξ̄) = 〈ξ̄, x̄〉 and z∗(ξ̄) + z∗∗(x̄) = 〈ξ̄, x̄〉.

From z∗∗ = z we obtain the desired result.

The property above becomes the sufficient and necessary condition consid-
ered by Mosco ([16], Theorem 1) when the operator A is injective.
If A is a point-to-set operator from X into X∗ an analog of Proposition 4.2
holds.

4.3 Generalized Quasi-Variational Inequality

In this subsection, we get the dual scheme presented by Morgan and Ro-
maniello which extends the one obtained by Auslender and Teboulle in [1]
for a variational inequality problem. Indeed, they are obtained as corollaries
of Theorems 3.1 and 3.2 applied to a (GEP) problem associated to the Gen-
eralized Quasi-Variational Inequality considered in [15].
Through this part, we consider the (GQVI) problem given in section 2 un-
der the conditions established in [15], that is, X is a Banach space, G(x) =
{t ∈ X : qi(x, t) ≤ 0, i = 1, ...,m} and qi(x, .) : X → (−∞,+∞] is a lower
semicontinuous proper convex function for all i.
In [15] is introduced the following dual problem for this (GQVI):

(DGQV I)

{
find η∗ ∈ IRm

+ such that there exists d∗ ∈ K(η∗)
satisfying 〈d∗, η − η∗〉 ≥ 0 for all η ∈ IRm

+,
(4.12)
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where K(η) := { − Q(x, x) : 0 ∈ A(x) +
∑m

j=1 ηi∂2qi(x, x)} for all η ∈ IRm
+

and Q(x, y) = (q1(x, y), ..., qm(x, y)). Here, ∂2qi(x, t) is the subdifferential of
the function qi(x, .) at the point t, that is,

∂2qi(x, t) = {g∗ ∈ X∗ : qi(x, y) ≥ qi(x, t) + 〈g∗, y − t〉 ∀ y ∈ X}.
In order to study optimality conditions for primal solution, it is natural to
ask for {(x, ξ) ∈ X ×X∗ : ξ ∈ A(x), x ∈ G(x)} 6= φ.
We follow the ideas considered in subsection 4.1 . We take advantage of the
particular structure of the point-to-set operator G by introducing quasi-slack
variables. Instead of (GQVI) formulation, we consider the following problem:

(GQV I1)

{
find s̄ ∈ domXf such that

f(s̄, t) + ϕ(s̄, t) + h(t) ≥ ϕ(s̄, s̄) + h(s̄) for all t ∈ X , (4.13)

where X := X × X∗ × IRm, s̄ := (v̄, z̄) = (x̄, ξ̄, z̄), t := (w, u) = (y, ρ, u),
f, ϕ : X × X → (−∞,+∞] and h : X → (−∞,+∞] are functions defined
by f(s, t) := 〈ξ, y − x〉 + δA(x)(ξ) + δG(x)(x), ϕ(s, t) := δIRm

−
(Q(x, y) + u),

h(t) := δIRm
+
(u) and domXf = {(x, ξ, z) ∈ X : ξ ∈ A(x), x ∈ G(x)}. Note

that domXf 6= φ.
Problems (GQVI) and (GQVI 1) are equivalent in the following sense: x̄ is a
solution of (GQVI) if and only if there exist ξ̄ ∈ X∗ and z̄ ∈ IRm such that
(x̄, ξ̄, z̄) is a solution of (GQVI 1).
Let us recall that X ∗ = X ∗×X ∗∗×IRm ([7], p. 68, Proposition 2). In order to
obtain dual results related to (GQVI 1), we calculate the conjugate function
of h and Fs for s ∈ domXf . Let ν = (ν1, ν2, ν3) ∈ X ∗. By the definition of
h∗ it can be shown that

h∗(−ν) =

{
0, if ν1 = 0, ν2 = 0 and ν3 ≥ 0

+∞, otherwise.
(4.14)

Hence, it is enough to calculate F ∗
s (ν) for s ∈ domXf and ν = (0, 0, ν3) with

ν3 ≥ 0. Therefore, we have

F ∗
s (ν) = sup

(y,ρ,u)∈X
{〈ν3, u〉 − 〈ξ, y − x〉 − δIRm

−
(Q(x, y) + u)}.

Following the same argument used in subsection 4.1, we take n = Q(x, y)+u.
Thus,

F ∗
s (0, 0, ν3) = sup(y,ρ,n)∈X{〈ν3, n−Q(x, y)〉 − 〈ξ, y − x〉 − δIRm

−
(n)}

= supy∈X{〈−ν3, Q(x, y)〉 − 〈ξ, y − x〉}.
(4.15)
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We observe that condition (H1) is verified for all s = (x, ξ, z) ∈ domXf .
Indeed, it holds that x ∈ G(x) and ξ ∈ A(x). Thus, for t = (w, u) = (y, ρ, u)
we have

Fs(t) = f(s, t) + ϕ(s, t) = 〈ξ, y − x〉+ δIRm
−
(Q(x, y) + u).

Considering application γ(.) := δIRm
−
(Q(x, .) + u), it is easy to verify that its

epigraph epiγ = {(t, α) ∈ X × IR : γ(t) ≤ α} is a convex set, since qi(x, .) is
convex for all i. So, Fs(.) is a convex function too.
Now, we present three results under additional conditions on G assumed by
Morgan and Romaniello in [15].

Proposition 4.3 Consider problem (GQVI 1). Let (s̄, ν̄) = ((x̄, ξ̄,−Q(x̄, x̄)), ν̄)
be a primal-dual feasible point such that

L(s̄, ν̄) ≥ v(s̄) (4.16)

and let ∩m
i=1dom(qi(x̄, .)) be a nonempty open subset of X. Then, there exists

η̄ ∈ IRm
+ such that (x̄, η̄) satisfies the following ”Generalized Karush-Kuhn-

Tucker conditions” :
(KKT )1 : x̄ ∈ G(x̄);
(KKT )2 : 0 ∈ A(x̄) +

∑m
i=1 η̄i∂2qi(x̄, x̄);

(KKT )3 : Q(x̄, x̄) ∈ NIRm
+
(η̄).

Proof. Since (s̄, ν̄) is a primal-dual feasible point, we have that s̄ = (x̄, ξ̄,
−Q(x̄, x̄)) ∈ Dν̄ = {s ∈ domXf : Fs(ν̄) < +∞}. From domXf = {s =
(x, ξ, z) ∈ X : ξ ∈ A(x), x ∈ G(x)} yields (KKT )1. Furthermore, the
definition of G(.) implies that −Q(x̄, x̄) ≥ 0. Moreover, we have

ϕ(s̄, s̄) = δIRm
−
(Q(x̄, x̄) + (−Q(x̄, x̄))) = 0 and h(s̄) = δIRm

+
(−Q(x̄, x̄)) = 0.

So, it results that v(s̄) = 0. Hence, by Definition 3.1, inequality (4.16) leads
up to

−h∗(−ν̄)− F ∗
s̄ (ν̄) ≥ 0. (4.17)

Combining this inequality and (4.14), we obtain that

ν̄ = (0, 0, η̄) with η̄ ≥ 0.
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Hence, we get h∗(−ν̄) = 0. Therefore, by (4.15) and (4.17) we have

inf
y∈X

{〈η̄, Q(x̄, y)〉+ 〈ξ̄, y − x̄〉} ≥ 0.

It follows from Q(x̄, x̄) ≤ 0 and η̄ ≥ 0 that 〈η̄, Q(x̄, x̄)〉 ≤ 0. Thus, taking
y = x̄, we obtain that

0 ≥ 〈η̄, Q(x̄, x̄)〉 ≥ inf
y∈X

{〈η̄, Q(x̄, y)〉+ 〈ξ̄, y − x̄〉} ≥ 0 (4.18)

Hence, the equality is satisfied and x̄ is a solution of

inf
y∈X

{〈η̄, Q(x̄, y)〉+ 〈ξ̄, y − x̄〉},

which implies

0 ∈ ∂{
m∑

i=1

η̄iqi(x̄, .) + 〈ξ̄, .− x̄〉}(x̄). (4.19)

Using that a lower semicontinuous convex function over a Banach space is
continuous on the interior of its effective domain ([6], Corollary 2.5) and
that ∩m

i=1dom(qi(x̄, .)) is a nonempty open set, we can apply the Moreau-
Rockafellar Theorem ([21], 47.B, Vol. III) to conclude that (4.19) is equiva-
lent to

0 ∈
m∑

i=1

∂{η̄iqi(x̄, .)}(x̄) + ∂{〈ξ̄, .− x̄〉}(x̄) =
m∑

i=1

η̄i∂2qi(x̄, x̄) + ξ̄.

Hence, condition (KKT )2 holds since ξ̄ ∈ A(x̄). Moreover, from the first
inequality of (4.18), it follows that

0 = 〈η̄, Q(x̄, x̄)〉 = inf
η∈IRm

+

{〈η,−Q(x̄, x̄)〉}.

Thus, it must be 0 ∈ ∇(〈. ,−Q(x̄, x̄)〉)(η̄)+NIRm
+
(η̄). So, we obtain condition

(KKT )3, since −Q(x̄, x̄) = ∇(〈. ,−Q(x̄, x̄)〉)(η̄).

Proposition 4.4 Consider problem (GQVI 1). If a point (x̄, η̄) ∈ X × IRm
+

satisfies conditions (KKT )1 - (KKT )3, then there exists ξ̄ ∈ X∗ such that
((x̄, ξ̄,−Q(x̄, x̄)), (0, 0, η̄)) is a primal-dual feasible point verifying (4.16).
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Proof. From condition (KKT )2 we obtain that there exists ξ̄ ∈ A(x̄) such
that ξ̄ = −∑m

i=1 η̄ig
∗
i with g∗i ∈ ∂2qi(x̄, x̄) for i = 1, ...,m. Hence, by defining

s̄ = (x̄, ξ̄,−Q(x̄, x̄)) and from (KKT )1 we conclude that

s̄ ∈ domXf. (4.20)

Using the same argument in Proposition 4.3, condition (KKT )2 can be re-
written in the following way

0 ∈ ∂{〈η̄, Q(x̄, .)〉}(x̄) + ∂{〈ξ̄, .− x̄)〉}(x̄).

It follows that
0 ∈ ∂{〈η̄, Q(x̄, .)〉+ 〈ξ̄, .− x̄〉}(x̄).

In other words, we have

min
y∈X

{〈η̄, Q(x̄, y)〉+ 〈ξ̄, y − x̄〉} = 〈η̄, Q(x̄, x̄)〉. (4.21)

Now, from condition (KKT )1 we also have that Q(x̄, x̄) ≤ 0. Thus, using
the hypothesis η̄ ≥ 0, we obtain that

〈η̄, Q(x̄, x̄)〉 ≤ 0. (4.22)

On the other hand, condition (KKT )3 implies

〈Q(x̄, x̄), η − η̄〉 ≤ 0 ∀ η ∈ IRm
+.

Taking η = 0 in the last inequality, we have that 〈Q(x̄, x̄), η̄〉 ≥ 0 which
together with (4.22) imply that 〈η̄, Q(x̄, x̄)〉 = 0. Thus, by defining ν̄ =
(0, 0, η̄) with η̄ ≥ 0 and by using (4.15) and (4.21) we obtain that

F ∗
s̄ (ν̄) = inf

y∈X
{〈η̄, Q(x̄, y)〉+ 〈ξ̄, y − x̄〉} = 0.

Therefore, it follows from these equalities and (4.20) that (s̄, ν̄) is a primal-
dual feasible point, that is, s̄ ∈ Dν̄ . Moreover, we have that h(s̄) = ϕ(s̄, s̄) =
0. Thus, v(s̄) = 0 and by Definition 3.1 we get

L(s̄, ν̄) = −h∗(−ν)− F ∗
s̄ (ν) = 0 = ϕ(s̄, s̄) + h(s̄),

which is the desired result.
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Lemma 4.1 Let s̄ = (x̄, ξ̄, z̄) be a point of domXf such that there exists
y0 ∈ X verifying qi(x̄, y0) < 0 for all i = 1, ...,m. Then, s̄ verifies condition
(H2).

Proof. By hypothesis, it holds that −Q(x̄, y0) > 0. We define t0 :=
(y0, ξ0, u0) where u0 ∈ {u ∈ IRm : 0 < u < −Q(x̄, y0)} and ξ0 = ξ̄. Thus,
we obtain that u0 ∈ IRm

++ := {u ∈ IRm : u > 0}, h(t0) = 0 and Fs̄(t0) =
〈ξ̄, y0 − x̄〉 ∈ IR. So, t0 ∈ domFs̄ and t0 ∈ int(domh) = X × X∗ × IRm

++.
Recall that h is continuous on int(domh). Therefore, by Remark 3.3(a), we
have that ∂(Fs̄ + h) = ∂Fs̄ + ∂h obtaining the desired result.

Using Theorems 3.1 and 3.2, Propositions 4.3 and 4.4 and Lemma 4.1 we
obtain the following results.

Corollary 4.1 Let x̄ ∈ X. If there exists η̄ ∈ IRm
+ such that (x̄, η̄) satisfies

(KKT )1, (KKT )2 and (KKT )3. Then, x̄ is a solution of (GQVI) and η̄ is
a solution of (DGQVI).

Proof. Let η̄ ∈ IRm
+ such that (x̄, η̄) satisfies (KKT )1 - (KKT )3. By

Proposition 4.4 there exists ξ̄ ∈ X∗ such that s̄ = (x̄, ξ̄,−Q(x̄, x̄)) and ν̄ =
(0, 0, η̄) verify (4.16). By Theorem 3.2 we obtain that s̄ is a solution of
(GQVI 1), in other words, x̄ is a solution of (GQVI). Clearly, η̄ is a solution
of (DGQVI).

Corollary 4.2 Let x̄ be a solution of (GQVI) such that it verifies:
(i) ∩m

i=1dom(qi(x̄, .)) is a nonempty open subset of X
(ii) ∃ y0 ∈ X verifying qi(x̄, y0) < 0 for all i = 1, ...,m.

Then there exists η̄ ∈ IRm
+ such that (x̄, η̄) verifies conditions (KKT )1,

(KKT )2 and (KKT )3 (moreover, η̄ solves (DGQVI)).

Proof. If x̄ is a solution of (GQVI), then there exists ξ̄ ∈ A(x̄) such
that s̄ = (x̄, ξ̄,−Q(x̄, x̄)) is a solution of (GQVI 1). Since x̄ verifies (ii) and
s̄ ∈ domXf , by Lemma 4.1 we have that s̄ satisfies condition (H2). Thus,
Theorem 3.1 says that there exists ν̄ ∈ X ∗ such that (s̄, ν̄) is a primal-dual
feasible point satisfying (4.16). So, by Proposition 4.3, we obtain the desired
result.
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We observe that these two last results are those obtained by Morgan and
Romaniello in [15] with a slight difference: we do not use hypothesis (i) to
obtain sufficient optimality conditions.
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