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Devido à própria natureza do processo de formação de imagem — no sentido
de que imagens são medidas distorcidas, desordenadas e incompletas de um
complexo mundo tridimensional — resolver problemas de emparelhamento é um
passo necessário para inúmeras aplicações no campo de visão computacional. No
entanto, a maior parte da pesquisa relacionada a emparelhamento no campo é focada
em desenvolver algoritmos rápidos e heuŕısticas, dando pouca atenção à essência
dos problemas de emparelhamento. Neste trabalho, apresentamos um arcabouço
probabiĺıstico que nos permite derivar métodos ótimos para emparelhamento e
provar propriedades fundamentais do problema. Adicionalmente, propomos modelos
probabiĺısticos para os descritores de caracteŕısticas do tipo Harris/NCC e SIFT
dentro do nosso arcabouço e comparamos os métodos obtidos às alternativas
existentes.
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Due to the very nature of the process of image formation — in the sense that
images are incomplete, unordered and distorted measurements of a complex 3D
world — solving matching problems is necessary to a number of applications in
the field of computer vision. Yet, most research related to matching in the field
has focused on developing fast algorithms and heuristics, giving little attention
to the essential behavior of matching problems. In this work, we present a
probabilistic framework that allows us to derive optimal methods for matching and
prove fundamental properties of the problem. In addition, we propose models for
Harris/NCC and SIFT feature descriptors using our framework and compare the
resulting matching methods to existing approaches.
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Chapter 1

Introduction

1.1 Matching and applications

Matching is an umbrella term that refers to a family of recurring problems in science
and engineering, also known as correspondence or assignment problems. This kind
of problem is particularly ubiquitous in the field of computer vision: The very
nature of the process of image formation — in the sense that images are incomplete,
distorted and unordered measurements of a complex 3D world — makes matching
an unavoidable step to a number of applications. As it appears in different forms
and with different characteristics to each application, we will refrain from giving
a generic, comprehensive definition that encompasses all its variations, and rather
exemplify how the problem appears in the different applications.

• In the application of image stitching [1], one is given two or more images,
taken from the same viewpoint but different angles, and desires to merge them
for instance to form a larger image (panorama). In order to overlap images
correctly, one needs to, first, know which parts of one image correspond to
which parts of the other images, which is a matching problem. This is usually
solved with the feature matching approach, i.e. finding feature points in images
— points that can be easily recognized in the other image — and matching
them according to some criteria.

• A similar problem is uncalibrated stereo, also known as structure from
motion [1], in which one is given multiple images of a same object, taken
from different viewpoints and possibly different camera models, and pursues a
3D reconstruction of the object. To this end, one needs to know which pixels
from each image correspond to the same object point, which is also usually
done using feature matching.

• Calibrated stereo, also called simply stereo matching [1], is easier with respect
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to matching than uncalibrated stereo, but it still requires some sort of
matching. In this case, as the intrinsic (focal distance, optical center,
etc. of each camera) and extrinsic (distance and rotation between cameras)
parameters are known, one always knows in which epipolar line a matching
point resides. The problem consists in finding the matching point within the
line and, using the disparity between the points, perform a 3D reconstruction.
Instead of feature matching, other paradigms such as Markov random fields
are often preferred [2], although methods using feature descriptors have also
been proposed [3].

• Point cloud alignment is similar to image stitching, but applied to 3D point
clouds. In this problem, one is given two or more incomplete point clouds from
a real object, e.g. acquired using 3D scanners, and wants to merge them into
a complete model. This requires that the point clouds are correctly aligned
(i.e. with the correct rotation and translation), which can only be done if one
knows which parts of one point cloud correspond to which parts of the other
point cloud. When a good initial guess of the alignment is available, iterative
point matching algorithms1 such as the iterative closest point algorithm [4]
may be used, otherwise, feature-based approaches are preferable [5, 6].

• Tracking multiple points in a video requires that the moving points are
correctly identified and matched in each frame. When matching only two
frames, solutions using minimum bipartite matching perform well [7]. For
multiple frames, however, more sophisticated approaches such as the k-shortest
paths method may be preferred in order to preserve smooth motion [8, 9].

• Matching may also be used in recognition applications. Optical character
recognition may be improved if parts of the characters are matched when
characters are compared [10], and fingerprint recognition, also often requires
identifying and matching fingerprint features [11, 12].

While all these applications require matching, their very different characteristics
make it inviable to design a framework that generalizes all of them. Rather, we
propose a framework that solves a simplified version of the problem, based on
a probabilistic model of matching. While this framework does not capture the
subtleties of each application, its simplicity enables us to derive optimal algorithms
and prove several theoretical properties of the problem.

1This sort of algorithm is often called “point set registration” or simply “point matching” in
the computer vision literature. Despite the similarity in the name, our framework “probabilistic
point matching” has no relation to this class of algorithms: The algorithms we devise in this work
cannot be considered “point matching” algorithms in this sense.
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Although our motivation were computer vision applications, particularly the
feature matching approach, our framework is generic enough to be adapted to other
areas. The most limiting constraint is that we assume non-matching points behave
independently, i.e. the framework does not provide a structure model as graph
matching approaches (Section 2.3) do.

Our main contributions in this work are:

• A probabilistic framework for matching problems, which we call “probabilistic
point matching”;

• two Bayesian methods — one of polynomial time and another of exponential
time — that solve different optimization problems based in this framework;

• analyses on the asymptotic behavior of performance measures of matching
methods in our probabilistic framework, with respect to the number of points
and the amount of noise;

• the instantiation of our framework in the problem of feature matching,
with probabilistic models for Harris/NCC and SIFT feature descriptors; and
evaluation comparing to existing methods.

A similar problem to the one we are studying is known in the statistical physics
literature as Euclidean matching [13, 14], which also studies the asymptotic behavior
of a matching problem under a probabilistic model; however, the probabilistic model
and measures of interest are different: while we are interested on the ability of the
algorithms of producing correct matches, Euclidean matching provides no model
for match correctness and is mostly concerned with the average matching cost and
related properties.

1.2 Structure of this dissertation

This dissertation is divided in three parts.
In Part I, “Models and Algorithms”, we present existing algorithms for matching

in computer vision, our probabilistic models, and methods based on our framework.
In Part II, “Theoretic Results”, we analyze the asymptotic behavior of the methods
presented in Part I according to the different probabilistic models. Finally in Part
III, “Application”, we propose models for a computer vision problem and evaluate
the resulting method in comparison to existing approaches.

There are also a number of appendices that complement the main text of this
dissertation. Particularly Appendix A lists and briefly describes the most frequently
used symbols and notations of this dissertation. Appendix F analyzes a related

3



problem to that of matching, and Appendix E describes an efficient method to deal
with the case when the matching cost cannot be computed analytically.

1.3 Remarks on notation

In our probability notation, we do not use the convention of employing capital letters
for random variables; the distinction between random and deterministic variables
should be inferred by context.

We use capital letters normally to refer to matrices. Also, we do not employ the
convention of bold characters for vectors, the distinction between scalar and vector
should be inferred by context.

Appendix A may always be referred to in order to recall the definition of a symbol
or operator.
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Models and Algorithms
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Chapter 2

Matching Strategies

In this chapter, we describe a few matching strategies that are commonly used in
computer vision applications. Usually these applications employ heuristic methods
that involve finding the nearest neighbor (Sections 2.1.1 and 2.1.3) using some spatial
data structure (Section 2.1.4) to speed up the search. However, as matching quality
is prioritized instead of computational cost, more powerful solutions may be used
(Sections 2.2 and 2.3).

2.1 Greedy approaches

2.1.1 Greedy #1: O(N 2)

One of the most simple algorithms used for feature matching in computer vision
applications works as follows.

We are given two sets of points1 P1, P2 ⊂ Rn, for usually very high n. For
each point x1 ∈ P1 we find the most similar point x2 ∈ P2 (let us denote this
search as x2 = Φ(P2, x1) = arg minx′2∈P2 C(x1, x

′
2), for some cost function C(x1, x2),

normally the Euclidean distance ||x1−x2||), and vice versa. A pair of points (x1, x2)
is added to the match set S if and only if they are the closest to each other (i.e.,
Φ(P1,Φ(P2, x1)) = x1). By analyzing all possible pairs (x1, x2), this algorithm costs
O(N2) operations when |P1| = |P2| = N , or O(|P1| · |P2|) in general.

Naturally, many points from both sets will not be added to the match set, so
often |S| < min{|P1|, |P2|}.

1What we call a “point” here corresponds to what is usually called in the computer vision
literature a feature descriptor . It has no relation to the 2D or 3D coordinates of the point; it rather
describes characteristics of the point, such as color or gradient histograms of its surroundings.
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2.1.2 Greedy #2: O(N 2 logN)

Although not much used in practice, perhaps due to its higher time complexity,
this algorithm has the advantage of returning a set match set satisfying |S| =
min{|P1|, |P2|}, while in Greedy #1 |S| < min{|P1|, |P2|} was often the case.

This algorithm generates first a set R = P1 × P2 and sorts it according to the
similarity (i.e. increasingly with the cost function C(x1, x2)) between the pairs of
points. The top pair (x1, x2) = arg min(x′1,x′2)∈R C(x′1, x′2) is added to the match set
S and all pairs containing x1 or x2 are removed from R. This process is repeated
until R is empty.

Naturally, because of the greedy nature of the algorithm, the first pairs added
to S are very likely to be correct matches, while the latest pairs added will most
certainly be false matches. Therefore, stopping somewhere in the middle of the
process in order to avoid false matches is not a bad heuristic.

An important property of this method is that all matches produced by Greedy
#1 are also necessarily produced by Greedy #2 (i.e., Sgreedy#1 ⊆ Sgreedy#2). The
proof is simple: If x2 = Φ(P2, x1) and x1 = Φ(P1, x2), then the pair (x1, x2) has a
lower cost than any other pair (x1, x

′
2) or (x′1, x2). So (x1, x2) is the first occurrence

of x1 and x2 in the sorted set R and therefore the pair is added to Sgreedy#2.
Among the pairs that Greedy #2 adds but Greedy #1 does not, there are often

both correct and false matches, although we can expect that most of them are false
matches. Therefore, although Greedy #2 has a higher hit count (number of correct
matches), it is expected to have a lower hit rate (#correct matches

|S| ) compared to Greedy
#1.

2.1.3 Two-nearest neighbors method

The two-nearest neighbors method [15, 16](2-NN) is a popular strategy that uses
not only the nearest point Φ(P2, x1), but also the second nearest point Φ2(P2, x1) =
arg minx2∈P2\Φ(P2,x1) C(x1, x2) in P2, where C(x1, x2) is normally Euclidean distance.
The idea is that, if the nearest point and the second nearest point in P2 have very
similar distances to x1, then there is a high probability that the nearest point is not
the correct match. If the ratio between these distances is very low, then there is a
high probability of the match being correct.

So the algorithm adds (x1, x2) to the match set S if and only if:

• x2 is the closest point to x1 and vice versa, i.e., x2 = Φ(P2, x1) and x1 =
Φ(P1, x2), and

• the ratio between the distances of the closest point and the second closest point
is sufficiently low for both points, i.e., ||x1−Φ(P2,x1)||

||x1−Φ2(P2,x1)|| < θ and ||x2−Φ(P1,x2)||
||x2−Φ2(P1,x2)|| < θ,
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for some threshold θ < 1.

Note that all the matches produced by 2-NN are also necessarily produced by
Greedy #1 (the two algorithms are particularly identical when θ = 1).

This property implies that 2-NN has a lower hit count than Greedy #1, although
it is expected to have a higher hit rate.

2.1.4 Data structures for matching

Because an O(N2) cost is prohibitive to many applications, matching is most
often done using a greedy algorithm applied on a spatial data structure such as
a tree [17] or grid-like [18] data structure. Although this approach can reduce cost
to O(N logN) or O(C.N), search is usually not exact, which may reduce the hit
rates.

2.2 Minimum bipartite matching: O(N 3)

An approach that makes more effort than the previous methods is to employ
minimum bipartite matching, usually solved using the Hungarian algorithm
(originally costing O(N4), later optimized to cost O(N3), although weakly
polynomial solutions faster than O(N3) have also been proposed [19]).

Supposing the input sets P1 = {X1
1 , X

2
1 , X

3
1 , ..., X

N
1 } and P2 =

{X1
2 , X

2
2 , X

3
2 , ..., X

N
2 } have the same sizes, minimum bipartite matching consists of

finding a permutation π that solves the following optimization problem:

min
π

N∑
i=1

C(X i
1, X

π(i)
2 )

for some cost function2 C(x1, x2).
The name “bipartite matching” comes from the interpretation that P1 and P2

are two partitions of a bipartite graph, and C(X i
1, X

j
2) is the weight of the edge that

links vertex i of one partition to j of the other. The problem consists then in finding
the matching, i.e. the set of edges with no common vertices, that minimizes the sum
of edge weights. See Figure 2.1 for an illustration.

This combinatorial problem can also be written as a linear programming problem,
2Note that differently from the greedy algorithms, here it makes difference whether one chooses

Euclidean distance (||x1 − x2||) or squared Euclidean distance (||x1 − x2||2) as cost function.
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Figure 2.1: Graph interpretation of bipartite matching. Cost is the sum of the
matching edges (drawn thicker).

whose variable is a permutation matrix Π:

min
Π

Π : C

subject to: Π~1 = ~1

ΠT~1 = ~1

Πij ≥ 0

where C is a matrix whose entries are Cij = C(X i
1, X

j
2); “:” denotes the matrix

inner product (i.e., A : B = ∑
i,j AijBij), and ~1 denotes the vector

[ 1
...
1

]
. Although

this formulation allows Π to have non-integer entries, the solution will always be a
permutation matrix, because the constraint matrix is totally unimodular [20].

The corresponding dual problem is as follows [20]:

max
u,v∈RN

uT~1 + vT~1

subject to: ui + vj ≤ Cij

The solution of the dual problem is always the same of the primal problem
(i.e., the objective functions of their solutions Π and u, v have the same values:
Π : C = uT~1 + vT~1), and ui + vj = Cij for the values of i, j where Πij = 1.

Instead of directly trying to find the optimal permutation Π, O(N3) solutions of
minimum bipartite matching usually rather work on the dual variables u and v [19],
often called the vertex labelings of the bipartite graph [21].

An important property of this problem formulation is that multiplying C by
a positive constant effects in multiplying Π : C by this constant; also, adding a
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constant to all members of a row or column in C results in adding the same constant
to Π : C, therefore the optimal permutation Π∗ does not change. This means
that we can freely replace C by C̃ = aC + x~1T + ~1yT , for any x, y ∈ RN (i.e.
C̃ij = aCij + xi + yj) without affecting the optimal solution Π∗.

2.3 Graph-based approaches

A more sophisticated approach is to employ graph matching techniques, where
instead of matching two sets P1 and P2, one wants to match two graphs G1 and
G2, in such a way that not only matched vertices are similar, but also edges are
preserved. It has the advantage of being capable of modeling relations (edges)
between input points, but it is also often much costlier than the previous approaches,
as formalizations of the problem are in general NP-Hard [22]. It has been used in
varied computer vision and pattern recognition applications such as uncalibrated
stereo and fingerprint recognition [22].
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Chapter 3

Probabilistic Models

In this chapter we describe the basic probabilistic models of our framework. They
might not seem very realistic but their simplicity allows us to derive optimal1

methods, which will be presented in the next chapter, and prove theoretical
properties, as will be shown in the subsequent chapters.

3.1 The Direct Model

In our simplest model, we would like to match two given sets P1 and P2, both
containing N points of Rn, and we assume that points in P2 are generated by taking
a point in P1 and adding noise.

We can represent sets P1 and P2 as matrices X1, X2 ∈ Rn×N , so that X2 is
generated from X1 following

X2 = (X1 + Y )Π

where Y is the noise matrix (independent from X1), and Π is a random permutation
matrix in RN×N (uniformly distributed in the set of N ×N permutation matrices,
i.e. P [Π] = 1/N !). Writing in this way makes it clear that, if the two sets are
represented as two arrays of points, then a priori there is no correlation between
the position of a point in one array (i.e. its column index in X1) and the one of its
match (column index in X2) . Thus, no information is gained by considering the
position of the points within their respective arrays; e.g. two points being in the
same positions in each array does not make the probability that they match higher.

Additionally, we assume that the columns in X1 are independent and identically
distributed random variables following some distribution with probability density
function p1(x1). The same applies to the noise (Y ) distribution: i.i.d. columns
following some probability density function py(y).

1By optimal, we do not refer to time complexity; we mean that the solutions provided by the
methods maximize certain performance criteria.
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(a) Direct model (b) Generator set model (c) Generator set model with
outliers (asymmetric outlier
model)

Figure 3.1: Bayesian networks of probabilistic models for matching.

The main disadvantage of this model is that it is asymmetric; i.e., the prior
probability distributions pdf[x1] of a point x1 ∈ P1 and pdf[x2] for x2 ∈ P2 are
different: while pdf[x1] = p1(x1), pdf[x2] = {p1 ∗ py}(x2), where “∗” denotes
convolution in Rn. Particularly, the variance in the distribution of the points in
P2 is higher than the one in P1, as Var[x2] = Var[x1] + Var[y].

Figure 3.1(a) illustrates this model with a Bayesian network.

3.2 Generator Set Model

A more realistic model than the previous one is what we call the generator set model.
In this model, there is an unknown generator set P , represented by a matrix X,
containing i.i.d. points with probability density pdf[x] = p(x); and the two observed
sets P1 and P2 are generated independently from P by adding noise, represented
respectively by matrices Y1 and Y2, also i.i.d. with probability density py(y). We
can write this in matrix form as follows:

X1 = (X + Y1)Π1

X2 = (X + Y2)Π2

for two random permutation matrices Π1 and Π2.
Differently from the previous model, this one is symmetrical, i.e., points in P1

and P2 have the same prior probability distributions: pdf[x1] = p1(x1) for x1 ∈ P1,
and pdf[x2] = p2(x2) for x2 ∈ P2 where ∀x : p1(x) = p2(x) = {p ∗ py}(x).

In fact, there is some redundancy in this model. It is more reasonable to let
Π = Π−1

1 Π2 and use instead:
X1 = X + Y1

X2 = (X + Y2)Π

12



See Figure 3.1(b) for the Bayesian network of the resulting model.

3.3 Asymmetric Outlier Model

So far we have not dealt with the possibility of a point not having a match in the
other set, which happens frequently in many applications.

To model this we let each point in P2 have a probability q of being an outlier2:
If the point is an outlier, then we generate again a point with the probability
distribution from the points from P and add noise as any other point. This way,
the point will be independent from its former match in P1, and yet have the same
prior distribution as the other points in P2.

In matrix form, this process is written as follows:

X1 = X + Y1

X2 = ((XS +X ′(I − S)) + Y2)Π

where S is a random diagonal matrix such that Si,i is equal to 0 with probability
q and 1 otherwise. Note: S appears twice in the formula above but they refer to
the same matrix. Meanwhile, X and X ′ are independently generated with the same
probability distribution. Figure 3.1(c) shows the Bayesian network that underlies
this model.

In this model also, points in P1 and P2 have the same prior probability
distributions.

3.4 Symmetric Outlier Model

The disadvantage of the previous model is that, although points have the same prior
distributions, because only the points in P2 may be generated again as outliers, the
distributions of x1 ∈ P1 and x2 ∈ P2 conditioned on the generator point x from P

are different:

pdf[x2|x] = pdf[x2|x, inlier]P [inlier] + pdf[x2|x, outlier]P [outlier]

= (1− q)pdf[x2|x, inlier] + qpdf[x2],

while
pdf[x1|x] = pdf[x1|x, inlier].

2By “outlier”, we mean a point that has no match in the other set. This should not be
confused with false matches, which are also often called “outliers” in the computer vision literature,
particularly in the context of a false match filtering procedure such as RANSAC [23].
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So for example, if the distribution of the points in P is a Gaussian distribution
with zero mean, and the noise distribution is also Gaussian with zero mean, then x1

given x follows a Gaussian distribution centered in x, while x2 given x is a mixture
of two Gaussians, one centered in x and the other centered in 0.

One way of correcting this issue is using instead

X1 = XS +X ′(I − S) + Y1

X2 = (XS ′ +X ′′(I − S ′) + Y2)Π

where X, X ′ and X ′′ are independent and identically distributed following the
distribution of the points in P , while S and S ′ are independent and identically
distributed with Sii or S ′ii having a probability q′ of being equal to 0. Note the
change in the parameter q to q′.

This model is symmetrical in the sense that the distributions pdf[x1|x] and
pdf[x2|x] are equal. However, it is equivalent to the previous model if we choose q′

such that (1− q′)2 = 1− q, i.e., in this case, the joint probability density pdf[x1, x2]
(given that x1 and x2 match according to Π, i.e. x1 = X i

1 and x2 = Xj
2 for some

i, j such that Πij = 1) is the same as the one from the previous model. The reason
is that, in this model, both x1 and x2 are subject to becoming outliers, i.e. with
probability (1− q′)2 of remaining inliers. In the other model, only x2 was subject to
becoming an outlier, with probability 1− q of remaining as inlier. This equivalence
means that the same algorithms can be used to solve both models.

3.5 Gaussian noise and properties

The case when noise is Gaussian (i.e. following a multivariate normal distribution)
has an important property that will be useful for us later on: In this case, if x1 ∈ P1

and x2 ∈ P2 are generated from the same point x ∈ P (and are inliers), then
the random variables M = x1+x2

2 and D = x1 − x2 are independent, and we can
write pdf[x1, x2] = pdf[M,D] = pdf[M ]pdf[D]. This also means that a means
of generating x1 and x2 is to generate first M and D independently using the
distributions we will derive in this section, and then generate x1 = M + D/2 and
x2 = M −D/2.

Let the distribution of the points in P be pdf[x] = p(x), and the distribution of

the noise be pdf[y] = py(y) = gε(y), where gε(y) = e
− 1

2
||y||2

ε2

(2πε2)n/2 denotes the probability
density of a Gaussian distribution with zero mean and variance ε2In×n. A point
x1 ∈ P1 has therefore as prior distribution pdf[x1] = {p ∗ gε}(x1), where “∗” denotes
convolution in Rn.
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We can show that M and D are independent variables as follows:

pdf[M,D] =

∣∣∣∣∣∣det
∂x1/∂M ∂x1/∂D

∂x2/∂M ∂x2/∂D

∣∣∣∣∣∣ · pdf[x1, x2]

=

∣∣∣∣∣∣det
1 1/2

1 −1/2

∣∣∣∣∣∣ · pdf[x1, x2]

= pdf[x1, x2]

=
∫
Rn

pdf[x]pdf[x1|x]pdf[x2|x]dx

=
∫
Rn
p(x)gε(x1 − x)gε(x2 − x)dx

=
∫
Rn
p(x)e

− 1
2
||x1−x||

2

ε2

(2πε2)n/2
e−

1
2
||x2−x||

2

ε2

(2πε2)n/2 dx

=
∫
Rn
p(x)e

− 1
2
||x1−x||

2+||x2−x||
2

ε2

(2πε2)n dx

=
∫
Rn
p(x)e

− 1
2 ·

2||x||2−2〈x,x1+x2〉+||x1||
2+||x2||

2

ε2

(2πε2)n dx

=
∫
Rn
p(x)e

− 1
2 ·

2||x−x1+x2
2 ||2−2||x1+x2

2 ||2+||x1||
2+||x2||

2

ε2

(2πε2)n dx

=
∫
Rn
p(x)e

− 1
2 ·

2||x−x1+x2
2 ||2−〈x1,x2〉+

1
2 ||x1||

2+ 1
2 ||x2||

2

ε2

(2πε2)n dx

=
∫
Rn
p(x)e

− 1
2

(
||x1+x2

2 −x||2

ε2/2
+ ||x1−x2||

2

2ε2

)
(2πε2)n dx

= e−
1
2
||x1−x2||

2

2ε2

(2π · 2ε2)n/2
∫
Rn
p(x)e

− 1
2
||x1+x2

2 −x||2

ε2/2

(2π · ε2/2)n/2 dx

= g√2ε(x1 − x2)
∫
Rn
p(x) · gε/√2

(
x1 + x2

2 − x
)
dx

= g√2ε(x1 − x2) ·
{
p ∗ gε/√2

}(x1 + x2

2

)
= g√2ε(D) ·

{
p ∗ gε/√2

}
(M).

As their joint probability density function can be decomposed on the product of
the probability density functions of each variable, they are shown to be independent,
with probability densities of pdf[M ] =

{
p ∗ gε/√2

}
(M) and pdf[D] = g√2ε(D).

3.5.1 Generalizations

This separation in M and D is also possible in some variations of the Gaussian
model.
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If noise is anisotropic, i.e. multivariate Gaussian with covariance matrix3 E2,
then M = x1+x2

2 and D = x1 − x2 are independent random variables, with
pdf[D,M ] = pdf[D]pdf[M ] = pdf[x1, x2], pdf[D] = g√2E(D) and pdf[M ] =
{p ∗ gE/√2}(M). The derivation is analogous.

If noise is isotropic but asymmetric, i.e. P1 is generated with a noise of parameter
ε1 while P2 has a noise of ε2, then D = x1−x2 and M = ε−2

1 x1+ε−2
2 x2

ε−2
1 +ε−2

2
are independent

variables, with pdf[D,M ] = pdf[D]pdf[M ] = pdf[x1, x2], pdf[D] = g√
ε21+ε22

(D) and

pdf[M ] =

p ∗ g 1√
ε−2
1 +ε−2

2

 (M). The derivation also follows the same steps as the

symmetric case.
The anisotropic asymmetric case is analogous to the isotropic asymmetric case,

but with matrix expressions, i.e. M = (E−2
1 + E−2

2 )−1(E−2
1 x1 + E−2

2 x2), pdf[M ] ={
p ∗ g√(E−2

1 +E−2
2 )−1

}
(M) and pdf[D] = g√

E2
1+E2

2
(D).4

3Here E2 denotes EET , and gE(x) denotes a Gaussian distribution with zero mean and
covariance matrix EET .

4Here,
√
S for a symmetric positive definite matrix S denotes any matrix M such that MMT =

S.
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Chapter 4

Bayesian Methods

In this chapter we present two optimization problems that maximize probability
metrics on the models described in the previous chapter: The maximum probability
problem and the maximum expectation problem.

4.1 The “max-prob” problem

The maximum probability problem, or “max-prob” for short, consists of finding a
permutation matrix Π that maximizes the posterior probability on the input sets P1

and P2. Let us assume there are no outliers for now. We have to solve:

max
Π

P [Π|X1, X2]

Naturally, the prior probability P [Π] is equal to 1/N ! for every Π, but the
posterior probability P [Π|X1, X2] is different, i.e., applying Bayes’ law we have:

P [Π|X1, X2] = pdf[X1, X2|Π]P [Π]
pdf[X1, X2] = pdf[X1, X2|Π]P [Π]∑

Π̃ pdf[X1, X2|Π̃]P [Π̃]

= pdf[X1, X2|Π]∑
Π̃ pdf[X1, X2|Π̃]

Therefore,

arg max
Π

P [Π|X1, X2] = arg max
Π

pdf[X1, X2|Π]P [Π]
pdf[X1, X2] = arg max

Π
pdf[X1, X2|Π].

The likelihood pdf[X1, X2|Π] is easier to compute, since each pair of points is
generated independently. Denoting the i-th columns of X1 and X2 as X i

1 and X i
2,

we have:
arg max

Π
pdf[X1, X2|Π] =
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arg max
Π

∏
i

pdf[X i
1, X

π(i)
2 |Π] =

arg min
Π

∑
i

− log(pdf[X i
1, X

π(i)
2 |Π]) =

arg min
Π

Π : C

where π(i) = j ⇔ Πij = 1 and C is a cost matrix where Cij =
− log(pdf[X i

1, X
j
2 |Πij = 1]). Therefore, we can solve “max-prob” in O(N3)

operations using the Hungarian algorithm.

4.1.1 Direct model

In the direct model, computing pdf[X i
1, X

j
2 |Πij = 1] is straightforward, since:

log(pdf[X i
1, X

π(i)
2 |Π]) =

log(pdf[X i
1]pdf[Xπ(i)

2 |Π, X i
1]) =

log(pdf[X i
1]) + log(pdf[Xπ(i)

2 |Π, X i
1])

As shown in Section 2.2, minimum bipartite matching is invariant to adding
a constant to every member in a row or column, therefore we can remove the
log(pdf[X i

1]) term and use only Cij = − log(pdf[Xj
2 |Πij = 1, X i

1]) = − log(py(Xj
2 −

X i
1)). This means that we do not need to know the distribution of the points in P1 in

order to solve “max-prob” in the direct model1; we need only the noise distribution.
In the case of Gaussian noise with variance ε2In×n, we obtain

Cij = − log(gε(Xj
2 −X i

1)) = 1
2
||Xj

2 −X i
1||2

ε2
+ n

2 log(2πε2)

Again, because minimum bipartite matching is affine-invariant, we can simply
use:

Cij = ||Xj
2 −X i

1||2

In other words, solving the direct model with Gaussian noise is the same
as solving minimum bipartite matching using squared Euclidean distances as the
matching cost.

4.1.2 Generator set model

With the generator set model, we have to compute pdf[X i
1, X

π(i)
2 |Π], which may not

always be tractable, since it requires solving the integral
∫
Rn p(x)py(x1 − x)py(x2 −

1It is not necessary that the points in P1 are i.i.d., either; the solution to “max-prob” is the
same regardless of the distribution in P1.
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x)dx.
When noise is Gaussian, however, we can use the distributions of the mean and

difference M and D (see Section 3.5.1) giving

Cij = − log
(
{p ∗ gε/√2}

(
x1 + x2

2

))
− log(g√2ε(x1 − x2)).

We still need to compute a convolution, but it may be easy to compute for
some distributions. For others, an efficient Monte-Carlo method can be used (See
Appendix E). Particularly, if p(x) is a Gaussian distribution with zero mean and
σ2I variance, then we have

p ∗ gε/√2 = gσ ∗ gε/√2 = g√
σ2+ε2/2

Therefore,

Cij = 1
2
||x1+x2

2 ||
2

σ2 + ε2/2 + 1
2
||x1 − x2||2

2ε2 + const.

4.1.3 Normalized cost functions

Recall from the invariance properties of minimum bipartite matching (Section 2.2)
that we can replace C(x, y) with C̃(x, y) = C(x, y)+f(x)+g(x), for any two functions
f and g, without changing the solution Π∗ to the minimum bipartite matching
problem. This means that we can replace the cost function with a normalized cost
function; we will present two normalization methods in the next subsections, which
will be useful for us later on.

Normalized Cost Function #1

Let x1 and x2 be random variables of sets P1 and P2 generated from a same point
x ∈ P . Let h(a, b) = pdf[x1 = a, x2 = b]. We can replace the original cost function

Cij = − log(h(X i
1, X

j
2))

with the following normalized function:

Cij = − log(h(X i
1, X

j
2)) + log(h(X i

1, X
i
1)) + log(h(Xj

2 , X
j
2))

2

= − log
 h(X i

1, X
j
2)√

h(X i
1, X

i
1)h(Xj

2 , X
j
2)


We will denote this normalized joint probability term later on with the letter H
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as:
H(x1, x2) , h(x1, x2)√

h(x1, x1)h(x2, x2)

This normalized cost function− log(H(a, b)) is interesting mainly for two reasons:

• We can immediately verify that − log(H(a, a)) = 0 for any a.

• As we will show later in Section 5.2.5, − log(H(a, b)) ≥ 0 for any a, b. This is a
strong result that is valid for any distribution as long as pdf[x1|x] = pdf[x2|x].

Although both cost functions (− log(h(x1, x2)) and − log(H(x1, x2))) yield the
same results when using the minimum bipartite matching, this is not true if one uses
them with a greedy algorithm (i.e. replacing the Euclidean distance with H(·, ·)).
In this case, the properties above make the normalized cost function more attractive
to use with greedy algorithms.

Normalized Cost Function #2

Another way of normalizing the cost function is using:

Cij = − log(h(X i
1, X

j
2)) + log(p1(X i

1)) + log(p2(Xj
2))

= − log
(

h(X i
1, X

j
2)

p1(X i
1)p2(Xj

2)

)

We will denote this normalized joint probability term with the letter ζ:

ζ(x1, x2) , h(x1, x2)
p1(x1)p2(x2)

One use of this cost function is if one wants to apply “max-prob” to matching two
sets of different sizes N1 and N2: Suppose without loss of generality that N1 < N2.
A heuristic would be to add dummy points to P1 so that both sets have the same
size. Then, the cost of linking two points would be − log h(x1, x2), while we would
have to assign a cost of − log(p2(x2)) of linking a dummy point of P1 to a point
x2 ∈ P2. However, if we use instead this normalized cost function − log ζ(x1, x2), we
can simply assign cost zero to linking any point x2 to a dummy point in P1, which is
the same as not adding any dummy point at all (as long as the minimum bipartite
matching solver allows sets of different sizes).

4.1.4 Equivalence in Gaussian model

Suppose the points in x ∈ P follow a Gaussian distribution with zero mean and
variance Σ2 (Σ2 is an n × n symmetric positive definite matrix, so that p(x) =
exp(− 1

2x
TΣ−2x)

(2π)n
√

det Σ2 ), and noise is Gaussian with zero mean and a variance of ε2In×n.
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In this case we have:

h(x1, x2) = pm

(
x1 + x2

2

)
g√2/ε(x1 − x2)

where

pm(M) , pdf[M ] = {p ∗ gε/√2}(M) =
exp(−1

2M
T (Σ2 + ε2I/2)−1M)

(2π)n
√

det(Σ2 + ε2I/2)

and therefore:

H(x1, x2) =
pm

(
x1+x2

2

)
g√2/ε(x1 − x2)√

pm(x2)g√2/ε(0)pm(x1)g√2/ε(0)
=

exp
(
−1

2

(
x1+x2

2

)T
(Σ2 + ε2I/2)−1

(
x1+x2

2

))
exp

(
−1

2
||x1−x2||2

2ε2
)

√
exp(−1

2x
T
1 (Σ2 + ε2I/2)−1x1) exp(−1

2x
T
2 (Σ2 + ε2I/2)−1x2)

=

exp
(
−1

2

∥∥∥∥x1 + x2

2

∥∥∥∥2

(Σ2+ε2I/2)−1
+ 1

4 ||x1||2(Σ2+ε2I/2)−1 + 1
4 ||x2||2(Σ2+ε2I/2)−1 − ...

...− 1
2
||x1 − x2||2

2ε2

)

Using now that2, for any symmetric positive definite matrix S,
∥∥∥∥x1 + x2

2

∥∥∥∥2

S
− 1

2 ||x1||2S −
1
2 ||x2||2S =

1
4 ||x1||2S + 1

2〈x1, x2〉S + 1
4 ||x2||2 −

1
2 ||x1||2S −

1
2 ||x2||2S =

−1
4 ||x1||2S + 1

2〈x1, x2〉S −
1
4 ||x2||2 =

−1
4 ‖x1 − x2‖2

S ,

we obtain:

H(x1, x2) = exp
(

1
8 ‖x1 − x2‖2

(Σ2+ε2I/2)−1 −
1
2
||x1 − x2||2

2ε2

)

= exp
(
−1

2 ‖x1 − x2‖2
I

2ε2
− (Σ2+ε2I/2)−1

4

)
.

Note that I
2ε2 −

(Σ2+ε2I/2)−1

4 is always positive definite3.
2The notation ||x||2S refers to xTSx, while 〈x, y〉S means xTSy.
3This is because if A and B are symmetric positive definite matrices, then B−1 − (A+B)−1 =

(A+B)−1(AB−1A+A)(A+B)−1 is also positive definite.
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Also remarkably, if the distribution is isotropic, i.e. Σ2 = σ2In×n, then the cost
function is of the form − log(H(x1, x2)) = α||x1 − x2||2 (i.e. I

2ε2 −
(Σ2+ε2I/2)−1

4 =(
1

2ε2 −
(σ2+ε2/2)−1

4

)
I = αI), with α > 0.

This means that both the direct model with isotropic Gaussian noise, and the
generator set model with isotropic Gaussian distributions (in the generator set
and the noise) can be solved using the same method: applying minimum bipartite
matching with squared Euclidean distance as cost.

4.1.5 The sorting solution

Another particular case is when the number of dimensions is n = 1. In this case,
minimum bipartite matching with squared Euclidean distance as cost (therefore the
solutions of the direct model with isotropic Gaussian noise and of the generator set
model with isotropic Gaussian distributions in P and in the noise) can be solved by
sorting the entries of P1 and P2 and assigning matches according to their position
in the vector (i.e., the i-th member of P1 after sorting will be assigned to the i-th
member in P2). This means that we can solve “max-prob” in O(N logN) operations
instead of O(N3) in these cases (see Algorithm 1). Naturally this is only possible
with n = 1, because in higher dimensions it is not possible to sort points.

Algorithm 1 Minimum bipartite matching with n = 1 and squared Euclidean
distance as cost:

Sort P1 = {x1
1, x

2
1, ..., x

N
1 } so that x1

1 ≤ x2
1 ≤ ... ≤ xN1 ;

Sort P2 = {x1
2, x

2
2, ..., x

N
2 } so that x1

2 ≤ x2
2 ≤ ... ≤ xN2 ;

S ← ∅;
for i = 1, ..., N do

Add s = (xi1, xi2) to S
end for
return S;

The proof is simple. Suppose that “max-prob” has yielded a solution in which the
pairs are not ordered, i.e., that there exist A,B ∈ P1, with A < B, and C,D ∈ P2,
with C < D, such that A was assigned to D and B to C. Absurd, because assigning
A to C and B to D would have lower cost:

[(A−D)2 + (B − C)2]− [(A− C)2 + (B −D)2] =

[A2 +B2 + C2 +D2 − 2AD − 2BC]− [A2 +B2 + C2 +D2 − 2AC − 2BD] =

2(−AD −BC + AC +BD) =

2(A−B)(C −D) > 0

Notably, the Greedy #2 algorithm (defined in Section 2.1.2) can also be solved in
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O(N logN) when n = 1 and Euclidean distance is used as cost; however, it requires
a more sophisticated data structure (See Appendix D).

4.2 The “max-expect” problem

Because matching all N pairs correctly (supposing there are no outliers) is usually
a too optimistic goal, i.e., usually maxΠ P [Π|X1, X2] << 1, we propose to solve
instead the maximum expectation problem (“max-expect” for short): to maximize
the expected hit count, i.e. the expected number of correct matches. This is
reasonable because the metric we use to compare different methods is usually the hit
count, and not the rate of cases in which all pairs were correctly matched (i.e. the
most probable permutation is not necessarily the one that has the highest expected
hit count).

Supposing the correct permutation is Π, and an algorithm returns a matrix Π̃,
then the hit count is given by Π : Π̃, since for every pair (i, j) where Π̃ij = 1, it is a
correct match if and only if Πij = 1. Therefore the optimization problem is written
as:

arg max
Π̃

E[Π̃ : Π|X1, X2]

= arg max
Π̃

∑
Π

Π̃ : ΠP [Π|X1, X2]

= arg max
Π̃

Π̃ :
∑
Π

ΠP [Π|X1, X2]

= arg max
Π̃

Π̃ :
∑
Π

Πpdf[X1, X2|Π]P [Π]
pdf[X1, X2]

= arg max
Π̃

Π̃ :
∑
Π

Π pdf[X1, X2|Π]

So if we build a cost matrix C̃ = −∑Π Π pdf[X1, X2|Π], we can solve this
using minimum bipartite matching. However, building this cost matrix would cost
O(N !N) operations at first glance.

This expression can be further simplified using the permanent of a matrix. The
permanent of an N ×N matrix A is by definition:

Per(A) =
∑
π

N∏
i=1

Ai,π(i)

where π iterates on all permutations4 of {1, ..., N}.
Let R be an N ×N matrix such that Rij = pdf[X i

1, X
j
2 |Πij = 1], and R∗ij be the

4We employ lower-case π to denote permutations as functions and upper-case Π as matrices,
where π(i) = j ⇔ Πij = 1. They refer to the same variable.
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(N − 1) × (N − 1) matrix obtained by removing the i-th row and the j-th column
of R. Then we can write:

C̃ij =
(
−
∑
Π

Π pdf[X1, X2|Π]
)
ij

=
(
−
∑
Π

Π
n∏
k=1

Rk,π(k)

)
ij

= −
∑

Π|Πij=1

n∏
k=1

Rk,π(k)

= −RijPer(R∗ij)

Using this equation, and the fact that the permanent of a matrix can be computed
in O(2NN) operations5, then we can build C̃ in O(2NN3) time. This is a much better
time cost than the previous O(N !N), yet still exponential in time.

Interestingly, multiplying a row or column of R by a positive constant results in
multiplying C̃ by this same constant, therefore we can replace R by R̃ = D1RD2

for arbitrary diagonal (and positive definite) matrices D1, D2. This means that we
can replace Rij = pdf[X i

1, X
j
2 |Πij = 1] with a normalized joint probability Rij =

H(X i
1, X

j
2) or Rij = ζ(X i

1, X
j
2) (as defined in Section 4.1.3), and obtain the same

solution.
This algorithm also provides us directly a confidence measure about a match

being correct. The probability that (i, j) is a correct match, given the two sets
X1, X2, is:

P [Πij = 1|X1, X2] =
∑

Π|Πij=1 P [X1, X2|Π]∑
Π P [X1, X2|Π] = RijPer(R∗ij)

Per(R) (4.1)

Note that Per(R) can be obtained by summing all the entries of line i or column
j of C̃, therefore this confidence measure can be evaluated directly from the cost
matrix C̃.

4.3 Case with outliers

The algorithms mentioned above were designed to the case when there are no
outliers. Even a small amount of outliers makes their hit rate fall dramatically,
so that even using a greedy algorithm is better. We will analyze this phenomenon
better in Section 4.5.2.

5There is no known polynomial time algorithm to compute a matrix permanent, although
approximated (randomized) polynomial solutions do exist [24]. The O(2NN) algorithm is described
in [25].
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Recall that using the asymmetric6 outlier model, points are generated following:

X1 = X + Y1

X2 = ((XS +X ′(I − S)) + Y2)Π

Ideally, we would like to recover a matrix7 Ψ = SΠ, which links X i
1 to Xj

2 if they
were generated from the same point x in the generator set and also are an inlier
pair. However, this cannot be reduced to a minimum bipartite matching problem,
so we change the approach to try to recover only Π instead. This means that the
methods we will describe in this section match pairs of points without discerning if
they are inliers or outliers.

In “max-prob”, we will solve then arg maxΠ P [Π|X1, X2]. In this case,

pdf[X1, X2|Π] =
N∏
i=1

pdf[X i
1, X

π(i)
2 |Π]

=
N∏
i=1

pdf[X i
1, X

π(i)
2 |Π, Sii = 1]P [Sii = 1] + pdf[X i

1, X
π(i)
2 |Π, Sii = 0]P [Sii = 0]

We know that P [Sii = 0] = q. Furthermore, pdf[X i
1, X

π(i)
2 |Π, Sii = 1] =

h(X i
1, X

j
2) as before and pdf[X i

1, X
π(i)
2 |Π, Sii = 0] = pdf[X i

1]pdf[Xπ(i)
2 ], which gives

us the following cost function for “max-prob”:

Cij = − log(h̃(X i
1, X

j
2))

or normalized:

Cij = − log(H̃(X i
1, X

j
2)) (normalization method #1)

Cij = − log(ζ̃(X i
1, X

j
2)) (normalization method #2)

where
h̃(X i

1, X
j
2) = (1− q)h(X i

1, X
j
2) + qp1(X i

1)p2(Xj
2);

H̃(X i
1, X

j
2) = h̃(X i

1, X
j
2)√

h̃(X i
1, X

i
1)h̃(Xj

2 , X
j
2)

;

ζ̃(X i
1, X

j
2) = (1− q)ζ(X i

1, X
j
2) + q.

6Because pdf[x1, x2] is the same distribution for both the asymmetric and symmetric outlier
models (using (1− q′)2 = 1− q), the Bayesian methods for each model are identical, so we derive
in this section only the methods for the asymmetric model.

7or Ψ = SS′Π in the symmetric model
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We will show in Section 5.2.5 that, if a generator set model is being used8,
then the normalized cost function #1 with outliers (− log(H̃(x1, x2))) has the same
properties of its counterpart in the model without outliers, − log(H(x1, x2)): It is
equal to zero when x1 = x2 and is non-negative elsewhere.

As for “max-expect”, we will change the objective function to only count inliers:

arg max
Π̃

E[Π̃ : SΠ|X1, X2]

= arg max
Π̃

Π̃ : E[SΠ|X1, X2]

= arg max
Π̃

Π̃ :
∑
Π

∑
S

SΠ pdf[X1, X2|Π, S]P [S]P [Π]

= arg max
Π̃

Π̃ :
∑
Π

∑
S

SΠ pdf[X1, X2|Π, S]P [S]

So our cost matrix entries will be:

C̃ij =
(
−
∑
Π

∑
S

SΠ pdf[X1, X2|Π, S]P [S]
)
ij

= −
∑

Π|Πij=1

∑
S|Sii=1

pdf[X1, X2|Π, S]P [S]

= −P [Sii = 1]
∑

Π|Πij=1
pdf[X1, X2|Π, Sii = 1]

= −P [Sii = 1]pdf[X i
1, X

j
2 |Πij = 1, Sii = 1]

∑
Π|Πij=1

∏
k 6=i

pdf[Xk
1 , X

π(k)
2 |Π]

= −(1− q)RijPer(((1− q)R + qR̄)∗ij)

where Rij = h(X i
1, X

j
2) and R̄ij = p1(X i

1)p2(Xj
2).

As one may see, the time complexities of algorithms “max-prob” and “max-
expect” remain O(N3) and O(2NN3) in the case with outliers.

4.3.1 Numerical issues

Because “max-prob” cost functions with outliers take the form − log(A + B),
calculation may be numerically unstable if not carefully implemented. In order
to implement these cost functions we use the function

lmin(a, b) , − log(e−a + e−b) (4.2)
8The generator set model applies when Y1 and Y2 have the same distributions, and therefore

p1(x) = p2(x), while the direct model would have Y1 = 0 and p1(x) 6= p2(x). Although normalized
cost function #1 can also be used with the direct model, it provides no benefits in this case.
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which is computed using:

lmin(a, b) = min{a, b} − log(1 + e−|a−b|).

Because the first term above is trivial to compute and second term is always
within the range (0, log(2)], this method is less prone to numerical issues than
applying Equation 4.2 directly.

4.3.2 Discerning outliers

While the outlier model versions of “max-prob” and “max-expect” were not designed
to detect outliers, once the permutation matrix Π has been found, it is not difficult
to infer the outlier selection matrix S: We can model it for instance as:

arg max
S

P [S|X1, X2,Π] = arg max
S

∏
i

P [Sii|X i
1, X

π(i)
2 ] =

arg max
S

∏
i

pdf[X i
1, X

π(i)
2 , Sii]

which, using
pdf[X i

1, X
π(i)
2 , Sii = 1] = (1− q)h(X i

1, X
π(i)
2 )

pdf[X i
1, X

π(i)
2 , Sii = 0] = qp1(X i

1)p2(Xπ(i)
2 )

has as solution

Sii =

1, if (1− q)h(X i
1, X

π(i)
2 ) > qp1(X i

1)p2(Xπ(i)
2 );

0, otherwise.

or equivalently:

Sii =


1, if

h

(
Xi

1,X
π(i)
2

)
p1(Xi

1)p2

(
X
π(i)
2

) > θ;

0, otherwise.
(4.3)

with θ = q
1−q . In other words, we are thresholding on the normalized cost function

#2: ζ(x1, x2) > θ implies − log(ζ̃(x1, x2)) = − log(q + (1− q)ζ(x1, x2)) < − log(q +
(1− q)θ) = − log(2q).

Another way of modeling the problem of discerning outliers is to assign different
costs to false positives and false negatives. In this case, the classification method
is the same (i.e. applying Equation 4.3), but with a different threshold θ, which
will further depend on the discrepancy of how one penalizes false positives and false
negatives.
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4.4 Parameters

Notably, each method, either “max-prob”, “max-expect” or the greedy methods,
with different probabilistic models require different parameters to perform matching.
Table 4.1 summarizes the cost functions and parameters for each method and
probabilistic model, in the case of isotropic Gaussian distributions.

4.5 Synthetic experiments

In this section we perform numerical (synthetic) experiments to evaluate the
behavior of the proposed methods.

4.5.1 “Max-prob” and “max-expect”

In this experiment, we evaluate the differences between “max-prob” and “max-
expect” in terms of expected hit count and probability of hitting all pairs. The
purpose is to show that “max-prob” excels at the latter metric, and “max-expect”
at the former, although the difference is very small.

We use the direct model with isotropic Gaussian distributions (p(x) = gσ(x) and
py(y) = gε(y)) and no outliers. We fixed n = 2, and for each N ∈ {3, 5, 7, 9} and
ε/σ ∈ {.25, .5, 1, 1.5}, we generate 106 different sets P1 and P2 and run “max-prob”
and “max-expect” for each pair of sets. The method uses always the same values
of σ and ε used to generate the sets. We estimate then the average difference in hit
count E[#hitsmax-expect − #hitsmax-prob] (Table 4.2) and difference in probability of
hitting all points E[δ#hitsmax-expect,N − δ#hitsmax-prob,N ] (Table 4.3), where δa,b denotes
the Kronecker delta (δa,b = 1 if a = b or 0 otherwise). In these tables, when
we write x ± δx, x is an estimator of E[X] for a random variable X, while δx

estimates 3 times the standard deviation of the mean estimator, i.e. 3
√

Var[X]
#samples

(where #samples = 106). We also compare them to the Greedy #2 algorithm
(defined in Section 2.1.2), which uses Euclidean distance as cost.

From these two tables we see that “max-expect” has the best expected hit count
of the three algorithms in all cases, although the difference compared to “max-prob”
is of about .01% of N . On the other hand, “max-prob” matches all pairs correctly
more often than “max-expect”, and the difference is also of the order of .01%. Both
methods outperform Greedy #2 in both metrics, with discrepancies of much greater
magnitude.
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Table 4.1: Cost function and required parameters for each method (isotropic Gaussian distributions case)
method model outliers cost function parameters

Greedy #2 * * ||x1 − x2||2 (by default) –
“max-prob” direct without ||x1 − x2||2 –
“max-prob” generator set without ||x1 − x2||2 –

“max-expect” direct without −RijPerR∗ij, with Rij = e−
||x1−x2||

2

2ε2 ε

“max-expect” generator set without −RijPerR∗ij, with Rij = e
− 1

2

(
||x1−x2||

2

2ε2+ε4/σ2

)
2ε2 + ε4/σ2

“max-prob” direct with − log
(
(1− q)gε(x1 − x2) + qg√σ2+ε2(x2)

)
q, σ and ε

“max-prob” generator set with
− log

(
(1− q)g√2ε(x1 − x2)g√

σ2+ε2/2(x1+x2
2 )

...+ qg√σ2+ε2(x1)g√σ2+ε2(x2)
) q, σ and ε

“max-expect” direct with
−RijPer(((1− q)R + qR̄)∗ij), with

Rij = gε(x1 − x2) and
R̄ij = g√σ2+ε2(x2)

q, σ and ε

“max-expect” generator set with
−RijPer(((1− q)R + qR̄)∗ij), with

Rij = g√2ε(x1 − x2)g√
σ2+ε2/2(x1+x2

2 ) and
R̄ij = g√σ2+ε2(x1)g√σ2+ε2(x2)

q, σ and ε
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Table 4.2: Average hit count comparison between “max-prob”, “max-expect” and Greedy #2 (numerically computed using pseudorandom
numbers and 106 samples).

N ε/σ E[#hitsmax-prob] E[#hitsmax-expect −#hitsmax-prob] E[#hitsgreedy#2 −#hitsmax-prob]
3 0.25 2.91095 0±7.70714e-05 -0.066645±0.00147792
3 0.5 2.69399 2.1e-05±0.000247732 -0.192271±0.00254402
3 1 2.2134 0.000347±0.000565012 -0.322103±0.00351658
3 1.5 1.87822 0.000268±0.000714378 -0.312903±0.0038172
5 0.25 4.70986 9e-05±0.00023098 -0.20362±0.00256711
5 0.5 4.05587 0.000841±0.000670058 -0.483254±0.00395989
5 1 2.86885 0.002799±0.00117229 -0.574369±0.00461069
5 1.5 2.22337 0.002719±0.00125407 -0.463809±0.00458112
7 0.25 6.40292 0.000383±0.000408142 -0.391867±0.00353581
7 0.5 5.15633 0.002994±0.0010777 -0.77287±0.00498171
7 1 3.26422 0.004039±0.00156142 -0.720004±0.00521307
7 1.5 2.41014 0.003497±0.00152705 -0.540693±0.00496357
9 0.25 8.00197 0.000361±0.000609354 -0.617015±0.00439875
9 0.5 6.05293 0.005451±0.00145562 -1.02847±0.00576467
9 1 3.53871 0.007157±0.00182569 -0.815486±0.00561067
9 1.5 2.54075 0.004517±0.00169325 -0.598763±0.00522647

30



Table 4.3: Comparison of “max-prob”, “max-expect” and Greedy #2 methods in terms of the probability of hitting all N points
(numerically computed using pseudorandom numbers and 106 samples).

N ε/σ P [#hitsmax-prob = N ] E[δ#hitsmax-expect,N − δ#hitsmax-prob,N ] E[δ#hitsgreedy#2,N − δ#hitsmax-prob,N ]
3 0.25 0.955865 -5e-06±3.68646e-05 -0.032539±0.000728687
3 0.5 0.851468 -7.5e-05±0.0001183 -0.089576±0.00122009
3 1 0.634306 -0.000264±0.000266577 -0.137624±0.00161016
3 1.5 0.493419 -0.000518±0.000333226 -0.126004±0.00169251
5 0.25 0.861588 -3.2e-05±0.0001053 -0.089904±0.00118418
5 0.5 0.595566 -0.000341±0.000277024 -0.164881±0.00157367
5 1 0.246824 -0.000436±0.000389467 -0.117716±0.00137949
5 1.5 0.122837 -0.0003±0.000349264 -0.063869±0.0010915
7 0.25 0.733492 -8.1e-05±0.00017304 -0.145162±0.00145733
7 0.5 0.347209 -0.000511±0.000354492 -0.156764±0.00147617
7 1 0.06484 -0.000423±0.0002956 -0.043456±0.000785311
7 1.5 0.018132 -5.1e-05±0.000186652 -0.012968±0.000439291
9 0.25 0.592457 -0.000301±0.000233979 -0.18041±0.00156964
9 0.5 0.171191 -0.000405±0.000349997 -0.10375±0.00116141
9 1 0.012315 -0.000237±0.000163739 -0.009953±0.000348387
9 1.5 0.001867 5e-06±7.01641e-05 -0.00156±0.000138312
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4.5.2 Outliers

In this experiment, we analyze the impact of outliers in methods that do not consider
the possibility of outliers. The purpose is to show that, although “max-prob” has
a higher hit count than Greedy #2 when q = 0, if we increase q without changing
the cost function of “max-prob” to incorporate outliers, then Greedy #2 rapidly
outperforms “max-prob”. On the other hand, if we use the correct cost function, i.e.
incorporating the possibility of outliers with the correct value of q, we should obtain
a higher hit count than Greedy #2.

We use again isotropic Gaussian distributions, this time with the generator set
model and outliers. We fix n = 2 and N = 30 and vary ε/σ ∈ {.01, .1, .25, .5, 1, 1.5}
and q ∈ {0, .1, , .2, ..., .9}, and pseudorandomly generate 103 different pairs P1, P2

and run “max-prob” without outliers, “max-prob” with outliers and Greedy #2
with them. The values of σ, ε and q are always known to the Bayesian methods,
except for the method without outliers, which assumes q = 0, while Greedy #2
always uses Euclidean distance as cost. Figure 4.1 shows the hit count of the three
algorithms in these conditions.

We note that, for low values of ε/σ, Greedy #2 and “max-prob” with outliers
have similar results while “max-prob” without outliers rapidly deteriorates as q

increases. For higher values of ε/σ, instead, “max-prob” with and without outliers
yield approximately the same results, while Greedy #2 has lower hit counts.

4.5.3 Parameter robustness

This experiment evaluates parameter robustness, i.e., how much the hit rate
deteriorates when one does not use the correct parameters (σ, ε and q in the isotropic
Gaussian model with outliers).

We generated 10000 pairs of sets P1, P2 in the generator set model with isotropic
Gaussian distributions with outliers, with N = 30, σ = 1, ε = .051/n, q = .4 and
n ∈ {1, 2, 5, 10}, and evaluated the hit count of “max-prob” with different parameter
choices. In Figure 4.2(a) we choose the correct values for σ and ε and vary q. As
one may see, hit count is very robust to the choice of q — as long as q is not too
close to 0 or too close to 1, the hit count does not change much. If we choose the
correct q and ε and vary σ (Figure 4.2(b)), similarly, as long as σ is not too close to
0, the hit count remains fairly stable. The most sensitive parameter seems to be ε:
When we choose the correct values for σ and q and vary ε (Figure 4.2(c)), we notice
that the hit count falls more dramatically as ε approaches zero than as σ or q do.
We can also notice a slight concavity around the optimal value of ε (that is, around
εformula/εactual = 1), which is not noticeable for the other parameters.

We conclude with this experiment that “max-prob” with outliers is quite robust
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Figure 4.1: Hit count comparison of “max-prob” without outliers, “max-prob” with
outliers and Greedy #2 in the direct model with outliers.
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(a) varying q (b) varying σ

(c) varying ε

Figure 4.2: Hit count as the parameters used in the cost function for “max-prob”
differ from the actual parameters of the probabilistic model.

to parameter changes, where the most sensitive parameter is the noise parameter ε
and the most robust one is the outlier rate q.
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Part II

Theoretic Results
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Chapter 5

Hit count of the “max-prob”
problem

If we would like to analyze the behavior of our framework, it is reasonable to start
with extreme cases.

If there is zero noise (ε = 0 in the Gaussian model) for some fixed number of
points N , it is certain that the “max-prob” algorithm will match correctly all points
with 100% of probability. If there is infinite noise (σ = 0 in the Gaussian model, i.e.
ε/σ = ∞), there is no information that can be used for matching, so any method
is as good as choosing a random permutation, which means that the probability of
correctly matching all points is 1/N !, and the expected hit count is equal to 1 (since
the probability of correctly matching a given point x1 ∈ P1 is equal to 1/N).

What about when we have an infinite number of points, for a fixed noise ratio?
As N →∞, the sets become increasingly denser and it becomes gradually harder to
match points correctly, so we know that the hit rate decreases with N . In this sense,
increasing the number of points seems to have a similar effect to that of increasing
the noise. Should we expect then that the expected hit count converges to 1 as
N →∞, exactly as in the case when we have infinite noise?

If infinite noise gives us an expected hit count of 1 regardless of the value of
N , it seems reasonable to think that infinitely many points but finite noise would
give us better results than infinitely many points and infinite noise. Therefore, the
expected hit count with infinitely many points and finite noise should be greater
than or equal to 1.

In this chapter we compute this expected hit count with an infinite number
of points. We will see that this value depends largely on the distribution of the
generator set, being a finite number for Gaussian distributions, and infinite for
heavy-tailed distributions such as power laws.
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5.1 Infinitely many points

The expected hit count of “max-prob”1, E[#hitsmax-prob], can be written as:

E[#hitsmax-prob] = N · P [hitmax-prob] = N
∫
Rn
P [hitmax-prob|x1]pdf[x1]dx1

where P [hitmax-prob] is the probability of correctly matching a random point x1 ∈ P1,
which has probability density of pdf[x1] = p1(x1).

Given only x1, the match x∗2 found by the “max-prob” algorithm (whether it
is correct or not) is located in a random position with distribution pdf[x∗2|x1]. We
write then

E[#hitsmax-prob] = N
∫
Rn

∫
Rn
P [hitmax-prob|x1, x

∗
2]pdf[x1]pdf[x∗2|x1]dx1dx

∗
2

To be able to compute this integral, we must do two substitutions. First of
all, we must note that, as N → ∞, pdf[x∗2|x1] converges to a Dirac delta function
(as we will show in Section 5.2), i.e., x∗2 becomes a function x∗2(x1) when N → ∞.
Secondly, we will replace P [hitmax-prob|x1, x

∗
2] with P [hit|x1, x2], which refers to the

probability that a given a pair (x1, x2) is a correct match2. These two are different
probabilities, since the first case is also conditioned on the fact that x∗2 was provided
by the “max-prob” algorithm (which increases the probability of the match being
correct). However, since x∗2 converges to a Dirac delta, using x2 = x∗2(x1) will make
P [hit|x1, x2] converge to P [hitmax-prob|x1, x

∗
2] as N → ∞ (i.e. the fact that x2 was

generated by “max-prob” provides no extra information anymore, since x∗2 becomes
deterministic). We will refrain from giving a formal proof of the correctness of this
second substitution.

Applying the substitutions, we have:

lim
N→∞

E[#hitsmax-prob] = lim
N→∞

N
∫
Rn
P [hit|x1, x2]pdf[x1]dx1

∣∣∣
x2=x∗2(x1)

(5.1)

1In a more rigorous notation, E[#hitsmax-prob] = E[Πmax-prob : Π], where Πmax-prob is the
solution of “max-prob”, and Π is the correct permutation. Note that Πmax-prob is a (deterministic)
function Πmax-prob(X1, X2), while X1, X2 and Π are random; but Πmax-prob is random if X1 or X2
(or any parts of them) are not given. Similarly, the hit rate is P [hitmax-prob] = P [(πmax-prob)i = πi],
for arbitrary i (e.g. i = 1; the choice of i has no loss of generality); and P [hitmax-prob|x1] =
P [(πmax-prob)i = πi|Xi

1 = x1]. Note also that E[#hitsmax-prob] and P [hitmax-prob] depend on all
model parameters, e.g. N , n, ε and σ in the case of the isotropic Gaussian model.

2In a more rigorous notation, P [hit|x1, x2] means P [Πij = 1|Xi
1 = x1, X

j
2 = x2]. Note that x2

and x∗2 are different concepts: while x2 is a random point in P2, x∗2 is the point “max-prob” matched
x1 to, i.e. P [hitmax-prob|x1, x

∗
2] = P [hit|x1, x2, “max-prob” matched x1 to x2]. Note also that

P [hit|x1, x2] is different from the expression obtained in Equation 4.1: here, we are conditioning
on individual points Xi

1 and Xj
2 , while Equation 4.1 conditions on the whole sets X1 and X2.
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Now let us take a closer look into P [hit|x1, x2]. Using Bayes’ rule we have

P [hit|x1, x2] = pdf[x1, x2|hit]P [hit]
pdf[x1, x2] = pdf[x1, x2|hit]P [hit]

pdf[x1, x2|hit]P [hit] + pdf[x1, x2|¬hit]P [¬hit]

Selecting two random points from P1 and P2 yields a correct match
with probability 1/N , so P [hit] = 1/N . Meanwhile, pdf[x1, x2|¬hit] =
pdf[x1|¬hit]pdf[x2|¬hit] = pdf[x1]pdf[x2]. Finally, pdf[x1, x2|hit] is the joint
probability h(x1, x2) defined in Section 4.1.3. We obtain:

P [hit|x1, x2] = 1/N
1/N + N−1

N
· pdf[x1]pdf[x2]

pdf[x1,x2|hit]

= 1/N
1/N + N−1

N
· p1(x1)p2(x2)

h(x1,x2)

Replacing in Equation 5.1:

lim
N→∞

E[#hitsmax-prob] = lim
N→∞

N
∫
Rn

1/N
1/N + N−1

N
· p1(x1)p2(x∗2(x1))

h(x1,x∗2(x1))

· p1(x1)dx1 (5.2)

= lim
N→∞

∫
Rn

1
1/N + N−1

N
· p1(x1)p2(x∗2(x1))

h(x1,x∗2(x1))

· p1(x1)dx1

=
∫
Rn

1
p1(x1)p2(x∗2(x1))
h(x1,x∗2(x1))

· p1(x1)dx1

=
∫
Rn

h(x1, x
∗
2(x1))

p2(x∗2(x1)) dx1

Now to solve this integral we need to be able to calculate x∗2(x1), which we will
see in the next section.

5.2 Computing x∗2(x1)

If the number of dimensions is n = 1, supposing the points in P have a Gaussian
distribution p(x) = gσ(x) and Gaussian noise py(y) = gε(y), then “max-prob” can
be solved by sorting the sets, as seen in Section 4.1.5. Therefore, as N → ∞,
x∗2 converges to a Dirac delta function centered at CDF−1

2 (CDF1(x1)), where
CDF1(a) = P [x1 < a] and CDF2(a) = P [x2 < a]. If the direct model is being used,
then p1(x1) = gσ(x1) and p2(x2) = g√σ2+ε2(x2) implies that x∗2(x1) =

√
σ2+ε2
σ

x1. If
the generator set model is used, then p1(x) = p2(x) and we have x∗2(x1) = x1.

However, this approach only applies if n = 1 and distributions are Gaussian.
Note also that this only applies to the “max-prob” algorithm: If for instance the
greedy #2 algorithm (Section 2.1.2) is used instead of “max-prob”, in the direct
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model, the distribution of x∗2 will not converge to a Dirac delta function (as will be
shown in Section 5.5.2).

In order to compute x∗2(x1) in more general scenarios, we need to solve a
variational calculus problem.

5.2.1 Nonlinear Variational Formulation

As N grows to infinity, the minimum bipartite matching problem acquires a
completely different structure. Note that

• P1 and P2 become densely populated sets, eventually populating the whole
domain (e.g. Rn in the case of Gaussian variables)3. As N →∞, the fraction
of the points of P1 contained in a region Ω ∈ Rn will be exactly4 ∫

Ω p1(x1)dx1.
The same applies to P2.

• Because bipartite matching is one-to-one, if all the points of P1 contained in
a region Ω1 ∈ Rn are matched to all the points of P2 contained in a region
Ω2 ∈ Rn, then these regions correspond to an equal fraction of the points in P1

and P2, i.e.,
∫

Ω1
p1(x1)dx1 =

∫
Ω2
p2(x2)dx2. Therefore if pdf[x∗2|x1] converges to

a Dirac delta, then by reducing Ω1 and Ω2 to infinitesimal regions, we obtain
p1(x1)dx1 = p2(x2)dx2, implying that x∗2(x1) must satisfy5 | det(∂x1x

∗
2(x1))| =

p1(x1)
p2(x∗2(x1)) , where ∂x1x

∗
2(x1) is the Jacobian of x∗2(x1) (i.e., a matrix J such that

Jij = ∂(x∗2)i
∂(x1)j ).

• The cost of matching region Ω1 to Ω2, divided by N , would be equal
to

∫
Ω1
C(x1, x

∗
2(x1))p1(x1)dx1, where C(x1, x2) is the cost function (e.g.

− log h(x1, x2)).

From these properties we derive that, if pdf[x∗2|x1] converges to a Dirac delta,
then it must be the solution to the variational problem6 below:

min
x∗2:Rn 7→Rn

∫
C(x1, x

∗
2(x1))p1(x1)dx1

subject to: | det(∂x1x
∗
2(x1))| = p1(x1)

p2(x∗2(x1)) (5.3)

However, this formulation has two disadvantages: Firstly, it is it is highly
nonlinear and therefore difficult to solve in this form; and secondly, it assumes
pdf[x∗2|x1] converges to a Dirac delta.

3That is, taking any small region Ω ⊂ Rn with non-zero probability (i.e. P [x1 ∈ Ω] > 0),
we have 100% probability of finding in Ω infinitely many points from P1 or P2 as N → ∞ (i.e.
P [limN→∞ |P1 ∩ Ω| =∞] = 1).

4derives from the law of large numbers.
5assuming x∗2(x1) is smooth and invertible;
6In the literature this is known as Monge’s formulation to the optimal transport problem [26].
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5.2.2 Linear Variational Formulation

Suppose that pdf[x∗2|x1] does not necessarily converge to a Dirac delta. That is,
the points located in an infinitesimal region Ω1 around a point x1 ∈ P1 are not
necessarily matched to an infinitesimal region around a point x∗2 ∈ P2, but rather
to points anywhere around P2 following some distribution function pdf[x∗2|x1]. Let
then Π(x1, x

∗
2) = pdf[x∗2|x1]

p2(x∗2) . The cost we have to minimize is therefore7:

∫
Rn

∫
Rn
C(x1, x

∗
2)pdf[x∗2|x1]p1(x1)dx1dx

∗
2 =∫

Rn

∫
Rn
C(x1, x2)Π(x1, x2)p2(x2)p1(x1)dx1dx2. (5.4)

Because
∫
Rn pdf[x∗2|x1]dx∗2 = 1, it is clear that Π must satisfy:

∀x1 :
∫
Rn

Π(x1, x2)p2(x2)dx2 = 1 (5.5)

Also, because matching is one-to-one,
∫
Rn pdf[x∗2|x1]pdf[x1]dx1 = p2(x∗2), which

leads us to:
∀x2 :

∫
Rn

Π(x1, x2)p1(x1)dx1 = 1 (5.6)

And obviously, Π must be non-negative everywhere.

Π(x1, x2) ≥ 0 (5.7)

This variational problem8 is strikingly similar to the primal problem of finite
(fixed N) minimum bipartite matching (Section 2.2): The permutation matrix Π
became a functional of two variables, and the matrix-vector products, as well as the
matrix inner product, became functional inner products on the probability measures
of sets P1 and P2.

Because this is a (linear) convex optimization problem, a candidate solution Π
is optimal if and only if the Lagrange multipliers u(x1), v(x2) and W (x1, x2) of the
constraints of Equations 5.5, 5.6 and 5.7, respectively, satisfy the Karush-Kuhn-
Tucker conditions of the problem9:
∫
Rn

∫
Rn
W (x1, x2)Π(x1, x2)p2(x2)p1(x1)dx1dx2 = 0 (complementary slackness)

W (x1, x2) ≥ 0 (dual feasibility)

W (x1, x2) + u(x1) + v(x2) = C(x1, x2) (stationarity)
7We rename x∗2 to x2 after Equation 5.4 for convenience.
8known as Kantorovich’s formulation to the optimal transport problem [26];
9We simply rewrote the KKT conditions of the discrete version of the problem, i.e. W : Π = 0,

W ≥ 0 and u~1T +~1vT +W = C, in the variational framework, assuming that when N →∞ they
remain valid and the Lagrange multipliers u, v and W converge to their respective functionals.
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If we eliminate W substituting the third condition on the other two, we obtain:
∫
Rn

∫
Rn
C(x1, x2)Π(x1, x2)p2(x2)p1(x1)dx1dx2 = ...

...
∫
Rn

∫
Rn

(u(x1) + v(x2))Π(x1, x2)p2(x2)p1(x1)dx1dx2; (5.8)

u(x1) + v(x2) ≤ C(x1, x2). (5.9)

Equations 5.5 and 5.6 imply that Equation 5.8 can be simplified to:
∫
Rn

∫
Rn
C(x1, x2)Π(x1, x2)p2(x2)p1(x1)dx1dx2 = ...

...
∫
Rn
u(x1)p1(x1)dx1 +

∫
Rn
v(x2)p2(x2)dx2 (5.10)

Now, if pdf[x∗2|x1] is a Dirac delta, then we must have Π(x1, x2) = δ(x2−x∗2(x1))
p2(x2) ,

where δ is the Dirac delta function in Rn. In this case Π satisfies the constraints of
Equations 5.5 and 5.6 because:

∫
Rn

Π(x1, x2)p2(x2)dx2 =
∫
Rn
δ(x2 − x∗2(x1))dx2 = 1

and, supposing x∗2(x1) satisfies Equation 5.3:

∫
Rn

Π(x1, x2)p1(x1)dx1 =
∫
Rn
δ(x2 − x∗2(x1)) p1(x1)

p2(x∗2(x1))dx1 =
∫
Rn
δ(x2 − x∗2)dx∗2 = 1.

And in this case, Equation 5.10 becomes
∫
Rn
C(x1, x

∗
2(x1))p1(x1)dx1 =

∫
Rn

(u(x1) + v(x∗2(x1)))p1(x1)dx1

which, because u(x1) + v(x∗2(x1)) ≤ C(x1, x
∗
2(x1)) (Equation 5.9), is only satisfied if

∀x1 : u(x1) + v(x∗2(x1)) = C(x1, x
∗
2(x1)).

Therefore, to test whether a particular function x∗2(x1) is the solution10 of “max-
prob” as N →∞, i.e. whether pdf[x∗2|x1] = δ(x∗2− x∗2(x1)) for this particular choice
of x∗2(x1); we have to find u, v that satisfy:

∀x1, x2 : u(x1) + v(x2) ≤ C(x1, x2) (5.11)

∀x1 : u(x1) + v(x∗2(x1)) = C(x1, x
∗
2(x1)) (5.12)

10It is important to note however that this methodology does not prove the uniqueness of the
solution. That is, the global minimum may well be a continuum of solutions. In other words, even
if we prove that Π(x1, x2) = δ(x2−x∗

2(x1))
p2(x2) for a given x∗2(x1) minimizes the total cost, there may be

other functionals Π(·, ·) (and not necessarily in a Dirac delta form) that have the same cost.
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Solution

From Equation 5.12 we derive that ∀a : v(a) = C(x∗2−1(a), a) − u(x∗2−1(a)), which,
substituting in Equation 5.11, results in:

∀x1, x2 : u(x1) + C(x∗2
−1(x2), x2)− u(x∗2

−1(x2)) ≤ C(x1, x2)

which, rewriting x1 = a and x2 = x∗2(b), becomes:

∀a, b : u(a) + C(b, x∗2(b))− u(b) ≤ C(a, x∗2(b))

⇔ ∀a, b : u(a)− C(a, x∗2(b)) ≤ u(b)− C(b, x∗2(b))

⇔ ∀b : b ∈ arg max
a
{u(a)− C(a, x∗2(b))} . (5.13)

Ultimately, we need to find u that satisfies Equation 5.13 for this choice of x∗2(x1).
The maximum argument occurs where the gradient of the expression is zero, and
therefore Equation 5.13 implies:

∂x1u(b)− ∂x1C(b, x∗2(b)) = 0

⇔ ∂x1u(b) = ∂x1C(b, x∗2(b)) (5.14)

So we can pursue u by solving this differential equation. This is the classical
problem of finding the potential of a vector field: The equation

∇u(x) = F (x) (5.15)

for u : Rn → R and F : Rn → Rn has a solution if and only if the Jacobian ∂xF (x)
is a symmetric matrix for all x.

This condition must be satisfied because, if we further derive this equation,
obtaining

∇2u(x) = ∂xF (x),

where ∇2 denotes the Hessian operator, the fact that a Hessian matrix is always
symmetric implies that ∂xF (x) must be symmetric.

Meanwhile, if ∂xF is a symmetric matrix, then the work (line integral) of any
path linking a constant point (for instance, the origin, 0) to x is a solution11 to u.
So for instance,

u(x) =
∫ 1

t=0
〈F (tx), d(tx)〉 =

∫ 1

0
〈x, F (tx)〉dt

11There are infinitely many solutions to u: Because ∇{u(x) + const.} = ∇u(x), both u(x) and
ũ(x) = u(x) + const. are solutions to ∇u(x) = F (x).
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is a solution to Equation 5.15, since

∇u(x) =
∫ 1

0
∇x〈x, F (tx)〉dt

=
∫ 1

0
F (tx) + t∂xF (tx)Txdt,

which, applying the product rule
∫ 1

0 uv
′dt = uv|10 −

∫ 1
0 u
′vdt with u = F (tx) and

v = t to the first term of the integrand, becomes

∇u = tF (tx)|1t=0 +
∫ 1

0
−t∂xF (tx)x+ t∂xF (tx)Txdt

= F (x) +
∫ 1

0
t(∂xF (tx)T − ∂xF (tx))xdt

= F (x),

since ∂xF (tx)T − ∂xF (tx) = 0.
In our case12, F (x1) = ∂x1C(x1, x

∗
2(x1))T ⇒ ∂xF (x1) = ∂x1∂x1C(x1, x

∗
2(x1)) +

∂x2∂x1C(x1, x
∗
2(x1))∂x1x

∗
2(x1), where (∂x2∂x1C(x1, x2))i,j = ∂(x2)j∂(x1)iC(x1, x2).

As ∂x1∂x1C(x1, x
∗
2(x1)) is already symmetric, we only need to verify if

∂x2∂x1C(x1, x
∗
2(x1))∂x1x

∗
2(x1) is symmetric.

Furthermore, since this is a maximization problem (Equation 5.13),
the Hessian ∇2

a {u(a)− C(a, x∗2(b))} |a=b = ∇2u(b) − ∂x1∂x1C(b, x∗2(b)) =
∂x2∂x1C(b, x∗2(b))∂x1x

∗
2(b) must be negative semidefinite for all b.

To summarize, the method to test whether a mapping function x∗2(x1) is the
solution provided by “max-prob” as N →∞, we need to:

1. Check if ∀x1 : |det (∂x1x
∗
2(x1))| = p1(x1)/p2(x∗2(x1));

2. Check if the matrix ∂x2∂x1C(b, x∗2(b))∂x1x
∗
2(b) is symmetric for all b;

3. Calculate u(x1) =
∫ 1

0 〈∂x1C(tx1, tx
∗
2(x1))T , x1〉dt;

4. Check if ∀b : b ∈ arg maxa {u(a)− C(a, x∗2(b))}. Note that this will only be
possible if the matrix from step 2 is also negative semidefinite.

Notice that the invariance properties of the cost function for the minimum
bipartite matching problem are still valid at this point: If we change C(x, y) to
C̃(x, y) = αC(x, y)+f(x)+g(y), then ũ(x) = αu(x)+f(x) will satisfy Equation 5.13,
therefore the solution to the matching problem will be the same mapping function
x∗2(x1).

12The transpose in “∂x1C
T ” denotes that this is a column vector, as we follow the convention

that (∂xy)ij = ∂xj
yi; i.e. if y(x) is y : Rn → R, then ∂xy is a row vector.
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5.2.3 Simple examples

Before solving the cases we are interested in, let us see how this method can be used
to solve some simple examples.

Squared Euclidean distance cost, same distribution

Consider that P1 and P2 have isotropic Gaussian distributions with parameter σ and
the cost function is C(x1, x2) = ||x1 − x2||2. The solution is obviously x∗2(x1) = x1,
since the probability densities are equal in P1 and P2 and this mapping would have
zero cost.

1. We can see that it satisfies the constraint of Equation 5.3 as det ∂x1x
∗
2(x1) =

det I = 1 = p1(x1)/p2(x1).

2. ∂x2∂x1C(x1, x2) = −2I and ∂x1x
∗
2(x1) = I, so the symmetry constraint is

satisfied. We also verify that the Hessian matrix is negative definite.

3. ∂x1C(x1, x2)T = 2(x1 − x2) implies that u(x1) =
∫ 1

0 〈∂x1C(tx1, tx
∗
2(x1))T , x1〉dt

=
∫ 1

0 〈2(tx1 − tx1), x1〉dt = 0 for all x1.

4. u(a)− C(a, x∗2(b)) = 0− ||a− b||2 has its maximum when a = b.

Therefore, x∗2(x1) = x1 is the correct solution to this case. On the other hand,
if we test instead the mapping x∗2(x1) = Qx1 for some orthogonal matrix Q, we still
satisfy the constraint of Equation 5.3, because | detQ| = 1 and p1(x1) = p2(Qx1),
but there exists no u that satisfies Equation 5.13, since

∂x2∂x1C(b, x∗2(b))∂x1x
∗
2(b) = −2Q

is not a symmetric matrix. Similarly, if we tested x∗2(x1) = −x1, we would satisfy
the probability measure preservation constraint and the Hessian matrix would be
symmetric, but positive definite, not negative definite, so step 4 would not be
satisfied, although we would be able to compute u(x1) = 2||x1||2.

Squared Euclidean distance cost, translated distribution

Let us see another example. Consider again the Gaussian distributions with variance
parameter σ, but centered at different positions: E[x1] = 0 and E[x2] = d, for some
d ∈ Rn. Also, suppose the cost function is the same: C(x1, x2) = ||x1 − x2||2. In
this case, it seems reasonable to try x∗2(x1) = x1 + d.

1. It satisfies Equation 5.3 as det ∂x1x
∗
2(x1) = det I = 1 = p1(x1)/p2(x∗2(x1));

44



2. ∂x2∂x1C(x1, x2) = −2I and ∂x1x
∗
2(x1) = I, so the symmetry constraint is

satisfied. We also verify that the Hessian matrix is negative definite.

3. u(x1) =
∫ 1

0 〈∂x1C(tx1, tx
∗
2(x1))T , x1〉dt =

∫ 1
0 〈2(tx1 − tx1 − d), x1〉dt = −2〈d, x1〉

4. In this case, u(a)− C(a, x∗2(b)) = −2〈a, d〉 − ||a− b− d||2. Deriving, we have
∇a {u(a)− C(a, x∗2(b))} = −2d− 2(a− b− d) = −2(a− b), so the expression
has only one critical point, which is where a = b. It is the global maximum as
the Hessian matrix was already verified to be negative definite.

5.2.4 Direct model case

Gaussian distributions, no outliers

Let us see now the solution to a more generic Gaussian case. In the direct model
with isotropic Gaussian noise, the cost function is the squared Euclidean distance,
as seen in Section 4.1.1. Suppose the points in P1 have a Gaussian distribution
with variance matrix Σ2

1 and P2 therefore with variance Σ2
2 = Σ2

1 + ε2I. To simplify
notation, let the “2” exponent refer to the products Σ1ΣT

1 and Σ2ΣT
2 , and “−2” refer

to Σ−T1 Σ−1
1 and Σ−T2 Σ−1

2 , so that Σ1 and Σ2 do not need to be symmetric matrices.
First of all, we need to find a candidate transformation x∗2(x1) that preserves the

probability measure, i.e. | det(∂x1x
∗
2(x1))| = p1(x1)

p2(x∗2(x1)) . We can show that a linear
transformation in the form x∗2(x1) = Tx1, where T = Σ2QΣ−1

1 , for any orthogonal
matrix Q, preserves the probability measure:

p1(x1)/p2(x∗2(x1)) = e−
1
2x
T
1 Σ−2

1 x1/((2π)n/2 det Σ1)
e−

1
2x
∗
2(x1)TΣ−2

2 x∗2(x1)/((2π)n/2 det Σ2)

= det Σ2

det Σ1
exp

(
−1

2x
T
1 Σ−2

1 x1 + 1
2x
∗
2(x1)TΣ−2

2 x∗2(x1)
)

= det Σ2

det Σ1
exp

(
−1

2x
T
1 Σ−2

1 x1 + 1
2x

T
1 Σ−T1 QTΣT

2 Σ−2
2 Σ2QΣ−1

1 x1

)
= det Σ2

det Σ1
exp

(
−1

2x
T
1 Σ−2

1 x1 + 1
2x

T
1 Σ−2

1 x1

)
= det Σ2

det Σ1

= | det(∂x1{Σ2QΣ−1
1 x1})|

Step 2. As ∂x2∂x1C(x1, x2) = −2I, the Hessian is:

∂x2∂x1C(b, x∗2(b))∂x1x
∗
2(b) = −2T

which means that T must be symmetric positive definite.
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Step 3. The calculation of u is straightforward:

u(x1) =
∫ 1

0
〈x1, 2(tx1 − x∗2(tx1))〉dt =

∫ 1

0
2t〈x1, x1 − Tx1〉dt = xT1 (I − T )x1

Step 4. Now let us analyze u(a)− C(a, x∗2(b)):

u(a)− C(a, x∗2(b)) = aT (I − T )a− ||a− Tb||2

Its derivative is:
2(I − T )a− 2(a− Tb) = −2Ta+ 2Tb

implying that the only critical point occurs where a = b, which is the global
maximum if T is positive definite.

Now we only need to show that T = Σ2QΣ−1
1 is symmetric positive definite. In

fact, this is only happens for one particular choice of Q.
We can write:

T = Σ2QΣ−1
1 = Σ−T1 (ΣT

1 Σ2Q)Σ−1
1

Now let UDV T = ΣT
2 Σ1 be the singular value decomposition of ΣT

2 Σ1. We
obtain:

T = Σ−T1 (V DUTQ)Σ−1
1

By choosing Q = UV T , we get T = Σ−T1 (V DV T )Σ−1
1 and T is therefore positive

definite. It is proved now that x∗2(x1) = Tx1 is solution of “max-prob” as N → ∞
in the direct model with Gaussian distributions, for this particular choice of T .

Gaussian distributions with outliers

Suppose now we have again the direct model with Gaussian distributions of variance
Σ2

1 and Σ2
2 = Σ2

1 + ε2I, this time with outliers. Let us use normalized cost function
#2 (Section 4.1.3):

C(x1, x2) = − log ζ̃(x1, x2) = − log(q + (1− q)ζ(x1, x2)) =

− log
(
q + (1− q) h(x1, x2)

p1(x1)p2(x2)

)
= − log

(
q + (1− q)pdf[x2|x1, inlier]

p2(x1)

)
=

− log
(
q + (1− q)py(x2 − x1)

p2(x2)

)
= − log

q + (1− q) det Σ2

εn
· e
− ||x1−x2||

2

2ε2
+ 1

2 ||x2||2
Σ−2

2


Because the prior distributions p1(x1) and p2(x2) are the same as the case without

outliers, it is reasonable to try the same mapping function x∗2(x1) = Tx1. Step 1 is
automatically verified.
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Step 2. First of all:

∂x1C(x1, x2)T = −∂x1 (log (q + (1− q)ζ(x1, x2)))T = −(1− q)∂x1ζ(x1, x2)T
q + (1− q)ζ(x1, x2)

= x1 − x2

ε2
· (1− q)ζ(x1, x2)
q + (1− q)ζ(x1, x2) = x1 − x2

ε2
· 1
q/(1−q)
ζ(x1,x2) + 1

.

Secondly,

∂x2∂x1C(x1, x2) = −I/ε2
q/(1−q)
ζ(x1,x2) + 1

+ (x1 − x2)
ε2
(
q/(1−q)
ζ(x1,x2) + 1

)2 ·
q∂x2ζ(x1, x2)T

(1− q)ζ(x1, x2)2

= −I/ε2
q/(1−q)
ζ(x1,x2) + 1

+ (x1 − x2)
ε2
(
q/(1−q)
ζ(x1,x2) + 1

)2 ·
q/(1− q)
ζ(x1, x2)

(
(x1 − x2)T

ε2
+ x2Σ−2

2

)

= −I/ε2
q/(1−q)
ζ(x1,x2) + 1

+ (x1 − x2)
ε2
(
q/(1−q)
ζ(x1,x2) + 1

)2 ·
q/(1− q)
ζ(x1, x2)

(
xT1
ε2
− xT2 (Σ2

2 − ε2I)Σ−2
2

ε2

)

= −I/ε2
q/(1−q)
ζ(x1,x2) + 1

+ (x1 − x2)
ε4
(
q/(1−q)
ζ(x1,x2) + 1

)2 ·
q/(1− q)
ζ(x1, x2)

(
xT1 − xT2 Σ2

1Σ−2
2

)

Because Σ2
2 = Σ2

1 + ε2I, we know that Σ2
2 and Σ2

1 have the same eigenvectors,
and T = Σ2QΣ−1

1 also has the same eigenvectors: If we choose13 Σ1 and Σ2 as the
symmetric square roots of Σ2

1 and Σ2
2, then they also have the same eigenvectors and

consequently the singular value decomposition UDV T = ΣT
2 Σ1 is also a symmetric

matrix, implying that U = V , so Q = I and T has the same eigenvectors as Σ2
1 and

Σ2
2. Therefore, we know that Σ2

1Σ−2
2 = T−2, obtaining:

∂x2∂x1C(x1, x2) = −I/ε2
q/(1−q)
ζ(x1,x2) + 1

+ (x1 − x2)
ε4
(
q/(1−q)
ζ(x1,x2) + 1

)2 ·
q/(1− q)
ζ(x1, x2)

(
xT1 − xT2 T−2

)

So,

∂x2∂x1C(x1, x2)∂x1x
∗
2(x1) = −T/ε2

q/(1−q)
ζ(x1,x2) + 1

+ (x1 − x2)
ε4
(
q/(1−q)
ζ(x1,x2) + 1

)2 ·
q
(
xT1 − xT2 T−2

)
T

(1− q)ζ(x1, x2) ⇒

13The choice of the matrix square root method should not impact the resulting matrix T =
Σ2QΣ−1

1 if Q is obtained using the SVD method as described in the previous section: Suppose
we use some other matrix Σ′1 instead of Σ1 for the square root of Σ2

1. Then Σ′1 = Σ1Q1, for
some orthogonal matrix Q1 (i.e., if AAT = BBT , then A−1BBTA−T = I, implying A−1B is
orthogonal). Consider the same for Σ′2. Then the new T is T ′ = Σ′2Q′Σ′1

−1, where Q′ = U ′V ′
T

and U ′D′V ′
T = Σ′2

TΣ′1 = QT2 ΣT2 Σ1Q1. Therefore D′ = D, U ′ = QT2 U , V ′ = QT1 V , Q′ = QT2 QQ1
and T ′ = Σ2Q2Q

T
2 QQ1Q

T
1 Σ−1

1 = Σ2QΣ−1
1 = T remains unchanged.
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∂x2∂x1C(x1, x
∗
2(x1))∂x1x

∗
2(x1) = −T/ε2

q/(1−q)
ζ(x1,Tx1) + 1

+ (x1 − Tx1)
ε4
(
q/(1−q)
ζ(x1,Tx1) + 1

)2 ·
q
(
xT1 − xT1 TT−2

)
T

(1− q)ζ(x1, Tx1)

= −T/ε2
q/(1−q)
ζ(x1,Tx1) + 1

− q(I − T )x1x
T
1 (I − T )

ε4(1− q)
(
q/(1−q)
ζ(x1,Tx1) + 1

)2
ζ(x1, Tx1)

which is always symmetric negative definite.
Step 3. u(x1) is equal the following integral:

u(x1) = x1(I − T )x1

ε2

∫ 1

0

tdt

1 + qεn

(1−q) det Σ2
exp

(
−1

2x
T
1

(
TΣ−2

2 T − (I−T )2

ε2

)
x1t2

)
As shown before, we can use that Σ−2

2 − I/ε2 = −Σ2
1Σ−2

2 /ε2 = −T−2/ε2,
obtaining:

TΣ−2
2 T − (I − T )2

ε2
= T (Σ−2

2 − I/ε2)T − I − 2T
ε2

= 2T − I
ε2

so that
u(x1) = x1(I − T )x1

ε2

∫ 1

0

tdt

1 + qεn

(1−q) det Σ2
exp

(
xT1
(
I−T
ε2

)
x1t2

) .
Now using that

∫ 1
aeλx + b

dx = x

b
− 1
λb

log
(
aeλx + b

)
+ const.,

we obtain

u(x1) = xT1 (I − T )x1

ε2

t2
2 −

log
(
1 + qεn

(1−q) det Σ2
exp

(
xT1
(
I−T
ε2

)
x1t

2
))

2xT1
(
I−T
ε2

)
x1

1

t=0

= xT1 (I − T )x1

2ε2

1−
log

(
1+ qεn

(1−q) det Σ2
exp(xT1 ( I−T

ε2 )x1)
1+ qεn

(1−q) det Σ2

)
xT1
(
I−T
ε2

)
x1



= xT1 (I − T )x1

2ε2 − 1
2 log

1 + qεn

(1−q) det Σ2
exp

(
xT1
(
I−T
ε2

)
x1
)

1 + qεn

(1−q) det Σ2


or, because u(x1) is invariant to adding a constant, simply:

u(x1) = xT1 (I − T )x1

2ε2 − 1
2 log

(
1 + qεn

(1− q) det Σ2
exp

(
xT1

(
I − T
ε2

)
x1

))

= −1
2 log

(
e−x

T
1 ( I−T

ε2 )x1 + qεn

(1− q) det Σ2

)
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= 1
2C(x1, x

∗
2(x1)) + const.

So a solution to u is u(x1) = 1
2C(x1, x

∗
2(x1)).

Step 4. Let

U(a, b) , exp(−C(a, T b)) = (1− q) det Σ2

εn
· e
− ||a−Tb||

2

ε2
+ 1

2 ||Tb||
2
Σ−2

2 + q

, αef(a,b) + β,

so that u(x1) = − log(U(x1, x1))/2. We have to show that

∀a, b : u(b)− C(b, x∗2(b)) ≥ u(a)− C(a, x∗2(b))

⇔ ∀a, b : −1
2 logU(b, b) + logU(b, b) ≥ −1

2 logU(a, a) + logU(a, b)

⇔ ∀a, b : 1
2 logU(a, a) + 1

2 logU(b, b) ≥ logU(a, b)

⇔ U(a, a)U(b, b) ≥ U(a, b)2

⇔ α2ef(a,a)+f(b,b) + αβ
(
ef(a,a) + ef(b,b)

)
+ β2 ≥ α2e2f(a,b) + 2αβef(a,b) + β2

If it sufficient to prove that:f(a, a) + f(b, b) ≥ 2f(a, b)
ef(a,a) + ef(b,b) ≥ 2ef(a,b)

Note however that because ex is a convex function, i.e., ∀x, y : ex+y
2 ≤ ex+ey

2 , the
first condition automatically implies the second, so we only need to prove the first
one.

f(a, a) + f(b, b) ≥ 2f(a, b)⇔

−||a− Ta||
2

2ε2 + 1
2 ||Ta||

2
Σ−2

2
− ||b− Tb||

2

2ε2 + 1
2 ||Tb||

2
Σ−2

2
≥ −||a− Tb||

2

ε2
+ ||Tb||2Σ−2

2

Using, as shown before, that T 2/ε2 − TΣ−2
2 T = I/ε2 we have

aT (T − I)a
ε2

+ bT (T − I)b
ε2

≥ −||a||
2

ε2
+ 2a

TTb

ε2
− ||b||

2

ε2
⇔

(a− b)TT (a− b)
ε2

≥ 0

which is true because T is positive definite.

Isotropic distributions, no outliers

In the direct model with Gaussian noise and no outliers, cost function is the
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Euclidean distance squared, regardless of the distribution of the points in P1. Let
us consider the case that the distribution of P1 is isotropic, i.e. p1(x1) is actually
p1(||x1||) (by abuse of notation).

In this case, a reasonable mapping is x∗2(x1) = R−1
2 (R1(||x1||)) x1

||x1|| , where R1(t) ,
P [||x1|| < t] and R2(t) , P [||x2|| < t].

Step 1. First of all, note that

R′k(||xk||) = An||xk||n−1pk(xk), k ∈ {1, 2}

where An is the (n−1)-dimensional hyper-area of the boundary of an n-dimensional
hyper-sphere of radius 1 (see Appendix C). Therefore,

p1(x1)
p2(x2) = ||x2||n−1R′1(||x1||)

||x1||n−1R′2(||x2||)
.

The Jacobian of x∗2(x1) is then

∂x1x
∗
2(x1) = R−1

2 (R1(||x1||))

I − x1xT1
||x1||2

||x1||

+ R′1(||x1||)
R′2(R−1

2 (R1(||x1||)))
· x1x

T
1

||x1||2

which is a symmetric positive semidefinite matrix, with

det ∂x1x
∗
2(x1) =

(
R−1

2 (R1(||x1||))
||x1||

)n−1
R′1(||x1||)

R′2(R−1
2 (R1(||x1||)))

= p1(x1)
p2(x∗2(x1)) .

Step 2. ∂x2∂x1C = −2I, and ∂x1x
∗
2(x1) is symmetric positive semidefinite, so

this step is automatically verified.
Step 3. We do not need to compute u to show step 4 this time, so we skip step

3.
Step 4. It is sufficient to show that u(a) − C(a, x∗2(b)) is concave with respect

to a, i.e. the Hessian matrix ∇2
a{u(a)− C(a, x∗2(b))} is negative semidefinite for all

a, b (not only when a = b):

∇2
a{u(a)− C(a, x∗2(b))} = ∇2u(a)− ∂x1∂x1C(a, x∗2(b))

= ∂x1∂x1C(a, x∗2(a)) + ∂x2∂x1C(a, x∗2(a))∂x1x
∗
2(a)− ∂x1∂x1C(a, x∗2(b))

= 2I − 2∂x1x
∗
2(a)− 2I = −2∂x1x

∗
2(a),

which is negative semidefinite for all a.
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5.2.5 Generator set model case

In the generator set model, the fact that p2(x) = p1(x) makes the functional x∗2(x1) =
x1 the natural candidate solution. We will show that it is the solution of “max-prob”
for any generator set distribution and any noise distribution.

Step 1. The candidate solution is feasible since det ∂x1x
∗
2(x1) = det I = 1 =

p1(x1)/p2(x1).
Step 2. Because C(x1, x2) is a symmetric function, we know that ∂x1∂x2C(b, b)

is a symmetric matrix, which satisfies the symmetry constraint14.
Step 3. Noting that

d

dt
C(tb, tb) = ∂x1C(tb, tb)b+ ∂x2C(tb, tb)b = 2∂x1C(tb, tb)b

we can solve
u(b) =

∫ 1

0
〈b, ∂x1C(tb, tb)T 〉dt =

∫ 1

0

1
2
d

dt
C(tb, tb)dt

= 1
2C(tb, tb)|1t=0 = C(b, b)− C(0, 0)

2 .

Step 4. The final step is to prove that

∀b : b ∈ arg max
a
{u(a)− C(a, b)}

⇔ ∀a, b : C(b, b)− C(0, 0)
2 − C(b, b) ≥ C(a, a)− C(0, 0)

2 − C(a, b)

⇔ ∀a, b : C(a, b)− C(a, a) + C(b, b)
2 ≥ 0 (5.16)

Now recall that in a generator set model, “max-prob” uses − log(pdf[x1, x2]) as
cost function, where x1 and x2 are generated from one same point x ∈ P (inlier
or outlier). Then this equation is the non-negativity condition on normalized cost
function #1 (Section 4.1.3), since:

C(a, b)− C(a, a) + C(b, b)
2 = − log

 h(x1, x2)√
h(x1, x1)h(x2, x2)

 (5.17)

or the same replacing h with h̃ and H with H̃ in the case with outliers (Section 4.3).
We can show that this is valid for any distribution such that pdf[x1|x] and

pdf[x2|x] are the same distributions. This is valid for the symmetric outlier
model described in Section 3.4: In this case pdf[x1|x] = pdf[x1|x, inlier]P [inlier] +
pdf[x1|x, outlier]P [outlier] = (1− q′)py(x1 − x) + q′{p ∗ py}(x1).

14Although we can show that the Hessian is also negative semidefinite, this will not help us solve
step 4 this time, so we will omit the proof. We will solve step 4 with a different method this time.
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Let η(x1, x) = pdf[x1|x]. Then,

h(x1, x2) = pdf[x1, x2] =
∫
Rn
η(x1, x)η(x2, x)p(x)dx. (5.18)

Combining equations 5.16, 5.17 and 5.18, we obtain:

− log
 (

∫
Rn p(x)η(a, x)η(b, x)dx)√

(
∫
Rn p(x)η(a, x)2dx) (

∫
Rn p(x)η(b, x)2dx)

 ≥ 0⇔

(
∫
Rn p(x)η(a, x)2dx) (

∫
Rn p(x)η(b, x)2dx)

(
∫
Rn p(x)η(a, x)η(b, x)dx)2 ≥ 1⇔

∫
Rn
∫
Rn p(x)p(y)η(a, x)2η(b, y)2dxdy∫

Rn
∫
Rn p(x)p(y)η(a, x)η(b, x)η(a, y)η(b, y)dxdy ≥ 1

In the numerator we linked x to a and y to b, but the opposite would also be
valid. Taking the mean between the two cases, we get:

∫
Rn
∫
Rn p(x)p(y)η(a,x)2η(b,y)2+η(a,y)2η(b,x)2

2 dxdy∫
Rn
∫
Rn p(x)p(y)η(a, x)η(b, x)η(a, y)η(b, y)dxdy ≥ 1

It is sufficient to show that:

η(a, x)2η(b, y)2 + η(a, y)2η(b, x)2

2 ≥ η(a, x)η(b, x)η(a, y)η(b, y)

⇔ η(a, x)2η(b, y)2 + η(a, y)2η(b, x)2

2 − η(a, x)η(b, x)η(a, y)η(b, y) ≥ 0

⇔ (η(a, x)η(b, y)− η(a, y)η(b, x))2

2 ≥ 0

which is clear to be always satisfied.
It is then proved that x∗2(x1) = x1 solves the variational problem with a generator

set, for any distribution of P or the noise. We also proved that normalized cost
function #1 is always non-negative.

Curiously, the result x∗2(x1) = x1 applies to any non-negative cost function
satisfying ∀x : C(x, x) = 0. This means that, in the generator set model, regardless
of the distribution of P , one may choose for example L2 or L1 distance as cost and
the expected hit count will converge to the same value when N →∞ as if one had
chosen the correct cost function, i.e. the one based on the joint probability.

5.3 Computing the expected hit count

Now that we have computed the x∗2(x1) function for multiple models and
distributions, we are able to calculate the expected hit count as N → ∞ for these
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cases.

5.3.1 Gaussian case

Direct Model

In the isotropic Gaussian case, in the direct model, we obtain:

lim
N→∞

E[#hitsmax-prob] =
∫
Rn

h(x1, x
∗
2(x1))

p2(x∗2(x1)) dx1

=
∫
Rn

gσ(x1)gε(x∗2(x1)− x1)
g√σ2+ε2(x∗2(x1)) dx1

=
∫
Rn

gσ(x1)gε(
√
σ2+ε2
σ

x1 − x1)
g√σ2+ε2(

√
σ2+ε2
σ

x1)
dx1

=

√

2π(σ2 + ε2)
√

2πσ2
√

2πε2

n ∫
Rn

e−||x1||2/(2σ2) · e−
(
√
σ2+ε2
σ −1)2||x1||

2

2ε2

exp
(
−1

2

(√
σ2+ε2
σ

x
)2
/(σ2 + ε2)

)dx1

=

√

2π(σ2 + ε2)
√

2πσ2
√

2πε2

n ∫
Rn

e−||x1||2/(2σ2) · e−
(
√
σ2+ε2
σ −1)2||x1||

2

2ε2

e−
( xσ )2

2

dx1

=

√

2π(σ2 + ε2)
√

2πσ2
√

2πε2

n ∫
Rn
e−

(
√
σ2+ε2
σ −1)2||x1||

2

2ε2 dx1

=

√

2π(σ2 + ε2)
√

2πσ2
√

2πε2
·
√

2π ε
√
σ2+ε2
σ
− 1

n

=
√σ2 + ε2

σ
· 1
√
σ2+ε2
σ
− 1

n

=
 1

1− σ√
σ2+ε2

n

=

 1
1− 1√

1+ ε2
σ2


n

Analyzing the formula above we note that:

• As σ → 0, we have E[#hitsmax-prob] = 1, which is the same result as when
there is infinite noise with fixed N ;

• E[#hitsmax-prob] increases as the noise ratio ε/σ falls;

• E[#hitsmax-prob] increases with the number of dimensions.
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Therefore the formula agrees with the theoretical results found in the beginning
of this chapter.

Generator set model

Analogously, in the generator set model, we obtain:

lim
N→∞

E[#hitsmax-prob] =
∫
Rn

h(x1, x
∗
2(x1))

p2(x∗2(x1)) dx1

=
∫
Rn

g√
σ2+ε2/2

(
x1+x∗2(x1)

2

)
g√2ε(x1 − x∗2(x1))

g√σ2+ε2(x∗2(x1)) dx1

=
∫
Rn

g√
σ2+ε2/2(x1)g√2ε(0)

g√σ2+ε2(x1) dx1

=
(

σ2 + ε2

2π · 2ε2(σ2 + ε2/2)

)n
2 ∫

Rn

e−
1
2 ||x1||2/(σ2+ε2/2)

e−
1
2 ||x1||2/(σ2+ε2)

dx1

=
(

σ2 + ε2

2π · 2ε2(σ2 + ε2/2)

)n
2 ∫

Rn
e
− 1

2

(
1

σ2+ε2/2
− 1
σ2+ε2

)
||x1||2

dx1

=
 σ2 + ε2

2ε2(σ2 + ε2/2)
(

1
σ2+ε2/2 −

1
σ2+ε2

)
n

2

=
 σ2 + ε2

2ε2(σ2 + ε2/2)
(

ε2/2
(σ2+ε2/2)(σ2+ε2)

)
n

2

=
(

(σ2 + ε2)2

ε4

)n
2

=
(

1 + σ2

ε2

)n

Note that this expression satisfies the same properties mentioned for the formula
for the direct case. Also, interestingly, the generator set model case is approximately
equal to the direct model case with

√
2 times as much noise: Note that

 1
1− 1√

1+2 ε2
σ2


n

=


√
1 + 2 ε2

σ2√
1 + 2ε2

σ2 − 1

n =


(√

1 + 2 ε2

σ2 + 1
)√

1 + 2 ε2

σ2

1 + 2 ε2

σ2 − 1


n

=

1 + 2 ε2

σ2 +
√

1 + 2 ε2

σ2

2ε2/σ2

n =
1 + σ2

2ε2 + σ2

2ε2

√
1 + 2 ε

2

σ2

n =

1 + σ2

2ε2 + σ2

2ε2

1 +
2 ε2

σ2√
1 + 2 ε2

σ2 + 1

n =
1 + σ2

ε2
+ 1√

1 + 2 ε2

σ2 + 1

n
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=
(

1 + σ2

ε2
+O(1)

)n

5.3.2 Exponential case

Exponential distribution model

Suppose now that the points in the generator set P have an exponential distribution,
and that noise has an isotropic Gaussian distribution of parameter ε.

For an n-dimensional exponential distribution, it is reasonable to let p(x) ∝
e−λ||x||. In this case, we have:

∫
Rn
e−λ||x||dx =

∫ ∞
0

e−λrAnr
n−1dr = An(n− 1)!

λn

where An is the (n−1)-dimensional hyper-area of the boundary of an n-dimensional
hyper-sphere of radius 1 (see Appendix C).

Therefore our distribution is:

p(x) = λne−λ||x||

An(n− 1)!

Note that when n = 1, we obtain p(x) = λ
2e
−λ|x|, and not the standard

exponential distribution pdf[t] = λe−λt, since the latter only considers positive values
for t. This distribution is also known as the Laplace Distribution (when n = 1).

In fact, for the theoretical properties of matching that we are interested in
deriving, the important characteristic of our exponential distribution model is that
p(x) = Θ(e−λ||x||) as ||x|| → ∞, so with similar distributions we would get the same
theoretical results.

Expected hit count

With isotropic Gaussian noise and a generator set model, any distribution has
x∗2(x1) = x1, so the expected hit count is:

lim
N→∞

E[#hitsmax-prob] =
∫
Rn

h(x1, x1)
p2(x1) dx1

=
∫
Rn

pm(x1)g√2ε(0)
p2(x1) dx1

= 1
(4πε2)n/2

∫
Rn

{
p ∗ gε/√2

}
(x1)

{p ∗ gε} (x1) dx1
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A necessary condition for this integral to converge is that:

lim
||x1||→∞

Z(x1) = 0

where Z(x1) =

{
p ∗ gε/√2

}
(x1)

{p ∗ gε} (x1)

otherwise, if lim||x1||→∞ Z(x1) > 0, the integral is infinite and we have an infinite
expected hit count.

If p(x) is Gaussian we know that lim||x1||→∞ Z(x1) = 0: If p(x) = gσ(x), then
Z(x1) =

g√
σ2+ε2/2(x1)

g√
σ2+ε2

(x1) =
(

σ2+ε2
σ2+ε2/2

)n/2
exp

(
−1

2
ε2/2||x1||2

(σ2+ε2)(σ2+ε2/2)

)
, which tends to zero as

||x1|| → ∞.
However, if p(x) is the exponential distribution described in Section 5.3.2, we

have another result.
Let us rewrite:

lim
||x1||→∞

{
p ∗ gε/√2

}
(x1)

{p ∗ gε} (x1) =
lim||x1||→∞

{
p ∗ gε/√2

}
(x1)/p(x1)

lim||x1||→∞ {p ∗ gε} (x1)/p(x1)

Let x = x1 + a+ b, for two vectors a, b, where a ‖ x1 and b ⊥ x1. Then,

lim
||x1||→∞

{p ∗ gε} (x1)/p(x1) =

lim
||x1||→∞

∫
Rn

λn

An(n−1)!e
−λ||x|| · e

− 1
2
||x1−x||

2

ε2

(2πε2)n/2 dx
λn

An(n−1)!e
−λ||x1||

=

lim
||x1||→∞

∫
Rn e

−λ||x|| · e
− 1

2
||x1−x||

2

ε2

(2πε2)n/2 dx

e−λ||x1||
=

lim
||x1||→∞

∫
a‖x1

∫
b⊥x1

e−λ||x1+a+b|| · e
− 1

2
||a||2

ε2 e
− 1

2
||b||2

ε2

(2πε2)n/2 dadb

e−λ||x1||
=

∫
a‖x1

∫
b⊥x1

e−λ lim||x1||→∞(||x1+a+b||−||x1||) · e
− 1

2
||a||2

ε2 e−
1
2
||b||2

ε2

(2πε2)n/2 dadb (5.19)

Let us take a closer look at lim||x1||→∞ (||x1 + a+ b|| − ||x1||).

lim
||x1||→∞

(||x1 + a+ b|| − ||x1||) = lim
||x1||→∞

(||x1 + a+ b|| − ||x1||) (||x1 + a+ b||+ ||x1||)
||x1 + a+ b||+ ||x1||

= lim
||x1||→∞

||x1 + a+ b||2 − ||x1||2

||x1 + a+ b||+ ||x1||
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= lim
||x1||→∞

||a+ b||2 + 2〈x1, a+ b〉
||x1 + a+ b||+ ||x1||

= lim
||x1||→∞

||a+ b||2 + 2〈x1, a〉
||x1 + a+ b||+ ||x1||

=
〈

x1

||x1||
, a

〉

Substituting in Equation 5.19, we obtain:

∫
a‖x1

∫
b⊥x1

e
−λ
〈

x1
||x1||

,a

〉
· e
− 1

2
||a||2

ε2 e−
1
2
||b||2

ε2

(2πε2)n/2 dadb

=
∫
a‖x1

e
−λ
〈

x1
||x1||

,a

〉
· e
− 1

2
||a||2

ε2

√
2πε2

da

=
∫
a‖x1

e−
1
2

||a+λε2 x1
||x1||

||2

ε2
+λ2ε2

2
√

2πε2
da

= eλ
2ε2/2

In fact, a more cautious proof would require to show that bringing the limit to
inside the integral as we did in Equation 5.19 is allowed in this case; we skip this step
here. Intuitively, it is allowed because the values of (a, b) where the limit does not
apply for a given x1 are highly attenuated by the Gaussian factor e−||a||2/2ε2 , so they
can be disregarded. For instance, if a + b = −x1, then e−λ(||x1+a+b||−||x1||) = eλ||x1||

grows exponentially with x1, but the Gaussian factor is e−a2/2ε2 = e−||x1||2/2ε2 , which
decreases much faster than the former.

This result shows nevertheless that, in the exponential case, limx1→∞ Z(x1) =
eλ

2(ε/
√

2)2/2/eλ
2ε2/2 = e−λ

2ε2/4 > 0, which means that the expected hit count goes to
infinity. In other words, as N → ∞, E[#hitsmax-prob] = ω(1) for the exponential
distribution.

5.3.3 Power law case

Power law distribution Model

Consider now a power law distribution of the points of P , and once again Gaussian
isotropic noise.

For a power law distribution, similarly to the exponential distribution, we would
like some p(x) such that p(x) = Θ(||x||−α). A convenient distribution with this
property is the one that satisfies:

P [||x|| > t] = (m/t)α−n, t > m

P [||x|| < m] = 0
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for a scale parameter m. Also note that this model requires α > n. Deriving the
CDF with respect to ||x||, we get

pdf[||x||] = (n− α)
(

mα−n

||x||α−n+1

)

And therefore:
p(x) = pdf[||x||]

An||x||n−1 = n− α
An

mα−n

||x||α

Expected hit count

Analogously to the exponential distribution, we have to compute limx1→∞ Z(x1) for
the power law distribution.

lim
||x1||→∞

{p ∗ gε} (x1)/p(x1) =

lim
||x1||→∞

∫
||x||>m

(n−α)mα−n
An

||x||−α · e
− 1

2
||x1−x||

2

ε2

(2πε2)n/2 dx

(n−α)mα−n
An

||x1||−α
=

lim
||x1||→∞

∫
||x||>m

(
||x1||
||x||

)α
· e
− 1

2
||x1−x||

2

ε2

(2πε2)n/2 dx =

lim
||x1||→∞

∫∫
a‖x1, b⊥x1, ||x1+a+b||>m

(
||x1||

||x1 + a+ b||

)α
· e
− 1

2
||a||2

ε2 e−
1
2
||b||2

ε2

(2πε2)n/2 dadb =

∫∫
a‖x1, b⊥x1, ||x1+a+b||>m

(
lim

||x1||→∞

||x1||
||x1 + a+ b||

)α
· e
− 1

2
||a||2

ε2 e−
1
2
||b||2

ε2

(2πε2)n/2 dadb =

∫
a‖x1

∫
b⊥x1

1 · e
− 1

2
||a||2

ε2 e−
1
2
||b||2

ε2

(2πε2)n/2 dadb = 1

The same issue with incorporating the limit to the integral happens here, but
once again, the (||x1||/||x1 + a+ b||)α term, which grows according to a power law,
is attenuated by the Gaussianly decreasing factor e−a2/2ε2 , so that the region where
a+ b ∼ −x1 can be disregarded. We skip the rigorous proof here.

Finally, we obtain that lim||x1||→∞ Z(x1) = 1/1 = 1 > 0, which shows that the
power law distribution of the generator set will also have an infinite number of
correct matches as N →∞.
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5.4 Expected hit count with outliers

We have seen that, in the generator set model, x∗2(x1) = x1 is solution to
the variational problem regardless of whether there are outliers or not, for any
distribution. In the direct model, we have seen that x∗2(x1) is the same for both
cases, with or without outliers, when distributions are Gaussian.

So for these cases, the only difference in the derivation of the expected hit count
is in that P [hit] = (1− q)/N instead of 1/N . We obtain then

P [hit|x1, x2] = pdf[x1, x2|hit]P [hit]
pdf[x1, x2|hit]P [hit] + pdf[x1, x2|¬hit]P [¬hit]

= (1− q)/N
(1− q)/N + N−(1−q)

N
· p1(x1)p2(x2)

h(x1,x2)

giving

lim
N→∞

E[#hitsmax-prob] = N
∫
Rn

(1− q)/N
(1− q)/N + N−(1−q)

N
· p1(x1)p2(x∗2(x1))

h(x1,x∗2(x1))

· p1(x1)dx1

= (1− q)
∫
Rn

h(x1, x
∗
2(x1))

p2(x∗2(x1)) dx1

Therefore, the results obtained are the same but multiplied by (1− q) for all the
cases we have seen.

5.5 Experiments

5.5.1 Variational Problem

The purpose of this experiment is to corroborate the solution of the variational
problem for Gaussian distributions and squared Euclidean distance cost: x∗2(x1) =
Σ2QΣ−1

1 x1. We randomly generate two sets of points P1 and P2 independently
(i.e. not following any model of Chapter 3, but simply independently15) following
Gaussian distributions, apply minimum bipartite matching using squared Euclidean
distance cost, and measure the average value of ||x∗2(x1)− x2||2 among all matched
pairs (x1, x2), where x∗2(x1) is the solution to the variational problem. We repeat
this measurement for increasing N and analyze how this metric changes: If x∗2 is
correct, the metric should converge to zero, otherwise, it converges to a constant
greater than zero.

15Note that the results on the variational problem depend only on the cost function C(x1, x2)
and on the prior probabilities pdf[x1] and pdf[x2], so they are indifferent to whether P1 and P2
were generated independently or according to a model such as the direct model or the generator
set model.
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We start computing this with n = 1 and σ1 = σ2 = 1 (Figure 5.1(a)) and
2σ1 = 1 and σ2 = 2 (Figure 5.1(b)). Because n = 1, we can compute this for
very high N using the sorting solution (O(N logN)) described in Section 4.1.5. In
the first case, we observe that ||x1 − x2||2 is decreasing apparently according to a
power law of N , suggesting that x∗2 is correct. In the second case, we compare the
behavior of ||x∗2(x1) − x2||2 for x∗2(x1) = 2x1 (correct) and x∗2(x1) = x1 (incorrect),
and we can clearly see that the former goes to zero while the latter does not. In
Figure 5.1(c,d) we repeat this for n = 2 and isotropic distributions, this time using
the Hungarian algorithm (O(N3)), and observe the same behavior. In Figure 5.1(e)
we use anisotropic distributions of variance Σ2

1 = [ 1 0
0 4 ] and Σ2

2 = [ 5 3
3 5 ], which means

x∗2(x1) = Tx1 with T = [ 2.03026 0.468521
0.468521 1.09322 ]. It is clear in the graph that in this case

||x∗2(x1)− x2||2 approaches zero, as expected.
We also analyzed if the variational problem solution also applies to the Greedy

#2 algorithm. We fixed n = 1 with Gaussian distributions and Euclidean distance
as cost, and analyzed what happens when σ1 = σ2 = 1 (Figure 5.2(a)) and σ1 = 1
and σ2 = 2 (Figure 5.2(b)). In the former case, Greedy #2 converges to x∗2(x1) = x1

just as minimum bipartite matching, but in the latter case, neither x∗2(x1) = x1 nor
x∗2(x1) = 2x1 seem to be correct. This is an expected result, since the variational
formulation seen in this chapter is based on minimum bipartite matching, not the
greedy algorithms, whose behavior will be discussed in the next section.

5.5.2 Behavior of Greedy #2

In order to understand what Greedy #2 is actually doing as N → ∞, we did
an experiment where we matched P1 and P2 (still independently generated) with
|P1| = |P2| = 10000 and n = 1, using both “max-prob” and Greedy #2 methods,
and we plotted the matched pairs in R2 (the point from P1 in the x axis and P2 in
the y axis). We tested two scenarios: the case when the two distributions are equal
(σ1 = σ2 = 1), and the case when they are different (σ1 = 1, σ2 = 2).

As the solution to the variational problem in each case is x∗2(x1) = x1 and
x∗2(x1) = 2x1, “max-prob” results in a linear curve in both cases (Figure 5.3(a,b)).
When σ1 = σ2, Greedy #2 will match first the points that are very close to each
other, while in the final iterations, the matches are very distant to each other, so the
plot looks like a straight line with noise (Figure 5.3(c)). When σ1 6= σ2, however,
Greedy #2 has a completely different behavior (Figure 5.3(d)).

What is Greedy #2 actually doing in this case? Greedy #2 will start matching
points that are very close to each other; however, matching must be one-to-one,
so in the regions where P1 and P2 have different densities, at some point Greedy
#2 will run out of points of either set and will have to match points very far from
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(a) n = 1, σ1 = σ2 = 1 (b) n = 1, σ1 = 1, σ2 = 2

(c) n = 2, Σ1 = Σ2 = I (d) n = 2, Σ1 = I, Σ2 = 2I

(e) n = 2, anisotropic

Figure 5.1: The convergence of ||x∗2(x1)−x2||2 for different distributions and different
functions for x∗2(x1) (in log-log scale).
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(a) n = 1, σ1 = σ2 = 1 (b) n = 1, σ1 = 1, σ2 = 2

Figure 5.2: The convergence of ||x∗2(x1)− x2||2 for Greedy #2.

(a) “max-prob”, σ1 = σ2 (b) “max-prob”, σ1 6= σ2

(c) Greedy #2, σ1 = σ2 (d) Greedy #2, σ1 6= σ2

Figure 5.3: Plots of the matched pairs (x1, x2) with n = 1 and Gaussian distributions
using different methods and different values of σ1, σ2. The x-axis shows the value of
x1 and the y-axis shows the value of x2.
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Figure 5.4: Illustration of the behavior of Greedy #2 with different distributions.

each other. Figure 5.4 illustrates its behavior. In the figure, Greedy #2 will start
matching points from the green regions of the figure, and at some point regions (I)
and (III) will run out of points of P1 (red curve), while region (II) will run out
of points of P2 (blue curve). When this happens, Greedy #2 will have to match
points between the yellow regions of the figure: the remaining points of P1 in (II)
and the remaining points of P2 in (I) and (III). Because of the greedy nature of the
algorithm, the remaining points will be matched in order of distance: It will start
with the points near the boundaries between (I) and (II) and between (II) and (III)
(represented with the short arrows in the figure), and in the end the points near the
center of (II) and the extremes of (I) and (III) (represented with the long arrows).
This explains the curves we see in Figure 5.3(d): the straight curve are the points
matched in the first phase of the algorithm, i.e. before it ran out of points of P1

or P2 in the regions of different density, while the deviating curves are the points
matched in the second phase of the algorithm, i.e. the matching of the remaining
points.

5.5.3 Gaussian hit count

The goal of the experiments in this subsection is to confirm through simulations
the expressions for the hit count when N →∞, for isotropic Gaussian distributions
without outliers. We run “max-prob” for different values of N , n and ε/σ in the
direct and generator set models and compare with the theoretical value predicted
for N →∞.

We first analyze the direct model with n = 1, which means we can solve the
problem in O(N logN) with the sorting solution. We ran “max-prob” for ε/σ ∈
{.5, .75, 1, ..., 2} and N ∈ {5, 50, 500, ..., 5 · 106}, and took the average hit count for
100 samples (Figure 5.5(a,b)). The figures suggest that “max-prob” is converging
to the theoretical value. We also compare this values with the hit count of Greedy
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#216 (Figure 5.5(c) shows the values fixing N = 5 · 105 and Figure 5.5(d) fixing
ε/σ = 1). It is clear in Figure 5.5(d) that Greedy #2 does not converge to the
theoretical value, and has a lower hit count.

For low values of ε/σ, “max-prob” does not appear to converge to the theoretical
value at first glance (Figure 5.5(e) shows the average hit count when ε/σ = .25
and n = 1, using “max-prob” and Greedy #2 with 10 samples each, in the direct
model). Our hypothesis is that it does converge, although very slowly. To support
this hypothesis, our argument is that the integral of Equation 5.2 also converges
very slowly as N → ∞. Although we cannot compute this integral analytically
for fixed N , we can estimate it using a Monte-Carlo method17, which has O(1)
complexity with respect to N , meaning that we can compute it for extremely high
N . We compare then the hit count of “max-prob” to this Monte-Carlo integral
result, observe that they yield similar values18, and also verify that the Monte-Carlo
integral converges very slowly as N → ∞ (Figure 5.5(f), where n = 1, ε/σ = .25,
with the direct model; “max-prob” uses 10 samples and Monte-Carlo uses 1000
samples).

In the generator set model, with n = 1, “max-prob” seems to converge correctly
to the theoretical value (Figure 5.6(a); “max-prob” hit count averaged with 100
samples). The difference is that, because the greedy method solution also converges
to the same mapping function x∗2(x1), its hit count also converges to the same hit
count as “max-prob” (Figure 5.6(b); fixed ε/σ = .75, both algorithms were averaged
with 100 samples).

When n > 1, we cannot run “max-prob” or Greedy #2 with a high number of
samples because their O(N logN) solutions cannot be applied in this case, so the
analysis is much poorer (See Figure 5.7(a) for n = 2 and Figure 5.7(b) for n = 3,
using the direct model and 50 samples per case).

5.5.4 Exponential and power law hit count

The goal of this experiment is to verify that exponential and power law distributions
have infinite hit count as N →∞. For that purpose we use the generator set model
with n = 1 and run bipartite matching using squared Euclidean distance as cost
(i.e. the sorting solution), since we do not have an analytical expression for the cost
function for these distributions. However, both methods have the same solution as
N → ∞, because the solution of the variational problem is the same (as seen in

16Greedy #2 can also be computed in O(N logN) when n = 1 and Euclidean distance is used
as cost function (see Appendix D).

17Our Monte-Carlo estimator samples x1 with pdf[x1] ∝ h(x1, x
∗
2(x1))/p2(x∗2(x1)).

18Note that the integral of Equation 5.2 does not predict the hit count of “max-prob” for fixed
N , as it already incorporate terms that are only valid for N →∞. We can only expect that they
converge to the same value and have similar convergence rates.
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(a) Comparing “max-prob” with different
values of N and ε/σ and the theoretical value
for N →∞

(b) Same as (a), plotted differently

(c) Comparing “max-prob” and Greedy #2 for
N = 5 · 105 and the theoretical value for N →
∞

(d) Comparing “max-prob”, Greedy #2 and
the theoretical value for ε/σ = 1

(e) Comparing “max-prob”, Greedy #2 and
the theoretical value for ε/σ = .25

(f) Comparing “max-prob”, Monte-Carlo
integration (theoretical) for fixed N , and the
theoretical formula for N → ∞, with ε/σ =
.25. NOTE: The x-axis is not in a uniform
scale.

Figure 5.5: Direct model comparisons, n = 1. In each chart, “+∞ (theoretical)”
refers to the (exact) theoretical value for N → ∞, all others are numerically
estimated.
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(a) Comparing “max-prob” with different
values of N and ε/σ and the theoretical value
for N →∞

(b) Comparing “max-prob”, Greedy #2 and
the theoretical value for ε/σ = .75

Figure 5.6: Generator set model comparisons, n = 1. In each chart, “+∞
(theoretical)” refers to the (exact) theoretical value for N → ∞, all others are
numerically estimated.

(a) n = 2 (b) n = 3

Figure 5.7: Direct model comparisons, n > 1 (including the theoretical value).
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(a) Exponential distribution (b) Power law distribution, α = 2. NOTE:
The y-axis is in logarithmic scale.

Figure 5.8: Hit count growth for exponential and power law distributions, n = 1.

Section 5.2.5, any non-negative cost function satisfying ∀x : C(x, x) = 0 solves the
variational problem when points in P1 and P2 have the same prior distributions).

Figure 5.8(a) shows the average hit count for an exponential distribution with
different values of ελ and N while Figure 5.8(b) shows the hit count for a power law
distribution with for different values of ε/m and N , and fixed α = 2, both averaged
over 10 samples. The former appears to show logarithmic growth (E[#hits] =
Θ(log(N))), while the latter shows a very clear power law growth in the hit count
(Figure 5.8(b) suggests that E[#hits] = Θ(

√
N) in this case).
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Chapter 6

Hit rate of Greedy #2

Rather than computing the exact expected number of correct matches as N grows
to infinity limN→∞E[#hits], as we did in the previous chapter, in this chapter we
will pursue the expected hit count for some fixed N . In fact, we do not compute
exact values; we rather derive bounds that describe an asymptotic behavior as N
grows to infinity.

6.1 General idea

In this section we describe the basic reckoning we use to derive the bounds shown
in this chapter.

Consider the generator set model with Gaussian noise and no outliers. Points in
P1 have a probability density of p1(x1) that decreases as x1 is farther from the origin.
Therefore, points farther from the origin are more likely to be correctly matched,
since the probability of appearing a neighboring point that could be mistaken with
the correct match becomes gradually lower. This probability is related to the point
density in the region, Np1(x1). So let us assume that a point is correctly matched
if the point density around the point is “sufficiently low”:

P [hit] ≈ P [Np1(x1) < c] ,

for some constant c, where x1 is a random point in P1, with distribution pdf[x1] =
p1(x1). Theoretically the threshold should depend also on ε and n, but let us
disregard this fact in this moment.

We can further approximate this relation by letting x1 be distributed according
to the distribution function of the generator set p(x), obtaining:

P [hit] ≈ P
[
p(x) < c

N

]

68



Let us see some examples. If x is distributed according to a power law
distribution, recall that we have:

P [||x|| > t] = (m/t)α−n

p(x) = n− α
An

mα−n

||x||α

Therefore, in this case,

p(x) < c

N
⇔ ||x|| >

(
An
n− α

1
mα−n

c

N

)−1/α
= CN1/α

for a constant C =
(
An
n−α

c
mα−n

)−1/α
. We obtain then

P
[
p(x) < c

N

]
=
(

m

CN1/α

)α−n
=
(
m

C

)α−n
Nn/α−1

suggesting that
P [hit] ≈ C ′Nn/α−1

for constant C ′, and, because E[#hits] = NP [hit], that

E[#hits] ≈ C ′Nn/α.

On the other hand, for an exponential distribution (following the model from
Section 5.3.2), we have:

p(x) = λn

An(n− 1)!e
−λ||x||

P [||x|| > t] = e−λt
(

1 + λt+ (λt)2

2! + ...+ (λt)n−1

(n− 1)!

)

In this case,
p(x) < c

N
⇔ ||x|| > log(CN)

λ

for some constant C. Meanwhile,

P

[
||x|| > log(CN)

λ

]
= e− log(CN)

(
1 + log(CN) + (log(CN))2

2! + ...+ (log(CN))n−1

(n− 1)!

)

∼ 1
CN

(logN)n−1

(n− 1)! (as N →∞).

Therefore for sufficiently large N we would have an expected hit count of

E[#hit] = N.P [hit] ≈ C ′(logN)n−1
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Naturally, the derivations above use a lot of approximations and are therefore
very inaccurate, but as we will show in the next sections, these approximations can
be rewritten as bounds so that we are able to obtain reliable results with respect to
the hit rate.

6.2 Lower bound

Instead of working with approximations as in the previous section, in this section
we will work with reliable bounds to describe the asymptotic behavior of the hit
rate with respect to N .

The lower bounds are based on the Greedy #2 algorithm, and consequently also
apply to “max-expect”, since it is known to have a higher expected hit count than
any other method. However, the bounds do not necessarily apply to the “max-prob”
method, since we have no guarantee that it will have a higher hit count than Greedy
#2.

Also, we will suppose that N →∞, while ε→ 0 or ε = const., but not ε→∞;
and all the other parameters (such as n, σ (isotropic Gaussian case), λ (exponential
case), m and α (power law case)) are constant. We are considering here only isotropic
Gaussian noise and only the generator set model, although we expect that the
direct model has most likely the same asymptotic behavior. To make the derivation
simpler, we will assume for now that there are no outliers; the case with outliers is
detailed in Section 6.4.

To simplify the notation, let E[#hits] and P [hit] refer respectively to the hit
count and rate of the Greedy #2 method with Euclidean distance as cost1 (that
is, an abuse of notation for E[#hitsgreedy#2] and P [hitgreedy#2], compared to the
notation used in the previous chapter). We can say that E[#hits] is N times the
probability of correctly matching a random point x1 ∈ P1, i.e.:

E[#hits] = N · P [hit] = N
∫
Rn
P [hit|x1]p1(x1)dx1

Let then x2 be the correct match of x1 and x the corresponding point of the
generator set. We can then write:

E[#hits] = N
∫∫

Rn×Rn
P [hit|x1, x2]pdf[x1]pdf[x2|x1]dx1dx2

= N
∫∫

Rn×Rn
P [hit|x1, x2]pdf[x1, x2]dx1dx2

We know that Greedy #2 matches x1 and x2 with 100% probability if x1 is the
1Also, P [hit|x1] denotes the probability of matching a given point x1 correctly using Greedy

#2, when all the other points are not given.
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x1 M
x2

||X-x1||<||D|| 

||X-M||<(3/2)||D||

M=(x1+x2)/2

 D=x1-x2

||D||

(3/2)||D||

Figure 6.1: Illustration of the 3
2D radius sphere bound.

closest point to x2 and vice-versa:

P [hit|x1, x2] ≥P
[∀(x′2 ∈ P2 \ {x2}) : ||x′2 − x1|| > ||x2 − x1||

]
∧ ...

...
[
∀(x′1 ∈ P1 \ {x1}) : ||x′1 − x2|| > ||x2 − x1||

]
∣∣∣∣∣∣x1, x2


=P

||x̃2 − x1|| > ||x2 − x1|| ∧
||x̃1 − x2|| > ||x2 − x1||

∣∣∣∣∣∣x1, x2

N−1

where x̃1 and x̃2 are random variables generated from a same point x̃ of the generator
set, and “∧” denotes logical conjunction (the “and” operator). We can relax this
condition to (see Figure 6.1 for an illustration of this step):

P [hit|x1, x2] ≥ P

||x̃2 − x1+x2
2 || >

3
2 ||x2 − x1|| ∧ ...

...||x̃1 − x1+x2
2 || >

3
2 ||x2 − x1||

∣∣∣∣∣∣x1, x2

N−1

, B
(
x1 + x2

2 , x2 − x1

)N−1
.

B(M,D) can be interpreted as the probability of a pair x̃1, x̃2 being generated
“far enough” from x1 and x2 so that matching is not hindered; given their mean
M = x1+x2

2 and difference D = x1 − x2.
Recall that M and D are independent variables (as seen in Section 3.5), so that

we can write now:

E[#hits] ≥ N
∫∫

Rn×Rn
B(M,D)N−1pdf[M ]pdf[D]dMdD

= N
∫
Rn

(∫
Rn
B(M,D)N−1pdf[D]dD

)
pdf[M ]dM

We can further restrain the integration domain to force ||D|| < εr̄, for some
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constant r̄:

E[#hits] ≥ N
∫
Rn

(∫
||D||<εr̄

B(M,D)N−1pdf[D]dD
)

pdf[M ]dM

= N
∫
Rn
Q(M)pdf[M ]dM

where:
Q(M) ,

∫
||D||<εr̄

B(M,D)N−1pdf[D]dD

Q(M) can be interpreted as a lower bound of the probability of correctly
matching x1 and x2, given their mean.

Using now Markov’s inequality

∀r : E[f(X)] ≥ f(r)P [f(X) > f(r)],

we can use that for any Q̄:
∫
Rn
Q(M)pdf[M ]dM ≥ Q̄ · P [Q(M) ≥ Q̄]

⇒ E[#hits] ≥ NQ̄ · P [Q(M) ≥ Q̄].

In other words, we are bounding the expected hit rate to the probability of finding
a point whose mean M implies a high probability (greater than Q̄) of correctly
matching, times this probability threshold (Q̄). Naturally, this refers to points that
are far enough from the origin. Now we need to solve Q(M) ≥ Q̄:

Q(M) ≥ Q̄⇔
∫
||D||<εr̄

B(M,D)N−1pdf[D]dD ≥ Q̄⇔
∫
||D||<εr̄

{1− [1−B(M,D)]}N−1pdf[D]dD ≥ Q̄

Because (A→ B)⇒ P [A] ≤ P [B], we only need to find sufficient conditions for
Q(M) ≥ Q̄. Using also (1− p)n ≥ (1− np) for p ∈ [0, 1], we obtain:

Q(M) ≥ Q̄⇐
∫
||D||<εr̄

{1− (N − 1)[1−B(M,D)]}pdf[D]dD ≥ Q̄

⇔
∫
||D||<εr̄

(N − 1)(1−B(M,D))pdf[D]dD ≤ P [||D|| < εr̄]− Q̄

⇔
∫
||D||<εr̄

(1−B(M,D))pdf[D]dD ≤ P [||D|| < εr̄]− Q̄
N − 1
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Meanwhile, B(M,D) is written:

B(M,D) = P
[
||x̃1 −M || >

3
2 ||D|| ∧ ||x̃2 −M || >

3
2 ||D||

∣∣∣∣D,M]

=
∫
Rn
P
[
||x̃1 −M || >

3
2 ||D|| ∧ ||x̃2 −M || >

3
2 ||D||

∣∣∣∣x̃, D,M]
pdf[x̃]dx̃

=
∫
Rn
P
[
||x̃1 −M || >

3
2 ||D||

∣∣∣∣x̃, D,M]2
pdf[x̃]dx̃

=
∫
Rn

(
1− P

[
||x̃1 −M || <

3
2 ||D||

∣∣∣∣x̃, D,M])2
pdf[x̃]dx̃

≥
∫
Rn

(
1− 2P

[
||x̃1 −M || <

3
2 ||D||

∣∣∣∣x̃, D,M])
pdf[x̃]dx̃

= 1− 2P
[
||x̃1 −M || <

3
2 ||D||

∣∣∣∣D,M]
.

Therefore:
Q(M) ≥ Q̄⇐∫

||D||<εr̄
2P

[
||x̃1 −M || <

3
2 ||D||

∣∣∣∣D,M]
pdf[D]dD ≤ P [||D|| < εr̄]− Q̄

N − 1

⇐
∫
||D||<εr̄

2P
[
||x̃1 −M || <

3
2εr̄

∣∣∣∣D,M]
pdf[D]dD ≤ P [||D|| < εr̄]− Q̄

N − 1

⇔ 2P
[
||x̃1 −M || <

3
2εr̄

∣∣∣∣M]
P [||D|| < εr̄] ≤ P [||D|| < εr̄]− Q̄

N − 1

⇔ P
[
||x̃1 −M || <

3
2εr̄

∣∣∣∣M]
≤

1− Q̄
P [||D||<εr̄]

2(N − 1)
Using the fact that the probability of x̃1 being inside a given sphere is less than

or equal to the volume of the sphere times the greatest probability density found for
x̃1 inside that sphere, we can write:

Q(M) ≥ Q̄⇐ An
n

(3
2εr̄

)n {
max

||y−M ||< 3
2 εr̄
p1(y)

}
≤

1− Q̄
P [||D||<εr̄]

2(N − 1) (6.1)

where An
n

is the hyper-volume of the hyper-sphere of radius 1 in Rn (See
Appendix C).

6.2.1 Gaussian case

In an isotropic Gaussian model, Equation 6.1 is simplified if we further restrain
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||M || > 3
2εr̄, so that max||y−M ||< 3

2 εr̄
p1(y) = p1(M − 3

2
M
||M ||εr̄), obtaining:

P [Q(M) ≥ Q̄] ≥ P

An
n

(3
2εr̄

)n {
max

||y−M ||< 3
2 εr̄
p1(y)

}
≤

1− Q̄
P [||D||<εr̄]

2(N − 1)



≥ P

An
n

(3
2εr̄

)n
p1

(
M − 3

2
M

||M ||
εr̄

)
≤

1− Q̄
P [||D||<εr̄]

2(N − 1)

 ∧ ||M || > 3
2εr̄



= P


Ann

(3
2εr̄

)n e
−

(||M||− 3
2 εr̄)2

2(σ2+ε2)

(2π(σ2 + ε2))n/2 ≤
1− Q̄

P [||D||<εr̄]

2(N − 1)

 ∧ ||M || > 3
2εr̄



= P

||M || ≥ 3
2εr̄ +

√√√√2(σ2 + ε2) log
(
Cεn(N − 1)
(σ2 + ε2)n/2

)
∧ ||M || > 3

2εr̄
 (6.2)

Because we are interested in the asymptotic behavior only, we can use that:

∫
||x||>r

e−
1
2
x2
σ2

(2πσ2)n/2dx ∼
e−

1
2
r2
σ2

(2π)n/2 · An(r/σ)n−2 (as r →∞) (6.3)

i.e.,

lim
r→∞

∫
||x||>r

e
− 1

2
||x||2

σ2

(2πσ2)n/2dx

e
− 1

2
r2
σ2

(2π)n/2 · An(r/σ)n−2
=

lim
r→∞

− e
− 1

2
r2
σ2

(2πσ2)n/2Anr
n−1

− r
σ2

e
− 1

2
r2
σ2

(2π)n/2 · An(r/σ)n−2 + (n− 2) 1
σ
e
− 1

2
r2
σ2

(2π)n/2 · An(r/σ)n−3
= 1

so that we can write:

E[#hits] ≥ NQ̄P

||M || ≥ 3
2εr̄ +

√√√√2(σ2 + ε2) log
(
Cεn(N − 1)
(σ2 + ε2)n/2

)
∧ ||M || > 3

2εr̄


∼ NQ̄
e−T

2/2

(2π(σ2 + ε2/2))n/2AnT
n−2 (6.4)

where T =
3
2εr̄ +

√
2(σ2 + ε2) log

(
Cεn(N−1)
(σ2+ε2)n/2

)
√
σ2 + ε2/2

Equation 6.4 produces different results depending on the behavior of T .
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If ε is constant, T depends only on N , so the equation reduces to

E[#hits] = Ω
NN− σ2+ε2

σ2+ε2/2 e
− 3

2 εr̄

√
2(σ2+ε2)
σ2+ε2/2

√
logN(logN)n−2

2



= Ω
N− ε2/2

σ2+ε2/2 (logN)
n−2

2 e
− 3

2 εr̄

√
2(σ2+ε2)
σ2+ε2/2

√
logN


Notice that both N

− ε2/2
σ2+ε2/2 (logN)n−2

2 and e
− 3

2 εr̄

√
2(σ2+ε2)
σ2+ε2/2

√
logN tend to zero,

therefore this is a looser bound that the one found in the last chapter for this
case2 (E[#hits] = Ω(1), since limN→∞E[#hits] = (1 + σ2/ε2)n).

If ε→ 0 satisfying εn = ω(1/N) and ε = o(1/
√

logN), then we still have T →∞,
but as e−T 2/2 = Θ

(
1

εn(N−1)

)
, we can see that the hit count increases with N :

E[#hits] = Ω
(
ε−n(log(εnN))n−2

2
)

If εn = Θ(1/N), then T = Θ(1) and Equation 6.4 becomes invalid, because r
does not grow to infinity in Equation 6.3 anymore: In this case, the probability term
P [||M || ≤ ...] in Equation 6.2 converges to a constant and we have linear growth:

E[#hits] = Ω (N)

And if εn = o(1/N), the probability term P [||M || ≤ ...] in Equation 6.2 converges
to one and as N →∞ we have3:

E[#hits] & Q̄N

which, as it is valid for any Q̄, ultimately means:

E[#hits] ∼ N.

6.2.2 Power law case

First of all, note that differently from the Gaussian case, in the power law case
arg max p1(x1) 6= 0, because p(x) = 0 if ||x|| < m. Rather, p1(x1) increases as
||x1|| grows, achieving a maximum at ||x1|| = m∗(ε) , ‖arg maxx1 p1(x1)‖ ≈ m,
and then decreases as ||x1|| → ∞. Similarly to the Gaussian case, we will restrain

2Note that the previous chapter predicted the hit count of the “max-prob” method. Therefore,
it works as a lower bound to the result of the “max-expect” algorithm when we are interested in
the expected hit rate.

3We use the notation f(N) & g(N) to denote f(N) ≥ g̃(N) for some g̃ satisfying g̃(N) ∼ g(N),
i.e.: (∀γ > 0)(∃N̄) : (N > N̄)⇒ f(N) ≥ (1− γ)g(N).
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M > m∗(ε) + 3
2εr̄, so that max||y−M ||< 3

2 εr̄
p1(y) = p1(M − 3

2
M
||M ||εr̄), obtaining:

P [Q(M) ≥ Q̄] ≥ P

An
n

(3
2εr̄

)n {
max

||y−M ||< 3
2 εr̄
p1(y)

}
≤

1− Q̄
P [||D||<εr̄]

2(N − 1)



≥ P

An
n

(3
2εr̄

)n
p1

(
M − 3

2
M

||M ||
εr̄

)
≤

1− Q̄
P [||D||<εr̄]

2(N − 1)

 ∧ ||M || > m∗(ε) + 3
2εr̄

 .
In the power law model, we cannot compute p1(x) and pm(x) directly, so we will

bound them using p(x). Recall that for this model, lim||x1||→∞ p1(x1)/p(x1) = 1 (as
seen in Section 5.3.3), so we can write:

(∀γ > 0)(∃M̄ > m∗(ε) + 3
2εr̄) :

(||M || > M̄)⇒ p1

(
M − 3

2
M

||M ||
εr̄

)
< (1 + γ)p

(
M − 3

2
M

||M ||
εr̄

)
(6.5)

= (1 + γ)(n− α)mα−n

An
(||M || − 3

2εr̄)
−α

implying that there exist4 constants M̄ and β such that:

P
[
Q(M) ≥ Q̄

]
≥

P

An
n

(3
2εr̄

)n
β
(
||M || − 3

2εr̄
)−α
≤

1− Q̄
P [||D||<εr̄]

2(N − 1)

 ∧ ||M || > M̄


= P

[(
||M || − 3

2εr̄
)−α
≤ C/εn

(N − 1) ∧ ||M || > M̄

]

Therefore:

E[#hits] ≥ NQ̄P

||M || ≥ 3
2εr̄ +

(
C/εn

N − 1

)− 1
α

∧ ||M || > M̄

 (6.6)

Now using that, for some γ̃,

P [||M || ≥ t] =
∫
||M ||>t

pm(M)dM ≥
∫
||M ||>t

(1− γ̃)p(M)dM = (1− γ̃)(m/t)α−n,

4This is particularly possible because ε = O(1) and m∗(ε) = O(1) as N → ∞, ensuring β and
M̄ are constants with respect to ε and N .
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we obtain, with C̃ = (1− γ̃)mα−n:

E[#hits] ≥ NQ̄C̃

3
2εr̄ +

(
C/εn

N − 1

)−1/α
n−α

= NQ̄C̃εn−α
(

3
2 r̄ + εn/α−1

(
C

N − 1

)−1/α)n−α

which, because εn/α−1 →∞ and
(

C
N−1

)−1/α
→∞, is equal to:

Θ(Nεn−α(N1/αεn/α−1)n−α)

= Θ(N(Nεn)(n−α)/α)

= Θ(Nn/αεn(n−α)/α)

Therefore, power law distributions have as lower bound E[#hits] =
Ω
(
Nn/αεn(n−α)/α

)
. This is in accordance with the result from the previous chapter,

that predicted an infinite hit count as N →∞ (i.e. E[#hits] = ω(1)).
Notice however that, similarly to the Gaussian model, if εn = Θ(1/N) or εn =

o(1/N), the term 3
2εr̄ +

(
C/εn

N−1

)− 1
α in Equation 6.6 will respectively converge to a

constant or decrease, and Equation 6.5 cannot be used. In these cases, we have
respectively E[#hits] = Ω(N) and E[#hits] ∼ N , as in the Gaussian case.

6.2.3 Exponential case

As in the other models, in the exponential model we will restrain ||M || ≥ 3
2εr̄. Also,

similarly to the power law case, we will use the fact that lim||x1||→∞ p1(x1)/p(x1) =
eλ

2ε2/2 (as seen in Section 5.3.2) to write:

(∀γ > 0)(∃M̄ >
3
2εr̄) :

(||M || > M̄)⇒ p1

(
M − 3

2
M

||M ||
εr̄

)
< (1 + γ)eλ2ε2/2p

(
M − 3

2
M

||M ||
εr̄

)
= (1 + γ)eλ2ε2/2eλ

3
2 εr̄p(M)

so that there exist M̄ and β such that:

P
[
Q(M) ≥ Q̄

]
≥
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P

An
n

(3
2εr̄

)n
βeλ

2ε2/2+λ 3
2 εr̄e−λ||M || ≤

1− Q̄
P [||D||<εr̄]

2(N − 1)

 ∧ ||M || > M̄


= P

[
||M || ≥ λε2/2 + 3

2εr̄ −
1
λ

log
(

C/εn

(N − 1)

)
∧ ||M || > M̄

]
.

Using that

P [||M || ≥ t] =
∫
||M ||>t

pm(M)dM ≥
∫
||M ||>t

(1− γ̃)eλ2ε2/4p(M)dM

≥ β̃eλ
2ε2/4e−λt(λt)n−1

with t = λε2/2 + 3
2εr̄ −

1
λ

log
(
C/εn

(N−1)

)
we obtain:

E[#hits] ≥ NQ̄β̃eλ
2ε2/4e−λt(λt)n−1

= N
C/εn

(N − 1)Q̄β̃e
− 3

2λεr̄−λ
2ε2/4

(
λ2ε2/2 + 3

2λεr̄ − log
(

C/εn

(N − 1)

))n−1

= Θ
( 1
εn

(log(Nεn))n−1
)

This means that we have found the lower bound E[#hits] = Ω
(

1
εn

(log(Nεn))n−1
)

for the exponential distribution. This bound however is not tight: Experiments
(Section 6.5.2) suggest that for fixed ε the asymptotic behavior is Θ((logN)n).

Also, note that the same phenomenon observed in the Gaussian and power law
cases applies here when εn = Θ(1/N) or εn = o(1/N), for the same reason of the
power law case.

6.3 Condition for constant hit rate

As we have seen, 1/N appears to be a threshold function for εn with respect to
expected hit rate, in such a way that if εn = Θ(1/N) we have a minimum expected
hit rate and if εn = o(1/N) we have E[#hits] ∼ N , i.e. a hit rate of 100% as N →∞.
We can show that in fact this happens to almost any generator set distribution, not
only Gaussian, power law or exponential distributions.

First of all, we will use that:

max
||y−M ||< 3

2 r̄ε
p1(y) ≤ max

y∈Rn
p1(y) ≤ max

y∈Rn
p(y).

The second inequality above is valid because:

∀y : p1(y) = {p∗gε}(y) =
∫
Rn
p(y−x)gε(x)dx ≤

∫
Rn

(
max
z
p(z)

)
gε(x)dx = max

z
p(z).
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Therefore we can bound:

E[#hits] ≥ NQ̄P

An
n

(3
2 r̄ε

)n {
max
y∈Rn

p(y)
}
≤

1− Q̄
P [||D||<r̄ε]

2(N − 1)



=

Q̄N , if An
n

(
3
2 r̄ε
)n
{maxy∈Rn p(y)} ≤ 1− Q̄

P [||D||<r̄ε]
2(N−1) ;

0 , otherwise.

When εn = o(1/N), the condition becomes

max
y∈Rn

p(y) ≤ n

An

( 2
3εr̄

)n 1− Q̄
P [||D||<r̄ε]

2(N − 1) ∼ +∞ (as N →∞)

implying that, as long as maxy∈Rn p(y) < +∞, we have E[#hits] & Q̄N for any Q̄,
and therefore E[#hits] ∼ N .

If εn ∼ C/N , the condition becomes:

max
y∈Rn

p(y) . K
1− Q̄

P [||D||<r̄ε]

Cr̄n
(as N →∞)

where K = 1
2
n

An

(2
3

)n
which means we have a hit rate of at least Q̄, as long as the condition is satisfied
for that value of C.

We can show that the inequation above has the following properties:

• For every C > 0, there exists Q̄ > 0 such that the inequation is satisfied, which
means that [εn = Θ(1/N)⇒ E[#hits] = Ω(N)];

• Similarly, for every Q̄ ∈]0, 1[, there exists a constant C > 0 that satisfies the
inequation (thus guaranteeing a minimal hit rate of Q̄).

For the first case, we can choose r̄ =
(

K
3C{maxy p(y)}

)1/n
, so that Q̄ = 1

2P [||D|| < r̄ε]
satisfies the inequation:

max
y∈Rn

p(y) .
1− Q̄

P [||D||<r̄ε](
1

3{maxy p(y)}

) = 3
2{max

y
p(y)}

For the second case, we can choose r̄ such that P [||D|| < r̄ε] = (Q̄ + 1)/2 and
C = 1

r̄n
K
(

1
2{maxy p(y)}−1

(
1−Q̄
1+Q̄

))
satisfies the inequation:

max
y∈Rn

p(y) .
1− Q̄

P [||D||<r̄ε]
1
2{maxy p(y)}−1

(
1−Q̄
1+Q̄

) = 2{max
y∈Rn

p(y)}
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Notice that the only requirement on p(x) for this condition for minimum hit rate
(εn = O(1/N)) to apply is that maxx p(x) < +∞. So for instance if p(x) is a Dirac
delta function, the threshold does not apply (and indeed we know that in this case,
E[#hits] = 1 regardless of N and ε).

Curiously, a related problem to that of probabilistic point matching, which we
call probabilistic point querying, has the same property for minimum hit rate (see
Appendix F).

6.4 Case with outliers

The previous derivations were done supposing there are no outliers (q = 0). The
case with outliers is mostly analogous.

First of all, a term (1 − q) is added multiplying the bound since we can only
match x1 and x2 correctly if they are an inlier pair.

Secondly, the B(M,D) function is different because the other pairs can also be
outliers. However, the bound is the same: We write

B(M,D) = (1− q)Binlier(M,D) + qBoutlier(M,D)

where
Binlier(M,D) =

∫
Rn
P
[
||x̃1 −M || >

3
2 ||D||

∣∣∣∣x̃, D,M]2
pdf[x̃]dx̃

Boutlier(M,D) =
(∫

Rn
P
[
||x̃1 −M || >

3
2 ||D||

∣∣∣∣x̃, D,M]
pdf[x̃]dx̃

)2

= P
[
||x̃1 −M || >

3
2 ||D||

∣∣∣∣D,M]2

We have already shown that

1−Binlier(M,D) ≤ 2P
[
||x̃1 −M || <

3
2 ||D||

∣∣∣∣D,M]

On the other side,

1−Boutlier(M,D) = 1−
(

1− P
[
||x̃1 −M || <

3
2 ||D||

∣∣∣∣D,M])2

≤ 2P
[
||x̃1 −M || <

3
2 ||D||

∣∣∣∣D,M]
Therefore, the final bound on B(·, ·) is the same:

1−B(M,D) ≤ 2P
[
||x̃1 −M || <

3
2 ||D||

∣∣∣∣D,M]
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The rest of the derivation remains unchanged, so that all the asymptotic behavior
results are simply multiplied by (1− q).

As for the condition for minimum hit rate, we have that for every C > 0 there
exists Q̄ ∈]0, 1[, and for every Q̄ ∈]0, 1[ there exists C > 0 such that εn ∼ C/N

guarantees a minimum expected hit rate of (1− q)Q̄ as N →∞.

6.5 Experiments

6.5.1 Power law asymptotic behavior

The purpose of this synthetic experiment is to validate our theoretic result on the
asymptotic behavior of the hit count for power law distributions, i.e. confirm that
E[#hits] = Ω((Nεn−α)n/α). Observing that limN→∞

log(Ω(Nk))
logN ≥ k, we will analyze

the behavior of log(E[#hits])
logN as N → ∞ and compare them to the theoretical value

(lower bound). Matching is done using the Greedy #2 algorithm. We used 10
samples per case when n = 1 and 2 samples per case when n > 1.

We first set n = 1, m = 1, ε = .25, and vary N ∈ {5, 50, 500, ..., 5 · 106} and
α ∈ {1.1, 1.5, 2, 5}. The behavior of log(E[#hits])

logN converges to the theoretical value
(1/α) as N →∞ (Figure 6.2(a)). If we use instead ε = 1/

√
N , the theoretical value

becomes 1
2 + 1

2α , which is also in agreement with the experiment (Figure 6.2(b)).
The graphs suggest that the asymptotic bound is tight for n = 1, i.e., E[#hits] =
Θ((Nεn−α)n/α) when n = 1.

For n = 2, we cannot analyze very high values of N , so we varied N ∈
{2, 4, 8, 16, ..., 29}. Fixing m = 1 and ε = .25 and varying α ∈ {2.2, 3, 4, 10}, the
theoretic bound of 2/α is also observed (Figure 6.2(c)), although it remains unclear
whether the bound is tight or not.

6.5.2 Exponential and Gaussian cases

The results from the previous chapter show that, for ε = Θ(1), the asymptotic bound
developed in this chapter for exponential and Gaussian distributions is loose: in the
previous chapter we had observed that E[#hits] = Θ(1) for Gaussian distributions
and apparently E[#hits] = Θ(logN) for exponential distributions when n = 1, while
the Gaussian lower bound converges to zero as N →∞ and the exponential one is
Ω(1) when n = 1.

Running the Greedy #2 algorithm with n = 2, λ = 1 and fixed ε = .25 suggests
a squared-logarithmic behavior for the hit count with the exponential distribution
(Figure 6.3(a)). This means that, while the lower bound of Ω((logN)n−1) is correct,
the actual behavior is most likely Θ((logN)n).
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(a) n = 1, ε = Θ(1) (b) n = 1, ε = Θ(1/
√
N)

(c) n = 2, ε = Θ(1)

Figure 6.2: Behavior of log(E[#hits])
logN for power law distributions, also showing the

theoretical bound in the end of the x-axis.

(a) Exponential distribution with n = 2 and
ε = Θ(1) shows a squared-logarithmic behavior
for the hit count.

(b) Behavior of log(E[#hits])
logN for exponential

and Gaussian distribution, with n = 1, ε =
Θ(1/

√
N). Also showing the theoretical bound

in the end of the x-axis.

Figure 6.3: Asymptotic behavior of exponential and Gaussian distributions
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If we use ε = 1/
√
N , with n = 1, the asymptotic bounds become E[#hits] =

Ω(
√
N) for the exponential distribution and E[#hits] = Ω(

√
N(logN)−1/2) for

the Gaussian distribution. Therefore, in both cases we should observe that
limN→∞

log(E[#hits])
logN ≥ 0.5, which is consistent with the experiment of Figure 6.3(b)

(using σ = 1 for the Gaussian distribution).

6.5.3 Constant hit rate

In this experiment we evaluate the condition for constant hit rate, εn = O(1/N).
We run Greedy #2 for multiple distributions with ε = 10/N for n = 1 and ε =

5/
√
N for n = 2. Figure 6.4(a,b) shows that the hit rate converges to a constant with

different distributions (Gaussian, exponential, and power law for different values of
α).

Next we see what happens if we use ε = C/N for different values of C ∈
{.1, 1, 10, 100}, for a Gaussian distribution with n = 1 and σ = 1. Our theoretic
result is that, for every C there exists Q̄, and for every Q̄ there exists C such that
εn ≤ C/N ⇒ E[#hits]

N
& Q̄, i.e. there is a bijective relation between C and Q̄.

Figure 6.4(c) evinces this relationship, as C ∈ [.1, 100] already covers most of the
values of Q̄ ∈ (0, 1).

6.5.4 Greedy #2 and “max-prob”

While the experiments of this section were done with Greedy #2, the results with
“max-prob” are not much different. Figure 6.4(d) illustrates this, showing that the
relationship between C and Q̄, where εn = C/N and n = 1, is approximately the
same for both algorithms, with slightly higher performance for “max-prob” around
C ≈ 1.
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(a) n = 1, varied distributions (b) n = 2, varied distributions

(c) n = 1, varying C in εn = C/N (Gaussian
distribution)

(d) same as (c), but fixing N = 5 · 106

and comparing Greedy #2 and “max-prob”
algorithms

Figure 6.4: Hit rate with εn = Θ(1/N).
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Chapter 7

Matching All Pairs

Similarly to the previous chapter, that derived bounds for the asymptotic behavior of
the expect hit count, this chapter analyzes the asymptotic behavior of the probability
of matching all pairs correctly.

While the results from the previous chapter apply to Greedy #2 and consequently
also to the “max-expect” method, but not necessarily to “max-prob”; the lower
bounds from this chapter are also based on Greedy #2 and apply to “max-prob”,
as it is the the best method for this metric (i.e. it was designed to find the most
probable permutation, and therefore maximizes the probability of matching all pairs
correctly), but not necessarily to the “max-expect” method.

Similarly to the previous chapter, in this chapter we consider only the generator
set model, and with isotropic Gaussian noise of parameter ε.

7.1 Condition for constant probability

In the same way that we showed that we can guarantee a minimum hit rate of Q̄ if
εn = C/N as N → ∞, for some C > 0, we will show that a similar condition can
guarantee a minimum probability of matching all points correctly as N →∞.

Again, we know that Greedy #2 matches a pair (x1, x2) correctly if all other
points x̃1 ∈ P1 \ {x1} are farther from x2 than x1 and all x̃2 ∈ P2 \ {x2} are farther
from x1 than x2. If this applies to all points in both sets, then the algorithm will
have matched all pairs correctly. Therefore the probability that this condition is
satisfied is less than or equal to the probability Pall of matching all pairs correctly
with Greedy #2.

Suppose, without loss of generality, that Π = I. Let then Mi and Di be the
mean and difference vectors of the pair (X i

1, X
i
2), for i = 1, ..., N . Let us bound

the probability of all pairs being the closest to each other as greater or equal to
the probability, for all pairs (i, j), that Mi and Mj have a distance of more than
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X1 M
X2

||D||

M'
X1' X2'

||D'||

(3/2)||D||+(1/2)||D'||

≤(3/2)(||D||+||D'||)

Figure 7.1: Illustration of the 3
2(||Di||+ ||Dj||) safety radius.

3
2(||Di||+ ||Dj||), so that they do not conflict (see Figure 7.1), i.e.:

Pall ≥ P̃all , P

 ∧
1≤j<i≤N

||Mi −Mj|| >
3
2(||Di||+ ||Dj||)

 ,
where “∧” denotes logical conjunction (the “and” operator).

Let P [outi] be the probability that the i-th pair does not conflict with the i− 1
previous pairs, i.e.:

outi ↔
i−1∧
j=1
||Mi −Mj|| >

3
2(||Di||+ ||Dj||).

We have then:
P̃all = P [out2, out3, .., outN ]

=
∫
P [out2, out3, .., outN , D1, ..., DN ]dD1...dDN

Applying recursively the rule P [out2, ..., outk, D1, ..., Dk] =
P [out2, ..., outk−1, D1, ..., Dk−1].P [Dk, outk|out2, ..., outk−1, D1, ..., Dk−1], we obtain:

P̃all =
∫
P [D1]P [out2, D2|D1]P [out3, D3|D1, D2, out2]...

...P [out4, D4|D1, D2, D3, out2, out3]...dD1...dDN

Now let us use that P [outk, Dk|out2, ..., outk−1, D1, ..., Dk−1] =
P [outk|out2, ..., outk−1, D1, ..., Dk−1, Dk].P [Dk|out2, ..., outk−1, D1, ..., Dk−1]:

P̃all =
∫
P [out2|D1, D2]P [out3|D1, D2, D3, out2]P [out4|D1, ..., D4, out2, out3]...

...P [D1]P [D2|D1]P [D3|out2, D1, D2]...P [DN |D1, out2, D2, ..., outN−1, DN−1]dD1...dDN

86



Noting that P [Dk|out2, ..., outk−1, D1, ..., Dk−1] = P [Dk], since Dk is independent
from D1, ..., Dk−1 and out2, ..., outk−1 (recall that outi depends only on M1, ...,Mi

and D1, ..., Di), we obtain:

P̃all =
∫
P [out2|D1, D2]P [out3|D1, D2, D3, out2]P [out4|D1, ..., D4, out2, out3]...

...P [D1]P [D2]...P [DN ]dD1...dDN .

Now bounding using the maximum probability density p0 = maxy∈Rn p(y) times
the volume of the containing sphere, we can write:

P [outi|D1, ..., Di, out2, ..., outi−1] ≥ max

1− p0
An
n

i−1∑
j=1

(3
2(||Di||+ ||Dj||)

)n
, 0

 ,
implying

Pall ≥
∫  N∏

i=1
max

0, 1− p0
An
n

i−1∑
j=1

(3
2(||Di||+ ||Dj||)

)n
P [D1]...P [DN ]dD1...dDN

= E
 N∏
i=1

1−min

1, p0
An
n

i−1∑
j=1

(3
2(||Di||+ ||Dj||)

)n
 (7.1)

Using that ∏i(1− pi) ≥ 1−∑i pi for 0 < pi < 1, we can bound the result above
to:

Pall ≥ E
1−

N∑
i=1

min

1, p0
An
n

i−1∑
j=1

(3
2(||Di||+ ||Dj||)

)n
 (7.2)

≥ E
1− p0

An
n

∑
1≤j<i≤N

(3
2(||Di||+ ||Dj||)

)n
= 1− p0

An
n

∑
1≤j<i≤N

E
[(3

2(||Di||+ ||Dj||)
)n]

= 1− p0
An
n

N(N − 1)
2 E

[(3
2(||D1||+ ||D2||)

)n]
We only need to compute now E

[(
3
2(||D1||+ ||D2||)

)n]
. Note however that:

E
[(3

2(||D1||+ ||D2||)
)n]

= E
[(3

2(||
√

2εG1||+ ||
√

2εG2||)
)n]

=

εn · E
[(

3√
2

(||G1||+ ||G2||)
)n]

= φnε
n

where G1 and G2 are independent isotropic Gaussian variables in Rn with unitary
variance (Cov[G1] = Cov[G2] = In×n), and φn is a constant that depends only on
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the number of dimensions n.
We obtain then:

Pall ≥ 1− p0
An
n

N(N − 1)
2 φnε

n (7.3)

Computation of φn

To compute φn, we will use first that:

∫
Rn

e−
||x||2

2

(2π)n/2dx =
∫ ∞

0

e−
r2
2

(2π)n/2Anr
n−1dr = 1⇒

∫ ∞
0

rke−
r2
2 dr = (2π) k+1

2

Ak+1
(7.4)

Then φn can be derived as follows:

φn = E
[(

3√
2

(||G1||+ ||G2||)
)n]

=
∫ ∞

0

∫ ∞
0

(
3√
2

(x+ y)
)n

e−
x2
2 −

y2
2

(2π)n A2
nx

n−1yn−1dxdy

=
∫ ∞

0

∫ ∞
0

n∑
l=0

n
l

 (3/
√

2)nxlyn−l e
−x

2
2 −

y2
2

(2π)n A2
nx

n−1yn−1dxdy

=
∫ ∞

0

∫ ∞
0

n∑
l=0

n
l

 (3/
√

2)nxn+l−1y2n−l−1 e
−x

2
2 −

y2
2

(2π)n A2
ndxdy

=
n∑
l=0

n
l

 (3/
√

2)n
(2π)n A2

n

(∫ ∞
0

xn+l−1e−
x2
2 dx

)(∫ ∞
0

y2n−l−1e−
y2
2 dy

)

=
n∑
l=0

n
l

 (3/
√

2)n
(2π)n A2

n

(2π)n+l
2 (2π) 2n−l

2

An+lA2n−l

=
n∑
l=0

n
l

 (3/
√

2)nA2
n(2π)n/2

An+lA2n−l
.

7.1.1 εn ∼ C/N 2 case

Interestingly, according to Equation 7.3, the threshold function for εn with respect
to the probability of matching all pairs correctly appears to be 1/N2.

If εn ∼ C/N2, we can bound:

Pall & 1− p0
An
n

φn
2 C (as N →∞)

And if εn = o(1/N2), we have Pall ∼ 1.
This result contrasts with the result of the previous chapter, that when εn =
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o(1/N), we already have 100% hit rate. However, this does not mean that we have
100% probability of matching all pairs correctly. Guaranteeing that E[#hits] ∼ N

does not mean that the miss count, i.e. the number of incorrectly matched pairs,
is E[#miss]→ 0, but rather that E[#miss] = o(N), which is something completely
different from guaranteeing 100% probability of matching all pairs correctly1. See
Section 7.2 for details.

A tighter bound

In fact, if εn ∼ C/N2, we can show that Pall can be asymptotically bounded to:

Pall & exp
(
−p0

An
n

φn
2 C

)
(as N →∞)

This is because the bound between Equations 7.1 and 7.2 is too loose. When
εn ∼ C/N2, we can replace it with a tighter bound. Suppose we want to bound a
value L defined as

L = E

[
N∏
i=1

1− θi
]

for random variables θ1, ..., θN , where θi is of the form θi = min{1, θ̃i}. We can
rewrite L as

L = E

[
N∏
i=1

exp(log(1− θi))
]

= E

[
N∏
i=1

exp(−θi −O(θ2
i ))
]

= E

[
exp

(
N∑
i=1

(−θi −O(θ2
i ))
)]

= E

[
exp

(
−

N∑
i=1

θi −O
(

N∑
i=1

θ2
i

))]
,

which, because θi is of the form θi = min{1, θ̃i}, satisfies:

L ≥ L̃ , E

[
exp

(
−

N∑
i=1

θ̃i −O
(

N∑
i=1

θ̃2
i

))]
. (7.5)

Now note that as N → ∞, if the variance of the exponent goes to zero, its
distribution converges to a Dirac delta and we can move the expectation operator
to the exponent, i.e., for a random variable X, Var[X] = 0 ⇒ pdf[X = x] =

1Also, having asymptotically 100% probability of matching all pairs correctly does not
necessarily mean that the miss count converges to zero either. For instance, suppose we have
1− o(1) probability of matching all pairs correctly, and o(1) probability of missing daNe pairs for
some a ∈]0, 1[; then the miss count would be daNeo(1) = o(N).
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δ(x− E[X])⇒ E[exp(X)] = exp(E[X]), so we could write:

lim
N→∞

L̃ = lim
N→∞

exp
(
−E

[
N∑
i=1

θ̃i

]
−O

(
E

[
N∑
i=1

θ̃2
i

]))
(7.6)

In our case,

θ̃i = p0
An
n

i−1∑
j=1

(3
2(||Di||+ ||Dj||)

)n

⇒
N∑
i=1

θ̃i = p0
An
n

∑
1≤j<i≤N

(3
2(||Di||+ ||Dj||)

)n

= p0
An
n
εn

∑
1≤j<i≤N

(
3√
2

(||Gi||+ ||Gj||)
)n

⇒ E

[
N∑
i=1

θ̃i

]
= p0

An
n
εn
N(N − 1)

2 φn

where G1, ..., GN are i.i.d. Gaussian variables of zero mean and unitary variance,
and εn ∼ C/N2.

The transition between Equations 7.5 and 7.6 requires showing that
limN→∞Var

[∑N
i=1 θ̃i

]
= 0 and limN→∞Var

[∑N
i=1 θ̃

2
i

]
= 0. For that end, we will

show that2:

• limN→∞E
[(∑N

i=1 θ̃i
)2
]

= limN→∞E
[∑N

i=1 θ̃i
]2

, and

• limN→∞E
[(∑N

i=1 θ̃
2
i

)2
]

= 0, which also implies that limN→∞E
[∑N

i=1 θ̃
2
i

]
= 0.

Let F (x, y) =
(

3√
2(||x||+ ||y||)

)n
. We have then

E

( N∑
i=1

θ̃i

)2 =
(
p0
An
n
εn
)2
E


 ∑

1≤j<i≤N
F (Gi, Gj)

2


∼
(
p0
An
n

C

N2

)2
E


 ∑

1≤j<i≤N
F (Gi, Gj)

2


=
(
p0
An
n

C

N2

)2 1
4E


∑
i 6=j

F (Gi, Gj)
2


=
(
p0
An
n

C

N2

)2 1
4
∑
i 6=j

∑
i′ 6=j′

E [F (Gi, Gj)F (Gi′ , Gj′)]

2Showing that Var[X] = 0 for some random variable X is the same as showing that E[X2] =
E[X]2, since E[X2] = E[X]2 + Var[X].
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Note that the expectation term in the expression above yields different values
depending if i 6= j 6= i′ 6= j′ or if there are indices in common. There are N(N −
1)(N−2)(N−3) terms with all four distinct indices, Θ(N3) terms with three distinct
indices and Θ(N2) terms with two distinct indices. Therefore, the expression above
is equal to: (

p0
An
n

C

N2

)2 1
4

 ∑
i 6=j 6=i′ 6=j′

E [F (Gi, Gj)F (Gi′ , Gj′)] ...

...+
∑

i 6=j,i′ 6=j′,
|{i}∪{j}∪{i′}∪{j′}|=3

E [F (Gi, Gj)F (Gi′ , Gj′)] + 2
∑
i 6=j

E [F (Gi, Gj)F (Gi, Gj)]


∼
(
p0
An
n

C

N2

)2 1
4
(
N4E[F (G1, G2)F (G3, G4)] + ...

... Θ(N3)E[F (G1, G2)F (G1, G3)] + Θ(N2)E[F (G1, G2)F (G1, G2)]
)

∼
(
p0
An
n

C

N2

)2 N4

4 E[F (G1, G2)F (G3, G4)]

=
(
p0
An
n
C
)2 1

4E[F (G1, G2)]2

=
(
p0
An
n
C
φn
2

)2

= lim
N→∞

E

[
N∑
i=1

θ̃i

]2

as we wanted to demonstrate.
Meanwhile:

E

( N∑
i=1

θ̃2
i

)2 =
(
p0
An
n

)4
E


 N∑
i=1

i−1∑
j=1

εnF (Gi, Gj)
2


2

= O(ε4nN6) = O
( 1
N8N

6
)

= O(1/N2)→ 0.

Finally, we obtain:

lim
N→∞

L̃ = lim
N→∞

exp
(
−E

[
N∑
i=1

θ̃i

]
−O

(
E

[
N∑
i=1

θ̃2
i

]))

= lim
N→∞

exp
(
−E

[
N∑
i=1

θ̃i

])

= exp
(
−p0

An
n

φn
2 C

)

⇒ Pall & exp
(
−p0

An
n

φn
2 C

)
.
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This bound means that there is a bijective relation between Pall and C: For every
C > 0, there is some constant P̄all > 0, and for every P̄all ∈]0, 1[ there is C > 0
such that εn ∼ C/N2 ⇒ Pall & P̄all, similarly to the case seen in the last chapter
(Section 6.5.3).

7.2 Experiments

7.2.1 Probability of matching all pairs correctly and miss
count

Here we evaluate how the probability of matching all pairs correctly3 and the miss
count change with different behaviors of ε as N → ∞, using the “max-prob”
algorithm, with isotropic Gaussian distributions with σ = 1 and 100 samples per
case.

First we do ε = C/N1.5, for C ∈ {.1, 1, 10, 100}, and n = 1. Because εn = o(1/N),
the results from the previous chapter imply that E[#hits] ∼ N and therefore the
miss count is E[#misses] = N − E[#hits] = o(N). Figure 7.2(a,b) shows that the
probability of matching all pairs correctly goes to 0 as N →∞ (as expected), while
the miss count is a power law of N , apparently Θ(

√
N), which is o(N).

If we use instead ε = C/N2, for the same range of values of C, we observe that the
probability of hitting all points, as well as the miss count, converge to a constant
as N → ∞, for all values of C (Figure 7.2(c,d)). If we use instead ε = C/N2.5,
the probability of hitting all points goes to 1 and the miss count converges to 0
Figure 7.2(e,f).

“Max-prob” and Greedy # 2

If we use Greedy #2 instead of “max-prob”, results are similar, but “max-prob” has
about 10% higher probability of hitting all points than Greedy #2. Figure 7.3(a,b)
shows the case where ε = 1/N2, using 1000 samples per case.

n > 1 case

The results are also confirmed in higher dimensions: With n = 2, using ε = 2/N
and 100 samples per case, we see that the probability of hitting all points and the
expected miss count converge to a constant, as expected (Figure 7.4(a,b)).

3estimated, i.e., we count the number of times that the algorithm matched all pairs correctly
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(a) Probability of hitting all points, ε =
Θ(1/N1.5)

(b) Miss count, ε = Θ(1/N1.5) (in
logarithmic scale)

(c) Probability of hitting all points, ε =
Θ(1/N2)

(d) Miss count, ε = Θ(1/N2) (in logarithmic
scale)

(e) Probability of hitting all points, ε =
Θ(1/N2.5)

(f) Miss count, ε = Θ(1/N2.5) (in normal
scale)

Figure 7.2: Asymptotic behavior of the probability of hitting all points and the miss
count as N → ∞, for n = 1, Gaussian distributions and different behaviors of ε as
N →∞.
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(a) Probability of hitting all points (b) Miss count

Figure 7.3: “max-prob” and Greedy #2 compared, n = 1, Gaussian distributions

(a) Probability of hitting all points (b) Miss count

Figure 7.4: Results in R2, Gaussian distributions
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(a) Probability of hitting all points (b) Miss count

Figure 7.5: Comparing different distributions

7.2.2 Other distributions

With exponential and power law distributions we also observe that the probability
of hitting all points converges to a constant. Figure 7.5(a,b) shows this behavior for
ε = 1/N2, n = 1, using 100 samples per case, where the parameters of the Gaussian,
exponential and power law distributions are respectively σ = 1, λ = 1, and α = 2
and m = 1.
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Part III

Application
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Chapter 8

Probabilistic models for image
features

In this chapter, we introduce two probabilistic models for feature matching
applications for use with our “max-prob” method: One for the Harris/NCC feature
and the other for the SIFT feature.

The Harris/NCC case refers to the coupling of the Harris filter [27] (a
feature detector) with Normalized Cross-Correlation [1] (a feature descriptor and
comparison method), commonly used in applications such as 3D reconstruction and
image stitching. The Harris filter detects corner-like points in images (Figure 8.1(a))
and NCC describes these points by taking an L × L pixel patch (represented as
a vector x̃ ∈ Rn with n = 3L2, when there are 3 color channels) around the
feature point, then normalizing it to satisfy zero mean and unitary norm (i.e.,
performing x = x̃−~1~1

T

n
x̃

||x̃−~1~1T
n
x̃||

, where ~1 =
[ 1
...
1

]
, so that x satisfies ~1Tx = 0 and ||x|| = 1),

which provides the feature descriptor some robustness to illumination changes. The
similarity between pairs of feature descriptors is given by the inner product between
them (〈x, y〉, which, because they satisfy ||x|| = ||y|| = 1, is inversely related to the
Euclidean distance between them, i.e. ||x−y||2 = ||x||2−2〈x, y〉+||y||2 = 2−2〈x, y〉).

On the other hand, SIFT [15] is a more sophisticated feature detector and
descriptor, commonly used in (but not limited to) recognition applications. SIFT
has the advantage of being scale and rotation invariant: its blob-like feature points
(Figure 8.1(b)) are all assigned a dominant direction (rotation) and the scale in
which they were found. The descriptor is a 4 × 4 × 8 (3D) histogram (forming a
vector in R128

+ ) that stores the image gradients around the feature point according
to their location and orientation relative to the feature point (in location, scale and
orientation). Pairs of SIFT descriptors may be then compared using for instance
Euclidean distance or Hellinger distance [28].
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(a) Harris/NCC feature points and
descriptors

(b) SIFT feature points and
descriptors

Figure 8.1: Illustration of feature models.

8.1 Harris/NCC model

A probabilistic model for the Harris/NCC feature must satisfy that a feature from
sets P1 or P2, which we denote as x1, must satisfy:

||x1||2 = 1

xT1~1 = 0

where ~1 =
[ 1
...
1

]
. This is because the Harris/NCC descriptor subtracts pixel values

from the mean value and scales values so that the squared sum equals 1. Note that
these two restrictions imply that x1 has n − 2 degrees of freedom, and its PDF is
defined on an (n− 2)-dimensional subspace of Rn.

8.1.1 Probabilistic model

In this model, we have three parameters: σ, ε and q, but in practice only two
parameters need to be known: the ratio ε/σ and the outlier rate q.

The generating model is based on the generator set model with (asymmetric)
outliers described in Section 3.3:

X̃1 = X + Y1

X̃2 = ((XS +X ′(I − S)) + Y2)Π

with isotropic Gaussian distributions for the points in the generator set and for
noise, with parameters σ and ε, and an outlier rate of q. The only difference is
that we also project X̃1, X̃2 to X1, X2 to enforce the zero mean and unitary norm

98



Figure 8.2: Bayesian network of the Harris/NCC feature probabilistic model.

constraints, following

X i
1 =

(I − ~1~1T
n

)X̃ i
1∥∥∥(I − ~1~1T

n
)X̃ i

1

∥∥∥ (8.1)

X i
2 =

(I − ~1~1T
n

)X̃ i
2∥∥∥(I − ~1~1T

n
)X̃ i

2

∥∥∥ .
See Figure 8.2 for an illustration (Bayesian network) of the generative model.

8.1.2 Measure choice

The “max-prob” method fills the cost matrix using the function:

C(X i
1, X

j
2) = − log

(
pdf[X i

1, X
j
2 |Πij = 1]

)
However, because a point x1 ∈ P1 is located in a degenerate subset (with n− 2

degrees of freedom) of Rn, the choice of the measure on x1 affects the cost function.
Nevertheless, although the change of the measure results in a change of the cost

function, the resulting matching will not be affected, because minimum bipartite
matching is invariant to changes of the form C(x, y) + f(x) + g(y) to the cost
function. Suppose we defined pdf[x1] = dP

dµ(x1) , for some measure µ. If we change it
to µ′, we obtain:

− log
(
dP [X i

1, X
j
2 |Πij = 1]

dµ(X i
1)dµ(X i

2)

)
=

− log
(
dP [X i

1, X
j
2 |Πij = 1]

dµ′(X i
1)dµ′(X i

2)

)
− log

(
dµ′(X i

1)
dµ(X i

1)

)
− log

(
dµ′(X i

2)
dµ(X i

2)

)

which is of the form C(x, y) + f(x) + g(y).
Our choice of measure for x1 is the canonical measure for Riemannian manifolds

(volume element): Suppose that the subset of Rn where x1 is contained can be
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parameterized by n− 2 variables forming a vector θ ∈ Rn−2, i.e., x1 = x1(θ). Also,
let ∂θx1 be the Jacobian of this parameterization. This measure µ(x1) is defined as
the one such that dµ(x1)

dθ
=
√

det((∂θx1)T (∂θx1)), where dθ is the standard Lebesgue
measure (Euclidean hyper-volume in Rn−2).

This measure is invariant to the choice of θ: If we change the parameterization
scheme to one that uses some other n − 2 parameters θ′ ∈ Rn−2, where θ′ = θ′(θ),
we obtain a measure µ′(x1) where

dµ′(x1) =
√

det((∂θ′x1)T (∂θ′x1))dθ′

=
√

det((∂θ′x1)T (∂θ′x1)) det(∂θθ′)dθ

=
√

det((∂θθ′)T (∂θ′x1)T (∂θ′x1)(∂θθ′))dθ

=
√

det((∂θx1)T (∂θx1))dθ

= dµ(x1)

Now let us see how this measure relates to x̃1. We can write x̃1 as:

x̃1 = m1
~1√
n

+ s1x1

where m1/
√
n is the mean value of the components of x̃1 and s1 is the L2 norm of

x̃1 subtracted from its mean:

~1T x̃1

n
=
~1
n

T (
m1

~1√
n

+ s1x1

)
= m1

n

~1T~1√
n

= m1/
√
n

∥∥∥∥∥
(
I −

~1~1T
n

)
x̃1

∥∥∥∥∥ =
∥∥∥∥∥
(
I −

~1~1T
n

)(
m1

~1√
n

+ s1x1

)∥∥∥∥∥ = ||s1x1|| = s1

Note also therefore that, by replacing x̃1 with this expression in Equation 8.1,
we obtain back x1.
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We can then write

dx̃1

ds1dm1dµ(x1) = dx̃1

dm1ds1dθ

dθ

dµ(x1)

=
∣∣∣det

[
∂m1x̃1 ∂s1x̃1 ∂θx̃1

]∣∣∣ 1√
det((∂θx1)T (∂θx1))

=
∣∣∣det

[
∂m1x̃1 ∂s1x̃1 ∂x1x̃1∂θx1

]∣∣∣ 1√
det((∂θx1)T (∂θx1))

=
∣∣∣det

[
~1√
n

x1 s1.∂θx1
]∣∣∣ 1√

det((∂θx1)T (∂θx1))

= sn−2
1

∣∣∣det
[
~1√
n

x1 ∂θx1
]∣∣∣ 1√

det((∂θx1)T (∂θx1))

= sn−2
1

√√√√√√√√det




~1T√
n

xT1

∂θx
T
1

 [ ~1√
n

x1 ∂θx1
] 1√

det((∂θx1)T (∂θx1))

Note however that ~1Tx1 = 0 and ||x1|| = 1 implies that ~1T∂θx1 = 0 and xT1 ∂θx1 =
0, reducing the expression above to:

dx̃1

ds1dm1dµ(x1) = sn−2
1

√√√√√√√√det




1 0 0
0 1 0
0 0 ∂θx

T
1 ∂θx1


 1√

det((∂θx1)T (∂θx1))
⇔

dx̃1

ds1dm1dµ(x1) = sn−2
1

√
det (∂θxT1 ∂θx1) 1√

det((∂θx1)T (∂θx1))
⇔

dx̃1

ds1dm1dµ(x1) = sn−2
1 . (8.2)

8.1.3 Cost function

Now we can compute the cost function. Denoting pdf[X̃ i
1, X̃

j
2 |Πij = 1] = F (X̃ i

1, X̃
j
2),

we derive from Equation 8.2 that1:

C(x1, x2) = − log
(
dP [x1, x2|Πij = 1]
dµ(x1)dµ(x2)

)

= − log
∫∫∫∫

s1,s2>0
pdf[x̃1, x̃2|Πij = 1] dx̃1

ds1dm1dµ(x1)
dx̃2

ds2dm2dµ(x2)ds1ds2dm1dm2

= − log
∫∫∫∫

s1,s2>0
F

(
m1

~1√
n

+ s1x1,m2
~1√
n

+ s2x2

)
sn−2

1 sn−2
2 dm1dm2ds1ds2

1By abuse of notation, x1 = Xi
1, x2 = Xj

2 , x̃1 = X̃i
1 and x̃2 = X̃j

2 .
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Now let us take a closer look at F (x̃1, x̃2). We know that

F (x̃1, x̃2) = g√
σ2+ε2/2

(
x̃1 + x̃2

2

)
g√2ε(x̃1 − x̃2)(1− q) + g√σ2+ε2(x̃1)g√σ2+ε2(x̃2)q

, A(1− q) +Bq

Let us analyze first the “B” term.

B =

exp

−1
2

∥∥∥m1
~1√
n

+s1x1

∥∥∥2

σ2+ε2

 exp

−1
2

∥∥∥m2
~1√
n

+s2x2

∥∥∥2

σ2+ε2


(2π(σ2 + ε2))n

As ∥∥∥∥∥m1
~1√
n

+ s1x1

∥∥∥∥∥
2

=
∥∥∥∥∥m1

~1√
n

∥∥∥∥∥
2

+ ‖s1x1‖2 = m2
1 + s2

1

the expression for B simplifies to:

B =
exp

(
−1

2
m2

1
σ2+ε2

)
exp

(
−1

2
s21

σ2+ε2
)

exp
(
−1

2
m2

2
σ2+ε2

)
exp

(
−1

2
s22

σ2+ε2
)

(2π(σ2 + ε2))n

Note also that:

∫∫
Rn

exp
(
−1

2
m2

1
σ2+ε2

)
exp

(
−1

2
m2

2
σ2+ε2

)
(2π)(σ2 + ε2)1/2(σ2 + ε2)1/2 dm1dm2 = 1

and ∫∫
s1,s2>0

exp
(
−1

2
s21

σ2+ε2
)

exp
(
−1

2
s22

σ2+ε2
)
A2
n−1s

n−2
1 sn−2

2

(2π)n−1(σ2 + ε2)(n−1)/2(σ2 + ε2)(n−1)/2 ds1ds2 = 1

So the Bq term of the quadruple integral integrates to q/A2
n−1.

Now the “A” term:

A =
exp(−1

2
||(x̃1+x̃2)/2||2
σ2+ε2/2 ) exp(−1

2
||x̃1−x̃2||2

2ε2 )
(2π)n(σ2 + ε2/2)n/2(2ε2)n/2

Note that

∥∥∥∥ x̃1 + x̃2

2

∥∥∥∥2
=

∥∥∥∥∥∥
m1

~1√
n

+ s1x1 +m2
~1√
n

+ s2x2

2

∥∥∥∥∥∥
2

=
(
m1 +m2

2

)2
+
∥∥∥∥s1x1 + s2x2

2

∥∥∥∥2

and

‖x̃1 − x̃2‖2 =
∥∥∥∥∥m1

~1√
n

+ s1x1 −m2
~1√
n
− s2x2

∥∥∥∥∥
2

= (m1 −m2)2 + ‖s1x1 − s2x2‖2
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so the expression for A reduces to:

A =
exp(−1

2
((m1+m2)/2)2

σ2+ε2/2 ) exp(−1
2

(m1−m2)2

2ε2 ) exp(−1
2
||(s1x1+s2x2)/2||2

σ2+ε2/2 ) exp(−1
2
||s1x1−s2x2||2

2ε2 )
(2π)n(σ2 + ε2/2)n/2(2ε2)n/2

Because

∫∫
Rn

exp(−1
2

((m1+m2)/2)2

σ2+ε2/2 ) exp(−1
2

(m1−m2)2

2ε2 )
(2π)(σ2 + ε2/2)1/2(2ε2)1/2 dm1dm2 = 1

the A(1− q) term of the quadruple integral reduces to a double integral, yielding:

dP [X i
1, X

j
2 |Πij = 1]

dµ(X i
1)dµ(Xj

2)
= q

A2
n−1

+ (1− q)
∫∫

s1,s2>0
...

...
exp(−1

2
||(s1x1+s2x2)/2||2

σ2+ε2/2 ) exp(−1
2
||s1x1−s2x2||2

2ε2 )
(2π)n−1(σ2 + ε2/2)n−1

2 (2ε2)n−1
2

sn−2
1 sn−2

2 ds1ds2

= q

A2
n−1

+ (1− q)
∫∫

s1,s2>0
...

...
exp

(
−1

2

((
1

4σ2+2ε2 + 1
2ε2
)

(s2
1 + s2

2) + 2s1s2
(

1
4σ2+2ε2 −

1
2ε2
)
〈x1, x2〉

))
(2π)n−1(σ2 + ε2/2)n−1

2 (2ε2)n−1
2

sn−2
1 sn−2

2 ds1ds2

To solve this integral, let us apply the substitution r =
√
s1/s2 and t = √s1s2.

In this case,

drdt

ds1ds2
=

∣∣∣∣∣∣det
 ∂r
∂s1

∂t
∂s1

∂r
∂s2

∂t
∂s2

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣det

 1
2

1√
s1s2

1
2

√
s2
s1

−1
2

√
s1
s32

1
2

√
s1
s2


∣∣∣∣∣∣∣ = 1

2s2
= r

2t ,

so we obtain:
dP [X i

1, X
j
2 |Πij = 1]

dµ(X i
1)dµ(Xj

2)
= q

A2
n−1

+ (1− q)
∫∫

r,t>0
...

...
exp

(
−1

2

((
1

4σ2+2ε2 + 1
2ε2
)

(r2 + 1/r2) + 2
(

1
4σ2+2ε2 −

1
2ε2
)
〈x1, x2〉

)
t2
)

(2π)n−1(σ2 + ε2/2)n−1
2 (2ε2)n−1

2 · r
t2(n−2)+12drdt.

Using that ∫ ∞
0

e−
1
2au

2
un−1du = (2π/a)n/2/An

we obtain:
dP [X i

1, X
j
2 |Πij = 1]

dµ(X i
1)dµ(Xj

2)
= q

A2
n−1

+ (1− q)
∫
r>0

...

...

(
2π/

((
1

4σ2+2ε2 + 1
2ε2
)

(r2 + 1/r2) + 2
(

1
4σ2+2ε2 −

1
2ε2
)
〈x1, x2〉

))n−1

(2π)n−1(σ2 + ε2/2)n−1
2 (2ε2)n−1

2 rA2(n−1)
2dr
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= q

A2
n−1

+ 1− q
(σ2 + ε2/2)n−1

2 (2ε2)n−1
2 A2(n−1)

∫
r>0

...

...
2dr/r((

1
4σ2+2ε2 + 1

2ε2
)

(r2 + 1/r2) + 2
(

1
4σ2+2ε2 −

1
2ε2
)
〈x1, x2〉

)n−1

Substituting u = r2, we obtain:

dP [X i
1, X

j
2 |Πij = 1]

dµ(X i
1)dµ(Xj

2)
= q

A2
n−1

+ 1− q
(σ2 + ε2/2)n−1

2 (2ε2)n−1
2 A2(n−1)

∫
u>0

...

...
du/u((

1
4σ2+2ε2 + 1

2ε2
)

(u+ 1/u) + 2
(

1
4σ2+2ε2 −

1
2ε2
)
〈x1, x2〉

)n−1

Let now:
a = 1

4σ2 + 2ε2 + 1
2ε2 = σ2 + ε2

(σ2 + ε2/2)2ε2

b =
( 1

4σ2 + 2ε2 −
1

2ε2
)
〈x1, x2〉 = − σ2〈x1, x2〉

(σ2 + ε2/2)2ε2

To analyze the integral

∫ ∞
0

du/u

(au+ 2b+ a/u)n−1

we will rearrange it as:

∫ ∞
0

du/u

(au− 2a+ a/u+ 2b+ 2a)n−1 =

∫ ∞
0

du/u

(a (u−1)2

u
+ 2b+ 2a)n−1

=

1
(2a+ 2b)n−1

∫ ∞
0

du/u(
a(u−1)2

(2a+2b)u + 1
)n−1

Now let:
γ = 1 + b/a = 1− 〈x1, x2〉

1 + ε2/σ2

Note that γ ≥ 0 always.
Replacing v = (u− 1)

√
(n− 1)/γ, we obtain:

1
(2aγ)n−1

∫ ∞
−
√

(n−1)/γ

√
γ/(n− 1)dv/(

√
γ/(n− 1)v + 1) v2/(n−1)

2
(

1+v
√
γ/(n−1)

) + 1
n−1 =
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γ
3
2−n

(2a)n−1
√
n− 1

∫ ∞
−
√

(n−1)/γ

dv/(
√
γ/(n− 1)v + 1) v2/(n−1)

2
(

1+v
√
γ/(n−1)

) + 1
n−1

≈ γ
3
2−n

(2a)n−1
√
n− 1

√
2π

since the Harris/NCC feature has normally n >> 1 and

lim
n→∞

∫ ∞
−
√

(n−1)/γ

dv/(
√
γ/(n− 1)v + 1) v2/(n−1)

2
(

1+v
√
γ/(n−1)

) + 1
n−1 =

∫ ∞
−∞

dv

ev2/2 =
√

2π.

Substituting in the cost function we obtain:

C(x1, x2) ≈ − log
 q

A2
n−1

+ (1− q)γ 3
2−n

(σ2 + ε2/2)n−1
2 (2ε2)n−1

2 A2(n−1)(2a)n−1
√
n− 1

√
2π


= − log
 q

A2
n−1

+ (1− q)(σ2 + ε2/2)n−1
2 (2ε2)n−1

2

2n−1(σ2 + ε2)n−1γn−3/2A2(n−1)
√
n− 1

√
2π


= − log
 q

A2
n−1

+ (1− q)
2n−1γn−3/2A2(n−1)

√
n− 1

(
1− 1

(1 + ε2/σ2)2

)n−1
2 √

2π


= − log
q + (1− q)A2

n−1

2n−1γn−3/2A2(n−1)
√
n− 1

(
1− 1

(1 + ε2/σ2)2

)n−1
2 √

2π
+ log

(
A2
n−1

)
Using Equation C.3, this expression simplifies to:

= − log
q + (1− q)An−1

γn−3/2An
√
n− 1

(
1− 1

(1 + ε2/σ2)2

)n−1
2 √

2π
+ log

(
A2
n−1

)

which, noting from Equation C.4 that limn→∞
An−1

An
√
n−1 = 1√

2π , is approximately:

≈ − log

q +
(1− q)

(
1− 1

(1+ε2/σ2)2

)n−1
2(

1− 〈x1,x2〉
1+ε2/σ2

)n−3/2

+ const.

where const. = log(A2
n−1) can be disregarded, since adding a constant term (with

respect to x1 and x2) in the cost function does not impact the final matching.
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8.2 SIFT model

Instead of working directly with the SIFT feature, we will use instead the RootSIFT
feature [28].

The RootSIFT approach consists in taking a SIFT feature descriptor z ∈ R128
+ ,

L1-normalizing it and taking its square root componentwise, i.e. the resulting feature
x1 is written in function of z as:

(x1)i =
√
zi/||z||1, i ∈ {1, ..., 128}.

The logic behind this process is that Euclidean distance after taking the square
root becomes equivalent to the Hellinger distance (also known as Bhattacharyya
distance) prior to taking the square root, which is often a more suitable metric for
comparing histograms.

Therefore x1 satisfies:
||x1||2 = 1

and
∀i : (x1)i ≥ 0. (8.3)

Note that the RootSIFT feature has therefore a unitary norm constraint, just as
the Harris/NCC feature. This motivates us to use a similar model to the one we used
for Harris/NCC, the difference is that it does not have the zero mean constraint.
However, we will ignore the non-negativity constraint (Equation 8.3): our model
assumes x1 may have negative entries.

8.2.1 Probabilistic model

This model is almost identical to the Harris/NCC model. However, we allow
anisotropic Gaussian distributions: Points in the generator set P have a variance
matrix of Σ2 and noise follows a variance matrix of E2. Hence,

pdf[x] =
exp

(
−1

2x
TΣ−2x

)
(2π)n/2

√
det Σ2

and

pdf[x̃k] =
exp

(
−1

2 x̃
T
k Σ̃−2x̃k

)
(2π)n/2

√
det Σ̃2

, k ∈ {1, 2}

where Σ̃2 = Σ2 + E2.
The other difference from the Harris/NCC model is that only the unitary norm

constraint (||x1|| = ||x2|| = 1) is used, the zero mean constraint (~1Tx1 = ~1Tx2 = 0)
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is not used; so the relationship between x̃1, x̃2 and x1, x2 is simply:

x1 = x̃1/||x̃1||

x2 = x̃2/||x̃2||

Note also that, because there is no zero mean constraint anymore, the measure
for x1 (volume element) becomes:

dx̃1

dµ(x1)ds1
= sn−1

1

where x̃1 = s1x1.

8.2.2 dP [x1]/dµ(x1)

In the anisotropic model, the probability density function can be computed using
the following integral:

dP [x1]/dµ(x1) =
∫ ∞

0
pdf [x̃1]

∣∣∣
x̃1=sx1

sn−1ds

=
∫ ∞

0

exp
(
−1

2 (sx1)T Σ̃−2 (sx1)
)
sn−1ds

(2π)n/2
√

det Σ̃2

=
∫ ∞

0

exp
(
−1

2

(
xT1 Σ̃−2x1

)
s2
)
sn−1ds

(2π)n/2
√

det Σ̃2

= 1
√

det Σ̃2
(
xT1 Σ̃−2x1

)n
2 An

.

Note that we may rewrite this as:

dP [x1]/dµ(x1) = 1
An (xT1C−1x1)

n
2

where
C = Σ̃2

(det Σ̃2)1/n
.

Also, note that C satisfies detC = 1 and C = CT , so it has n(n+1)
2 − 1 degrees of

freedom.
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8.2.3 Cost function

The cost function for “max-prob” will be given by:

C(X i
1, X

j
2) = − log

(
dP [X i

1, X
j
2 |Πij = 1]

dµ(X i
1)dµ(Xj

2)

)

= − log
(∫∫

s1,s2>0
F (s1x1, s2x2) sn−1

1 sn−1
2 ds1ds2

)
where

F (x̃1, x̃2) = A(1− q) +Bq

A =
exp

(
−1

2

∥∥∥ x̃1+x̃2
2

∥∥∥2

(Σ2+E2/2)−1

)
(2π)n/2

√
det(Σ2 + E2/2)

exp
(
−1

2 ‖x̃1 − x̃2‖2
(2E2)−1

)
(2π)n/2

√
det(2E2)

B =
exp

(
−1

2 ‖x̃1‖2
(Σ2+E2)−1

)
(2π)n/2

√
det(Σ2 + E2)

exp
(
−1

2 ‖x̃2‖2
(Σ2+E2)−1

)
(2π)n/2

√
det(Σ2 + E2)

We can remove the Bq term, using

∫∫
s1,s2>0

qBsn−1
1 sn−1

2 ds1ds2 = q
dP [x1]
dµ(x1)

dP [x2]
dµ(x2) =

q

det(Σ2 + E2)
(
xT1 (Σ2 + E2)−1 x1xT2 (Σ2 + E2)−1 x2

)n
2 A2

n

Meanwhile, ∫∫
s1,s2>0

(1− q)Asn−1
1 sn−1

2 ds1ds2 =

∫∫
s1,s2>0

(1− q)e−
1
2

(
‖s1x1+s2x2‖2(4Σ2+2E2)−1+‖s1x1−s2x2‖2(2E2)−1

)
(2π)n

√
det(Σ2 + E2/2)

√
det(2E2)

sn−1
1 sn−1

2 ds1ds2

=
∫∫

s1,s2>0

(1− q) exp

−1
2

s1

s2

T M
s1

s2




(2π)n
√

det(Σ2 + E2/2)
√

det(2E2)
sn−1

1 sn−1
2 ds1ds2

where

M =
xT1 ((4Σ2 + 2E2)−1 + (2E2)−1)x1 xT1 ((4Σ2 + 2E2)−1 − (2E2)−1)x2

xT2 ((4Σ2 + 2E2)−1 − (2E2)−1)x1 xT2 ((4Σ2 + 2E2)−1 + (2E2)−1)x2
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Substituting r =
√
s1/s2 and t = √s1s2, with ds1ds2 = 2 t

r
drdt, we obtain:

∫∫
r,t>0

(1− q) exp

−1
2

 r

1/r

T M
 r

1/r

 t2


(2π)n
√

det(Σ2 + E2/2)
√

det(2E2)r
t2(n−1)+12drdt

= (1− q)
∫
r>0

2π/


 r

1/r

T M
 r

1/r




n

(2π)n
√

det(Σ2 + E2/2)
√

det(2E2)A2nr
2dr

= (1− q)
∫
r>0


 r

1/r

T M
 r

1/r



−n

√
det(Σ2 + E2/2)

√
det(2E2)A2nr

2dr

Now let

M =
a b

b c

 ,
substituting u = r2, we obtain:

(1− q)
∫
u>0

(au+ 2b+ c/u)−n√
det(Σ2 + E2/2)

√
det(2E2)A2nu

du

= (1− q)
∫
u>0

(au− 2
√
ac+ c/u+ 2b+ 2

√
ac)−n√

det(Σ2 + E2/2)
√

det(2E2)A2nu
du

= (1− q)(2b+ 2
√
ac)−n

∫
u>0

(
a(u−
√
c/a)2

u(2b+2
√
ac) + 1

)−n
du/u√

det(Σ2 + E2/2)
√

det(2E2)A2n

Substituting v = (u−
√
c/a)

√
n
γ
, where γ = (b+

√
ac)
√
c/a

a
, we have then:

(1− q)
2 a√

c/a
γ

−n ∫ ∞
−
√
c/a
√

n
γ

 av2γ/n(√
c/a+v
√

γ
n

)
2γa
√

a
c

+ 1
−n√ γ

n
dv/

(√
c
a

+ v
√

γ
n

)
√

det(Σ2 + E2/2)
√

det(2E2)A2n

= (1− q)
2 a√

c/a
γ

−n
√

γ
n√
c/a

∫ ∞
−
√
c/a
√

n
γ

(
v2/n

2(1+v
√

a
c

√
γ
n) + 1

)−n
dv/

(
1 + v

√
a
c

√
γ
n

)
√

det(Σ2 + E2/2)
√

det(2E2)A2n
.
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As n→∞, the result

lim
n→∞

∫ ∞
−
√
c/a
√

n
γ

(
v2/n

2(1+v
√

a
c

√
γ
n) + 1

)−n
dv(

1 + v
√

a
c

√
γ
n

) =
∫ ∞
−∞

e−v
2/2 =

√
2π

lets us approximate the expression for the “A” term to:

(1− q)
(

2 a√
c/a
γ
)−n√

γ
n√

c/a

√
2π√

det(Σ2 + E2/2)
√

det(2E2)A2n

=
(1− q)2−na−n

(
γ√
c/a

)−(n−1/2)
1

(
√
c/a)1/2

√
2π

√
n
√

det(Σ2 + E2/2)
√

det(2E2)A2n

=
(1− q)2−n 1√

a

(
aγ√
c/a

)−(n−1/2)
1

(
√
c/a)1/2

√
2π

√
n
√

det(Σ2 + E2/2)
√

det(2E2)A2n

=
(1− q)2−n (b+

√
ac)−(n−1/2) 1

(ac)1/4

√
2π

√
n
√

det(Σ2 + E2/2)
√

det(2E2)A2n

Using that2:
lim
n→∞

A2
n

2nA2n
√
n

= 1√
2π

we can approximate the expression to

(1− q) (b+
√
ac)−(n−1/2) 1

(ac)1/4√
det(2E2)

√
det(Σ2 + E2/2)A2

n

so the final expression for cost is:

C(x1, x2) ≈ − log
(
Ã+ B̃

)
+ log(A2

n−1)

where

Ã =
(1− q) (b+

√
ac)−(n−1/2) 1

(ac)1/4√
det(2E2)

√
det(Σ2 + E2/2)

a = xT1
[
(4Σ2 + 2E2)−1 + (2E2)−1

]
x1

b = xT1
[
(4Σ2 + 2E2)−1 − (2E2)−1

]
x2

c = xT2
[
(4Σ2 + 2E2)−1 + (2E2)−1

]
x2

2See Appendix C.
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B̃ = q

det(Σ2 + E2)
(
xT1 (Σ2 + E2)−1 x1xT2 (Σ2 + E2)−1 x2

)n
2

and the log(A2
n−1) term may be disregarded.

Note that, just as the Harris/NCC model depended only on ε/σ, and not on ε

and σ individually, similarly, our RootSIFT model is invariant to multiplying Σ2

and E2 by a same scale α.

8.2.4 Maximum Likelihood Estimation

Computing the cost function requires knowledge of Σ2 and E2. While acquiring
both of them is no trivial task, it is possible to infer the value of C = Σ2+E2

det(Σ2+E2)1/n

from a set of features using a maximum likelihood estimator (MLE) method.
Given a set of features {X1, X2, ..., X#samples} ⊂ Rn, the MLE method in our

case must seek a symmetric positive definite matrix C, satisfying detC = 1, that
maximizes:

#samples∏
i=1

dP [X i|C]
dµ(X i) =

#samples∏
i=1

1
((X i)TC−1X i)

n
2 An

.

Derivative

Let us first remove the constraint that detC = 1 and write instead

dP [X i|C]
dµ(X i) = 1√

detC ((X i)TC−1X i)
n
2 An

The MLE method maximizes:

f(C) =
#samples∑

i=1
log dP [X i|C]

dµ(X i)

=
#samples∑

i=1
−1

2 log (detC)− log(An)− n

2 log
(
(X i)TC−1X i

)

=
#samples∑

i=1
−1

2 log (detC)− log(An)− n

2 log
(
C−1 : (X i(X i)T )

)

Let us compute the gradient of this function, i.e. a matrix ∂Cf(C) such that:

f(C + δC) = f(C) + ∂Cf : δC + o(||δC||F ), (as ||δC||F → 0)

where || · ||F is the Frobenius norm and A : B denotes matrix inner-product (A :
B = ∑

i,j AijBij). In other words, (∂Cf(C))ij = ∂Cijf(C).
For that purpose we will make use of the following matrix derivatives:

A : (B + δB) = A : B + A : δB ⇒ ∂B(A : B) = A; (8.4)
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(A+ δA)−1 = A−1(I + δAA−1)−1 = A−1
∞∑
i=0

(−δAA−1)i

= A−1 − A−1δAA−1 + o(||δA||F )⇒

∂A(A−1 : B) : δA = −(A−1δAA−1) : B = −δA : A−TBA−T ⇒

∂A(A−1 : B) = −A−TBA−T ; (8.5)

det(A+ δA) = det(A) · det(I + A−1δA)

= det(A) + det(A) · tr(A−1δA) + o(||δA||F )

= det(A) + det(A) · (A−T : δA) + o(||δA||F )⇒

∂A(detA) = (detA) · A−T ; (8.6)

resulting in:

∂Cf(C) =
#samples∑

i=1
−1

2C
−T + n

2
C−TX i(X i)TC−T
C−1 : (X i(X i)T )

=
#samples∑

i=1
−1

2C
−1 + n

2
C−1X i(X i)TC−1

(X i)TC−1X i
.

Iterative Method

The maximum occurs when the gradient is zero, which means:

#samples∑
i=1

−1
2C
−1 + n

2
C−1X i(X i)TC−1

(X i)TC−1X i
= 0⇒

C−1 = n

#samples

#samples∑
i=1

C−1X i(X i)TC−1

(X i)TC−1X i
⇒ (8.7)

C = n

#samples

#samples∑
i=1

X i(X i)T
(X i)TC−1X i

. (8.8)

Notice that our final equation for C has the term “C” on both sides in a non-
separable way. One may use Equation 8.8 as an iteration, which would be equivalent
to updating C according to a preconditioned gradient ascent method (following the
step δC = 2C(∂Cf)C

#samples ), starting for instance with C = I. Additionally, one may want
to normalize C := C/(detC)1/n after each iteration for stability, which will ensure
that detC = 1.

Alternatively, one may want to use Equation 8.7 for the iterative method, i.e.
working directly on the inverse C−1 instead. However, this would not work since it is
equivalent to walking on the decreasing direction of the gradient, not the increasing
one.
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We experimentally verified that the method that iterates on Equation 8.8
converges very fast, often in less than 20 iterations.
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Chapter 9

Evaluation in Computer Vision

In this chapter we evaluate our models for the Harris/NCC and RootSIFT features
using Mikolajczyk’s dataset1 [16].

9.1 Methodology

Mikolajczyk’s dataset is a small dataset that provides images taken from a same
scene distorted in different forms. In this work, we use the “graf”, “bikes”, “wall”
and “trees” subsets (Figure 9.1). While the “graf” and “wall” subsets explore noise
caused by change of viewpoint, “bikes” and “trees” explore noise caused by blur.
The dataset also provides the homographies that relate the 1st and the n-th image
of each subset (n = {2, 3, ..., 6}).

We detect features2 in each image and match the feature sets using several
methods. The ground truth is determined using the homography provided by
Mikolajczyk’s dataset and the 2D location of each feature: a match pair (x1, x2),
with image coordinates (l1, l2), is considered correct if the projection of l1 in the
other image, following the homography, has an Euclidean distance of less than 4
pixels from l2. l1 always refers to a point in the 1st image, while l2 refers to a point
in the n-th image (n ∈ {2, ..., 6}), of each subset of the dataset. Note also that
this ground-truth criterion allows many-to-many matching, even if we only consider
one-to-one matching methods.

1Available at http://www.robots.ox.ac.uk/˜vgg/research/affine/
2For Harris we used a custom implementation, while for SIFT we used Lowe’s software available

at http://www.cs.ubc.ca/˜lowe/keypoints/. To reduce the number of SIFT features, we
discarded the features of the 2 lowest scales of the images in the “graf” and “bikes” subsets and
the 4 lowest scales in the “wall” and “trees” subsets. Our NCC descriptor used 21 × 21 patches
with 3 color channels, so that n = 1323, while the SIFT descriptor is 128-dimensional, as default,
using only grayscale information.
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(a) graf-1 (b) graf-2 (c) graf-3 (d) graf-4 (e) graf-5 (f) graf-6

(g) bikes-1 (h) bikes-2 (i) bikes-3 (j) bikes-4 (k) bikes-5 (l) bikes-6

(m) wall-1 (n) wall-2 (o) wall-3 (p) wall-4 (q) wall-5 (r) wall-6

(s) trees-1 (t) trees-2 (u) trees-3 (v) trees-4 (w) trees-5 (x) trees-6

Figure 9.1: Images from Mikolajczyk’s dataset used.
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9.1.1 Methods

We evaluate the following methods (in parenthesis is the acronym we will use to
refer to each method in this chapter):

• Greedy #2, using Euclidean distance as cost (G2)

• Minimum bipartite matching with Euclidean distance (E1)

• Minimum bipartite matching with squared Euclidean distance (E2)

• “max-prob” with isotropic Gaussian distributions and outliers (GA)

• Our Harris/NCC model (HN)

• Our RootSIFT model with isotropic distributions, i.e. Σ2 = σ2I and E2 = ε2I

(II)

• Our RootSIFT model with an anisotropic generator set distribution, but
isotropic noise (AI)

• Our RootSIFT model with anisotropic generator set distribution and
anisotropic noise (AA)

While G2, E2 and E1 have no parameters, the other methods require knowing
parameters such as the noise ratio and the outlier rate.

GA has three parameters: σ, ε and q. Because Harris/NCC and RootSIFT
features satisfy ||x1|| = 1, meaning that E[||x1||2] = 1, we force the Gaussian model
to satisfy E[||x1||2] = 1 by constraining σ2 + ε2 = 1/n. We then choose ε and σ

that satisfy ε2

σ2+ε2 = χ2, for an input parameter3 χ ∈]0, 1[. Therefore GA has two
parameters: q and χ.

The HN and II methods also have two parameters: q and the ratio ε/σ. Similarly
to the GA method, we choose ε/σ satisfying ε2

σ2+ε2 = χ2, for given χ ∈]0, 1[.
The AI method requires knowing the variance matrix Σ2. For this end, we use

the MLE method to estimate Σ̃2 = Σ2 + ε2I, requiring that Σ̃2 is a diagonal matrix4

(we modify the MLE method seen in Section 8.2.4 to remove the non-diagonal
components of C after each iteration). Σ̃2 is estimated using the input features
(P1 ∪ P2) of each test case. After computing Σ̃2, we set ε2 = χ2 mini(Σ̃2)ii and do
Σ2 = Σ̃2 − ε2I.

3I.e., (σ, ε) is the solution to the system
{

σ2+ε2=1/n
ε2/(σ2+ε2)=χ2 .

4The choice of using a diagonal variance matrix for the SIFT case is reasonable because of the
very nature of this feature model: The SIFT feature descriptor is built aligned with the orientation
(rotation) with the highest occurrence of image gradients; while the descriptor is a histogram
of gradients that stores gradients according to orientation. Therefore, it is natural that some
components of the resulting RootSIFT vector tend to have higher values than other components,
due to this alignment.
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The AA method uses the same MLE method as AI, but the noise matrix is
estimated as E2 = χ2Σ̃2, and Σ2 = Σ̃2 − E2.

This way all methods depend only on two parameters: χ and q, except for G2,
E2 and E1, which have no parameters.

9.1.2 Parameter selection

A preliminary experiment shows us that the methods we are evaluating are very
robust to changes in q: Figure 9.2 shows that changing q makes no difference
at all in most cases — the curves for each value of q overlap almost entirely
each other. Therefore, in the next experiments we set q = .5 and vary only
χ ∈ {.02, .04, .06, ..., .98}.

9.2 Results

We vary χ ∈ {.02, .04, .06, ..., .98} and select the maximum and median hit counts
obtained for each method in order to compare the methods to each other. The
maximum hit count should evaluate how many correct matches we can obtain
supposing we know the correct noise ratio χ, while the median hit count should
roughly evaluate how many correct matches we have when we simply guess χ.

In Table 9.1 we see the results for Harris/NCC features, while in Table 9.2 we
see the results for RootSIFT5 features. For the parametric methods, we use the
notation “MAX|MED”, where MAX is the maximum hit count and MED is the
median. We also enhance in boldface, for each test set, the parameter-less method
with the highest hit count, the parametric method with the highest maximum hit
count, and the parametric method with the highest median hit count. In the bottom
row we sum the number of times each method was displayed in boldface, i.e. the
number of times it outperformed the other methods of the same category.

From the tables we see that G2 and E1 had better hit counts than E2 in general.
Because E2 is equivalent to the Gaussian method with q = 0, it is sensitive to
outliers, while G2’s greedy nature tends to prioritize inliers, and E1 tends to give a
lower cost to outlier pairs, since it does not square the distance between the pairs
as E2 does.

For the Harris/NCC parametric methods, we see that GA and HN have similar
maximum hit counts (only slightly higher for HN), while HN has a much better
median hit count. This means that it is easier to select χ for HN than for GA.

For RootSIFT, the AI method had the best results, while AA had the worst
results among parametric methods. This suggests that the noise distribution is

5The parameter-less and Gaussian methods also use the RootSIFT feature instead of SIFT.
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(a) Harris/NCC GA (b) Harris/NCC HN

(c) RootSIFT GA (d) RootSIFT II

(e) RootSIFT AI (f) RootSIFT AA

Figure 9.2: Varying q and χ for different methods (graf1-2 case). In the x-axis is
the value of χ and in the y-axis is the hit count.
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Table 9.1: Hit count comparison for Harris/NCC features
case #features G2 E2 E1 GA HN

graf1-2 478× 488 128 137 148 152|137 152|137
graf1-3 478× 483 71 69 70 71|63 71|66
graf1-4 478× 482 10 10 10 11|8 11|8
graf1-5 478× 484 22 31 30 33|27 31|28
graf1-6 478× 468 7 8 6 10|4 9|7
bikes1-2 483× 495 329 338 344 343|338 343|339
bikes1-3 483× 489 301 308 311 310|308 313|311
bikes1-4 483× 489 221 230 236 235|229 236|232
bikes1-5 483× 485 143 149 155 157|144 163|149
bikes1-6 483× 482 67 80 76 83|76 86|77
wall1-2 480× 490 337 334 336 337|331 337|334
wall1-3 480× 483 298 297 297 301|281 300|292
wall1-4 480× 478 194 192 194 195|170 195|185
wall1-5 480× 487 113 121 128 127|83 125|106
wall1-6 480× 492 34 41 42 42|17 42|23
trees1-2 487× 482 210 206 207 208|199 209|206
trees1-3 487× 488 168 167 168 167|164 169|166
trees1-4 487× 489 74 76 77 77|73 77|74
trees1-5 487× 475 44 47 45 49|45 48|45
trees1-6 487× 486 15 18 17 19|16 21|17

bold count 7 6 11 13|3 15|20
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Table 9.2: Hit count comparison for RootSIFT features. Note: The “case” column
abbreviates “graf”, “bikes”, “wall” and “trees” respectively as “G”, “B”, “W” and
“T”

case #features G2 E2 E1 GA II AI AA
G1-2 636× 742 341 338 338 338|338 339|338 339|338 338|337
G1-3 636× 885 211 207 206 212|207 212|207 213|209 210|203
G1-4 636× 909 76 74 76 79|74 80|75 79|74 75|73
G1-5 636× 1009 19 19 19 19|19 19|19 21|18 15|13
G1-6 636× 1120 7 7 8 7|7 8|7 9|7 6|6
B1-2 653× 428 310 313 313 313|313 314|313 313|312 314|314
B1-3 653× 268 206 206 206 206|206 206|206 206|206 206|206
B1-4 653× 143 105 105 105 105|105 105|105 105|105 105|105
B1-5 653× 102 68 68 68 68|68 68|68 68|68 68|68
B1-6 653× 68 50 49 50 50|49 50|49 50|50 50|50
W-2 514× 650 288 286 286 286|286 287|286 288|286 286|285
W1-3 514× 635 215 214 215 215|214 215|215 215|215 214|214
W1-4 514× 612 136 135 137 137|135 137|136 137|136 137|136
W1-5 514× 657 90 83 83 90|83 90|84 90|84 89|83
W1-6 514× 629 19 19 19 20|19 20|19 22|19 17|16
T1-2 797× 742 289 287 287 289|287 289|287 289|287 290|287
T1-3 797× 934 297 297 300 298|297 300|297 300|299 297|295
T1-4 797× 700 192 188 188 195|188 194|188 195|188 195|188
T1-5 797× 361 103 101 100 102|101 103|101 103|102 102|101
T1-6 797× 227 60 61 61 61|61 61|61 61|61 62|62

bold count 15 7 13 8|10 12|14 16|16 9|9
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most likely not aligned with the generator set distribution for SIFT features. On
the other hand, it also suggests that a diagonal variance matrix is suitable6 to model
this type of feature, even if we are considering only isotropic noise.

When we compare the parametric methods with the parameter-less methods, we
note that, while parametric methods tend to outperform the parameter-less methods
when maximum hit count is considered, parameter-less methods have better results
when it comes to median hit count. This means that, if we know the correct noise
ratio χ we will outperform G2 and E1 using HN or AI, but when we have no clue
of the correct χ it is better to choose G2 or E1 instead.

One may question if it is even possible to have any means to know the best value
of χ in advance, as the maximum argument of the hit count in function of χ is hardly
salient (we can see this in Figure 9.2), i.e. comparing the maximum hit count of a
parametric method with the hit count of a parameter-less method is rather unfair.
Most likely, methods such HN and AI are just as good as G2 and E1, but if we
look only to the maximum hit count, our conclusion would be biased towards the
parametric methods.

Interestingly, we see that while Harris/NCC methods have some discrepancy in
hit count, RootSIFT methods produce very similar results to each other. There are
even cases, namely “bikes1-3”, “bikes1-4” and “bikes1-5”, where all methods have
exactly the same hit count, including maximum and median hit counts. Figure 9.2
also shows how RootSIFT is much more robust to changes in χ than Harris/NCC.
This is probably because the SIFT feature descriptor was designed to be resistant
to the main sources of noise in images, particularly rotation and isotropic scale. As
a result, inlier pairs tend to be very close to each other, so that no much effort is
required in order to match pairs correctly.

Finally, while there is some difference in hit count between the different
methods, if we compare with the total number of features, the difference is indeed
minute. Considering that the matching method is succeeded by a RANSAC-like
procedure [23] to remove outliers and solve the application in question, e.g. 3D
reconstruction or image stitching, this change in hit count does as good as no
benefit to the output of the final application. Therefore in practice, for this sort of
application, using a greedy algorithm is a better option due to its simplicity and
lower computational cost.

6i.e., more suitable than isotropic variance, which is not true for the Harris/NCC feature
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Chapter 10

Conclusion

We presented a probabilistic framework for matching problems, from which we could
derive optimal Bayesian methods and asymptotic properties. We also instantiated
it in the feature matching problem of computer vision and compared it to existing
approaches.

We have learned that there is a fundamental relationship between the amount
of noise ε, the number of dimensions n and the number of points N , where εn =
o(1/N) guarantees 100% hit rate, and εn = o(1/N2) guarantees 100% probability of
matching all pairs correctly.

We learned that different distributions may have very different asymptotic
behaviors: For instance, Gaussian distributions in the generator set model have
a hit count of (1 + σ2/ε2)n as N → ∞ using our “max-prob” method, while power
law and exponential distributions have an infinite hit count — the exponential
distribution has a logarithmically growing hit count while the hit count of the power
law distribution grows following a power law.

In the computer vision study case, our methods did not substantially improve
the hit count for feature matching, but were not worse than the existing approaches
either.

10.1 Future work

Many unanswered questions and unexplored subproblems remain to be studied,
namely:

• It would be interesting to explore other applications for our framework,
possibly out of the computer vision field.

• Methods that remove outliers, such as 2-NN (Section 2.1.3) or the method
proposed in Section 4.3.2, deserve further studies. While they tend to have a
higher hit rate but a lower hit count compared to Greedy #2 for instance, both
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metrics are important when it comes to post-processing using RANSAC [23] for
instance: While a higher hit count improves the final result of the application,
a higher hit rate diminishes the computational cost of RANSAC.

• Although our lower bounds suppose that the number of dimensions n is fixed,
they suggest that matching is easier when the number of dimensions is higher.
However, many methods, such as PCA-SIFT [29], use dimensionality reduction
in their favor. Therefore it would be interesting to study also the asymptotics
of the number of dimensions n and its implications.

• Another problem that deserves further studies is probabilistic point querying
(Appendix F), which may have implications in recognition (classification)
problems in artificial intelligence.

• Deriving upper bounds, to show that some of our lower bounds are tight (e.g.
showing that εn = o(1/N) is not only a sufficient condition, but also a necessary
condition to guarantee 100% hit rate);

• Intra-set correlation models (i.e., the idea that two points of the same set,
X i

1, X
j
1 ∈ P1, may be correlated, differently from what our framework models)

may be useful in many computer vision applications, possibly using graph
matching techniques. Presenting probabilistic models that capture this sort
of correlation is something that was not explored in this work and yet may
produce powerful methods.
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Appendix A

List of symbols and notation

• P [x], pdf[x], E[x]: Respectively probability (or probability mass), probability
density and expectation of a random variable x. Note: we do not use the
convention of writing random variables with capital letters, a symbol should
be identified as constant or random by context.

• P : generator set P ⊂ Rn.

• P1, P2: Observed sets. P1 = P when the direct model is being used.

• N : Number of points in P , P1, P2.

• n: number of dimensions

• X, X1, X2: Sets P , P1 and P2 in matrix form (n×N).

• x1, x2: A point from P1 and a point from P2. They may or may not be
generated from a same point x ∈ P , and they may or may not be inliers,
depending on the context.

• x∗2: The point x∗2 ∈ P2 that the “max-prob” method chooses as a match to
x1 ∈ P1.

• X i
1 or X i

2: i-th column of matrix X1 or X2.

• Y1, Y2: Noise in matrix form (n×N). When the direct model is used, simply
Y .

• p, p1, p2: Probability density of the points in P , P1 and P2. In the direct
model, p = p1 6= p2, in the generator set model, p 6= p1 = p2. In Gaussian
isotropic models, normally p(x) = gσ(x) and p2(x2) = g√σ2+ε2(x2).

• py: Noise distribution (probability density). In a Gaussian model, normally
py(y) = gε(y).
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• f ∗ g: Convolution in Rn: {f ∗ g}(x) =
∫
Rn f(y)g(x − y)dy. Additionally,

gσ ∗ gε = g√σ2+ε2 for any σ, ε.

• isotropic distribution: In this work we say that a random variable X ∈ Rn has
an isotropic distribution if it satisfies pdf[X] = f(||X||), for some f : R→ R.

• gσ(x): n-dimensional Gaussian (normal) probability density function with
parameter σ (isotropic). gσ(x) = e−

||x||2

2σ2 /(2πσ2)n/2. The anisotropic
Gaussian distribution takes a covariance matrix Σ2 and has the form p(x) =
e−

xTΣ−2x
2 /

√
(2π)n det Σ2.

• σ: parameter of the generator set distribution in the Gaussian model
(isotropic).

• ε: parameter of the noise distribution in the Gaussian model (isotropic).

• Σ2 and E2: Matrix counterparts of σ2 and ε2 when anisotropic distributions
are considered. Here, “M2” is an abuse of notation for “MMT ”.

• A−T , for any matrix A: Inverse transpose. A−T = (A−1)T = (AT )−1.

• D: difference between x1 and x2 (inliers): D = x1 − x2. Used only in the
generator set model with Gaussian noise. pdf[D] = g√2ε(D) for any generator
set distribution.

• M : mean between a pair x1 and x2 (inliers): M = (x1 + x2)/2. Used only
in the generator set model with Gaussian noise. Has a probability density of
pm(M) = {p ∗ gε/√2}(M). If the generator set is also Gaussian, then pm =
gσ ∗ gε/√2 = g√

σ2+ε2/2.

• pm: probability density of M .

• Π: Permutation matrix (N ×N). In the variational formulation, it represents
a functional Π : Rn × Rn → R

• π: Permutation function. Usually π(i) = j ⇔ Πij = 1.

• u, v: The dual variables of the minimum bipartite matching problem (vertex
labelings). They are vectors in RN in the finite version (fixed N), and
functionals u, v : Rn → R in the variational version (N →∞).

• S: “selection” matrix with Si,i = 0 with probability q (or q′ = 1−
√

1− q in the
symmetric outlier model) and Si,i = 1 with probability 1−q (or 1−q′ =

√
1− q

in the symmetric outlier model), and Sij = 0 for all i 6= j. In the symmetric
outlier model, it is separated in two matrices S1 and S2. S may also refer to
the match set returned by the matching algorithm.
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• Per(A): Permanent of a matrix. By definition Per(A) = ∑
π

∏N
i=1Ai,π(i).

Despite the similarity with the determinant definition (det(A) =∑
π sgn(π)∏N

i=1Ai,π(i)), computing the permanent is no easy task: The fastest
known exact algorithm to compute it is O(2NN) [25].

• 〈x, y〉: Inner product (xTy)

• 〈x, y〉S: S-norm inner product (xTSy)

• ||x||2S: Denotes xTSx for some symmetric positive definite matrix S.

• ||A||2F : Frobenius norm of a matrix: ||A||2F = A : A.

• ||x||k, for any k = {1, 2, ...}: Lk norm of x; i.e., ||x||k =
(∑n

i=1 x
k
i

)1/k
, where xi

denotes the i-th component of x.

• A : B: Matrix inner product: A : B = ∑
i,j AijBij. Satisfies (AB) : C =

A : (CBT ) = B : (ATC).

• R∗ij: The (N − 1)× (N − 1) matrix obtained after removing line i and row j

from the N ×N matrix R.

• h(x1, x2): joint probability density of x1 and x2, given that both come
from the same point x ∈ P and are inliers. h(x) = pdf[x1, x2] =∫
Rn pdf[x1|x]pdf[x2|x]pdf[x]dx.

• H(x1, x2): Normalized joint probability #1. H(x1, x2) , h(x1,x2)√
h(x1,x1)h(x2,x2)

.
Useful when a generator set model is being used, because it is non-negative
everywhere.

• ζ(x1, x2): Normalized joint probability #2. ζ(x1, x2) , h(x1,x2)
p1(x1)p2(x2) . Useful

when matching sets of different sizes; also appears in a number of threshold
criteria.

• h̃(x1, x2), H̃(x1, x2) and ζ̃(x1, x2): The same as h, H and ζ, but taking into
account the possibility of outliers.

• C, C̃: cost matrix of the “max-prob” and “max-expect” methods (N×N). Also
written C(x1, x2) in the variational version, here a function C : Rn×Rn → R.

• An: See Appendix C

• A∧B: A and B (logical conjunction). Similarly, ∧Ni=1Ai denotes A1∧ ...∧An.

• O(f(x)): See Appendix B
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• o(f(x)): See Appendix B

• ω(f(x)): See Appendix B

• Ω(f(x)): See Appendix B

• Θ(f(x)): See Appendix B

• f ∼ g: See Appendix B

• f(x) & g(x): Denotes f(x) ≥ g̃(x) for some g̃ such that g̃(x) ∼ g(x). I.e., if
for instance x → ∞, this is equivalent to (∀γ > 0)(∃x̄) : (x > x̄) ⇒ f(x) ≥
(1−γ)g(x), or equivalently, lim infx→∞ f(x)

g(x) ≥ 1. The “.” symbol is analogous.

• Q, Q̄: hit rate (or its lower bound)

• r̄: safety radius (usually for restricting ||D|| ≤ εr̄).

• λ: scale parameter of the exponential distribution (pdf[x] ∝ e−λ||x||)

• α: shape parameter of the power law distribution (pdf[x] ∝ ||x/m||−α)

• m: scale parameter of the power law distribution (pdf[x] ∝ ||x/m||−α)

• ,: equal by definition

• ~1: The vector
[ 1
...
1

]
. Also written ~1k, where k is the number of dimensions.
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Appendix B

Complexity

In this dissertation we employ the symbols O(·), Ω(·), o(·), ω(·), Θ(·), and ∼ to
describe asymptotic behavior of functions.

For a variable x→∞, the definitions of O(·), Ω(·), o(·) and ω(·) are:

f(x) = O(g(x))⇔ (∃γ > 0)(∃x0 > 0) : x > x0 ⇒ f(x) < γg(x)

f(x) = o(g(x))⇔ (∀γ > 0)(∃x0 > 0) : x > x0 ⇒ f(x) < γg(x)

f(x) = Ω(g(x))⇔ (∃γ > 0)(∃x0 > 0) : x > x0 ⇒ f(x) > γg(x)

f(x) = ω(g(x))⇔ (∀γ > 0)(∃x0 > 0) : x > x0 ⇒ f(x) > γg(x)

They can also be determined using limits1:

f(x) = O(g(x))⇐ lim
x→∞

f(x)/g(x) <∞

f(x) = o(g(x))⇔ lim
x→∞

f(x)/g(x) = 0

f(x) = Ω(g(x))⇐ lim
x→∞

f(x)/g(x) > 0

f(x) = ω(g(x))⇔ lim
x→∞

f(x)/g(x) =∞

recalling that the definition of limit (for x→∞) is:

lim
x→∞

f(x) = y ⇔ (∀γ > 0)(∃x0) : x > x0 ⇒ |f(x)− y| < γ

lim
x→∞

f(x) =∞⇔ (∀γ > 0)(∃x0) : x > x0 ⇒ f(x) > γ

Meanwhile, Θ(·) is defined as:

f(x) = Θ(g(x))⇔ f(x) = O(g(x)) ∧ f(x) = Ω(g(x))
1A complete definition for O(·) and Ω(·) would use instead lim sup and lim inf, but this is not

necessary for the functions we are interested in.
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or

f(x) = Θ(g(x))⇔ (∃γ, γ̃ > 0)(∃x0 > 0) : x > x0 ⇒ γg(x) < f(x) < γ̃g(x)

or
f(x) = Θ(g(x))⇐ lim

x→∞
f(x)/g(x) ∈ (0,∞)

The definition of ∼ is similar to the definition of Θ, but it also determines the
constant factor:

f(x) ∼ g(x)⇔ lim
x→∞

f(x)/g(x) = 1

These definitions can also be modified to the case when x→ 0 instead of x→∞.
The only change in the definitions is that the limits are now limx→0 and the condition
on x is now x < x0. However, the relationship between functions change: While
x = O(x2) when x→∞, this is not true when x→ 0 (in this case the opposite would
be true: x2 = O(x)). Analogous modifications can be used to analyze functions of
two variables f(x, y).
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Appendix C

The An constant

An is the (n − 1)-dimensional hyper-area of the border of an n-dimensional hyper-
sphere of radius 1. A1 = 2, A2 = 2π, A3 = 4π, and so on. The n-dimensional hyper-
volume is An/n. This constant can be computed recursively using An+2 = 2πAn/n,
since:

An+2

n+ 2 =
∫∫

x2+y2<1

An
n

(1− x2 − y2)n/2dxdy

=
∫ 1

0

An
n

(1− r2)n/2 · 2πrdr

=
∫ 1

0

An
n

(1− u)n/2 · πdu = An
n

π
n
2 + 1 ⇒ An+2 = 2πAn/n

Solving the recurrence gives us

An = 2πn/2
(n/2− 1)! (C.1)

for even n and
An = 2π(n−1)/2

(n/2− 1)(n/2− 2)... · (3/2) · (1/2) (C.2)

for odd n, or An = 2πn/2/Γ(n/2) in general, where Γ(t) is the Gamma function1.
From Equations C.1 and C.2, one can derive that, for integer k:

A2kA2k+1 = 22kA4k

A2kA2k−1 = 22k−1A4k−2

and therefore for integer n:
AnAn+1 = 2nA2n (C.3)

1Γ(t) ,
∫∞

0 xt−1e−xdx is a continuous function satisfying Γ(x) = (x− 1)! for integer x, Γ(x) =
(x− 1)Γ(x− 1) in general and Γ(1/2) =

√
π.
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We can also show that:

An
An−1

∼
√

2π
n

(as n→∞) (C.4)

using that:
An/n =

∫ 1

−1

An−1

n− 1(1− r2)
n−1

2 dr

=
∫ 1

−1

An−1

(n− 1)3/2

(
1− ((

√
n− 1)r)2

n− 1

)n−1
2 √

n− 1dr

=
∫ √n−1

−
√
n−1

An−1

(n− 1)3/2

(
1− u2

n− 1

)n−1
2

du

∼
∫ ∞
−∞

An−1

(n− 1)3/2 e
−u2/2du =

√
2πAn−1

(n− 1)3/2

⇒ An/An−1 ∼
√

2π
n
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Appendix D

Fast Greedy

While costing in general O(N2 logN) time and O(N2) memory, the Greedy #2
method can also be solved in O(N logN) time and O(N) memory when n = 1 and
cost is Euclidean distance.

D.1 O(N 2) time, O(N) memory version

Before explaining the O(N logN) algorithm, let us first present an O(N2) version.
Let Q ⊂ R× {1, 2} be a set containing all the points of P1 and P2, with a label

describing to which one of the two each point belongs, i.e. Q = {(x1, 1) : x1 ∈
P1} ∪ {(x2, 2) : x2 ∈ P2}.

The O(N2) algorithm builds this set Q first and sorts it according to the real
component (in O(N logN) time). The optimization it does in relation to the original
greedy algorithm is to observe that, in each iteration, the closest pair of points
(x1, x2) appears necessarily consecutively in Q. So in each iteration, the algorithm
traverses the sorted set Q and removes the closest pair of consecutive points of
different labels (i.e. one originally belonging to P1 and the other to P2) found,
adding it to the match set S. Traversal and removal can be implemented in O(N)
time using vector or linked list data structures, totaling O(N2) time.

D.1.1 O(N logN) time, O(N) memory version

The total cost can be further reduced to O(N logN) by observing that, between two
iterations of the algorithm above, the sorted set Q barely changes, i.e. traversing
the whole set Q again wastes a lot of computation time.

This version of the algorithm starts by building Q and sorting it in O(N logN).
Then, it constructs a doubly linked list of it. Also, it constructs a heap data
structure, where each node corresponds to a pair of consecutive members of the
linked list with different labels (one originally belonging to P1 and the other to P2).
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The heap compares its nodes according to the distance between the consecutive
members, so that the top node is the closest pair of consecutive points with different
labels.

The algorithm also requires that each node of the heap have a pointer to its
position in the linked list and vice-versa, so that a point can be found in the other
data structure in O(1) time. To this end, the heap must be designed in a way
that the pointers are updated correctly whenever the linked list is changed, which
however does not change the complexity of the operations.

Each iteration of the algorithm will:

• Remove from the heap the top pair (a, b) (in O(logN) time) and add it to the
match set S. Let us use the notation (a, b) to denote consecutive points a ≤ b,
not necessarily satisfying a ∈ P1 and b ∈ P2.

• Let aleft be the point on the left of a in Q and bright be the point on the right
of b in Q. If the pairs (aleft, a) and/or (b, bright) are in the heap, remove them
from the heap (O(logN)).

• Remove a and b from the linked list (O(1)).

• If aleft and bright have different labels, add the pair to the heap (O(logN)).

Therefore, each iteration costs O(logN), which gives a total cost of O(N logN).
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Appendix E

Monte-Carlo solution of
“max-prob”

When the log-probabilities cannot be analytically computed to build the cost matrix
of the “max-prob” problem, we can efficiently sample them using a Monte-Carlo
method.

Recall that the entries of the cost matrix of the “max-prob” problem are:

Cij = − log pdf[X i
1, X

j
2 |Πij = 1]

= − log
∫
Rn
p(x)gε(X i

1 − x)gε(Xj
2 − x)dx

which can be rewritten as:

Cij = − log
∫
Rn
p(x)g√2ε(X i

1 −X
j
2)gε/√2

(
x− X i

1 +Xj
2

2

)
dx

= − log
(
g√2ε(X i

1 −X
j
2)
∫
Rn
p(x)gε/√2

(
x− X i

1 +Xj
2

2

)
dx

)

= − log
(
g√2ε(X i

1 −X
j
2)
∫
Rn
p

(
X i

1 +Xj
2

2 + Z

)
gε/
√

2 (Z) dZ
)

≈ − log

g√2ε(X i
1 −X

j
2)

∑
k p
(
Xi

1+Xj
2

2 + Zk

)
#samples


= ||X

i
1 −X

j
2 ||2

4ε2 − log
(∑

k

p

(
X i

1 +Xj
2

2 + Zk

))
+ const.

where {Zk} are i.i.d. random isotropic Gaussian variables with parameter ε/
√

2.
Curiously, we can verify experimentally that applying the same set {Zk} to every

i, j instead of sampling each entry independently (i.e., instead of using a set {Zi,j,k})
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provides us higher hit rates.

E.1 Experiment

We did a synthetic experiment to test whether using independent or correlated
samples is better for the Monte-Carlo method presented here. We generated N = 10
pairs of points using the generator set model with isotropic Gaussian distributions
in R2 with a noise ratio of ε/σ = .5, no outliers. We generated 106 pairs of sets
P1, P2 and ran the exact “max-prob” method (i.e. minimum bipartite matching with
squared Euclidean distance), the Monte-Carlo method with independent samples
({Zi,j,k}), the Monte-Carlo method with correlated samples ({Zk}) and Greedy #2.
The Monte-Carlo methods used both 10 samples per pair (i.e., k ∈ {1, ..., 10}).

The average hit count of the exact “max-prob” method was E[#hitsexact-MP] =
4.6963± 0.0060 (where, in the notation A± B, A estimates E[X] and B estimates
3
√

Var[X]
#samples). The difference between exact “max-prob” and Monte-Carlo with

correlated samples was E[#hitsexact-MP−#hitsMC-correlated] = −0.000078±0.000409;
the difference between exact “max-prob” and Monte-Carlo with independent samples
was E[#hitsexact-MP − #hitsMC-independent] = −0.0073 ± 0.0022; and the difference
between exact “max-prob” and Greedy #2 was E[#hitsexact-MP − #hitsGreedy#2] =
−0.8449± 0.0058.

The experiment shows that exact “max-prob” and Monte-Carlo with correlated
samples produce higher hit counts than Monte-Carlo with independent samples,
which in turn has a higher hit count than Greedy #2. Meanwhile, no significant
difference in hit count was found between exact “max-prob” and Monte-Carlo with
correlated samples.
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Appendix F

Probabilistic Point Querying

Figure F.1: Illustration of the querying problem.

F.1 The Querying Problem

A related problem to that of “probabilistic point matching” is what we call
“probabilistic point querying”. Perhaps because both problems are typically solved
in the Computer Vision literature by assigning a point to its nearest neighbor, both
are usually called “matching”, although they refer to very different applications.

While in matching we have two sets of N points and we want a 1-to-1 assignment,
in querying we may consider that the first set has N points, while the second has
only 1 point, and we would like to discover which point from the first set is most
likely to correspond to the point of the second set (Figure F.1). This problem arises
for instance in recognition applications where a descriptor is queried in a database
in order to perform classification.

F.1.1 Probabilistic model

We will use a generator set model where the generator set P is represented by
a matrix X̃ ∈ Rn×N ; the first set (database set), P1, is represented by a matrix

137



X ∈ Rn×N , the second set (query set) P2 has a single point x′ ∈ Rn, and noise is
represented by matrices Y1, Y2:

X = X̃ + Y1

x′ = (X̃ + Y2)ei

where ei =
[
0 ... 0 1 0 ... 0

]T
, i.e. (ei)j = 1 ⇔ i = j, and 0 otherwise, and i

is a uniform random variable in {1, ..., N}
Also, we assume the columns in X̃, Y1 and Y2 are i.i.d. with isotropic Gaussian

distributions of parameter σ, ε1 and ε2 respectively1.

F.1.2 Solution

We can solve this problem by trying to find the most probable i given X and x′,
i.e.:

arg max
i
P [i|X, x′]

= arg max
i

pdf[X, x′|i]P [i]
P [X, x′]

= arg max
i

pdf[x′|i,X]pdf[X|i]P [i]
pdf[X, x′]

= arg max
i

pdf[x′|i,X]pdf[X]P [i]
pdf[X, x′]

= arg max
i

pdf[x′|i,X]

= arg max
i

pdf[x′|i,X i]

So now we only need to find X i that maximizes pdf[x′|i,X i]. In the Gaussian
case, this is equal to:

pdf[x′|i,X i] = pdf[x′, X i|i]
pdf[X i|i] =

∫
Rn gσ(x)gε1(X i − x)gε2(x′ − x)dx

g√
σ2+ε21

(X i)

=
(√

σ2 + ε2

2πσε1ε2

)n ∫
Rn

exp
(
−1

2

(
||x||2

σ2 + ||X
i − x||2

ε21
+ ||x

′ − x||2

ε22
− ||X

i||2

σ2 + ε21

))
dx

=
(√

σ2 + ε2

2πσε1ε2

)n ∫
Rn

exp

−1
2


x

X i

x′


T 

I
σ2 + I

ε21
+ I

ε22
− I
ε21

− I
ε22

− I
ε21

I
ε21
− I

σ2+ε21
0

− I
ε22

0 I
ε22



x

X i

x′


 dx

1It is expected that the first set (database set) has less noise than the second set (the query
set), i.e. ε1 ≤ ε2.
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=
 √

σ2 + ε2√
2π
√

1
σ2 + 1

ε21
+ 1

ε22
σε1ε2

n exp

−1
2

X i

x′

T A
X i

x′
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Therefore,

P [x′|i,X i] = g
σε1ε2
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1
σ2 + 1
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x''
x'

Xi

||x''-Xi||>2||x'-Xi||

  ||x''-x'||>||x'-Xi||

Figure F.2: Illustration of the safety radius ||x′′ −X i|| > 2||x′ −X i||.

Note from the equation above that pdf[x′|i,X i] decreases with∥∥∥X i −
(
1 + ε21

σ2

)
x′
∥∥∥, and therefore the solution to the querying problem is the

nearest point to
(
1 + ε21

σ2

)
x′. Note that this is the same as the nearest neighbor

solution only if ε1 = 0 (in this case, pdf[x′|X i, i] is always a Gaussian distribution
centered at X i, regardless of the distribution of the generator set, and therefore
the nearest neighbor solution is also the most probable solution). Curiously, the
solution of this model only depends on the noise parameter ε1 of the database set,
being indifferent to the noise ε2 on the query set.

F.1.3 Asymptotic behavior

Let us see how the querying problem behaves as N grows to infinity. Let us suppose
that ε1 = 0 and that ε2 → 0 as N →∞.

The condition for correctly matching x′ is that X i is its nearest neighbor.
Therefore the probability of hitting the query is:

Q =
∫∫

Rn×Rn
P [||x′′ − x′|| > ||X i − x′|| | X i, x′]N−1pdf[X i, x′]dx′dX i

where x′′ is a random point Xj of the database set, with j 6= i.
Using the bound illustrated in Figure F.2, we obtain:

Q ≥
∫∫

Rn×Rn
P [||x′′ −X i|| > 2||X i − x′|| | X i, x′]N−1pdf[X i, x′]dx′dX i

We can bound the equation above using the maximum probability p0 =
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maxx p(x) multiplied by the volume of the sphere containing x̃′′, obtaining:

Q ≥
∫∫

Rn×Rn
max

{
0, 1− p0An

n
(2||X i − x′||)n

}N−1
pdf[x′, X i]dx′dX i

= E

max
{

0, 1− p0An(2ε2)n
n

||G||n
}N−1

 (F.1)

where G is a random isotropic Gaussian variable in Rn with unitary variance.
We can further bound this to

Q ≥ E

[
1− (N − 1)p0An(2ε2)n

n
||G||n

]

= 1− (N − 1)p0An(2ε2)n
n

E [||G||n]

≥ Q̄⇐ εn2 ≤
1− Q̄

(N − 1)p0An2n
n

E [||G||n]

where (Using Equations 7.4 and C.3):

E [||G||n] =
∫ ∞

0
An

e−r
2/2rnrn−1dr

(2π)n/2 = An
(2π)n/2

(2π)n
A2n

= (8π)n/2
An+1

.

Note that analogously to the matching problem, in the querying problem, we
can guarantee a minimum probability of correctly matching the query if ε2 satisfies
a constraint of the form εn2 ≤ C/N , with C > 0. Furthermore, if εn2 = o(1/N), the
query is correct with 100% probability as N →∞.

Conversely, when εn2 ∼ C/N , Equation F.1 becomes:

Q ≥ E

(1− p0An(2ε2)n
n

||G||n
)N−1

∣∣∣∣∣∣p0An(2ε2)n
n

||G||n < 1
P [p0An(2ε2)n

n
||G||n < 1

]

∼ E

[(
1− p0An2nC

nN
||G||n

)N−1∣∣∣∣∣p0An2nC
nN

||G||n < 1
]
P
[
p0An2nC
nN

||G||n < 1
]

∼ E
[
exp

(
−p0An2nC

n
||G||n

)]
∈ (0, 1)

which means that for every C, there exists Q̄ > 0 such that εn2 ∼ C/N ⇒ Q & Q̄.

F.2 The querying problem with outliers

Let us suppose now that there is a probability of q that x′ does not match any point
in the database set, i.e., that x′ is an outlier.
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In this case, the generator model is:

X = X̃ + Y1

x′ = (sX̃ + (1− s)X̃ ′ + Y2)ei

where X̃ ′ has the same distribution of X̃ and s is a Bernoulli random variable with
P [s = 0] = q and P [s = 1] = 1− q.

F.2.1 Solution

We can solve this problem in two steps: First determine if x′ is an inlier or not, and
afterwards determine which point X i in the database set corresponds to it.

So first we compute:

P [s = 1|X, x′] = P [X, x′|s = 1]P [s = 1]
P [X, x′|s = 1]P [s = 1] + P [X, x′|s = 0]P [s = 0]

= 1/
(

1 + P [X, x′|s = 0]P [s = 0]
P [X, x′|s = 1]P [s = 1]

)

= 1/
(

1 + P [s = 0]/P [s = 1]
P [X, x′|s = 1]/P [X, x′|s = 0]

)

= 1/
(

1 + q/(1− q)
P [X, x′|s = 1]/(P [X]P [x′])

)

= 1/
(

1 + q/(1− q)
P [x′|X, s = 1]/P [x′]

)

= 1/
(

1 + q/(1− q)
(∑i P [x′|s = 1, X, i]P [i]) /P [x′]

)

= 1/
1 + q/(1− q)(∑

i
1
N
P [x′|s=1,Xi,i]

P [x′]

)


Therefore, we can choose to determine that x′ is an inlier if P [s = 1] > .5, which
happens if and only if:

1
N

∑
i

P [x′|s = 1, X i, i]
P [x′] >

q

1− q

⇔ 1
N

∑
i

ζ
(
X i, x′

)
>

q

1− q

where ζ(·, ·) is analogous to the normalized joint probability #2 defined in
Section 4.1.3; in this case ζ(X i, x′) = pdf[Xi,x′|i,s=1]

pdf[Xi]pdf[x′] .
If we found that probably s = 1, then the next step would be to determine i.
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Given that s = 1, this step is identical to the case without outliers. Curiously, given
that s = 0, all values of i have equal probability, and therefore

arg max
i
P [i|x′, X] =

arg max
i
P [i|x′, X, s = 1]P [s = 1] + P [i|x′, X, s = 0]P [s = 0]

= arg max
i
P [i|x′, X, s = 1]

F.3 Experiments

F.3.1 Comparison with nearest neighbor

The purpose of this experiment is to show that the Bayesian method derived in
Section F.1.2 is superior to the nearest neighbor method when ε1 6= 0. We generated
106 pairs of sets P1, P2 with N = 100 points, a noise ratio of ε1/σ = ε2/σ = .5, no
outliers, and computed the hit ratio for different querying criteria.

The different querying criteria are: closest point to x′ (nearest neighbor), closest
to (1 + 0.5ε2/σ2)x′, closest to (1 + ε2/σ2)x′ (Bayesian method), and closest to (1 +
1.5ε2/σ2)x′. Figure F.3 compares the hit rate for n ∈ {1, 2, 4, 10}. The error bars
display an error of the form ±3

√
Var[X]

#samples . The figure suggests that the Bayesian
method has the highest hit rates, particularly in high-dimensional cases.

F.3.2 Asymptotic behavior

In this experiment we evaluate the condition for constant hit rate derived in this
chapter. We ran the nearest neighbor and Bayesian method on sets generated using
Gaussian distributions with ε1/σ = ε2/σ = .5/N1/n (Figure F.4) and ε1 = 0,
ε2/σ = .5/N1/n (Figure F.5), for varying N and n. The Figures suggest that
εn = O(1/N) yields a minimum expected hit rate, in agreement with the derived
condition. Additionally, we observe that the hit rate is very similar for both methods,
being slightly higher for the Bayesian method when ε1 = ε2 and higher for the nearest
neighbor method2 when ε1 = 0.

2When ε1 = 0, the Bayesian method is equal to the nearest neighbor method. Choosing the
closest point to (1 + ε22/σ

2)x′ is not the Bayesian method.

143



(a) when n = 1 (b) when n = 2

(c) when n = 4 (d) when n = 10

Figure F.3: Hit rate of different querying criteria.

(a) when n = 1, 1000 samples per case (b) when n = 2, 1000 samples per case

(c) when n = 4, 1000 samples per case (d) when n = 10, 100 samples per case

Figure F.4: Hit rate when εn1 = εn2 = Θ(1/N).
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(a) when n = 1, 1000 samples per case (b) when n = 2, 1000 samples per case

(c) when n = 4, 1000 samples per case (d) when n = 10, 1000 samples per case

Figure F.5: Hit rate when ε1 = 0 and εn2 = Θ(1/N).
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