
ON OPTIMIZATION OF HARDWARE-ASSISTED SECURITY

Leandro Santiago de Araújo

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia de Sistemas e

Computação, COPPE, da Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Doutor em

Engenharia de Sistemas e Computação.

Orientadores: Felipe Maia Galvão França

Sandip Kundu

Leandro Augusto Justen

Marzulo

Rio de Janeiro

Julho de 2019

ON OPTIMIZATION OF HARDWARE-ASSISTED SECURITY

Leandro Santiago de Araújo

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Felipe Maia Galvão França, Ph.D.

Prof. Claudio Luis de Amorim, Ph.D.

Prof. Valmir Carneiro Barbosa, Ph.D.

Prof. Mauŕıcio Lima Pilla, D.Sc.

Prof. Tiago Assumpção de Oliveira Alves, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JULHO DE 2019

Araújo, Leandro Santiago de

On Optimization of Hardware-Assisted

Security/Leandro Santiago de Araújo. – Rio de Janeiro:

UFRJ/COPPE, 2019.

XVIII, 174 p.: il.; 29, 7cm.
Orientadores: Felipe Maia Galvão França

Sandip Kundu

Leandro Augusto Justen Marzulo

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2019.

Referências Bibliográficas: p. 157 – 174.

1. PUF. 2. Taint Analysis. 3. DIFT. 4. Weightless

Neural Network. 5. Bloom Filter. 6. Cuckoo Filter. 7.

Quotient Filter. 8. Approximate Membership Query. 9.

Multi-index Hashing. 10. Hardware Security. I. França,

Felipe Maia Galvão et al. II. Universidade Federal do Rio

de Janeiro, COPPE, Programa de Engenharia de Sistemas

e Computação. III. T́ıtulo.

iii

Meu filho, guarda a sabedoria e a

reflexão, não as percas de vista.

Elas serão a vida de tua alma e

um adorno para teu pescoço.

Então caminharás com

segurança, sem que o teu pé

tropece. Se te deitares, não terás

medo. Uma vez deitado, teu

sono será doce. Não terás a

recear nem terrores repentinos,

nem a tempestade que cai sobre

os ı́mpios. Porque o Senhor é

tua segurança e preservará teu

pé de toda cilada.

(Bı́blia, Provérbios 3:21-26)

Dedico este trabalho à minha

namorada Isis.

iv

Agradecimentos

Primeiramente, agradeço à minha namorada Isis, que me aguentou durante todo

este tempo e que me apoiou em todas as minhas decisões, mesmo sabendo o quão

dif́ıcil seria suportar a distância, e por ter me ajudado a manter o foco e me mostrar

que sempre há uma luz no fim do túnel. Agradeço pelo seu companherismo, sua

paciência e cumplicidade. Obrigado por tudo que tem feito por mim e por acreditar

em mim. Te amo!

Agradeço à minha mãe, por me dá forças para seguir em frente e ter investido

em mim, me ensinado o grande valor do estudo, educação e respeito.

Agradeço ao meus orientadores Felipe França e Leandro Marzulo que me acom-

panharam durante o mestrado e o doutorado. Obrigado pelos incetivos, confiança e

por todos os ensinamentos. Esse trabalho só foi posśıvel por vocês acreditarem na

minha capacidade. Também agradeço por me disponibilizarem uma das bolsas de

doutorado sandúıche vinculados ao projeto em parceria com a UMass. Sou muito

grato por todas as oportunidades que vocês me deram.

Agradeço ao meu orientador Sandip Kundu, que começou a me orientar no

peŕıodo de doutorado sandúıche na UMass. Obrigado por me guiar e motivar a con-

hecer diversas áreas de pesquisas relacionadas à segurança. Grande parte desse tra-

balho é fruto das contribuições realizadas durante minha estadia na UMass. Também

cito o professor Israel Koren, no qual contribuiu com o desenvolvimento do meu tra-

balho.

Agradeço aos amigos que fiz durante o doutorado sandúıche, dentre eles Nur,

Felipe, Priscilla, Brenno, Camila, Mauŕıcio, Juliana, que me acolheram e me aju-

daram durante todo o peŕıodo fora do Brasil. Sou muito feliz por Deus ter colocado

vocês na minha vida. Também agradeço aos colegas de laboratório da UMass, em

especial ao Vinay Patil pelas parcerias em vários projetos e pelas conversas técnicas

que foram de grande aprendizado para mim.

Agradeço aos amigos da UFRJ, dentre eles Brunno, Victor Cruz, Rui, entre

outros. Obrigado pelas conversas descontráıdas, por sempre estarem dispońıveis em

situações complicadas e pelas motivações.

À todos que contribuem em fazer Programa de Engenharia de Sistemas e Com-

putação (PESC/COPPE/UFRJ) o melhor programa de pós-graduação do páıs.

v

Agradeço aos professores e aos funcionários por serem atenciosos e prestativos con-

tribuindo com a minha formação acadêmica.

Às agências de fomento CNPq, CAPES e COPPETEC, pelas bolsas que permi-

tiram custear minhas despesas durante peŕıodo de doutorado sandúıche na UMass,

assim como o peŕıodo de doutorado no Brasil.

vi

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

SOBRE A OTIMIZAÇÃO DA SEGURANÇA ASSISTIDA POR HARDWARE

Leandro Santiago de Araújo

Julho/2019

Orientadores: Felipe Maia Galvão França

Sandip Kundu

Leandro Augusto Justen Marzulo

Programa: Engenharia de Sistemas e Computação

Physically Unclonable Functions (PUFs) surgiram como simples primitivas de se-

gurança de hardware para implementar recursos de autenticação e geração de chaves

criptográficas em dispositivos eletrônicos. Um Strong PUF ideal não é clonável e

mapeia unicamente uma entrada de n-bits para uma sáıda de m-bits. Contudo,

implementações reais de Strong PUFs possuem problemas de segurança. Esta tese

propõe diversos modelos originais de Strong PUF, baseados na arquitetura de Re-

des Neurais sem Peso (RNP), resistentes contra ataques de construção de modelos

por meio de algoritmos de aprendizado de máquina. A fabricação de grande vol-

ume de PUFs necessitam de técnicas de testes online para garantir a propriedade

de exclusividade entre os PUFs fabricados. Uma solução de teste de PUF online

baseado em Multi-Index Hashing (MIH) é otimizada através de estratégias de busca

de similaridades para reduzir os recursos de memória. Dynamic Information Flow

Tracking (DIFT) tem sido utilizado com sucesso para detectar acesso ilegal a in-

formações confidenciais em tempo de execução. Nesta tese, um rastreador de fluxo

impĺıcito aninhado portátil é proposto para permitir que mecanismos baseados em

fluxo expĺıcito possam rastrear fluxos impĺıcitos, inclusive em casos de aninhamento

de laços profundo. Além do mais, uma nova regra de propagação é definida para

mitigar a propagação incorreta dos dados afetados pela dependência de controle.

Enfim, novos modelos de RNP baseados em estruturas de dados probabiĺısticas são

propostas e analisadas com o objetivo de reduzir os requisitos de memória. Os novos

modelos são robustos e são adequados como componentes para soluções de segurança

assistidas por hardware.

vii

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

ON OPTIMIZATION OF HARDWARE-ASSISTED SECURITY

Leandro Santiago de Araújo

July/2019

Advisors: Felipe Maia Galvão França

Sandip Kundu

Leandro Augusto Justen Marzulo

Department: Systems Engineering and Computer Science

Physically Unclonable Functions (PUFs) have emerged as lightweight hardware

security primitives to implement authentication and key generation features on elec-

tronic devices. An ideal Strong PUF cannot be cloned and maps an n-bit input to

a unique m-bit output. However, real Strong PUF implementations su↵er from

security issues. This thesis proposes various novel Strong PUF designs, based on

Weightless Neural Network (WNN) architecture, which are resistant against model

building attacks through machine learning algorithms. Then, the proposed WNN

PUFs are combined with a reliable entropy source to extend the reliability prop-

erty to the final Strong PUF. High volume manufacturing of PUFs requires online

testing techniques to ensure the desired uniqueness property among the manufac-

tured PUFs. An online testing PUF solution based on Multi-Index Hashing (MIH)

is optimized by similarity search strategies to reduce the memory resources. Dy-

namic Information Flow Tracking (DIFT) has been successfully utilized to detect

illegal access to sensitive information at runtime. Nonetheless, recent evasion at-

tacks explore implicit flows based on control dependencies that are not detectable

by most of DIFT implementations, which only track data dependency propagation.

In this thesis, a portable nested implicit flow tracking is proposed to enable explicit-

flow based DIFT mechanisms track implicit flows, including deeply-nested branch

scenarios. In addition, a new propagation rule is defined to mitigate the incorrect

propagation of data under control dependencies. Finally, new WNN models based

on probabilistic data structures are proposed and analyzed in order to reduce the

memory requirements. The new models are robust and are suitable as components

for hardware-assisted security solutions.

viii

Contents

List of Figures xiii

List of Tables xviii

1 Introduction 1

1.1 Contribution . 4

1.2 Thesis outline . 5

2 Background 7

2.1 PUF . 7

2.1.1 Classification of PUFs . 7

2.1.1.1 Weak PUF . 7

2.1.1.2 Strong PUF . 8

2.1.2 Ideal Properties of PUFs . 9

2.1.2.1 Security . 10

2.1.2.2 Uniqueness . 10

2.1.2.3 Reliability . 10

2.1.3 Weak PUF Realibility . 10

2.2 WiSARD . 11

2.3 Dynamic Information Flow Tracking 13

2.3.1 Under-tainting and over-tainting problems 13

2.3.2 DIFT Designs . 14

2.3.3 Related Works . 15

2.4 Error Correction Codes . 16

2.5 Multi-Index Hashing . 18

3 Reliable Strong PUFs based on Weightless Neural Network 19

3.1 Strong PUFs based on Weightless Neural Network 20

3.1.1 WiSARD PUF . 20

3.1.2 Extensions to WiSARD PUF architecture 21

3.1.2.1 Fuzzy logic based address generation 22

3.1.2.2 Concatenated codes based response generation 24

ix

3.2 WNN PUF - Experimental Setup and Results 24

3.2.1 Experimental Setup . 26

3.2.2 Uniqueness . 26

3.2.3 Reliability . 28

3.2.4 Machine Learning Attack Resistance 30

3.2.5 Hardware Analysis . 31

3.3 Reliable Strong PUF Implementation 33

3.3.1 Reliable Weak PUF Entropy Source 33

3.3.2 Complete Strong PUF architecture 34

3.4 Reliable Strong PUF - Experimental Setup and Results 34

3.4.1 Experimental Setup . 35

3.4.2 Uniqueness . 35

3.4.3 Machine Learning Resistance 36

3.5 Concluding Remarks . 40

4 E�cient Testing Strong PUF for Uniqueness 46

4.1 MIH for Testing Strong PUFs . 47

4.1.1 Metrics for Uniqueness . 47

4.1.2 Problem Statement . 47

4.1.3 Multi-Index Hashing for Testing PUF 48

4.1.4 Uniqueness Test Procedure . 48

4.2 Analyzing MIH Implementations . 49

4.2.1 Original MIH Implementation 49

4.2.2 MIH Implementation with Global Index 50

4.3 Strategies for Memory Reduction . 51

4.3.1 Distance Free Computation Strategy 51

4.3.2 Hamming Weight Strategy . 53

4.4 Experiments and Results . 54

4.4.1 Experimental Setup . 54

4.4.2 Original MIH vs MIH with Global Index 54

4.4.3 Strategy Thresholds Evaluation 56

4.4.4 MIH Versions Analysis . 58

4.5 Concluding Remarks . 61

5 Deeply-Nested Implicit Information Flow Tracking 62

5.1 Nested Implicit Flow Tracking Implementation 63

5.1.1 Taint Propagation to No-operand Instructions 63

5.1.2 Branch and Context Counter Scheme 64

5.1.3 Taint Instructions . 66

5.2 Nested Implicit Flow Tracking Formal Verification 69

x

5.2.1 UPPAAL Model Checker . 69

5.2.2 Modelling Nested Implicit Flow Tracking 70

5.2.3 Correctness Verification . 71

5.3 Experiment Results . 74

5.3.1 Experimental Setup . 74

5.3.2 Performance Overhead . 75

5.3.3 Code Size . 76

5.3.4 Tainting Capabilities . 76

5.4 Concluding Remarks . 81

6 Memory E�cient WiSARD using Approximate Membership

Query 83

6.1 Approximate Membership Query Structures 84

6.1.1 Bloom Filter . 84

6.1.2 Cuckoo Hashing . 85

6.1.3 Cuckoo Filter . 86

6.1.4 Quotient Filter . 88

6.2 WiSARD based on AMQ Filters . 90

6.2.1 Bloom WiSARD - WiSARD based on Bloom Filters 90

6.2.2 Cuckoo WiSARD - WiSARD based on Cuckoo Filters 92

6.2.3 Quotient WiSARD - WiSARD based on Quotient Filters . . . 93

6.3 Experiments and Results . 95

6.3.1 Dataset . 95

6.3.2 Experimental Setup . 96

6.3.3 Accuracy, Performance and Memory Consumption Results . . 96

6.3.4 Bloom WiSARD: False Positive Rate vs. Accuracy vs. Mem-

ory Analysis . 99

6.3.5 AMQ WiSARD: Accuracy vs. Memory Analysis 101

6.4 Concluding Remarks . 102

7 Conclusion 103

A Hardware Similarity Search with Multi-Index Hashing 106

A.1 K-Nearest Neighbors Search Algorithm 107

A.2 The Accelerator Architecture . 108

A.2.1 Top View . 108

A.2.2 Accelerator Design . 109

A.2.3 Specialized Components . 111

A.2.4 Bu↵er Merge Strategy . 113

A.3 Experiments . 113

xi

A.3.1 Data sets . 114

A.3.2 Performance . 114

A.3.3 Utilization Cost . 117

A.3.4 Power . 117

A.4 Concluding Remarks . 118

B Complete Accuracy Results of Cuckoo and Quotient WiSARD 120

B.1 Adult . 120

B.2 Australian . 120

B.3 Banana . 120

B.4 Diabetes . 122

B.5 Ecoli . 122

B.6 Glass . 122

B.7 Iris . 122

B.8 Letter . 124

B.9 Liver . 124

B.10 MNIST . 124

B.11 Mushroom . 124

B.12 Satimage . 126

B.13 Segment . 126

B.14 Shuttle . 126

B.15 Vehicle . 126

B.16 Vowel . 128

B.17 Wine . 128

C List of Publications 155

C.1 Journal Articles . 155

C.2 In Conference Proceedings . 155

Bibliography 157

xii

List of Figures

1.1 Category of HW-assisted security technologies [1]. 3

2.1 Example of six transistors at SRAM cell. 8

2.2 Example of training in WiSARD. 12

2.3 Example of testing operation in one WiSARD discriminator. 12

2.4 Example of testing operation to WiSARD select predicted class. . . . 13

2.5 The three DIFT designs. 14

3.1 Example of WiSARD PUF architecture [2]. 20

3.2 Example of WiSARD PUF with fixed tuples among PUFs [2]. 21

3.3 Example of WiSARD PUF architecture with extensions to address

generation [2]. 22

3.4 Example of RM-WiSARD PUF architecture [2]. 23

3.5 Example of RM-WiSARD PUF architecture with concatenated code

[2]. 25

3.6 Inter-class Hamming Distance (uniqueness) distribution for WiSARD

PUFs. 27

3.7 Intra-class Hamming Distance (reliability) distribution. 29

3.8 Gradient Boosting accuracy distribution. 32

3.9 Reliable Strong PUF implementation [3]. 34

3.10 Uniqueness distribution for WiSARD PUF with Fixed Tuples varying

Entropy Source sizes. 36

3.11 Uniqueness distribution for WiSARD PUF with tuple rotation vary-

ing Entropy Source sizes. 37

3.12 Uniqueness distribution for RM-WiSARD PUF varying Entropy

Source sizes. 38

3.13 Uniqueness distribution for RM-WiSARD PUF with tuple rotation

varying Entropy Source sizes. 39

3.14 Gradient Boosting machine learning accuracy distributions for RM-

WiSARD PUF. 41

xiii

3.15 Gradient Boosting machine learning accuracy distributions for RM-

WiSARD PUF with tuple rotation. 42

3.16 Combinational logic-based implementation of Strong PUF [3]. 44

4.1 Example of testing Strong PUF. 49

4.2 Example of testing Strong PUF using original MIH. 50

4.3 Example of testing Strong PUF using MIH with global index. 51

4.4 Example of distance free computation strategy. 52

4.5 Example of MIH using distance free computation strategy. 52

4.6 Example of hamming weight strategy. 53

4.7 Example of MIH using hamming weight strategy. 54

4.8 Faulty chip rate for di↵erent configurations using distance free com-

putation strategy. 56

4.9 Experiment of true/false rates vs HW di↵erence threshold. 57

4.10 Performance of all MIH versions. 60

4.11 Memory consumption of all MIH versions. 60

5.1 Example of code with implicit propagation flow. 64

5.2 Examples of taint register operations. 65

5.3 Examples of taint instructions. 67

5.4 UPPAAL model for NIFT. 70

5.5 Example of reachability property on UPPAAL. 71

5.6 Reachability property of NIFT on UPPAAL verifier. 72

5.7 Example of safety property on UPPAAL. 72

5.8 Safety property of NIFT on UPPAAL verifier. 73

5.9 Example of liveness property on UPPAAL. 73

5.10 Liveness property of NIFT on UPPAAL verifier. 74

5.11 Deadlock property of NIFT on UPPAAL verifier. 75

5.12 Performance overhead of the NIFT(%). 76

5.13 The overhead of the individual taint instructions. 77

5.14 Number of iterations for the dtaint instructions. 78

5.15 Program to compute digits of ⇡. 78

5.16 Comparison of tainted bytes in ⇡ computation program. 79

5.17 Comparison of tainted bytes for mibench applications. 80

6.1 Bloom filter operations example with 16-bit array and 4 hash functions. 84

6.2 Example of Cuckoo Hash Table operations with 16 buckets with 2

entries. 86

6.3 Example of Cuckoo filter operations with 16 buckets with 2 entries. . 87

6.4 Example of Quotient filter operations with 16 buckets. 89

xiv

6.5 Example of training in BloomWiSARD with 16-bit input, 4-bit tuples

and 4 Bloom filters. 91

6.6 Example of classification in Bloom WiSARD with 16-bit input, 4-bit

tuples and 4 Bloom filters. 91

6.7 Example of training in Cuckoo WiSARD with 16-bit input, 4-bit tu-

ples and 4 Cuckoo filters. 92

6.8 Example of classification in Cuckoo WiSARD with 16-bit input, 4-bit

tuples and 4 Cuckoo filters. 93

6.9 Example of training in Quotient WiSARD with 16-bit input, 4-bit

tuples and 4 Quotient filters. 94

6.10 Example of classification in Quotient WiSARD with 16-bit input, 4-

bit tuples and 4 Quotient filters. 94

6.11 Accuracy and memory consumption results when varying the false

positive rate of Bloom WiSARD. 100

A.1 K-nearest neighbor search with Multi-Index Hashing (MIH) hardware

accelerator (MIH Intellectual Property - IP). 109

A.2 Overview of the MIH Accelerator. 110

A.3 8-bits Hamming Distance counting component, as proposed in [4]. . . 111

A.4 Odd-even merge sort component, exemplifying the sort network with

16-bit inputs, 16-bit outputs and 10 pipeline stages. 112

A.5 Bu↵ering merge process of bu↵er 1 and 2. 114

A.6 Speedup of MIH IP compared to Python version. 116

A.7 Speedup of MIH IP compared to C version. 116

A.8 Vivado 2018.1 Power consumption report. 118

B.1 Accuracy results of Adult dataset when varying capacity, number of

tags (entries) per bucket and tag bits of Cuckoo WiSARD. 121

B.2 Accuracy results of Adult dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 122

B.3 Accuracy results of Australian dataset when varying capacity, number

of tags (entries) per bucket and tag bits of Cuckoo WiSARD. 123

B.4 Accuracy results of Australian dataset when varying capacity (quo-

tient bits) and tag bits (remainder bits) of Quotient WiSARD. 124

B.5 Accuracy results of Banana dataset when varying capacity, number

of tags (entries) per bucket and tag bits of Cuckoo WiSARD. 125

B.6 Accuracy results of Banana dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 126

B.7 Accuracy results of Diabetes dataset when varying capacity, number

of tags (entries) per bucket and tag bits of Cuckoo WiSARD. 127

xv

B.8 Accuracy results of Diabetes dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 128

B.9 Accuracy results of Ecoli dataset when varying capacity, number of

tags (entries) per bucket and tag bits of Cuckoo WiSARD. 129

B.10 Accuracy results of Ecoli dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 130

B.11 Accuracy results of Glass dataset when varying capacity, number of

tags (entries) per bucket and tag bits of Cuckoo WiSARD. 131

B.12 Accuracy results of Glass dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 132

B.13 Accuracy results of Iris dataset when varying capacity, number of tags

(entries) per bucket and tag bits of Cuckoo WiSARD. 133

B.14 Accuracy results of Iris dataset when varying capacity (quotient bits)

and tag bits (remainder bits) of Quotient WiSARD. 134

B.15 Accuracy results of Letter dataset when varying capacity, number of

tags (entries) per bucket and tag bits of Cuckoo WiSARD. 135

B.16 Accuracy results of Letter dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 136

B.17 Accuracy results of Liver dataset when varying capacity, number of

tags (entries) per bucket and tag bits of Cuckoo WiSARD. 137

B.18 Accuracy results of Liver dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 138

B.19 Accuracy results of MNIST dataset when varying capacity, number

of tags (entries) per bucket and tag bits of Cuckoo WiSARD. 139

B.20 Accuracy results of MNIST dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 140

B.21 Accuracy results of Mushroom dataset when varying capacity, number

of tags (entries) per bucket and tag bits of Cuckoo WiSARD. 141

B.22 Accuracy results of Mushroom dataset when varying capacity (quo-

tient bits) and tag bits (remainder bits) of Quotient WiSARD. 142

B.23 Accuracy results of Satimage dataset when varying capacity, number

of tags (entries) per bucket and tag bits of Cuckoo WiSARD. 143

B.24 Accuracy results of Satimage dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 144

B.25 Accuracy results of Segment dataset when varying capacity, number

of tags (entries) per bucket and tag bits of Cuckoo WiSARD. 145

B.26 Accuracy results of Segment dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 146

xvi

B.27 Accuracy results of Shuttle dataset when varying capacity, number of

tags (entries) per bucket and tag bits of Cuckoo WiSARD. 147

B.28 Accuracy results of Shuttle dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 148

B.29 Accuracy results of Vehicle dataset when varying capacity, number of

tags (entries) per bucket and tag bits of Cuckoo WiSARD. 149

B.30 Accuracy results of Vehicle dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 150

B.31 Accuracy results of Vowel dataset when varying capacity, number of

tags (entries) per bucket and tag bits of Cuckoo WiSARD. 151

B.32 Accuracy results of Vowel dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 152

B.33 Accuracy results of Wine dataset when varying capacity, number of

tags (entries) per bucket and tag bits of Cuckoo WiSARD. 153

B.34 Accuracy results of Wine dataset when varying capacity (quotient

bits) and tag bits (remainder bits) of Quotient WiSARD. 154

xvii

List of Tables

3.1 WiSARD PUF design architectures for 64-bit challenges [2]. 26

3.2 Machine Learning results for WiSARD PUF variants [2]. 31

3.3 Reliable WiSARD PUF Architectures with 64-bit challenges [3]. . . . 35

3.4 Gradient Boosting-based Machine Learning Accuracy for WiSARD

PUF variants [3]. 40

3.5 Combinational Logic implementations of PUF with varying Entropy

Sources. 43

4.1 MIH quality test results. 55

4.2 Performance and memory consumption for original MIH. 55

4.3 Performance and memory consumption for MIH with global index. . . 56

4.4 The best HW di↵erence thresholds per partitions using 100K responses. 58

4.5 Quality test results for all MIH versions. 59

5.1 Number of instructions and code size (bytes). 78

6.1 Meaning of metadata bit combinations from Quotient Filter. 89

6.2 Specification of binary classification datasets. 95

6.3 Specification of multiclass classification datasets. 95

6.4 Accuracy, training time, testing time and memory results for Binary

Classification problems. 97

6.5 Accuracy, training time, testing time and memory results for Multi-

class Classification problems. 98

6.6 Accuracy, training time, testing time and memory results for Multi-

class Classification problems (continuation). 99

6.7 Accuracy and memory results for AMQ WiSARD compared to 50%

false positive probability. 101

A.1 Bit-counting consumption. 111

A.2 Batcher’s odd-even merge sort pipeline consumption. 113

A.3 Dataset configurations. 115

A.4 Application utilization on the Pynq board. 117

xviii

Chapter 1

Introduction

The modern society is living the era of ubiquitous computing which is increasingly

dependent on electronic devices in various areas such as banking, healthcare, au-

tonomous car, smart homes, smart phones, supply chain and transportation. Pro-

gressively, more sensitive information are carried in these devices making security

more expensive in terms of financial losses, safety and loss of privacy. Notewor-

thy examples are Internet of Things (IoT) architectures, including from traditional

models where a central repository, such as a Cloud host, processes data collected

by sensor to emergent solutions involving Edge Computing field where the data pro-

cessing is distributed in end-devices. In both cases, data is exposed to integrity

or confidentiality attacks during processing and the user has no control over it.

The solely software-based security is not su�cient to protect those systems as ad-

vanced attacks can modify and corrupt them by exploring bugs on user software.

Additionally, hardware support is required since the performance overhead from

software-based security is non-negligible in some cases.

There are four fundamental concepts of information security to protect the stor-

age and communication information:

1. Confidentially prevents unauthorized entities to access privileged informa-

tion. Typically, it is ensured through encryption and decryption process where

authorized entities have to use private keys to access the information.

2. Integrity verifies the completeness of data which can be corrupted when it

is stored locally or used in a communication channel. A checksum is usually

applied to provide this security.

3. Authenticity ensures the identity of the subject that requests or sends in-

formation. It relies on integrity in order to avoid any tampering information

is undetected. The authenticity can be realized by some known information

(e.g. a password), some restricted object (e.g. a smartcard) or some internal

1

characteristic (e.g. biometrics). Particularly, Physical Unclonable Function

(PUF) is the latter category of authenticity as it uses physical fingerprint.

4. Availability allows the information is always available to be accessed. Com-

munication channels and information systems are targeted from random faults

and common attacks like denial-of-service attacks.

Over the last decade, many researches proposed hardware-assisted security solu-

tions (also known as hardware-enhanced or hardware-enabled security) in order to

enable trustworthy computing. HW-assisted security consists of technologies that

provide security of higher layers of computer systems as firmware or software by

using hardware components. It can enable security in BIOS, operating systems,

hypervisors, or any other user-level application. It di↵ers from hardware security,

where solutions are restricted to protect physical devices or the hardware layer.

Several architectural implementations of HW-assisted security solutions have been

released by major vendors, like AMD, ARM, Intel, for a variety of scenarios, such as

technologies for accelerated security-related processing, secure random number gen-

eration, memory bounds protection, isolated execution, video protection, or trusted

computing. An overview of most relevant and promising HW-assisted security solu-

tions are presented in [1].

According to [1], HW-assisted security solutions can be grouped into Perfor-

mance Boost and Security Enhancement technologies as depicted in Figure 1.1. In

the former group, the solutions deploy hardware to improve the performance of se-

curity processing or to improve security as a side e↵ect, whose can be categorized

as follows:

i) Malware Detection includes techniques for performance enhancement of

anomaly detection processing;

ii) Virtual Machine (VM) Isolation increases the performance in virtualized

systems protecting them against attacks as hyperjacking [5], side-channel [6] or

DMA attacks [7];

iii) Cryptographic Acceleration embraces mechanisms to speed up performance

of cryptographic processing;

In the latter group, the technologies use hardware to support security, which is

categorized as:

i) Pointers Violation Prevention makes the system robust against Code-Reuse

Attacks (CRA) such as ROP [8] or JOP [9], control flow hijack or bu↵er overflow

attacks [10];

2

ii) Random Number Generation prevents attacks to the cryptographic schemes

[11] that try to predict the randomly pattern of generated numbers used as

digital signatures;

iii) Trusted Computing ensures protection of data-in-use using a physically sep-

arated hardware from CPU as Trusted Platform Module (TPM) or extra hard-

ware integrated in the CPU like Trusted Execution Environment (TEE). It pro-

tects system against a subset of physical attacks like bus sni�ng, or software

ones like code-injection [12] or run-time attacks such as Iago [13];

Performance
Boost

HW-assisted
Technologies

HW-assisted Malware Detection

HW-assisted VM Isolation

HW-assisted Crypto Acceleration

HW-assisted Pointers Violation Prevention

HW-assisted Random Number Generation

HW-assisted Trusted Computing

Security
Enhancement

● Intel TDT

● Intel VT
● AMD SVM

● Intel AES-NI
● ARM Crypto Ext.

● Intel MPX
● ARM PA
● Intel CET

● IntrinsicID SRAM PUF
● Intel Secure Key

● Intel TXT
● AMD PSP
● Embed TPMs

● Intel SGX
● ARM TrustZone
● AMD MET

TPM

TEE

Solutions

Figure 1.1: Category of HW-assisted security technologies [1]. This thesis con-
tributes with optimization studies of solutions used in technologies classified in red-
colored groups.

Cryptography relies on a secret key from storage system to protect the transmit-

ted information. Conventionally, the key is stored in non-volatile memory (NVM)

which is exposed by various security vulnerabilities of hardware primitives. There

are demonstrations that an attacker with physical access to the storage can set up

numerous attacks on it as side-channel attacks such as power measurement, semi-

invasive attacks such as fault injection by over-clocking and invasive attacks such as

decapsulation analysis to obtain information into storage [14, 15].

PUFs have emerged as appealing approach to protect secret keys and create de-

vice unique fingerprint or cryptographic key for confidentially, integrity and authen-

3

ticity [15–17]. The main property of PUF is unclonability which relies on physically

disorder system and impedes even the manufacturer to duplicate or clone the inter-

nal disorder circuits. It is possible due to the complex manufacturing fabrication

of Integrated Circuits (IC). In theory, PUFs are secure against invasive attacks and

distinct from each other.

Once authorized users have access to confidential data, there is no privacy guar-

antees that data cannot be leaked in subsequent computations. For example, An-

droid users decide to grant personal information access (e.g. location, contacts,

photos) to trusted app, but they have no assurance that the permissions will not

be used to leak their sensitive information. To deal with this problem, there are

some techniques developed to provide secure information flow, through either static

analysis, where the source code or binary code is examined without executing it, or

dynamic analysis which collects flow information during its execution.

Dynamic Information Flow Tracking (DIFT) have been established as promising

platform to combat a wide range of security attacks [18]. The idea of DIFT is to

tag (taint) an initial untrusted data and track its propagation during runtime. Data

derived from untrusted data are also tagged and if any tagged data is used in unsafe

operations, then an alarm is raised to block its execution. Initially, DIFT has been

focused on explicit flow propagation which is related to data dependencies expressed

by assignments. However, it has been demonstrated that an adversary can insert

implicit flows based on control dependencies to execute evasion attacks [19].

Summing up, PUF and DIFT are e↵ective mechanisms of HW-assisted secu-

rity that improve security in ubiquitous environments which encompass constrained

devices in terms of privacy and resources. As categorized in Figure 1.1, PUF be-

longs to the group of HW-assisted Random Number Generation and DIFT

can be applied as technology for HW-assisted Malware Detection and HW-

assisted Pointers Violation Prevention. Although they have been improved by

extensively researches, there are still untreated security flaws and unsolved prob-

lems which demand new approaches and techniques to achieve the desired PUF and

DIFT systems.

1.1 Contribution

This thesis proposes novel techniques related to PUF and DIFT fields in order to

harden them as HW-assisted security technologies. As consequence of those research

investigations, this work explore Weightless Neural Network (WNN) model as feasi-

ble HW-assisted security solution and useMulti-Index Hashing (MIH) data structure

for similarity search problem on ubiquitous environment. The main contributions

are listed below:

4

• Various novel PUF designs based on WNN are proposed with the aim of in-

creasing their resistance against machine learning attacks. It is demonstrated

that the architecture of neural networks can also be used to achieve security

with low resource overhead.

• Robust and reliable PUF designs are proposed by extending the WNN PUFs.

An initial entropy source is employed to create a near-ideal PUF in terms of

reliability.

• Online techniques are developed to optimize a high-volume PUF testing so-

lution based on MIH. The methods are proposed to reduce the storage space

without negatively impact the performance.

• A new co-processor design to accelerate MIH operations is elaborated. It is

evaluated in the similarity search problem on in-situ environment with low-cost

FPGA.

• A novel DIFT technique is proposed to support implicit flows propagation,

including scenarios with multiple nested branches. A formal verification is

provided to prove its hardware design correctness. Moreover, it is practical to

extend any DIFT mechanism that only supports explicit flow propagation.

• A restricted rule of implicit taint propagation is analyzed in order to increase

the precision of DIFT mechanism. It reduces the number of data that are

erroneously tagged during implicit propagation.

• New WiSARD (a simple WNN model) models based on Approximate Mem-

bership Query (AMQ) data structure are proposed. These models reduce the

memory resources while improving the generalization capabilities of the WiS-

ARD. Furthermore, AMQ models are robust as even in cases with high false

positive cases they achieve good accuracy results. That fact indicates them

as interesting solutions to provide high reliability in case of transient faults

occurrences.

1.2 Thesis outline

The remainder of this thesis is organized as follows: Chapter 2 introduces the rele-

vant concepts related to PUF, DIFT and WNN that are required to understand the

other Chapters. Then, Chapter 3 presents many new PUF designs utilizing WNN

which are resistant against machine learning attacks and proposes an extension for

them to o↵er 100% of reliability by using a reliable entropy source. Chapter 4 defines

5

techniques to optimize a design-for-test solution for testing PUF using MIH. Chap-

ter 5 proposes a novel low resources DIFT technique to extend explicit DIFT with

implicit flow propagation and describes a new implicit taint propagation rule to pre-

vent data from being incorrectly tagged. Chapter 6 analyses new WiSARD models

based on probabilistic data structures that perform membership query operations.

Finally, Chapter 7 concludes this thesis and resumes the ideas for future works.

Appendix A identifies the data-intensive MIH operations that can be e�ciently im-

plemented on hardware for future PUF testing implementation and evaluates the

low-cost co-processor implementation for similarity search on in-situ environment.

Appendix B presents complementary experiments for AMQ WiSARD models us-

ing Cuckoo filter and Quotient filter. Appendix C shows the list of publications

submitted and accepted during the development of this thesis.

6

Chapter 2

Background

This chapter provides the relevant background information for better understanding

of the addressed subjects in this thesis. The main topics are PUF, Dynamic Infor-

mation Flow Tracking and Weightless Neural Network, while the remaining subjects

are related to the concepts applied in the proposed solutions discussed later in this

work.

2.1 PUF

Physically Unclonable Functions (PUFs) are circuits introduced by Pappu et al. as

one-way functions which map inputs (challenges) to unique outputs (responses) [16].

PUF relies on manufacturing process variations where not even the manufacturer is

able to clone or duplicate the physical components from one chip to another. It is

possible due to the complexity of the current Integrated Circuits (IC) fabrication.

Hence, in theory, PUFs are always distinct and unique between themselves and can-

not be reconstructed by invasive attack. Such peculiar unclonability characteristic

points out PUFs as a promising technology to protect secret keys.

2.1.1 Classification of PUFs

PUF can be classified into Weak PUF and Strong PUF according to the supported

number of challenge-response pairs (CRPs). That classification also establishes the

applications that each type of PUF is properly used.

2.1.1.1 Weak PUF

PUFs are classified into Weak PUF when the number of CRPs is limited, in some

cases only a single challenge. That limitation makes Weak PUF unfeasible for au-

thentication systems, as an adversary can easily collect all its CRPs to replicate it.

On the other hand, Weak PUFs are better at generating and storing secret keys

7

than non-volatile memory (NVM), since they o↵er harder accessibility from any in-

vasive attacks to leakage internal information out. The generated secret keys are

not secure against the side channel attacks. Therefore, the use of Weak PUF needs

external countermeasures to hide it from applications that use its secret keys.

Weak PUF implementations based on SRAM cells have been studied extensively

in previous researches [20, 21]. Each SRAM cell is an embedded memory consisting

of six transistors as shown in Figure 2.1: two cross coupled inverters (load transistors

T1, T2, T3, T4) and two access transistors (T5, T6) connected to the bit-lines

(BLC and BL) and word-line signal (WL). When a SRAM cell is started-up, its

state will transition to hold either 0 or 1 depending on noise and mismatch in the

intrinsic process variations that are not controllable by the manufacturing process.

By obtaining the values from the random stable states (0 or 1) of a SRAM array, it

is possible to compose a physical fingerprint which in turn is used to create keys and

identifiers. On the enrollment phase, the generated key is recorded as the correct

key so that it will be matched to the next obtained keys whenever SRAM PUF is

powered-up. Due to the intrinsic process variations, the power-up operations are

a↵ected by noise leading to the generation of incorrect keys and, consequently, the

unreliability of the circuit. Some solutions to improve the reliability of Weak PUFs

are discussed in Section 2.1.3.

WL

T1

T2

T3

T4

T5

T6

BLC BL

Figure 2.1: Example of six transistors at SRAM cell.

2.1.1.2 Strong PUF

Unlike Weak PUF, Strong PUFs support an exponential number of CRPs and im-

plement a complex mapping between challenges and responses. Even an adversary

has control over PUF, it is practically impossible to store all CRPs and predict the

responses from the PUF. That complexity makes Strong PUF resistant to model

building attacks and propitious for authentication applications using a Challenge

8

Response protocol. In the authentication, a set of CRPs from each PUF is previ-

ously stored into a secure database. When an authenticity is requested, a set of

random CRPs from the database is applied to the PUF and the generated responses

are compared to the stored responses in order to verify the result of the authentica-

tion. Once CRPs are chosen from database, they will never be reused for preventing

man-in-the-middle attacks.

Unfortunately, one of the earliest Strong PUF implementations, termed Arbiter

PUF [22], did not expose the prominent properties and could be easily cloned [23].

Proposed alterations to increase resistance, like using XOR operations, still failed

to o↵er the promised unclonability [23]. Di↵erent from digital PUFs, analog circuits

were proposed to harness non-linear behavior of CMOS transistors under certain

operating conditions as a solution to increase the attack resistance of Strong PUFs.

Current-based [24, 25] and voltage-based techniques [26] have been shown to be

successful against Support Vector Machine (SVM) learning algorithm, which was

able to break the previous digital PUF implementations. However, Vijayakumar et

al. reported a new class of machine learning algorithms based on ensemble meta-

algorithms that could e↵ectively model even the analog PUFs with great accuracy

[27]. Further, side-channel and fault-based attacks have also been explored to raise

the modeling accuracy to break PUFs [28–30].

Other studies have been focused in the application of Weak PUF to construct

Strong PUFs. Holcomb and Fu proposed a Strong PUF using SRAM cells organized

in a column of a memory block which are pre-loaded with values based on an input

challenge. To produce the final response, the PUF output is generated by reading

multiple cells in a column at once to create a contention at the sense amplifier

[31]. Bhargava et al. created a Strong PUF where the response is the cipher text

generated by the AES block and the challenges are the plain text input which are

extracted as a stable secret key from Weak PUFs [32]. Chapter 3 presents a reliable

Strong PUF implementation based on neural network by utilizing similar concept

of generating stable Weak PUF bits.

2.1.2 Ideal Properties of PUFs

The PUF implementations are built under circuits that harness the manufacturing

variations and they di↵er by their physical implementations associated with the

number of CRPs. To guarantee the quality of a PUF chip, it has to exhibit three

ideal properties: high uniqueness, high reliability and high security.

9

2.1.2.1 Security

Security is the most important property of PUF directly related to unclonability and

unpredictability requirements. It ensures the PUF are impossible to be physically

cloned and built by software models that mimic the circuit. For Weak PUFs, it is

implies to prevent the keys generated from PUF are discovered by external systems.

In case of Strong PUF, the security depends on the complexity of challenge-response

mapping. PUFs with simple mapping are easily predicted by software executing

machine learning algorithms that creates a PUF model identical to the original

circuit.

2.1.2.2 Uniqueness

As PUFs produce unique CRPs, the uniqueness determines how di↵erent the re-

sponses across distinct chips are. If PUFs generate similar responses, their challenge-

response mappings are not ideal, straightly impacting the desired unclonability con-

straint. Therefore, high uniqueness is important to complement the security by

defining the distinguishability of challenge-response mappings and discarding simi-

lar chips.

2.1.2.3 Reliability

PUFs might produce wrong responses under noise and certain environmental con-

ditions such as supply voltage variations and temperature variations. Reliability is

the property that indicates if the responses are stables along any such conditions. In

Weak PUFs, reliability is critical since they are used to create secret keys or unique

identifiers. To improve reliability, error-correction based solutions are applied to

circuit by increasing the cost of design as cited in Section 2.1.3. The reliability

issues in Strong PUFs can be mitigated by the fact that they have an exponential

number of CRPs available, where a threshold of acceptable responses can be set

for practical use in authentication. Increasing the threshold level also increases the

number of CRPs needed to authenticate a device in real-world scenarios, resulting

in decreasing in PUF reliability and raising in resource costs [33].

2.1.3 Weak PUF Realibility

As presented in Section 2.1.1.1, reliability is a crucial property for Weak PUFs

enabling them to generate stable secret keys. To ensure Weak PUF reliability,

techniques involving error correcting-codes (ECC) and fuzzy extractors have been

extensively explored [34–38]. Nevertheless, such approaches use a large number of

initial Weak PUF bits to derive the final stable key and this number increases with

10

the inherent error rate of the Weak PUF [34]. Consequently, the implementation

of ECC in hardware and the required number of Weak PUFs bits result in a large

resource costs.

Other alternatives to costly ECC have been proposed, such as a simple circuit-

based error correction using Temporal Majority Voting (TMV) [39, 40] and TMV

improved by Vijayakumar et al. using Up-Down counters to correct twice the error

rate, that is the correction rate comparable to other TMV implementation [41].

Modifications to SRAM Weak PUF circuit design have been explored to mitigate

the error correction required and increase Weak PUF reliability [42–44]. New devices

like Magnetic Tunnel Junction (MTJ) have also been studied to build reliable Weak

PUFs [45]. Accelerated aging mechanisms have also been utilized to improve the

reliability of Weak PUF [40, 46].

The wealth of techniques available to improve the reliability of Weak PUFs allows

to create an e�cient implementation that yields the desired number of stable bits

for later to be used in neural networks to realize robust Strong PUFs as proposed

in Section 3.3.

2.2 WiSARD

Weightless Neural Networks (WNNs) [47] are abstract neuron models which rep-

resent a neuron as Random Access Memory (RAM) node. These models o↵er an

attractive practical solution to pattern recognition and artificial consciousness appli-

cations, due to their binary representation which able to implement such networks

using existing memory resources in devices.

WiSARD (Wilkie, Stoneham and Aleksander’s Recognition Device) is a multi-

discriminator WNN model proposed in the early 80’s [48] and inspired by the n-tuple

classifier [49]. It is the pioneering WNN distributed commercially which provides

simple and e�cient implementation enabling to deploy learning capabilities into

real-time and embedded systems.

Each class is represented by a structure called Discriminator, which comprises of

a set of RAMs, composed of one-bit words, to store the relevant knowledge during

the training phase which will be used during the classification phase. Before sending

the input data to the discriminators, they need to be converted in a binary format

using a transformation which depends on the data type. A binary input of N ·M
bits is split in N tuples of M bits. Each tuple n, n = 1, . . . , N , is a memory

address to an entry of the n-th RAM. Each Discriminator consists of multiple RAM

blocks (= N), each containing 2M locations. A pseudo-random mapping connects

the tuples to the binary input and each Discriminator has its own pseudo-random

mapping. A WiSARD system can have any number of such Discriminators and,

11

hence, any number of desired classes.

1 1

1 0

1 0

1 0

0 0

1 1

0 0

1 0

Binary Input

1 1 1 0

1 0 0 0

1 0 0 0

1 1

R0
1

0000

0
0001

0
0010

0
0011

0
0100

0
0101

0
0110

0
0111

0
1000

0
1001

0
1010

0
0000

0
1111

1
1110

0
1101

0
1100

0
1011

1
0000

0
0001

0
0010

0
0011

0
0100

0
0101

0
0110

0
0111

1
1000

0
1001

0
1010

0
0000

R1

0
1111

0
1110

0
1101

0
1100

0
1011

R2
1

0000

0
0001

0
0010

0
0011

0
0100

0
0101

0
0110

0
0111

1
1000

0
1001

0
1010

0
0000

0
1111

0
1110

0
1101

0
1100

0
1011

1 0 R3
1

0000

0
0001

0
0010

0
0011

0
0100

0
0101

0
0110

0
0111

0
1000

0
1001

0
1010

0
0000

0
1111

1
1110

0
1101

0
1100

0
1011

Tuples

Figure 2.2: Example of training in WiSARD.

1 1

1 0

1 0

1 1

0 0

1 1

0 0

1 1

Binary Input

1 1 1 1

1 0 0 0

1 0 0 0

1 1

R0
1

0000

0
0001

0
0010

0
0011

0
0100

0
0101

0
0110

0
0111

0
1000

0
1001

0
1010

0
0000

0
1111

1
1110

0
1101

0
1100

0
1011

1
0000

0
0001

0
0010

0
0011

0
0100

0
0101

0
0110

0
0111

1
1000

0
1001

0
1010

0
0000

R1

0
1111

0
1110

0
1101

0
1100

0
1011

R2
1

0000

0
0001

0
0010

0
0011

0
0100

0
0101

0
0110

0
0111

1
1000

0
1001

0
1010

0
0000

0
1111

0
1110

0
1101

0
1100

0
1011

1 1 R3
1

0000

0
0001

0
0010

0
0011

0
0100

0
0101

0
0110

0
0111

0
1000

0
1001

0
1010

0
0000

0
1111

1
1110

0
1101

0
1100

0
1011

+

0

1

0

1

2

Response

Tuples

Figure 2.3: Example of testing operation in one WiSARD discriminator.

During the training phase, all RAMs of the Discriminators are initialized to zero

(0). The training input is sent to the related Discriminator, where the accessed

RAM positions are set to one (1) as illustrated in Figure 2.2. During classification,

an input is sent to all Discriminators generating responses per discriminators by

summing all accessed RAM values as shown in Figure 2.3. The Discriminator with

the highest response is selected as representative class of the input as depicted in

Figure 2.4. In both phases, the pseudo-random mapping from input to the tuples is

the same for each discriminator.

The structure of WiSARD can be readily implemented in hardware using stan-

dard SRAM memory and address decoding to provide high generalization capabili-

ties and real-time performance.

12

1 1

1 0

1 0

1 1

0 0

1 1

0 0

1 1

Binary Input

Discriminator 0

Discriminator 1

Discriminator 2

Discriminator 3

Response

Response

Response

Response

Predicted Class

Figure 2.4: Example of testing operation to WiSARD select predicted class.

2.3 Dynamic Information Flow Tracking

Dynamic Information Flow Tracking (DIFT), also known asDynamic Taint Analysis

(DTA), is a security enhancement technique applied to prevent sensitive information

leakage and to protect binary codes against malicious attacks such as bu↵er overflows

[50, 51] and SQL Injection [52, 53] at runtime. DIFT associates a tag termed taint to

each memory word (or byte) and register, allowing to track information flow through

taint propagation and taint checks using certain rules. Generally, the initial step

is to tag the data coming from untrusted sources. During instruction execution,

the taint will propagate from source operands to the destination operand according

to the data dependency characterizing an explicit information flow. Checking the

tainted data ensures safe execution and when the check fails a security alarm is raised

to invoke the taint analysis. Depending on the type of analysis, program validation

can be performed either directly by the DIFT system, or can be inferred from its

behavior. In this way, security attacks are detected and sensitive information is kept

safe by identifying unsafe activities and stopping the process execution.

2.3.1 Under-tainting and over-tainting problems

The under-tainting problem occurs when a data is not marked as tainted in cases

that should be marked. For example, implicit flow propagation can be used to skip

the taint propagation in control dependencies. Implicit DIFT mechanisms avoid this

problem by tracking correctly such implicit flows.

In contrast to under-tainting, the over-tainting problem is the case that data is

erroneously marked as tainted. Various implicit flow tracking approaches have lim-

itations regarding nested branches and loops which intensify the taint propagation

originated from control-dependency flow.

13

2.3.2 DIFT Designs

Decode

ICache

DRAM

L2 Cache

T
a

g
 A

L
U

A
L

U

Security
Decode

Reg File

Tag Reg
File

T DCache T

T

DRAM

L2 Cache

T

Cache Tag Cache

Main
Core

Tag
Pipeline

Core 1
(App)

Core 2
(DIFT)

Cache Cache

DRAM

L2 Cache

Log buffer

capture analysis

compress decompress

DIFT Coprocessor

Main Core

DIFT Taint

DIFT Logic

(1) In-core DIFT

(2) Offloading DIFT (3) Off-core DIFT

Figure 2.5: The three DIFT designs.

DIFT has been implemented in software [54–63] by using a binary instrumen-

tation technique, that intercepts the program execution to insert extra instructions

for tracking the tainted data at runtime, and hardware [51, 52, 64–71] by building

a specialized circuit in order to reduce the performance overhead.

Figure 2.5 presents three hardware designs for supporting DIFT:

1. In-core design: DIFT logic is integrated in a general-purpose core by either

14

extending register file and memory resources, or adding specialized register file

and cache to store the tags for data, respectively in the register and memory.

Taint propagation and checking are performed in the processor pipeline which

is extended to run in parallel with normal instruction execution. The perfor-

mance impact is minimal in terms of clock cycles, but the required changes to

the processor core may have a considerable negative impact on design and ver-

ification time. Most of the DIFT implementations are based on this approach

[51, 52, 64].

2. O✏oading design: DIFT functionality is performed by one core in a multi-

core chip while the application runs on another core. Although taint prop-

agation and taint check policies are not implemented directly in hardware,

the cores must still be modified to implement the synchronization scheme via

system call between the application core and the DIFT core. The applica-

tion core creates a compressed trace of executed instructions to communicate

through a shared cache with the DIFT core, that decompresses the received

trace in hardware before each tag execution. This design has been presented

in [65, 66].

3. O↵-core design: DIFT is implemented as a co-processor which has separated

resources to manage the tags without any changes in the main core design.

Synchronization between the main core and DIFT is needed to keep the correct

tracking execution. Recent works have implemented DIFT as a co-processor

[67–70].

2.3.3 Related Works

Most previous works have focused on explicit information flow tracking [51, 52, 59,

61, 64, 67–69] supporting multiple taint propagation and taint check policies. Soft-

ware implementations on x86 architecture as LIFT [59] and libdft [61] rely on the use

of Pin binary instrumentation framework [72], which intercepts the program execu-

tion to insert extra instructions for tracking the tainted data at runtime. Hardware

approaches in [51, 52, 64, 67–69] propose to build a specialized circuit in order to

reduce the performance overhead generated by DIFT computation. Raksha [52],

Flexitaint [64] and [51] integrate DIFT logic in a general-purpose core by extending

memories resources and processor pipeline. While in [67–69] proposed to imple-

ment DIFT as a co-processor which decouples resources of the main core design

to manage the tainted data. These previous approaches show successful ability to

track explicit flow, meanwhile they are limited to deal with under-tainting problem

caused by implicit flows.

15

Similar to explicit flow solutions, software and hardware approaches have been

proposed to solve under-tainting by tracking implicit information flow with con-

trol dependency. The major software solutions are DYTAN [62], DTA++ [63] and

TASEL [60]. DYTAN taints all data belong to branch scope when control de-

pendency is tainted. However, this approach causes over-tainting problem, where

about 1, 000 times more data are tainted compared to explicit flow propagation as

reported by [60]. DTA++ examines certain types of conditional branches to track

implicit flow, that are within a specific code patterns based on the observation that

under-tainting occurs at just few locations. TASEL elaborates a selective strategy to

taint control-dependent data when used with tainted data inside the tainted branch.

These solutions show e↵ectiveness to track implicit flow in limited cases, because

they do not consider tracking in multiply-nested branches scenario.

Recent hardware-based implicit flow tracking is presented by [70]. It designs

an e�cient implicit flow tracking unit (IFTU) built as a co-processor on a FPGA

board, which keeps tracking implicit flows through the management of program

counter tag register and stack. Program counter tag stack was proposed to correct

tracking scheme in cases of multiply-nested branches. The approach discussed in

Chapter 5 is inspired by IFTU implementation, where specialized taint registers are

proposed to deal with implicit propagation in multiply-nested branches instead of

using a program counter tag stack. Replacing the stack, the required resources are

reduced for hardware implementation. Since DYTAN’s taint propagation leads to

over-tainting problem, a new taint propagation rule is suggested when a conditional

branch is tainted to mitigate both under-tainting and over-tainting problems.

2.4 Error Correction Codes

Error correction codes have been applied in coding theory to correct corrupted

data from channel noise, producing well-known results reported in [73]. Before

transmitting a message u = u0, ..., uk�1 with k symbols through the channel, it is

encoded into a codeword v = v0, ..., vn�1 of length n where n � k. The received

codeword r = r0, ..., rn�1 might contain an error requiring a decoder to infer which

message u was sent. A linear code is defined as code C over Fq such as all linear

combinations of codeword resulting on codewords. Encoding a message u with linear

code may be easily performed by multiplication of generator matrix G yielding

codeword v = u ·G.

The most basic linear code is the repetition code. For the binary case, the

codeword is formed by the redundant concatenation of each bit n times, where n is

odd. The decoder is simply implemented by a majority vote algorithm and it can

correct up to (n� 1)/2 errors.

16

The Reed-Muller code is also a common linear code with a simple decoder con-

struction using majority logic or the Hadamard transform. Despite the ease to

implement, majority logic is not very e�cient according to [74] and, therefore, the

Hadamard Transform is usually used for decoding as defined in [73]. Reed-Muller

code is described as RM(r,m) code with order r and length 2m. This work covers

the first order RM(1,m) code, where n = 2m is the length, k = m+1 is the dimen-

sion and d = 2m�1 the minimum distance, equivalent to [2m,m+1, 2m�1]-code. The

generator matrix of RM(1,m) code is a k ⇥ n matrix. First row is vector (1) filled

with 10s. The remainder m rows are vectors (a0), ..., (am�1) with length n defined

as (ai) = 11...100...011...1...00 = 12
m�i�1

02
m�i�1

12
m�i�1

...02
m�i�1

, in the other words,

(ai) is formed by concatenation of consecutive words with 10s followed by words with

00s until to complete size n, both with length 2m�i�1.

The decoder using Hadamard transform receives the codeword r and executes

the following steps:

1. Generate R from r replacing 0 to 1 and 1 to �1.

2. Generate Hadamard transform

T = RH2m = (t0, t1, ..., t2m�1).

Where, H2m =

H2m�1 H2m�1

H2m�1 �H2m�1

!
, H1 = (1) .

3. Select ti from T with largest magnitude.

4. Let index i = (im�1, ..., i0)2 in binary representation.

corrected r̂ =
mX

j=1

im�jaj�1

If (ti < 0) then r̂ = r̂ + 1

Note that r̂ is the corrected codeword. The decoded code u = x, im�1, ..., i0, where

x = {0, 1} according with the ti signal. In Section 3.1.2.2, the x from decoded code

u is calculated based on i = (im�1, ..., i0)2 to generate the final code of odd length.

If ti � 0 then x = 0 else x = 1.

Concatenated code was presented in [75]. The idea is to use simple concatenated

codewords to create a long codeword. A message is encoded by an outer encoder,

which in turn is split and each piece is encoded by an inner encoder. The final

codeword is composed by concatenating all inner codewords. Thus, the decoder may

be easily implemented by merging both inner and outer decoders. The short parts

of a received codeword r are decoded by the inner decoders in parallel producing an

outer codeword, that is decoded by outer decoder.

17

2.5 Multi-Index Hashing

Multi-index hashing (MIH) is a fast search technique to obtain the nearest neighbors

in Hamming space [76]. MIH o↵ers high throughput by storing a binary code into

m hash tables indexed with its m disjoint sub-codes. During searching, the query

is split into m sub-codes so that the neighbors candidates are parallelly sought over

the hash tables. Then, all candidates are validated by looking the original query to

remove any false neighbor, ensuring exact kNN search over sub-linear run-time.

This approach relies on the idea that two similar binary codes also contain similar

sub-codes and, thus, by finding the candidates with similar sub-codes reduces the

search space and saves memory space. MIH algorithm is formulated by the following

premise. Let us suppose two binary codes h and g both with b bits are partitioned

into m disjoint binary sub-codes with s bits length, where s = b b

m
c or s = d b

m
e and

b divisible by m. When h and g di↵er by r bits or less, then at least one sub-code

k must di↵er by b r

m
c. That is, there must be a sub-code k, 1  k  m, where

k h(k) � g(k) kH  b r
m
c (2.1)

when k h � g kH  r with k . kH denoting Hamming norm. The proof of the

premise is derived from Pigeonhole Principle [76].

To exemplify the use of MIH, let us suppose the database stores 64-bit binary

codes and, given a 64-bit query q, all nearest neighbors with until 16 Hamming

distance from q are searched. Also, let us suppose that MIH has 4 hash tables where

each one stores 64-bit binary codes indexed by their subsequent parts of 64/4 = 16

bits. Each query is divided into 16-bit sub-strings and each sub-string is a key to

access the list of 64-bit binary code which contain it. As generalized by Equation

2.1, if 64-bit binary code b and q di↵er by at most 16 bits, it means that at least one

of the associated sub-strings di↵ers at least 16
4 = 4 bits. According to this premise,

a list of candidates can be quickly retrieved by executing search with radius r = 4

to find 4-neighbors over each sub-string in the corresponding hash table. Thus, the

number of lookups is reduced from
�
64
16

�
⇡ 4, 9⇥1014 to 4⇥

�
16
4

�
= 7, 280. At the end,

each candidate is verified as true 16-distant neighbor to ensure the exact neighbor

match. This approach provides high order of magnitude speedup with the ability to

search millions of 128-bit codes within a second using a search radius of 30 bits [76].

Moreover, the algorithm ensures to find exact neighbors without any approximation.

18

Chapter 3

Reliable Strong PUFs based on

Weightless Neural Network

Electronic devices are increasingly used in applications like Internet of Things (IoTs)

and potentially have more access to sensitive information while running in untrusted

environments. Due to resource constraints, by designing hardware roots of trust

(RoT) is an attractive alternative to integrate security into IoT devices such as

lightweight authentication operations and secret key generation capabilities. PUFs

are one class of lightweight roots of trust that require high uniqueness and reliability

to provide robust security as introduced in Section 2.1.

Nevertheless, practical Strong PUF implementations may su↵er from reliability

issues [24, 26] and, furthermore, they are susceptible to be cloned with high accuracy

by machine learning attacks [23, 27]. In authentication applications, unreliability

can a↵ect the number of CRPs required to properly distinguish a PUF-equipped

integrated circuit (IC) from billions of other such devices [33]. Thus, there is still

a need to design Strong PUFs to o↵er fully reliability and immunity against model

building attacks using machine learning techniques.

Recently, neural networks have been broadly studied for their e↵ectiveness at

pattern recognition applications. WiSARD is a Weightless Neural Network (WNN)

with e�cient and simple implementation by using random-access memory (RAM),

as introduced in Section 2.2. This Chapter explores adapting the simple WiSARD

architecture to create Strong PUFs with high uniqueness and high level of resistance

against machine learning attacks. In addition, the reliable Weak PUFs are combined

to create reliable Strong PUFs. Reliability of a Weak PUF is critical as detailed in

Section 2.1.3 and has received widespread attention [34–36, 38, 40, 41].

First, WiSARDWNN model is combined to the SRAM PUF properties to realize

various Strong PUF designs. As introduced in Section 2.1.1.1, SRAM cells are the

most promising choice for creating Weak PUFs due to their stability, yet random

power-up values [20, 21]. Later, an initial entropy source consisting of a set of highly

19

reliable Weak PUF is employed to load the bits into the contents of the WiSARD

WNN RAMs in order to provide a robust Strong PUF architecture. Since the initial

Weak PUF bits are made reliable, this reliability is extended to the final Strong

PUF.

3.1 Strong PUFs based on Weightless Neural

Network

Next Sections, all Strong PUF designs inspired by the WiSARD model are presented

through architectures that produce a 1-bit output response, given an m-bit input

challenge. The extended versions are examined with the objective of improving the

resistance against machine learning attacks.

3.1.1 WiSARD PUF

0 1

1 1

1 0

1 0

0 1

0 0

1 0

1 1

Challenge

0 1 1 0

1 1 0 1

1 0 1 0

1 1

0

R0
1

0000

1
0001

0
0010

1
0011

0
0100

0
0101

1
0110

0
0111

1
1000

1
1001

0
1010

1
0000

0
1111

1
1110

0
1101

0
1100

1
1011

 Counter 1 >

Counter 0

1
0000

0
0001

1
0010

0
0011

1
0100

1
0101

0
0110

1
0111

0
1000

0
1001

1
1010

0
0000

R1

1
1111

0
1110

1
1101

1
1100

0
1011

R2
1

0000

1
0001

0
0010

1
0011

0
0100

0
0101

1
0110

0
0111

1
1000

1
1001

0
1010

1
0000

0
1111

1
1110

0
1101

0
1100

1
1011

1
01

0
10

1
11

0
00

R3

0
01

1
00

R4

Response

1

1

0

1

1

1

4

1

Counter

0
0
10

1
11

Figure 3.1: Example of WiSARD PUF architecture [2].

The first design is termed as WiSARD PUF and depicted in Figure 3.1. It is a

single Discriminator containing multiple RAM blocks where the input is a challenge

string. The challenge bits are sliced in a pseudo-randomic way into tuples. Each

tuple indicates the size of the RAM block Ri and forms the address of a unique block.

Thus, the 1-bit memory locations from the RAM blocks are accessed according to

the input challenge and the accessed values are sent to a counter that accumulates

the number of 1’s. The final 1-bit response is generated through the majority voting

over the accumulated values. For the proper use of the majority voting, it is required

to have an odd number of RAM blocks. When the number of tuples is even, it can

be accordingly adapted to create an odd number of RAM blocks by splitting one

tuple in half and associating the extra tuple to a new RAM. This case is exemplified

20

in Figure 3.1, where 16-bits input challenge is mapped to three 4-bit tuples and two

2-bit tuples to complete the total of 5 RAM blocks.

WiSARD PUF operates similarly to the WiSARD classification phase to produce

the final response, which counts the accessed RAM bits instead of summing those bits

to calculate the Discriminator response. Other di↵erent aspect from conventional

WiSARD is the absence of training phase. The RAM blocks are initialized with

random values when powered on in the same way as SRAM PUFs [20, 21], since

they are formed of SRAM cells whose ensure such property as detailed in Section

2.1.1.1. Di↵erent instances of WiSARD PUF can hold their own pseudo-random

mapping of challenge to tuples and their random RAM contents. Since WiSARD

PUF contains multiple SRAM cells, its reliability is a↵ected by the noises coming

from the SRAMs cells along multiple power-ons [77]. Therefore, it is indispensable

to ensure an acceptable Strong PUF reliability.

By designing the hardware, the unique pseudo-random mapping implementation

for each PUF can be costly in terms of area. Strategies with multiple mapping can

be used, but are considered beyond the scope of this work. To simplify, WiSARD

PUFs with a fixed mapping decided by designer across all instances are analyzed,

as depicted in Figure 3.2. The subsequent architectures that will be presented in

the next Sections assume a fixed mapping of the input challenge to tuples across all

PUF instances.

0 1

1 1

1 0

1 0

0 1

0 0

1 0

1 1

Challenge
0 1 1 0

1 1 0 1

1 0 1 0

1 1

0 0

Discriminator 1

RAMs 1

Discriminator 2

RAMs 2

Fixed Tuple

RAMs 1 <> RAMs 2

PUF 1

PUF 2

Figure 3.2: Example of WiSARD PUF with fixed tuples among PUFs [2].

3.1.2 Extensions to WiSARD PUF architecture

Using a simple majority voting on the RAM block outputs to produce WiSARD PUF

response is adequate to create a Strong PUF. Other possible extensions are explored

with the aim of improving machine learning attack resistance in comparison with

the original WiSARD PUF. In particular, the modifications are applied to either

21

the tuple generation for addressing the RAM blocks or the output processing of the

blocks to generate the final output response.

3.1.2.1 Fuzzy logic based address generation

0 1

1 1

1 0

1 0

0 1

0 0

1 0

1 1

Challenge

 Counter 1 >

Counter 0

1

1

0

1

1

1

4

1

Counter

1

0

1

R1
0

000000

0
1000

0
0000

0
0001

1
0010

0
0011

...
...

1
0111

...
...

...
...

1
1111

0
1011

1
1010

0
1001

R0
0

000000

0
100000

0
000000

0
000001

1
000010

0
000011

...
...

1
011111

...
...

...
...

1
111111

0
100011

1
100010

0
100001

R0
0

000000

1
1000

1
0000

1
0001

0
0010

1
0011

...
...

1
0111

...
...

...
...

1
1111

1
1011

0
1010

1
1001

R2
0

000000

1
1000

1
0000

1
0001

0
0010

1
0011

...
...

0
0111

...
...

...
...

0
1111

1
1011

0
1010

1
1001

0

1

1

0

1

0

0
10

1
11

0
00

R3 1
01

1
00

R4 0
10

1
11

0
01

1

1

1

1

1

1

 Counter 1 >

Counter 0

 Counter 1 >

Counter 0

 Counter 1 >

Counter 0

 Counter 1 >

Counter 0

 Counter 1 >

Counter 0

Tuples (2 Extra bits)

0 1 1 0 0 0

1

0

0 1 1 0

0 1 1 0

0

1

1 1 0 1 0 0

1

0

1 1 0 1

1 1 0 1
0

1

1 0 1 0 0 0

1

0

1 0 1 0

1 0 1 0

0

1

0 0 0 0

1

0

0 0

0 0 1

0

1 1

1 1

1 1

0 0

1

01

0

(a) Example of WiSARD PUF architecture with extra bits [2].

0 1

1 1

1 0

1 0

0 1

0 0

1 0

1 1

Challenge

 Counter 1 >

Counter 0

Response

1

1

0

1

1

1

4

1

Counter

0 1 1 0

1 0 0 1

0 0 1 1

1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 0

1 0 1 0

0 1 0 1

1

0

1

R1
0

000000

0
1000

0
0000

0
0001

1
0010

0
0011

...
...

1
0111

...
...

...
...

1
1111

0
1011

1
1010

0
1001

R0
0

000000

0
100000

0
000000

0
000001

1
000010

0
000011

...
...

1
011111

...
...

...
...

1
111111

0
100011

1
100010

0
100001

R0
0

000000

1
1000

1
0000

1
0001

0
0010

1
0011

...
...

1
0111

...
...

...
...

1
1111

1
1011

0
1010

1
1001

R2
0

000000

1
1000

1
0000

1
0001

0
0010

1
0011

...
...

0
0111

...
...

...
...

0
1111

1
1011

0
1010

1
1001

0

1

1

0

1

0

0
10

1
11

0
00

R3 1
01

1
00

R4 0
10

1
11

0
01

1

1

1

1

1

1

 Counter 1 >

Counter 0

Tuples (2 Rotations)

1 1

1 1

1 1

0 0

0 0

0 0

 Counter 1 >

Counter 0

 Counter 1 >

Counter 0

 Counter 1 >

Counter 0

 Counter 1 >

Counter 0

(b) Example of WiSARD PUF architecture with tuple rotations (circular

shifts) [2].

Figure 3.3: Example of WiSARD PUF architecture with extensions to address gen-
eration [2].

A popular solution to deal with noisy data is to harness fuzzy extractor, as

evidenced by its advantageous use in deriving stable keys from biometric data [78,

79]. Fuzzy logic has been widely used to increase Weak PUF reliability in the

presence of noise [34, 36–38]. Fuzzy extractor is usually performed in two phases:

enrollment phase, which creates helper data from manipulating the input data in a

trusted environment and reconstruction phase, where the received data is assumed

to be noisy and the proper helper data is used to retrieve the error-free response

originally used in the enrollment phase.

22

The concepts of fuzzy extractor were utilized to generate more data from RAM

blocks than in a normal WiSARD PUF, akin to helper data generation, and reduce

this extra data to obtain the final PUF response, analogous to reconstruction. To

collect multiple outputs from each RAM block, two approaches were adopted to

a↵ect the challenge tuples – (a) add extra bits in random locations to each tuple;

(b) perform rotation (or circular shift) operation on each tuple.

In extra bits approach, e extra bits are added to each tuple allowing to generate

the total of 2e combinations of the extra bits and, correspondingly, the same number

of addresses and outputs from each RAM block. All combinations can be generated

internally using a simple counter. For the rotation approach, a predefined number of

right circular shift (or rotation) operations is performed to each original challenge

tuple to generate multiple outputs from the corresponding RAM block using the

new addresses.

Both methods increase the system entropy for the same input challenge to further

help protect the PUF against machine learning attacks. Figure 3.3(a) illustrates a

WiSARD PUF with 2 extra bits while Figure 3.3(b) illustrates an example using 2

tuple rotations. In those examples, a 16-bit input challenge is applied so that each

RAM block generates 3 outputs which undergo majority voting to produce a single

output per block, following to the second majority voting process to produce the

final 1-bit response. The required odd number of inputs for the majority voting is

guaranteed either by performing an even number of tuple rotations, or by adding

(2e) � 1 combinations of the extra bits, whereas the required odd number of RAM

blocks is obtained in the same way as the basic WiSARD architecture.

0 1

1 1

1 0

1 0

0 1

0 0

1 0

1 1

Challenge

0 1 1 0

1 1 0 1

1 0 1 0

R0
1

0000

0
0001

0
0010

0
0011

1
0100

0
0101

1
0110

0
0111

0
1000

1
1001

0
1010

1
0000

1
1111

0
1110

0
1101

0
1100

1
1011

 Counter 1 >
Counter 0

1
0000

0
0001

1
0010

0
0011

1
0100

0
0101

0
0110

1
0111

0
1000

1
1001

1
1010

1
0000

R1

1
1111

0
1110

1
1101

1
1100

0
1011

R2
1

0000

0
0001

0
0010

1
0011

0
0100

0
0101

1
0110

0
0111

1
1000

1
1001

0
1010

0
0000

0
1111

0
1110

1
1101

0
1100

1
1011

Response

1/0

0 0 11 R3
1

0000

1
0001

0
0010

0
0011

1
0100

0
0101

1
0110

1
0111

0
1000

1
1001

0
1010

0
0000

0
1111

1
1110

0
1101

0
1100

1
1011

RM(1, 2)
Decoder

Reed-Muller

1100

Odd code

Figure 3.4: Example of RM-WiSARD PUF architecture [2].

23

3.1.2.2 Concatenated codes based response generation

The majority voting utilized for response generation in the WiSARD PUF archi-

tecture is akin to using a repetition code, as shown in Figure 3.1. Other error-

correcting codes (ECC) can also be implemented for the purpose of generating the

final response from the RAM block outputs. In contrast to the linear relationship

exhibited by majority voting, coding scheme can introduce a non-linear relation-

ship between the RAM outputs and the response, so that it can greatly benefit the

machine learning attack resistance of the final Strong PUF. Christoph Bösch illus-

trated the advantages of concatenated ECC to improve Weak PUF reliability and

also provided details of hardware implementation using various ECC schemes [34].

One of the concatenated ECC schemes was employed to the basic WiSARD PUF

architecture. A brief introduction about ECC theory is presented in Section 2.4.

A new design termed as RM-WiSARD architecture applies Reed-Muller (RM)

code-based decoder to the RAM block outputs, as exemplified in Figure 3.4. The

repetition code is performed on the output bits from RM decoder to produce the

final response. RM(1,m) decoder is adopted in PUF design that receives an input

of length 2m and generates an (m + 1)-bit output. This modifies the architecture

to contain 2m RAM blocks able to produce the necessary RM inputs. The decoder

implementation is based on Hadamard transform algorithm (detailed in Section 2.4)

with a simple modification to extract a final code of odd length. Reed-Muller decoder

can be e�ciently implemented on hardware by scaling with the chosen value of m

as explained by Christoph Bösch [34].

RM-WiSARD PUF can be extended through coupling extra bit or tuple rotation

mechanisms. It is also modified to accommodate the final PUF response generation

through concatenated ECC scheme. Figure 3.5(a) illustrates an example of the RM-

WiSARD implementation with extra bits and Figure 3.5(b) shows a RM-WiSARD

implementation with tuple rotations where, in both variations, the repetition code

is applied to the outputs from each RAM block. Then, the results are sent to RM

decoder to produce an output with odd number of bits. At the end, the repetition

code is used again to obtain the final 1-bit response.

3.2 WNN PUF - Experimental Setup and Results

The proposed designs presented in Section 3.1 are evaluated to identify which one can

provide the highest machine learning attack resistance. Additionally, the inter-class

(uniqueness) and intra-class (reliability) Hamming distance metrics are analyzed to

further compare and contrast the suitability of various designs as Strong PUFs.

24

0 1

1 1

1 0

1 0

0 1

0 0

1 0

1 1

Challenge

R0
1

0000

0
0001

0
0010

0
0011

1
0100

0
0101

1
0110

0
0111

0
1000

1
1001

0
1010

1
0000

1
1111

0
1110

0
1101

0
1100

1
1011

 Counter 1 >

Counter 0

1
0000

0
0001

1
0010

0
0011

1
0100

0
0101

0
0110

1
0111

0
1000

1
1001

1
1010

1
0000

R1

1
1111

0
1110

1
1101

1
1100

0
1011

R2
1

0000

0
0001

0
0010

1
0011

0
0100

0
0101

1
0110

0
0111

1
1000

1
1001

0
1010

0
0000

0
1111

0
1110

1
1101

0
1100

1
1011

Response

1/0
R3

1
0000

1
0001

0
0010

0
0011

1
0100

0
0101

1
0110

1
0111

0
1000

1
1001

0
1010

0
0000

0
1111

1
1110

0
1101

0
1100

1
1011

Reed-Muller

0110

0 1 1 0

1 1 0 1

1 0 1 0

0 0 11

Repetition
Decoder

Odd code

RM(1, 2)
Decoder

Repetition
Decoder

Repetition
Decoder

Repetition
Decoder

0 0 11

0 0 11

1 0 1 0

1 0 1 0

1 1 0 1

1 1 0 1

0 1 1 0

0 1 1 0

0 0

1

0

0

1

0 0

1

0

0

1

0 0

1

0

0

1

0 0

1

0

0

1

(a) Example of RM-WiSARD PUF architecture with concatenated code (extra bits)[2].

0 1

1 1

1 0

1 0

0 1

0 0

1 0

1 1

Challenge

0 0 1 1

1 0 0 1

0 1 0 1

R0
1

0000

0
0001

0
0010

0
0011

1
0100

0
0101

1
0110

0
0111

0
1000

1
1001

0
1010

1
0000

1
1111

0
1110

0
1101

0
1100

1
1011

 Counter 1 >

Counter 0

1
0000

0
0001

1
0010

0
0011

1
0100

0
0101

0
0110

1
0111

0
1000

1
1001

1
1010

1
0000

R1

1
1111

0
1110

1
1101

1
1100

0
1011

R2
1

0000

0
0001

0
0010

1
0011

0
0100

0
0101

1
0110

0
0111

1
1000

1
1001

0
1010

0
0000

0
1111

0
1110

1
1101

0
1100

1
1011

Response

1/0
1 0 10 R3

1
0000

1
0001

0
0010

0
0011

1
0100

0
0101

1
0110

1
0111

0
1000

1
1001

0
1010

0
0000

0
1111

1
1110

0
1101

0
1100

1
1011

Reed-Muller

01101 0 0 1

0 1 1 0

0 1 1 1

1 1 0 1

1 1 1 0

1 0 1 0

1 0 1 0

0 0 11

1 1 00

Repetition
Decoder

Odd code

RM(1, 2)
Decoder

Repetition
Decoder

Repetition
Decoder

Repetition
Decoder

(b) Example of RM-WiSARD PUF architecture with concatenated code (tuple

rotations)[2].

Figure 3.5: Example of RM-WiSARD PUF architecture with concatenated code [2].

25

3.2.1 Experimental Setup

The experiments for all PUF designs are simulated in Python and the relevant SRAM

circuit data is obtained from SPICE simulations using 45 nm transistor models [80].

Each PUF receives a 64-bit input challenge to produce a 1-bit response. The Dis-

criminator SRAM cells corresponding to each PUF instance are initialized with the

random power-on states such that the average number of 1’s and 0’s are equal. Table

3.1 contains the general details about the WNN designs. For designs with 9 RAM

blocks, 7 are addressed by 8-bit tuples while the remaining two use 4-bit tuples.

The extended address generation designs assume 2 extra bits and 2 rotations for

the respective implementations. RM(1, 3) decoder is utilized for all RM-WiSARD

PUF design variants. Except original WiSARD PUF, all designs assume a fixed

input-to-tuple mapping across PUFs, as depicted in Figure 3.2.

Table 3.1: WiSARD PUF design architectures for 64-bit challenges [2].
#RAM Blocks #Addresses #SRAMs

WiSARD PUF 9 7 · 28 + 2 · 24 1, 824
WiSARD PUF
(fixed tuple)

9 7 · 28 + 2 · 24 1, 824

RM-WiSARD PUF 8 8 · 28 2, 048
WiSARD PUF + 2

Extra bits
9 7 · 210 + 2 · 26 7, 296

WiSARD PUF + 2
rotations

9 7 · 28 + 2 · 24 1, 824

RM-WiSARD PUF
+ 2 Extra bits

8 8 · 210 8, 192

RM-WiSARD
PUF + 2 rotations

8 8 · 28 2, 048

3.2.2 Uniqueness

Uniqueness is a property wherein indicates the level of di↵erences among the re-

sponses produced from various PUF instances when they receive the same chal-

lenge. Inter-class Hamming distance (HD) is the metric used to determine unique-

ness, which calculates the Hamming distances between the responses of each pair of

PUFs for the same challenge. Then, the average of inter-class HD, dinter, is calcu-

lated considering the HD results over many challenges and PUF instances according

to the following formula:

dinter =
2

k(k � 1)

k�1X

i=1

kX

j=i+1

HD(ri, rj)

n
(3.1)

26

(a) WiSARD PUF. (b) WiSARD PUF with Fixed Tuples.

(c) WiSARD PUF with extra bits. (d) WiSARD PUF with tuple rotation.

(e) RM-WiSARD PUF. (f) RM-WiSARD PUF with extra bits.

(g) RM-WiSARD PUF with tuple rotation.

Figure 3.6: Inter-class Hamming Distance (uniqueness) distribution for WiSARD
PUFs.

27

where k is amount of PUFs, n is the total of bit responses andHD(ri, rj) is Hamming

distance between responses of the PUF instances i and j to a particular challenge.

A PUF is considered ideal when the normalized inter-class HD = 0.5, that is, on

average 50% of the response bits are di↵erent.

For this experiment, (k =) 1000 PUF instances were evaluated for each design,

(n =) 1000 challenges were applied to each PUF to produce the total of 1000 response

bits. Figure 3.6 presents the uniqueness results for the several PUF designs. All

normalized inter-class HD distributions behavior akin Normal distribution clustering

the distances around the average with small standard deviation.

Overall, every designs achieved the mean of normalized inter-class HD close

to the ideal 0.5 (almost 500 bits are di↵erent), while the original WiSARD PUF

(random input-to-tuple mapping) resulted in the highest normalized HD. Between

the extended address generation designs, the tuple rotation o↵ered better results in

comparison to extra bits approach. Additionally, the RM-WiSARD variants have

smaller standard deviation, close to the original WiSARD PUF. While the fixed

tuple mapping of challenges was adopted for the majority of the WiSARD PUF

designs, an interesting point is explore random challenge mapping in hardware in

order to obtain an e�cient way to provide greater uniqueness to the model.

3.2.3 Reliability

Reliability is the property to ensure the generation of the correct responses given the

same challenges in any condition variations, such as in the presence of noise. Intra-

class Hamming distance is the metric used to determine reliability, that calculates

the Hamming distance between the correct responses (ri) extracted from a PUF

under ideal conditions and the set (m) of noisy responses (r0
i
) by introducing errors

in RAM locations across multiple power-ons. Then, the average of intra-class HD,

dintra, is calculated over the HD results as:

dintra =
1

m

mX

t=1

HD(ri, r0i,t)

n
(3.2)

where n is the number of CRPs collected from each PUF andHD(ri, r0i,t) is Hamming

distance between responses of the ideal PUF instance i and its t-th noisy instance to

a particular challenge. A PUF is considered ideal when the normalized intra-class

HD = 0 for any challenge, representing 100% reliability. In other words, on average

0% of the response bits are di↵erent or 100% of the response bits are equals.

The noisy conditions are simulated by considering each SRAM cell has an embed-

ded inherent error rate across multiple power-ons. Roel Maes introduced heteroge-

neous error modeling with cell-specific error probabilities to evaluate the reliability

28

(a) WiSARD PUF. (b) WiSARD PUF with Fixed Tuples.

(c) WiSARD PUF with extra bits. (d) WiSARD PUF with tuple rotation.

(e) RM-WiSARD PUF. (f) RM-WiSARD PUF with extra bits.

(g) RM-WiSARD PUF with tuple rotation.

Figure 3.7: Intra-class Hamming Distance (reliability) distribution.

29

of PUFs with high accuracy [77]. The proposed 2-parameter error model associates

an error probability pe,i at each SRAM cell and defines a random variable Pe to

sample all values of pe,i, according to the distribution:

cdfPe(x) = �1 ·
Z ��1(x)

�1
�(�u) · ('(�1u+ �2) + '(�1u� �2))du

where �(x) is cdf of Standard Normal Distribution, '(x) is pdf of Standard Normal

Distribution and �1 and �2 are input parameters. 10, 000 SRAM cells were simulated

in 45 nm CMOS technology [80] in the presence of thermal noise and the error rates

for each instance were obtained across 1000 power-ons. The data was curve-fitted

to obtain the input parameters, found to be �1 = 0.2916 and �2 = 1.9062. Thus,

the error rates for an arbitrary number of SRAM cells of WNN PUFs are generated

by applying the methodology proposed by Maes [77].

The WiSARD PUF designs are simulated to produce the responses across mul-

tiple power-ons applying the same challenges. For each design, 100 PUF instances

were analyzed where each one received (n =) 1000 challenges and for each challenge

(m =) 100 noisy responses were generated by simulating multiple power-ons for the

SRAM cells. Figure 3.7 shows the reliability results for the various PUF designs.

Original WiSARD PUF performs better than all the other variants. In contrast

with the uniqueness results, the extra bits o↵ered better reliability in comparison to

tuple rotation approach. It is possible further improve reliability by utilizing di↵er-

ent processing schemes for the RAM block outputs. Those schemes will be targeted

in the future works.

3.2.4 Machine Learning Attack Resistance

Machine learning techniques like Logistic Regression (LR) and Support Vector Ma-

chine (SVM) have demonstrated the ability to clone previous digital Strong PUF

designs [23]. Advanced machine learning (ML) techniques based on ensemble meta-

algorithms, like Gradient Boosting, were successful committed to break even analog

Strong PUFs by Vijayakumar et al. [27], that were initially resistant to SVM. There-

fore, LR, SVM and Gradient Boosting (Grad Boost) are used to measure the attack

resilience of the proposed PUF designs.

The machine learning algorithms were implemented in Python using the scikit-

learn tools [81]. Gradient Boosting was configured with the number of estimators set

at 128 and learning rate of 0.01. For LR, the inverse of the regularization strength

was set to a value of 10�5. SVM utilizes radial basis function (RBF) kernel machines

to model non-linearly separable functions as linearly separable in higher dimensions.

For each design, 100 PUF instances were analyzed and 150, 000 CRPs were collected

30

from each PUF instance of which 100, 000 CRPs were used for training to obtain the

cloned PUF model and 50, 000 CRPs were applied for testing the machine learning

attack accuracy. A Strong PUF is considered ideal when machine learning techniques

achieve low accuracy to learn its challenge-response mapping. A chip cloned with

on average of 50% of accuracy by these techniques is acceptable since it is akin to

random guessing.

Table 3.2 tabulates the mean and standard deviation of accuracies obtained from

discussed ML algorithms for each PUF architecture. Gradient Boosting achieved the

highest learning accuracy to clone the models and all RM-WiSARD PUF variants

o↵ered high machine learning resistance (lower accuracies) across the various learn-

ing algorithms with ’RM-WiSARD PUF with Tuple rotation’ providing the best

results. Figure 3.8 presents the accuracy distribution of Gradient Boosting, as it

had the highest learning accuracy results compared to SVM and LR. RM-WiSARD

with tuple rotation design obtained the lowest accuracies with small standard de-

viation indicating it as the most resistance design against machine learning attack.

Applying extra bits or tuple rotation modifications to the original WiSARD PUF

worsened the modeling attack resistance for those PUFs. Thus, the output genera-

tion of RAM blocks has to be addressed in order to determine how improve attack

resilience.

Table 3.2: Machine Learning results for WiSARD PUF variants [2].

PUF Type
Machine Learning Accuracy

Grad Boost SVM LR
µ � µ � µ �

WiSARD PUF 0.79 0.016 0.690 0.020 0.637 0.246
WiSARD PUF
(fixed tuple)

0.790 0.017 0.687 0.026 0.630 0.032

RM-WiSARD PUF 0.612 0.028 0.585 0.01 0.583 0.048
WiSARD PUF +

Extra bits
0.815 0.018 0.722 0.028 0.652 0.033

WiSARD PUF +
Tuple rotation

0.822 0.019 0.662 0.017 0.600 0.023

RM-WiSARD
PUF + Extra bits

0.667 0.047 0.61 0.04 0.602 0.039

RM-WiSARD PUF
+ Tuple rotation

0.594 0.011 0.584 0.008 0.584 0.008

3.2.5 Hardware Analysis

Since all proposed designs in Section 3.1 integrate a Weightless Neural Network

hardware and extra resources for concatenated code and fuzzy logic versions, the

31

(a) WiSARD PUF. (b) WiSARD PUF with Fixed Tuples.

(c) WiSARD PUF with extra bits. (d) WiSARD PUF with tuple rotation.

(e) RM-WiSARD PUF. (f) RM-WiSARD PUF with extra bits.

(g) RM-WiSARD PUF with tuple rotation.

Figure 3.8: Gradient Boosting accuracy distribution.

32

main resource costs originate from the number of SRAM cells, area cost of final

response bit generation and challenge-to-tuple mapping. The fixed mapping, illus-

trated in Figure 3.2, can be implemented with minimal resources and most designs

require  2K SRAM bits aside from extra-bits schemes which require large number

of SRAM bits, as shown in Table 3.1. The unit SRAM cell size of 0.346µm2, quoted

by Intel [82], in 45 nm technology node consumes an area of 710µm2 for 2K SRAMs

with additional area coming from interface circuitry. When IC is also utilized with

WNN for neural network applications, their resource costs over both applications

are amortized. Reed-Muller decoder hardware implementation detailed by Bösch

[34] consumes 248.976µm2 area for RM(1, 3) and the repetition code decoder 31.92

µm2 area, both costs determined by 45 nm standard cell library [83]. These re-

sources constitute a small overhead in comparison to the size of the RAM blocks

and further reduction can be obtained by sharing decoder hardware and serializing

the PUF operation.

3.3 Reliable Strong PUF Implementation

In this Section, an initial entropy source originated from reliable Weak PUFs is

combined with Weightless Neural Networks (WNNs), using the WiSARD model, to

construct reliable Strong PUF. Further, the basic WNN architecture, presented in

Section 3.1, is modified with the purpose of improving the machine learning attack

resistance of the Strong PUF. All presented architectures produce a 1-bit output

response, given an m-bit input challenge.

3.3.1 Reliable Weak PUF Entropy Source

As discussed in Section 2.1.3, there are extensive solutions to make Weak PUFs

reliable. To construct a reliable Strong PUF, Weak PUFs are utilized as the sources

of entropy in the PUF system. By using potent Weak PUF designs [44], robust error

correction mechanisms [41] and techniques such as accelerated aging and masking

[40] enable to create a highly reliable binary string (or secret key) from an array of

Weak PUFs. Such a binary string represents the process variation dependence of

the final Strong PUF design and is unique to each IC.

In this work, the objective is to find the smallest length of the binary string

required for creating a Strong PUF with high uniqueness and machine learning

attack resistance. In addition, by figuring out the desired Strong PUF, it is possible

to determine the smallest entropy source results to build the Strong PUF with

smallest area. The initial reliable Weak PUF is set up to 256, 128, 64 or 32 bits

that will be used to fill WNN RAM cells.

33

3.3.2 Complete Strong PUF architecture

EntropyEntropy Source

Response

Register

0/1

Challenge

WNN PUF

256

128

64
32

R0

R1

R2

R3

256

Counter/

RM

Figure 3.9: Reliable Strong PUF implementation [3].

The RAM contents are filled with the reliable Weak PUF bits in an equiprobable

manner to reduce bias in the system. For example, if there are 212 total RAM

locations in the WNN and 27 reliable bits from Weak PUFs are obtained, then each

bit needs to be randomly mapped to 212/27 (= 32) unique locations. The random

mapping can be implemented in hardware by either hard-wiring each Weak PUF

bit to the appropriate RAM cell or using a crossbar network.

The complete Strong PUF implementation, as illustrated in Figure 3.9, keeps a

256-bit register used to store the Weak PUF bits. The register itself receives its data

from an initial number of reliable Weak PUFs, ranging from 32 to 256 bits. When

the number of initial reliable bits does not complete the 256-bit register, the relevant

number of copies are made to fill the total of 256 bits. Then, register bits are used

to load the WNN RAM locations and the WNN processes the input challenges to

produce the final 1-bit response.

3.4 Reliable Strong PUF - Experimental Setup

and Results

The proposed reliable designs, presented in Section 3.3, are evaluated to figure out

how the size of the initial entropy source in the form of reliable Weak PUF bits

influences the machine learning resistance and uniqueness of Strong PUF. Lastly,

the results are analyzed with the purpose of identifying the minimum entropy source

size that can provide higher machine learning resistance and high uniqueness. Since

in Section 3.3 the Weak PUFs have high reliability, all experiments consider that

the architectures have 100% reliability.

34

3.4.1 Experimental Setup

The experiments for all PUF designs are simulated in Python and the relevant

SRAM circuit parameters are obtained from SPICE simulations using 45 nm tran-

sistor models [80]. Each PUF applies a 64-bit input challenge and produces a 1-bit

response. The Discriminator SRAM cell contents are filled according to the contents

of the 256-bit register which, in turn, is loaded by the Weak PUF entropy source, as

described in Section 3.3.2. The Weak PUFs in the entropy source are unique across

PUF instances having equal number of 1’s and 0’s.

In this Section, the general details about WNN designs simulated are tabulated

in Table 3.3. Note that the extra bits approaches were not included due to worst

results discussed in Section 3.2. For designs that have 9 total RAM blocks, 7 are

addressed by 8-bit tuples while the remaining two use 4-bit tuples. The designs

with tuple rotations consider 2 rotations and the RM(1, 3) decoder is utilized for

response generation by both RM-WiSARD PUF design variants. Finally, all the

designs assume a fixed input-to-tuple mapping across PUFs, as depicted in Figure

3.2.

Table 3.3: Reliable WiSARD PUF Architectures with 64-bit challenges [3].
#RAM Blocks # Addresses # SRAMs

WiSARD PUF 9 7 · 28 + 2 · 24 1, 824
RM-WiSARD PUF 8 8 · 28 2, 048
WiSARD PUF +
Tuple rotation

9 7 · 28 + 2 · 24 1, 824

RM-WiSARD PUF
+ Tuple rotation

8 8 · 28 2, 048

3.4.2 Uniqueness

Section 3.2.2 defines uniqueness. For this experiment, 100 entropy source-to-WNN

random mappings were generated for each PUF architecture. For each Strong PUF

design, (n =) 1000 challenges were applied for each one of the (k =) 100 PUF

instances. The entropy size was varied to 32, 64, 128 and 256 Weak PUF bits in

each PUF instance, as shown in Figure 3.9.

The uniqueness results for di↵erent entropy source sizes are presented in Figure

3.10 and Figure 3.11, for WiSARD PUF versions, and Figure 3.12 and Figure 3.13,

for RM-WiSARD PUF variants. These results were obtained by the best entropy

source random mapping among the 100 generated mappings. For all designs and

entropy source sizes, the mean of inter-class HD was closed to the ideal 0.5. The

standard deviation decreases as the entropy source size increases in any given design.

35

The original RM-WiSARD PUF with a 256-bit entropy source o↵ered the lowest

standard deviation with the mean inter-class HD of 0.4858.

(a) Entropy size = 32. (b) Entropy size = 64.

(c) Entropy size = 128. (d) Entropy size = 256.

Figure 3.10: Uniqueness distribution for WiSARD PUF with Fixed Tuples varying
Entropy Source sizes.

3.4.3 Machine Learning Resistance

Section 3.2.4 defines Machine Learning Resistance. In this experiment, only Gradi-

ent Boosting (Grad Boost) is used to estimate the attack resistance of the proposed

reliable designs as it consistently outperforms LR and SVM.

Gradient Boosting was implemented in Python using the scikit-learn tools [81]

with the number of estimators set at 128 and learning rate of 0.01. For each sce-

nario, the 10 best entropy source mappings were selected from the 100 mappings

used by uniqueness results, representing the 10 smallest standard deviations. Thus,

the number of experiments are reduced with the shortlist of the candidates for ma-

chine learning analysis. For each design, 100 PUF instances were simulated with

150, 000 CRPs, where 100, 000 CRPs were utilized for training a model with Gradi-

ent Boosting and 50, 000 CRPs were used to test the model in order to measure the

machine learning accuracy of the cloned PUF.

36

(a) Entropy size = 32. (b) Entropy size = 64.

(c) Entropy size = 128. (d) Entropy size = 256.

Figure 3.11: Uniqueness distribution for WiSARD PUF with tuple rotation varying
Entropy Source sizes.

37

(a) Entropy size = 32. (b) Entropy size = 64.

(c) Entropy size = 128. (d) Entropy size = 256.

Figure 3.12: Uniqueness distribution for RM-WiSARD PUF varying Entropy Source
sizes.

38

(a) Entropy size = 32. (b) Entropy size = 64.

(c) Entropy size = 128. (d) Entropy size = 256.

Figure 3.13: Uniqueness distribution for RM-WiSARD PUF with tuple rotation
varying Entropy Source sizes.

39

The average machine learning accuracy for each PUF architecture with varying

entropy source sizes is summarized in Table 3.4. The results consider the best map-

ping of the 10 shortlisted entropy source mappings. Figure 3.14 and Figure 3.15

present the distributions of machine learning accuracies for varying entropy sizes

for both RM-WiSARD PUF implementations. These implementations provided the

best resistance results (lower machine learning accuracies) compared to the other

architectures, with the best results o↵ered by RM-WiSARD design. Similarly to

the uniqueness results, when the entropy source size increases, the machine learning

accuracy and standard deviation decrease. The random entropy mapping is cho-

sen for each design by considering the results from an entropy source size of 256

bits and then, changing the size while keeping the same mapping. RM-WiSARD

PUF variants o↵ered higher machine learning resistance than the simple WiSARD

variants. Furthermore, it is possible to reach  65% machine learning accuracy by

considering just 32 initial reliable Weak PUF bits. Therefore, the RM-WiSARD

PUF with an entropy size of 32 can o↵er high machine learning resistance while still

exhibiting good uniqueness. That fact allows to realize a smaller Strong PUF.

Table 3.4: Gradient Boosting-based Machine Learning Accuracy for WiSARD PUF
variants [3].

PUF Type
Machine Learning Accuracy (%)
32 64 128 256

WiSARD PUF 82.60 81.87 81.74 81.26
RM-WiSARD PUF 60.93 60.17 59.39 59.00
WiSARD PUF + Tuple rotation 85.22 83.40 82.32 81.74
RM-WiSARD PUF + Tuple rotation 64.87 62.44 60.93 59.15

3.5 Concluding Remarks

Attack Scenario

In this work, the attacker can only intercept the PUF CRPs for use in model building

attacks, in other words, the PUF is considered as black box. The designer has to

take the necessary precautions such as: ensure that RAM block contents, required

in the neural network implementation, are not accessible outside the system and

prevent any data leakage from PUF system, especially the Weak PUF bits.

Further, the black box perspective provides protection against brute-force guess-

ing of possible bit values, even utilizing just 32 initial reliable Weak PUF bits.

Indeed, a designer can increase security by choosing a larger entropy source. Future

works will focus on studying the security of the PUF in case an attacker has knowl-

edge of the PUF architecture due to possession of a physical device. Possible fault

injection attacks will also be explored.

40

(a) Entropy size = 32. (b) Entropy size = 64.

(c) Entropy size = 128. (d) Entropy size = 256.

Figure 3.14: Gradient Boosting machine learning accuracy distributions for RM-
WiSARD PUF.

41

(a) Entropy size = 32. (b) Entropy size = 64.

(c) Entropy size = 128. (d) Entropy size = 256.

Figure 3.15: Gradient Boosting machine learning accuracy distributions for RM-
WiSARD PUF with tuple rotation.

42

Hardware Implementation

The major resource costs for the reliable designs come from the number of WNN

memory cells required. As presented from Table 3.3, the WNN implementations

require a maximum of 2K bits and the details of hardware resources are discussed

in Section 3.2.5.

The Weak PUF block required to generate the reliable bits for the WNN is

other area intensive unit. As demonstrated from Figure 3.12 and Table 3.4, the

RM-WiSARD PUF architectures o↵er both high uniqueness and machine learning

resistance by considering just 32 initial reliable Weak PUF bits. Considering the de-

tails provided by Vijayakumar et al. [41] and assuming a 45 nm standard cell library

[83], the final reliable 32 bits can be obtained by using 16 : 1 mux implementation

with a 5% observable yield loss that necessitates 48 (2 16Z) cells. This results in

area of ⇡ 550µm2, which is significantly less than the area that the WNN memory

cells need.

The use of keyed hash functions is unfeasible with Weak PUF bits to obtain a

Strong PUF implementation, as Keccak [84]. The area for an e�cient keyed hash

implementation was found to be 2280 gate-equivalents [84] or ⇡ 1900µm2 in 45 nm

standard cell library [83]. As discussed in Section 3.2.5, the majority of the area

in the design is dependent on the RAM implementation with 2K SRAM unit cells

occupying 710µm2 in 45 nm. The area of PUF is e�cient compared to the keyed

hash function.

The experiment results assumed the best random mapping between the Weak

PUF bits and WNN. However, other random mappings can yield similar favorable

results in terms of machine learning resistance. Hence, it might be possible for a

designer to analyze multiple such mappings and incorporate them into a design, with

the ability to choose one among them. The WNN mapping can be built dependent

on the Weak PUF bit values which are unique to each IC. It implies further enhance

the Strong PUF security by foregoing a fixed mapping across all ICs. That circuitry

will be more costly than the hard-wired option.

Table 3.5: Combinational Logic implementations of PUF with varying Entropy
Sources.

Entropy Source (bits) Area (µm2)

32 1710

64 2060

128 2400

256 2650

43

Figure 3.16: Combinational logic-based implementation of Strong PUF [3].

Alternatively, PUF implementation can be based on two mapping operations.

The first mapping is between the input challenge to the tuple for addressing the RAM

blocks. The second mapping is for the RAM content based on the Weak PUF entropy

source. These maps can be implemented as a 2D crossbar or as combinational logic.

Figure 3.16 shows the schematic for a combinational system. The RAM Select is

used for virtual RAM block (Ri) selection while the specific bit is selected via Bit

Select control. Table 3.5 summarizes the silicon areas, in 45 nm standard cell library

[83], for varying sizes of the entropy source. One observation is that the randomly

mapped implementation of the proposed Strong PUF compares favorably with the

optimized Keccak design.

Conclusion

Strong PUF is promise to provide a low cost alternative to cryptography-based

authentication. However, the Strong PUF implementations su↵er security issues so

that model building attacks using machine learning techniques can clone the circuit

with high accuracy. In addition, their unreliability demands the increase on the

number of CRPs to authenticate properly. Hence, there is still need to implement

a Strong PUF architecture that provides high reliability and greater resistance to

machine learning attacks.

In this work, two issues were addressed. Former, a novel Strong PUF architecture

integrating WiSARD Neural Network (WNN) hardware was proposed to increase

machine learning attack resistance and, further, extensions of the original design

were explored. The promising results demonstrate as neural networks could be viable

to create Strong PUF candidates achieving high resistance against machine learning

attack, uniqueness and reliability with low resource overhead. Latter, an initial

44

reliable Weak PUF entropy source was mapped into WNN to construct reliable

Strong PUFs. The minimum entropy source analysis shows that it is possible to

create highly reliable Strong PUFs with < 65% ML accuracy by using as few as 32

reliable Weak PUF bits.

45

Chapter 4

E�cient Testing Strong PUF for

Uniqueness

As introduced in Section 2.1, PUFs promise unclonability property through high

uniqueness that relies on manufacturing process variations. Nevertheless, that prop-

erty cannot be guaranteed only by design since the internal components are not con-

trollable and, consequently, two PUFs might have identical characteristics. There-

fore, testing manufactured PUFs is an essential process to find out the circuits that

failed to provide the desired property. Although the problem of testing PUF for

uniqueness is critical, it has not received much research attention.

In a population of PUFs, high uniqueness can be trivially ensured by collecting

their responses and performing an o✏ine comparison. This method requires large

resource costs as chips are tested several times over testing production line on multi-

socketing. Systematic methods and metrics to analyze PUF characteristics have

focused on design time evaluation [85]. To evaluate security of PUF, Majoobi et al.

have proposed techniques that have reported inadequate security of various PUFs

such as linear PUFs and feed-forwards PUFs [86]. These techniques and metrics can

be implemented for multi-socketing and are suitable for benchmarking and o✏ine

evaluation during design phase or pre-high volume manufacturing phase. In High

Volume Manufacturing (HVM) testing, the decision to accept or reject chips should

be performed in real-time at the tester. Thus, to adapt above mechanisms in HVM,

it would be required to use additional steps to discard non-unique chips resulting in

extra cost.

Built-in-self Test (BIST) based schemes have been explored to test Fuzzy Ex-

tractor [87], which is one of the main part of memory-based PUF, and to evaluate

unpredictability and reliability of PUFs [88]. However, these techniques have not

considered the problem of testing PUF for uniqueness. Recently, Vijayakumar et al.

[89] have proposed techniques for testing uniqueness based on design-for-test (DFT)

methods tailored for high-volume testing. Strong PUF testing mechanism performs

46

a pass/fail decision for each new chip by comparing its responses to the similar

responses of passed chips shortlisted from a multi-index hashing (MIH) structure

introduced in Section 2.5. MIH is maintained to fast search the nearest neighbor in

all passed chips responses in order to achieve an e�cient run-time and acceptable

rates of false-accepted and yield-loss.

As Strong PUFs are practical solutions to implement low-authentication in IoT

applications, millions or billions of PUFs can be manufactured by a single manu-

facturing facility. Uniqueness testing utilizing MIH can su↵er from extremely high

memory cost as it requires to maintain the entire database of responses in main

memory to accurately decide the rejection or acceptance of a chip. In addition, the

memory cost increases to maintain the MIH structure which replicates a part of

response into multiple hash tables. Motivated by the Strong PUF testing proposed

by Vijayakumar et al. [89], this Chapter explores MIH implementations and inves-

tigates online solutions for nearest neighbor search in Hamming space problem with

the aim at reducing the storage space while keeping an e�cient performance.

4.1 MIH for Testing Strong PUFs

In this Section, the problem of uniqueness testing for Strong PUFs is formulated.

Next, the methodology proposed by Vijayakumar et al. [89] is detailed.

4.1.1 Metrics for Uniqueness

Uniqueness is calculated by Inter-class Hamming distance (HD) metric that rep-

resents the di↵erences among the responses produced from various PUF instances

when they receive the same challenge. The average of inter-class HD, dinter, is cal-

culated considering the HD results from each pair of PUFs over many challenges

according to the following formula:

dinter =
2

k(k � 1)

k�1X

i=1

kX

j=i+1

HD(ri, rj)

n
(4.1)

where k is amount of PUFs, n is the total of bit responses andHD(ri, rj) is Hamming

distance between responses of the PUF instances i and j to a particular challenge.

4.1.2 Problem Statement

Considering a manufacturer has to test N manufactured PUFs for uniqueness, let us

suppose that Npassed is the number of chips tested and passed by the tester and n-bit

responses were obtained from each chip. Let Ri be the n-bit response from current

47

PUF i under test. The problem is defined as: (i) how to compare the current Ri to

the Npassed responses at real-time and (ii) how to realize pass/rejection decision for

uniqueness based on responses.

To exemplify, let us assume that every time the tester extracts 1000-bit response

and compares it to Npassed responses stored in a database. One straightforward

solution would be to run a linear scan in the database comparing the current response

Ri to each one of Npassed responses which would take O(n) run-time. This run-time

can be prohibitively long as the number of manufactured chips reaches in millions.

Other solution would be to use hash table/dictionary based storage for e�cient

exact pattern matching. For example, let us suppose that a chip will be rejected if

its response di↵ers at most 10% HD, that is 100 bits, from any of Npassed responses.

It requires to generate all the combinations di↵ering at most 100 bits and execute
�
1000
100

�
⇡ 10139 look-ups which is infeasible for real-time constraint.

4.1.3 Multi-Index Hashing for Testing PUF

MIH is used to reduce the search time by minimizing the number of passed chips

verified with the current chip for testing uniqueness.

An example of MIH search with 5 hash tables for the problem of testing PUF

uniqueness is detailed below. Let us consider a 100-bit response of a chip is received

to find all neighbors that are at 10 Hamming distance from it. First, 100-bit response

is divided into five 20-bit sub-strings which will be used as key for each hash table.

According to equation 2.1, if two 100-bit responses di↵er by at most 10 bits, then

at least one of the corresponding sub-strings di↵er at least by 10/5 = 2 bits. So,

all 5 hash tables are searched for neighbors at radius r = 2 from each 20-bit sub-

string. As result, the number of lookups is decreased from
�
100
10

�
⇡ 1, 7 ⇥ 1013 to

5 ⇥
�
20
2

�
= 950. Then, each neighbor of the sub-string with value in the hash table

has to be verified with the entire 100-bit response to confirm whether it is a true

10-distant neighbor or not.

4.1.4 Uniqueness Test Procedure

As reported in [89], the practical number of CRPs for tester evaluation is determined

in 1000 bits and the decision threshold is defined in 10%. In other words, a chip is

considered identical if its 1000-bit response di↵ers at most 100 bits (10%) from any

passed chip. These parameters were obtained by empirical simulations.

The procedure for testing uniqueness is illustrated in Figure 4.1. The tester

keeps a database with 1000-bit response of all passed chips. During testing, each

chip produces 1000-bit response and sends to the tester. A pass/fail decision is

performed by comparing the candidate responses selected from MIH search with the

48

Chip Under Test

Strong PUF

Tester

Database

100-bit

Shortlist database
candidates

MIH

HD <= 100

1000-bit response

Yes

Chip RejectedChip Passed

Add response to database

1000-bit candidate

No

Figure 4.1: Example of testing Strong PUF. MIH has 5 hash tables and the neighbors
are selected by searching at radius r = 20.

current chip considering the decision threshold. The first 100 bits of the response

are used by MIH to find all neighbor candidates with similar responses at radius 20,

as exemplified in Section 4.1.3. As MIH has 5 hash tables, each 20-bit sub-string is

searched at radius r = 20/5 = 4 in each hash table. Although using 10% threshold

indicates the MIH radius r = 10, the radius r = 20 is applied to minimize the yield

loss (a good chip is rejected) and false-accepts (a bad chip is accepted) of chips. At

the end, the found candidates are evaluated using the complete 1000-bit response

to confirm the true HD. If HD from any candidate response is lower the decision

threshold (HD  100), then the current chip is rejected. Otherwise, the chip is

accepted and its response is added to the database.

4.2 Analyzing MIH Implementations

This section details MIH implementations applied to the testing procedure for Strong

PUF explained in Section 4.1.4. First, the adaptation of original MIH implementa-

tion [76] to testing procedure is discussed. Then, an optimized implementation is

elaborated and evaluated.

4.2.1 Original MIH Implementation

As introduced in Section 2.5, the original MIH copies a binary code into m hash ta-

bles indexed by one of its m sub-strings. Figure 4.2 illustrates the testing procedure

implemented with original MIH. Since 100-bit of Strong PUF response is used by

MIH with 5 hash tables, 20-bit key maps a list of 100-bit values (or the remaining 80

49

01001111011001001110

K(1,1)

K(1,2)

K(1,i)

80 bits

80 bits

80 bits

...

K(2,1)

K(2,2)

K(2,i)

60 bits

...

K(3,1)

K(3,2)

K(3,i)

...

K(4,1)

K(4,2)

K(4,i)

...

K(5,1)

K(5,2)

K(5,i)

80 bits

80 bits

80 bits

...

10110010001111110101 10000111101010011000 11101101001100111101 00100001100101111111

20 bits

20 bits

20 bits

60 bits

60 bits

60 bits 20 bits

60 bits

60 bits

20 bits

20 bits

40 bits40 bits

40 bits

40 bits

40 bits

40 bits

100 bits

100 bits

100 bits

...

100-bit Response

Candidates

HD <= 100 (10%)

HD <= 20 (20%)

20-bit 20-bit 20-bit 20-bit 20-bit

<= 100

Reject

Yes

1000-bit Response

Accept

1000 bits

...

100 bits

...

1000 bits100 bits

1000 bits

...

100 bits

...

1000 bits100 bits

1000 bits

...

100 bits

...

No

Response Mapping

Figure 4.2: Example of testing Strong PUF using original MIH.

bits) in each hash table. During MIH searching, 0-4-distant neighbor keys from each

corresponding sub-string are looked up and all matched 100-bit values are evaluated

with 100-bit query. If HD  20 then the matched 100-bit value is selected as candi-

date for the last step which verifies the HD decision threshold  100 with the entire

1000-bit response. For this last verification, a response mapping table is required to

map 100-bit candidates to 1000-bit responses already stored in the database.

4.2.2 MIH Implementation with Global Index

The original MIH implementation, presented in Section 4.2.1, requires a response

mapping table to obtain the 1000-bit responses pointed out by a 100-bit candidate.

As the database already stores 1000-bit response, this table can be removed if the

global index of the response stored in the database is held by MIH. The modified

MIH copies a global index into 5 hash tables, instead of copying 100 bits as depicted

in Figure 4.3. The global index length can be setup to 32-bit that is enough to create

indexes for responses of billions tested chips stored in the database. During the MIH

search, all global indexes looked up by the neighbor keys in each hash table are used

to access the 100-bit response from database. Similar to original MIH, the 100-bits

are evaluated to select the candidates for the last verification. As the candidates are

also global indexes, the 1000-bit neighbors are directly accessed from database and

compared to the query for finally making the pass/fail decision.

This optimization eliminates the response mapping table and reduces the value

length from 100 bits to 32 bits stored for each hash table.

50

01001111011001001110

K(1,1)

K(1,2)

K(1,i)

[1, 2, 3]

[4, 5, 6]

[7, 11]

...

K(2,1)

K(2,2)

K(2,i)

...

K(3,1)

K(3,2)

K(3,i)

...

K(4,1)

K(4,2)

K(4,i)

...

K(5,1)

K(5,2)

K(5,i)

...

10110010001111110101 10000111101010011000 11101101001100111101 00100001100101111111

Index

Index

Index

...

100-bit Response

Candidates

HD <= 100 (10%)

HD <= 20 (20%)

20-bit 20-bit 20-bit 20-bit 20-bit

<= 100

Reject

Yes

1000-bit Response

[1, 2, 3] [6, 7, 8] [11, 12, 13] [5, 9, 10]

[7, 11, 5]

[4, 6]

[1, 2, 11]

[3, 4, 5]

[1, 2, 7]

[5, 6, 8]

[1, 6, 8]

[2, 3]

1000 bits

1000 bits

1000 bits

1000 bits

...

Index

Index

Index

Index

...

1000 bitsIndex

Global Database

Accept

No

Figure 4.3: Example of testing Strong PUF using MIH with global index.

4.3 Strategies for Memory Reduction

The MIH implementations discussed in Section 4.2 require to maintain the PUF

responses in main memory for pass/fail verification with 1000 bits. As the database

grows rapidly, the memory cost may become impractical. This Section defines two

strategies to mitigate the memory cost.

4.3.1 Distance Free Computation Strategy

The distance free computation strategy replaces the HD calculation used to select

the candidates with HD  20 during MIH searching. The idea is based on distance-

computation-free search scheme proposed by Song et al. [90], which have observed

that HD is naturally embedded in the inverted multi-index structure like MIH. Since

MIH with global index copies each index i to m hash tables, a query is very similar

to the response pointed out by index i if almost all matched hash table locations

have stored i. Case all m hash tables return the same index i, so it means that the

query has already been inserted into MIH.

An example is shown in Figure 4.4. A query is searched on MIH with 5 hash

tables and the highlighted (green) hash table locations are matched by the neighbors

of each sub-string. Instead of using the indexes to access the 100-bit responses for

HD calculation, the accessed indexes are counted across the hash tables. The index

counter varies from 0 to 5 (number of hash tables) and the closer to 5 it is more

similar to the query. In the example, index 2 is more identical as its index counter

is 4, that is, 4 sub-strings are equal to the query. Therefore, the similarity can be

51

K(1,1)

K(1,2)

K(1,i)

[1, 2, 3]

[4, 5, 6]

[7, 11]

...

K(2,1)

K(2,2)

K(2,i)

...

K(3,1)

K(3,2)

K(3,i)

...

K(4,1)

K(4,2)

K(4,i)

...

K(5,1)

K(5,2)

K(5,i)

...

Index

Index

Index

...

Candidates

Index Counter >= 2

[1, 2, 3] [6, 7, 8] [11, 12, 13] [5, 9, 10]

[7, 11, 5]

[4, 6]

[1, 2, 11]

[3, 4, 5]

[1, 2, 7]

[5, 6, 8]

[1, 6, 8]

[2, 3]

Hash Table 1

1

1

1

Index

1

2

3

05

06

08

011

Hash Table 2

1

1

1

0

0

0

0

Hash Table 3

1

1

0

0

0

0

1

Hash Table 4

0

0

0

1

1

1

0

Hash Table 5

0

1

1

0

0

0

0

 Counter

3

4

3

1

1

1

1

Figure 4.4: Example of distance free computation strategy.

established by defining an index counter threshold based on the bitmatrix idea used

in [91]. The indexes are selected as candidates if their index counter are greater or

equal than the index counter threshold (e.g. � 2).

01001111011001001110

K(1,1)

K(1,2)

K(1,i)

[1, 2, 3]

[4, 5, 6]

[7, 11]

...

K(2,1)

K(2,2)

K(2,i)

...

K(3,1)

K(3,2)

K(3,i)

...

K(4,1)

K(4,2)

K(4,i)

...

K(5,1)

K(5,2)

K(5,i)

...

10110010001111110101 10000111101010011000 11101101001100111101 00100001100101111111

Index

Index

Index

...

100-bit Response

Candidates

HD <= 100 (10%)

Index Counter >= 2

20-bit 20-bit 20-bit 20-bit 20-bit

<= 100

Reject

Yes

1000-bit Response

[1, 2, 3] [6, 7, 8] [11, 12, 13] [5, 9, 10]

[7, 11, 5]

[4, 6]

[1, 2, 11]

[3, 4, 5]

[1, 2, 7]

[5, 6, 8]

[1, 6, 8]

[2, 3]

1000 bits

1000 bits

1000 bits

1000 bits

...

Index

Index

Index

Index

...

1000 bitsIndex

Global Database

Accept

No

Figure 4.5: Example of MIH using distance free computation strategy. An index
counter threshold is used to select the neighbor candidates.

By using distance free computation strategy, the database is not used during

MIH searching as illustrated in Figure 4.5.

52

4.3.2 Hamming Weight Strategy

The hamming weight strategy creates a compact representation of the responses

stored in the database. HammingWeight (HW) of a binary code is defined as number

of 1’s. The idea is based on the statement formulated by Eghbali et al. [92]: when

two binary code g and h di↵er by at most r bits then the di↵erence between their

Hamming weights is at most r. This statement establishes a relationship between

HD and HW and, thus, the HD calculation can be replaced by HW di↵erences

calculation. By calculating the di↵erence d of HW from two binary codes, they are

most likely identical if d tends to zero. Considering a binary code g = 11110000

(HW = 4), a 1-distant neighbor of g has HW = 4 � 1 = 3 (11100000) or HW =

4 + 1 = 5 (11110001). Applying the same logic, the 2-distant neighbor of g has

HW = 4 � 2 = 2 (11000000) or HW = 4 + 2 = 6 (11110011). So, HW di↵erence

d = 1 indicates the binary codes are likely 1-distant neighbors, d = 2 indicates

they are likely 2-distant neighbors and so on. Note that HW di↵erence n does

not guarantee two binary codes are exact n-distant neighbors such as binary code

h = 00000111 (HW = 3) is not 1-distant neighbor of g but 7-neighbor. The strategy

consists of splitting a 1000-bit response into p parts with s bits and store only the

integer which represents the HW from each part. As the HW varies from 0 to s, the

integer requires dlog2 s+ 1e bits.

125 bits

1000-bit Response

125 bits 125 bits 125 bits 125 bits 125 bits 125 bits 125 bits

7 bits 7 bits 7 bits 7 bits 7 bits 7 bits 7 bits 7 bits

56 bits Hamming Weight

7 bits 7 bits 7 bits 7 bits 7 bits 7 bits 7 bits 7 bits

- - - - - - - -

= 1 = -2 = 1 = 5 = -4 = 0 = -1 = -3 = 10

Total HW Difference = 1 + 2 + 5 + 4 + 0 + 1 + 3 + 10 = 26

HW = [0-125]

Figure 4.6: Example of hamming weight strategy. A 1000-bit response is split into
8 parts of 125 bits where the HW requires 7 bits resulting in total 56 bits.

An example of hamming weight strategy is presented in Figure 4.6. A 1000-

bit response is divided into 8 parts of 125 bits where each part has HW in range

0-125 represented by 7 bits. Consequently, the response representation is reduced

from 1000 to 8 ⇥ 7 = 56 bits. By using HW partitions of two responses (query

and candidate), the pass/fail decision is making by comparing if the sum of the

absolute HW di↵erences (in the example is 26) is less or equal than a HW di↵erence

threshold.

Figure 4.7 depicts MIH using hamming weight strategy. The hamming weight

53

01001111011001001110

K(1,1)

K(1,2)

K(1,i)

[1, 2, 3]

[4, 5, 6]

[7, 11]

...

K(2,1)

K(2,2)

K(2,i)

...

K(3,1)

K(3,2)

K(3,i)

...

K(4,1)

K(4,2)

K(4,i)

...

K(5,1)

K(5,2)

K(5,i)

...

10110010001111110101 10000111101010011000 11101101001100111101 00100001100101111111

Index

Index

Index

...

100-bit Response

Candidates

HD <= 100 (10%)

Index Counter >= 2

20-bit 20-bit 20-bit 20-bit 20-bit

<= 100

Reject

Yes

400-bit Hamming Weight

[1, 2, 3] [6, 7, 8] [11, 12, 13] [5, 9, 10]

[7, 11, 5]

[4, 6]

[1, 2, 11]

[3, 4, 5]

[1, 2, 7]

[5, 6, 8]

[1, 6, 8]

[2, 3]

Hamming Weight Database

Accept

No
4 bitsIndex

Index

Index

Index

...

Index

4 bits 4 bits ... 4 bits

4 bits 4 bits 4 bits ... 4 bits

4 bits 4 bits 4 bits ... 4 bits

4 bits 4 bits 4 bits ... 4 bits

4 bits 4 bits 4 bits ... 4 bits

...

400 bits

100 parts

Figure 4.7: Example of MIH using hamming weight strategy.

database is maintained in main memory instead of database with 1000-bit responses.

Similar to HD calculation, the total HW di↵erences are calculated and evaluated

with the decision threshold in order to decide if chip is rejected or accepted.

4.4 Experiments and Results

4.4.1 Experimental Setup

To compare the e↵ectiveness of the MIH implementations and strategies discussed

in Section 4.2 and 4.3, the experiments of quality test, memory consumption and

performance are performed in 10 dataset varying the number of PUFs from 100, 000

to 1, 000, 000. Each dataset was created to contain 1000-bit PUF responses with an

average of HD of 10%, that is, half of the chips will be rejected during testing. Both

MIH structures were implemented in C and MIH search is executed in parallel using

5 threads (one for each hash table). The experiments were performed on an Intel

Xeon E5-2640(2.6GHz) processor and 128GB of RAM.

4.4.2 Original MIH vs MIH with Global Index

The original MIH and MIH with global index implementations are evaluated. For

each dataset, the linear scan search was performed to generate the acceptance and

rejection results which will be used to compare with MIH results.

The quality test results are presented in Table 4.1. The yield loss is expressed

by False Rejected (FR) rate (chips should be accepted but were rejected) and the

54

faulty chip is indicated by False Accepted (FA) rate (chips should be rejected but

were accepted). The results are the same for both MIH implementations where all

datasets obtained low yield loss and faulty chip accepted.

Table 4.1: MIH quality test results. TR = True Rejected, FR = False Rejected, TA
= True Accepted, FA = False Accepted.

Resp TR % FR % TA % FA %
100K 49.977 0 50 0.23
200K 49.983 0 50 0.017
300K 49.98 0 50 0.02
400K 49.982 0 50 0.18
500K 49.982 0 50 0.018
600K 49.979 0 50 0.021
700K 49.982 0 50 0.018
800K 49.979 0 50 0.02
900K 49.983 0 50 0.016
1M 49.983 0.0001 50 0.017

Table 4.2: Performance and memory consumption for original MIH.
Resp Init

Time
(s)

Testing
Time
(s)

MIH
Memory
(MB)

Total
Memory
(MB)

100K 0.047 36.477 23.82 30.07
200K 0.059 88.419 27.63 39.99
300K 0.06 162.004 31.45 49.92
400K 0.08 250.8644 35.26 59.84
500K 0.085 354.9 39.08 69.76
600K 0.106 468.659 42.9 79.69
700K 0.118 617.834 46.71 89.6
800K 0.13 783.736 50.53 99.53
900K 0.143 965.167 54.34 109.45
1M 0.154 1133.502 58.16 119.37

For each dataset, the experiments were run 10 times and the average of the

performance was calculated. Table 4.2 and 4.3 show the performance and memory

consumption results for original MIH and MIH with global index, respectively. The

init time encompasses the initialization of database, MIH and response mapping

table, while the testing time comprises the testing procedure computation. The total

memory includes the MIH memory and response mapping table resources. MIH with

global index considerably reduced the total of memory compared to original MIH

by eliminating the response mapping table and reducing the hash table values from

100 to 32 bits. Also, it achieves comparable performance to the original MIH.

55

Table 4.3: Performance and memory consumption for MIH with global index.
Resp Init

Time
(s)

Testing
Time
(s)

MIH
Memory
(MB)

Total
Memory
(MB)

100K 0.014 36.203 20.95 20.95
200K 0.024 95.027 21.91 21.91
300K 0.029 171.814 22.86 22.86
400K 0.034 269.687 23.82 23.82
500K 0.05 393.606 24.77 24.77
600K 0.061 557.314 25.72 25.72
700K 0.07 690.128 26.68 26.68
800K 0.075 876.272 27.63 27.63
900K 0.076 1089.483 28.58 28.58
1M 0.092 1347.237 29.54 29.54

4.4.3 Strategy Thresholds Evaluation

The strategies presented in Section 4.3 rely on some threshold parameters to progress

the execution. To find the better threshold values, various quality test experiments

were run using di↵erent configurations.

100K 200K 300K 400K 500K 600K 700K 800K 900K 1M

0

2

4

6

8

10

12

False accepted rate vs free distance threshold

2 3 4 5

Number of Responses

%

Figure 4.8: Faulty chip rate for di↵erent configurations using distance free compu-
tation strategy. Each line represents one threshold configuration.

As discussed in Section 4.3.1, the distance free strategy utilizes the index counter

threshold to select a matched neighbor from MIH as candidate. The index counter

threshold was setup with values between 2 and 5 in all datasets. The results of

faulty chip rate are shown in Figure 4.8. The threshold configurations to 2 and 3

achieved low false-acceptance ratio. The index counter threshold = 2 was chosen to

next experiments due to it results in lower rates.

56

(a) True accepted rate (TA). The closer to 50% the better.

(b) False accepted rate (FA). The closer to 0% the better.

(c) True rejected rate (TR). The closer to 50% the better.

(d) False rejected rate (FR). The closer to 0% the better.

Figure 4.9: Experiment of true/false rates vs partition threshold. Each line repre-
sents a partition configuration and the thresholds vary from 0 to 100.

57

Table 4.4: The best HW di↵erence thresholds per partitions using 100K responses.
The best threshold is selected from 10 to 100 interval. The Bits column is the number
of bits per partition and MEM is the total of bits required for all HW partitions.

Parts Bits Threshold TA% FA% TR% FR% MEM
(bits)

4 250 20 28.12 9.53 40.47 21.88 32
5 200 20 34.89 12.89 37.11 15.11 40
8 125 30 35.65 8.69 41.31 14.35 56
10 100 40 29.66 7.15 42.85 20.34 70
20 50 40 49.73 7.87 42.13 0.27 120
25 40 50 49.51 1.64 48.36 0.48 150
40 25 60 49.99 0.83 49.17 0.01 200
50 20 70 50.00 0.06 49.94 0.00 250
100 10 90, 100 50.00 0.00 50.00 0.00 400
125 8 100 50.00 0.00 50.00 0.00 500
200 5 100 50.00 0.00 50.00 0.00 600
250 4 100 50.00 0.00 50.00 0.00 750

For hamming weight strategy, the HW di↵erence threshold is used to make the

pass/fail decision to reject or accept the chip as described in Section 4.3.2. To find

the number of partitions and threshold that obtain better results, the experiments

were performed with di↵erent configurations of number of partitions and thresholds

in the dataset with 100, 000 PUFs. For each scenario, the threshold varies from 0

to 100.

Figure 4.9 shows the acceptance (FA, TA) and rejection (FR, TR) rates for

di↵erent number of partitions and thresholds. The best results were achieved by

number of partitions above 50, where false rates are closer to 0% and true rates

are closer to 50%. The best thresholds per number of partition are summarized in

Table 4.4. From 50 partitions, the results reach the ideal rates (false = 0% and true

= 50%). The total memory increases as long as the number of partitions increases.

Thus, the better parameters are 100 partitions with 100 threshold replacing 1000-bit

response to 400 bits.

4.4.4 MIH Versions Analysis

Considering the best thresholds obtained for each strategy in Section 4.4.3, five

versions of MIH were evaluated: original MIH (MIH), MIH with global index (MIHI),

MIH with global index and distance free computation strategy (Free MIHI), MIH

with global index and hamming weight strategy (HW MIHI), and MIH with global

index and both strategies (Free HW MIHI). Each scenario was run 10 times.

The quality test results are tabulated in Table 4.5. Overall, all MIH versions

o↵ered low yield loss and faulty chip acceptance in datasets with low uniqueness.

58

Table 4.5: Quality test results for all MIH versions.
Responses Rates MIH MIHI Free HW Free HW

100K

TR% 49.977 49.977 50.0 49.977 50.0
FR% 0.0 0.0 0.0 0.0 0.0
TA% 50.0 50.0 50.0 50.0 50.0
FA% 0.023 0.023 0.0 0.023 0.0

200K

TR% 49.983 49.983 50.0 49.983 50.0
FR% 0.0 0.0 0.0 0.0 0.0
TA% 50.0 50.0 50.0 50.0 50.0
FA% 0.017 0.017 0.0 0.017 0.0

300K

TR% 49.98 49.98 49.9993 49.98 49.9993
FR% 0.0 0.0 0.0 0.0 0.0
TA% 50.0 50.0 50.0 50.0 50.0
FA% 0.02 0.02 0.0007 0.02 0.0007

400K

TR% 49.982 49.982 50.0 49.982 50.0
FR% 0.0 0.0 0.0 0.0 0.0
TA% 50.0 50.0 50.0 50.0 50.0
FA% 0.018 0.018 0.0 0.018 0.0

500K

TR% 49.982 49.982 50.0 49.982 50.0
FR% 0.0 0.0 0.0 0.0 0.0
TA% 50.0 50.0 50.0 50.0 50.0
FA% 0.018 0.018 0.0 0.018 0.0

600K

TR% 49.979 49.979 49.9995 49.979 49.9993
FR% 0.0 0.0 0.0 0.0 0.0002
TA% 50.0 50.0 50.0 50.0 49.9998
FA% 0.021 0.021 0.0005 0.021 0.0007

700K

TR% 49.982 49.982 49.9997 49.982 49.9997
FR% 0.0 0.0 0.0 0.0 0.0
TA% 50.0 50.0 50.0 50.0 50.0
FA% 0.018 0.018 0.0003 0.018 0.0003

800K

TR% 49.979 49.979 49.999875 49.979 49.99975
FR% 0.0 0.0 0.0 0.0 0.000125
TA% 50.0 50.0 50.0 50.0 49.999875
FA% 0.021 0.021 0.000125 0.021 0.00025

900K

TR% 49.983 49.983 49.9998 49.983 49.9997
FR% 0.0 0.0 0.0 0.0 0.0001
TA% 50.0 50.0 50.0 50.0 49.9999
FA% 0.017 0.017 0.0002 0.017 0.0003

1M

TR% 49.983 49.983 49.9996 49.983 49.9994
FR% 0.0 0.0 0.0001 0.0 0.0003
TA% 50.0 50.0 50.0 50.0 49.9998
FA% 0.017 0.017 0.0003 0.017 0.0005

59

Consequently, the strategies are shown as viable solutions and do not impact the

quality of the system.

100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

0

200

400

600

800

1000

1200

1400

1600

1800

Performance of MIH versions

MIH MIHI Free MIHI

HW MIHI HW Free MIHI

Number of Responses

S
e

c
o

n
d

s

Figure 4.10: Performance of all MIH versions. Each line represents one version.

100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

0

20

40

60

80

100

120

140

160

180

200

Memory cost of MIH versions

MIH MIHI Free MIHI HW MIHI HW Free MIHI

Number of Responses

M
e

m
o

ry
 (

M
B

)

Figure 4.11: Memory consumption of all MIH versions. The memory axis is the
total of the required space for MIH structure, response mapping table, database
and hamming weight database.

The performance results are presented in Figure 4.10. The original MIH achieved

the best results across the datasets. It was better than MIH with global index due

to it took full advantage of cache locality in HD calculation during MIH search,

accessing only 100 bits instead of 1000 bits from the database. The distance free

computation versions obtained the worst results as MIH search cannot totally run

in parallel. At some time, the hash tables have to be synchronized by index counter

60

addition. The hamming weight versions exhibited competitive performance in com-

parison with the corresponding versions without the strategy.

Finally, the memory consumption results are presented in Figure 4.11. The total

of memory space consists of the MIH structure, response mapping table, hamming

weight database and the database, according to the requirements of each version.

The hamming weight versions utilized fewer resources than other versions. By just

using the global index within MIH, it was possible to considerably reduce the mem-

ory cost. Additionally, the MIH resources can still be reduced by adjusting the hash

tables value length, since global index length was setup to 32 bits.

An interesting observation is that the two versions of MIH (Free MIHI and

HW Free MIHI, HW MIHI and MIHI) with closely curves in Figure 4.10 do not

have closely bars in Figure 4.11. This suggests a criteria for choosing which MIH

implementation would be best suited for the available environment. In terms of

memory consumption, Hamming Weight (HW) versions are the best options by

achieving competitive performance compared to other versions. The strategies and

global index optimization are practical alternatives which enable to save memory

resources in trade-o↵ of the performance loss.

4.5 Concluding Remarks

PUFs are expected to o↵er high uniqueness to ensure their unclonability property.

To guarantee this property, online techniques to test manufactured PUFs in high

volume manufacturing are required. This work analyzed an online testing method-

ology for Strong PUFs based on MIH and identified optimizations in order to reduce

the memory consumption while keeping acceptable performance. Two MIH imple-

mentations were discussed and evaluated. Also, the distance free computation and

hamming weight strategies were proposed to mitigate the memory cost. The re-

sults show that the memory cost can considerably be reduced at the expense of

performance loss.

61

Chapter 5

Deeply-Nested Implicit

Information Flow Tracking

Sensitive information leakage has been widely exploited by malicious attacks on

personal computers like the recently reported Meltdown [93] and Spectre [94] attacks.

As introduced in Section 2.3, information flow tracking is a useful mechanism in

protecting software from malicious inputs. In Dynamic Information Flow Tracking

(DIFT), a program identifies the sources of its untrusted inputs, and tracks the flow

of such inputs through the course of its execution. DIFT may be used to prevent

return address oriented attacks and malicious system calls [95].

DIFT consists of certain rules for tagging the initial data with a taint value

and tracking it along the program execution path. During instruction execution,

the taints associated with the source operands are propagated to the destination

operand, tracking the information flow related to the data operations at runtime.

At some point, an alarm is triggered when an inappropriate use of the tainted data

is detected, for example, if it is copied to a data stream on the output channel. In

previous works [52, 59, 96, 97], DIFT has been used as viable mechanism to detect

attacks that leak secret information with explicit taint propagation.

Attackers can trick an explicit DIFT mechanism through insertion of implicit

flows as discussed in [19], where the tracked sensitive data is propagated to untracked

data by executing control flow instructions with no direct data transfers. This

generates the error called under-tainting where data is not marked as tainted in

cases that should be marked. In an execution flow of a conditional branch, the

data value which influences the branch result may also a↵ect data that is processed

in an actual path. Hence, DIFT solutions should not only consider the explicit

propagation to track the sensitive data, but also implicit flow propagation in order

to defend against these advanced attacks.

To deal with implicit flow tracking, various software [63, 97] and hardware ap-

proaches have been proposed. Although they have shown to be e↵ective, they ex-

62

hibit some limitations regarding nested branches and loops which intensify the taint

propagation originated from control-dependency flow. It causes over-tainting, that

occurs when too many data is tainted degrading taint tracking precision.

This work provides the following contributions. First, a novel implicit flow track-

ing called NIFT - Nested Implicit Flow Tracking - is developed to support deeply-

nested branches tracking by requiring few additional resources to extend explicit flow

tracking approaches. NIFT e�ciently solves the under-tainting problem and can be

easily implemented in software DIFT solutions in spite of it was inspired by [70]

which proposes a hardware-based implicit flow tracking. Second, a restricted rule

to propagate taint when data is used in conditional branches is proposed. Only the

immediate instructions without source operands receive the taint from conditional

flow. This eliminates the over-tainting problem. Third, a formal verification is pro-

vided to prove the correctness of NIFT hardware specification. Lastly, the proposed

mechanism is evaluated in terms of performance overhead, code size and implicit

taint capabilities to deal with both under-tainting and over-tainting problems.

5.1 Nested Implicit Flow Tracking Implementa-

tion

In this Section, the restricted taint propagation for control flows and NIFT imple-

mentation are presented. Then, the code analysis and transformation algorithm to

maintain the correct functionality of proposed scheme are described.

5.1.1 Taint Propagation to No-operand Instructions

Taint analysis might produce inaccurate results when not considering implicit in-

formation flows, resulting in under-tainting where data is not tainted although it

is (indirectly) a↵ected by a tainted source [63]. Moreover, implicit flows are criti-

cal in applications that require analyzing the information flow to detect a malware,

because the adversary can inject complex implicit flows to evade detection.

Figure 5.1 shows an example of implicit flow. Intuitively, x and z are dependent

on y even though there is no direct assignment among them, in other words, if

y is tainted then x and z should also be tainted. From the adversary’s point of

view, the conditional branch allows to copy the value of the tainted y to x without

using explicit propagation. Thus, considerable information can be copied to an

untainted variable which is then used in the succeeding execution instead of the

tainted data. Thereby, the new untainted data evades the taint check, allowing

a malware writer to hide his attack so causing confidential information leakage.

Within an if statement, all data operations will be a↵ected by the variables used

63

z:= 2;

if (y = 1) then

{

x := 1;

z := 0;

}

else

x := 0;

Figure 5.1: Example of code with implicit propagation flow.

in the conditional expression, in particular, the immediate assignment instructions

that do not have source operands. Furthermore, there may be information flow even

between a conditional branch and instructions which are not executed. For example,

in Figure 5.1, z is not modified in else statement and in turn it will not be tainted.

Although z remains unchanged, its value can leak information about the branch

condition and, therefore, it must be tagged. The last case is beyond of the scope

of this work, and one solution is presented in [70] that proposes a compensation

technique to deal with untaken paths.

Conventional implicit flow tracking approaches propagate taint of data used in

conditional branches to all data operations performed inside the conditional branch

scope. In this way, an untainted data coming from outside the branch could be

incorrectly marked as tainted inside the branch causing over-tainting, that is, data

is marked as tainted when it should not be marked.

The attack described above, which copies tainted variable y to untainted variable

x, is possible because x is computed by an immediate assignment instruction. From

instruction level point of view, it is an immediate instruction without any source

operands, but with a constant (immediate value); thus it has no data dependency.

The following taint propagation by control dependencies is proposed based on this

fact: when a taint propagation is originated from control dependencies, only no-

operand instructions should receive taint information from branch result, while the

remaining instructions should receive taint propagation by data dependency. This

new rule reduces the amount of data tainted in branch scopes mitigating over-

tainting problem.

5.1.2 Branch and Context Counter Scheme

As presented in Section 5.1.1, implicit flows occur when a program has control de-

pendencies. Language-based static techniques [70] handle these implicit flows by

including a program counter tag tPC which informs if the current control path is

a↵ected by a tainted data. For every conditional branch, the taint of registers pro-

64

cessed in the condition are propagated to tPC . After that, all instructions executed

in the taken path are tagged according to tPC value, indicating they are a↵ected by

the branch result. Considering an implementation of this scheme for the example

in Figure 5.1; if y is tainted then tPC is set to 1 and, consequently, its propagation

marks x and z as tainted. Thus, the implicit flow can be tracked by propagating

tPC value along the branch.

At a certain point in the program execution, the taken branch path is no longer

a↵ected by the conditional branch when it reaches the immediate post-dominator

of the branch. For example, in Figure 5.2(a) the block B5 is the immediate post-

dominator of block B1, which contains a conditional branch, because all paths from

block B1 must pass through block B5 to exit the program. Therefore, the tPC

needs to be cleared when entering the immediate post-dominator block so that tPC

propagation does not overly tag the data outside the control path. By just clearing

tPC at the ending of branch does not work in case of multiple-nested branches. After

exiting the inner branch, clearing tPC disables the implicit propagation continuation

in the outer branches. In [70], tPC was replaced by an tPC stack in order to remedy

the multiple-nested branches situation. Before entering each conditional branch, the

tPC stack is pushed and, thereafter, taint propagation is done based on the tPC value

at the top of the stack. At the beginning of the immediate post-dominator block,

the stack is popped recovering the tPC value used in the previous branch.

…
If ...

…
If ...

...

...

...

B1

B2

B3

B5

B4

tbranch +1

tbranch +1

tbranch -1

tbranch -1

…
If ...

…
If ...

...

...

...

B1

B3

B5

B6

B4

...B2…
If ...

…
If ...

...

...

...

B2

B4

B5

B7

B6

...B1

tbranch +1

tbranch +1

tbranch -1

tbranch = 0

tcontext +1
ttemp = tbranch

tbranch +1

tbranch +1

tbranch -1

tcontext -1
tbranch = ttemp

(a) (b) (c)

Figure 5.2: Examples of taint register operations.

In proposed approach, the program counter tag idea is extended by including a

taint branch register tbranch and taint context register tcontext. For every conditional

branch, tbranch is incremented by 1 and, in each respective immediate post-dominator

block, tbranch is decremented by 1 as depicted in Figure 5.2(a). During the taken

65

branch execution, taint propagation follows our restricted rule defined in Section

5.1.1, where the variables that are assigned with an immediate value are tainted

(tag is set to 1) if tbranch > 0. Only the immediate assignment instructions are

considered as they have no dependency source making it is possible the transfer of

a tracked value to an untainted variable as discussed in Section 5.1.1. Moreover,

these immediate instructions are targeted by attackers that inject complex implicit

flows into the program as discussed in Section 5.1.1. In addition, inner branches will

always be tainted when the outer branch has been tainted. To sum up, tbranch will

also be increased if tbranch is positive, even though the condition result is not tagged.

Figure 5.2(b) shows the loop scenario, where tbranch is increased every iteration.

At the end of the loop, tbranch is cleared to avoid incorrect propagation outside the

loop. In the cases of nested loops and a loop inside a conditional branch, tbranch

has to recover its old value, obtained before starting the loop execution, at the exit

of the loop. To remedy this, tcontext is increased by 1 and the temporary register

ttemp stores the value of tbranch from the previous block of the nested loop header.

At the end of the nested loop, tcontext is decreased and tbranch is restored from ttemp.

The ttemp operation occurs only in the first level of the inner loop (where tcontext

equals 0), since the inner loops inherit the taint from the outer loop even when the

conditional expression is not tagged. The example in Figure 5.2(c) shows a loop

executed in a conditional branch in which ttemp is handled similarly as in the nested

loop case.

5.1.3 Taint Instructions

During compilation, specialized instructions will be inserted into the host code to

manage the proposed taint registers. Generally, the final binary code is composed

of the user program and the external libraries provided by the OS to allocate the

required resources during the application execution. As NIFT can not guarantee

the correct taint registers manipulation for the extra code inserted in the assembler

phase, the taint status register tstatus is included to flag when the implicit propaga-

tion is active, that is, when the instructions corresponding to the user program are

executed. In this way, the conditional branch does not modify tbranch if it belongs

to an external code outside the main function scope. The initaint instruction sets

the active bit of tstatus to 1 initializing the implicit propagation verification, while

haltaint instruction halts this verification. Besides resetting tstatus, haltaint clears

the other taint registers.

At the beginning of the immediate post-dominator of each conditional branch,

the dtaint instruction decrements tbranch by 1 and the ztaint instruction zeroes

tbranch when there is only one loop. Figure 5.3(a) and (b) illustrate the modified

66

…
If ...

…
If ...

dtaint
...

dtaint
...

...

B1

B2

B3

B5

B4

…
If ...

…
If ...

...

dtaint
...

restaint
...

B1

B3

B5

B6

B4

…
inctaintB2

…
If ...

…
If ...

dtaint
...

ztaint
...

...

B2

B4

B5

B7

B6

...B1

(a) (b) (c)

initaint
...

initaint
...

initaint
...

...
haltaint

...
haltaint

...
haltaint

Entry

Exit

Exit Exit

Entry Entry

Figure 5.3: Examples of taint instructions.

code with dtaint and ztaint, respectively. Note that at entry block of the func-

tion, initaint enables the implicit propagation, that is disabled by haltaint when

execution reaches the exit block. In the nested loop and loop in a branch cases, the

inctaint instruction increments tcontext in each inner level and copies tbranch to ttemp

before executing the first-level of the inner loop. Finally, the restaint instruction

restores tbranch for the proper outer context propagation. The case of loop executed

inside a branch is exemplified in Figure 5.3(c).

In Algorithm 1, the procedure for taint instruction placement into the original

program at compile time is presented. ztaint and dtaint operations are inserted at

the immediate post-dominator of the branch belonging or not to a single loop, respec-

tively. While inctaint and restaint operations are inserted in case of nested loops

or loop inside at least one branch. A point to emphasize is the ztaint placement, as

it must be included in the main function. A function call may start anywhere during

the loop iteration and, consequently, a single loop of a callee function might clear

tbranch through a ztaint operation, disabling the implicit taint propagation upon

returning to the caller function. As the implicit taint propagation is determined at

runtime, all cases of loops are handled by inctaint and restaint operations when

they are executed in the non-main functions. Furthermore, initaint and haltaint

operations are only inserted into the main function. Real application codes usually

use system calls as exit(-1) to abort the program execution from any part of the

code, generating unreachable instructions from the compiler point of view. This

situation is dealt at lines 17-19 in Algorithm 1, by inserting haltaint to clear the

taint register before executing the unreachable instructions.

Another special case occurs when the conditional expression is composed of log-

67

Algorithm 1: Algorithm for inserting taint instructions.
Input: Control flow graph of a function F
Output: Control flow graph with taint instructions

1 foreach loop l do
2 Find immediate post-dominator p of exiting block(s) of l;
3 if l is outer loop and l is not inside an if block and F is main function

then
4 Insert ztaint at the start of p;
5 else
6 Insert inctaint at the end of the preheader of l;
7 Insert restaint at the start of p;
8 end
9 end

10 foreach non-loop conditional branch block b do
11 Find b’s immediate post-dominator block p;
12 Insert dtaint at the start of p;
13 if b’s expression has logical ”and” or ”or” then
14 Insert dtaint before the conditional branch instruction of the block

targeted from b;
15 end
16 end
17 foreach block u containing a unreachable instruction do
18 Insert haltaint before the unreachable instruction;
19 end
20 if F is main function then
21 Insert initaint at the start of the entry block;
22 Insert haltaint at the end of the last block;
23 end

68

ical and and or, as described in lines 13-15 of Algorithm 1. That expression is split

into a chain of conditional blocks where each one increments tbranch. As it represents

one condition, only the last conditional instruction should a↵ect the branch and,

therefore, for each conditional block targeted in this chaining, a dtaint instruction

is inserted to correct the value to be used for implicit propagation.

5.2 Nested Implicit Flow Tracking Formal Verifi-

cation

In order to verify the correctness of the proposed hardware mechanism introduced

in Section 5.1, a formal verification tool called UPPAAL is utilized to design NIFT

and prove its specification. This Section gives a brief introduction to the model

checker UPPAAL, describes NIFT with UPPAAL model and discusses the verifica-

tion results.

5.2.1 UPPAAL Model Checker

UPPAAL [98] is a state-of-the-art model checker based on theory of timed automata

for real-time systems that consists of a model-checker engine and graphical user

interface for modelling, simulation and verification.

Systems are modelled as a network of timed automata where each timed au-

tomata is a finite state machine with clocks. The nodes are locations that represent

states indicating current values of system’s variables, while the edges are transitions

that change active location when a boolean condition on the variables and clocks

is satisfied. Whenever a transition occurs, the variables can be modified and the

clocks can be reseted. The timed automata is composed of concurrent processes

that can use a synchronization channel to fire transitions at the same time. An

edge labelled name! synchronizes with another timed automata having an edge

labelled name?, where the condition that fires name! also activates name? so

that both are executed as one transition. A location can be defined as urgent and

committed, enabling the transition modifications be run without time delay. These

specials locations allow to express atomic sequences in the system.

Other features are provided as C-like programming interface to ease the task

description and property behavior definition. Verification of properties is performed

through queries formulation used by UPPAAL verifier. Moreover, UPPAAL query

language can express the following properties: reachability, safety, liveness and dead-

lock.

69

5.2.2 Modelling Nested Implicit Flow Tracking

NIFT is modelled as processor pipeline stage which communicates with decode stage

of the pipeline. NIFT stage does not necessarily have to be subsequent to instruction

decoder. As presented in Section 2.3.2, it might be implemented as an in-core design

by extending pipeline of the main core or an o↵-core design by building it as a co-

processor.

Figure 5.4: UPPAAL model for NIFT.

Figure 5.4 shows NIFT model designed with UPPAAL. The resources are defined

for 32-bit MIPS processor that has 32 32-bit general-purpose registers and executes

conditional branch in one instruction. The taint of MIPS registers is stored in reg -

file array and the taint registers are tstatus, tbranch, tcontext and ttemp variables.

Initially, all variables and the program counter (pc) are zeroed and NIFT is in Idle

location. Starter process fetches instruction and sends implicit propagate! event

to synchronize with NIFT implicit propagate? transition, afterwards it waits to

receive implicit done! from NIFT to proceed to next instruction accumulating pc

register. When NIFT fires implicit propagate?, it changes to Decode instruction

location where the instruction opcode stored in inst[TYPE] is checked to determine

the execution path. Taint instructions and conditional branches are executed ac-

cording to the rules discussed in Section 5.1.3. To simple the design, one type is

70

assigned to represent conditional branch instructions and immediate instructions

which are no-operand such as “addi rt, $zero, immmediate” in MIPS. In branch and

immediate execution, the input and output registers are randomly selected between

the $16 to $23 saved registers employed by MIPS assembly convention. All execution

paths are implemented as one atomic operation by using committed locations that

are locations marked “C”. The other type of instructions are sent to No propagation

location where it only sends implicit done! event to return to Starter process.

5.2.3 Correctness Verification

The correctness is verified as requirement specification through queries that allow to

describe system properties along the all paths and states of the timed automata. The

correctness of NIFT model, depicted in Figure 5.4, has successful verified by speci-

fying the reachability, safety, liveness and deadlock properties using UPPAAL query

language and running them in UPPAAL verifier. Starter process was initialized to

fetch 100 instructions selected uniformly for each instruction type, sending them to

NIFT automaton. The queries are formulated with the following specifications:

• Reachability - this property guarantees that some state is reachable from initial

state. This property is expressed by UPPAAL query language as following:

– E <> p: there exists a path where p eventually occurs, where E repre-

sents some paths, <> represents some states and p is the property. An

example is shown in Figure 5.5.

Figure 5.5: Example of reachability property on UPPAAL.

The queries for reachability property are presented in Figure 5.6. All execution

path locations of NIFT have to be reachable from initial Idle location by

some path. In this way, it can properly execute branch, immediate and taint

instructions.

• Safety - it guarantees that a state is only active when all required conditions

are true. There are two forms to express safety using UPPAAL query language:

71

Figure 5.6: Reachability property of NIFT on UPPAAL verifier. There are six
queries to verify if the state of the taint instructions is reachable.

– E[]p: there is an execution path in which p occurs for all the states of

the path, where E represents some paths, [] represents all states and p is

the property. It is exemplified in Figure 5.7(a).

– A[]p: For each (all) execution path, p occurs for all the states of the path,

where A represents all paths, [] represents all states and p is the property.

It is exemplified in Figure 5.7(b).

A B

Figure 5.7: Example of safety property on UPPAAL.

In NIFT, safety is defined for the execution path of the taint instructions,

where they must just be activated when the taint registers’ values are complied

with criteria established in Section 5.1.3. The queries for safety property are

presented in Figure 5.8.

• Liveness - it determines that some state is eventually activated in certain

72

Figure 5.8: Safety property of NIFT on UPPAAL verifier. There are seven queries
to verify the correct management of the taint registers.

conditions. It is expressed as follows:

– A <> p: for each (all) execution path, p occurs for at least one state of

the path, where A represents all paths, <> represents some states and p

is the property.

Figure 5.9: Example of liveness property on UPPAAL.

As presented in Figure 5.10, NIFT returns to Idle location after passed some

time whenever it receives implicit propagate? event from Starter process.

• Deadlock - NIFT is deadlock-free during instruction execution. It can be

expressed by two forms:

– E <> deadlock: exists deadlock, where E represents some paths and <>

represents some states;

73

Figure 5.10: Liveness property of NIFT on UPPAAL verifier. For all instruction
execution paths, the automaton reaches the Idle state.

– A[] not deadlock : there is no deadlock, where A represents all paths and

[] represents all states;

The queries for deadlock property are shown in Figure 5.11, which check if the

program counter is updated with all executed instructions.

5.3 Experiment Results

This Section evaluates the overhead of the proposed deeply-nested implicit propaga-

tion flow technique, discussed in Section 5.1, in terms of performance and code size.

Then, its ability to solve the under-tainting and over-tainting problem is analyzed.

5.3.1 Experimental Setup

To test the proposed NIFT, it was implemented in a modified version of the libdft

tool [61], that is a software implementation for Dynamic Taint Analysis based on

Intel’s Pin dynamic binary instrumentation framework [72]. libdft only implements

the explicit taint propagation on x86 architecture. The modified version supports

a 64-bit architecture extended with 32-bit taint registers and the required logic to

handle the implicit propagation. The code analysis and transformation described

in Algorithm 1 are implemented in the LLVM compiler framework [99]. Taint in-

structions are inserted as special instructions with opcodes that are unused by the

74

Figure 5.11: Deadlock property of NIFT on UPPAAL verifier.

host processor architecture. Thus, the host processor executes them as nop opera-

tions. For the experiments, 11 applications are chosen from the mibench benchmark

suite [100] and the taint sources are defined according to the standard libdft-DTA

implementation which marks the external files as initial tainted data.

5.3.2 Performance Overhead

To measure the performance overhead, a Pin tool was implemented to count all

the instructions dynamically executed at runtime. For each application, it receives

the taint-binary version including the extra taint instructions. The small and large

inputs were run for each application and the mean of the obtained results was

calculated for the di↵erent inputs.

The results are shown in Figure 5.12. Overall, the total number of the executed

taint instructions constitutes a small portion of all executed instructions, resulting

in < 3% overhead for most applications and, in the worst case, approximately 7.3%

overhead for dijkstra. Figure 5.13 shows the detailed overhead contribution of each

taint instruction. The instruction with the highest overhead is dtaint that is exe-

cuted at the end of each conditional branch and, consequently, is executed in each

loop iteration. Nested loop cases increase the dtaint overhead and also increase the

inctaint and restaint overhead.

Figure 5.14 shows the number of times each taint instruction is executed for dijk-

stra that has the highest overhead. The instructions are in execution order starting

75

Figure 5.12: Performance overhead of the NIFT(%).

from bottom. By observing the order of inctaint, restaint and ztaint execution,

it executes 4 nested loops where the same 3 dtaint operations are executed almost

10 million times, which explains its high overhead.

5.3.3 Code Size

By including additional taint instructions in the binary code, it increases the required

memory size to load the instructions before starting the program execution. To

evaluate the overhead in term of memory size, a Pin tool was implemented to count

statically the amount of bytes consumed for each instruction. The larger version

of each application provided by the benchmark was selected. The total number of

instructions and the memory consumption are tabulated in Table 5.1. The results

show that the taint instructions add a small memory overhead constituting less than

0.3% of the whole program size. This low consumption enables NIFT mechanism to

be performed at low resource systems like Android devices.

5.3.4 Tainting Capabilities

Since explicit DIFT approach exhibits the under-tainting problem, the extra data

marked as tainted by the implicit information flow indicates the degree of resolving

the under-tainting problem. On the other hand, a conservative control-dependency

taint propagation strategy can lead to over-tainting problem as described in Section

2.3. To evaluate the accuracy of NIFT, a program that calculates 1002 digits of ⇡

76

(a) Overhead of all taint instructions.

(b) Detailed overhead of taint instructions excluding Dtaint.

Figure 5.13: The overhead of the individual taint instructions.

77

Figure 5.14: Number of iterations for the dtaint instructions.

Table 5.1: Number of instructions and code size (bytes).

Application
Total
Insts

Bytes of
Total Insts

Taint
Insts

Bytes of
Taint Insts

basicmath 189, 460 817, 815 27 108
bitcount 156, 519 658, 783 33 132
qsort 167, 869 710, 301 11 44
susan 176, 050 738, 037 383 1, 532
dijkstra 155, 519 655, 310 24 96
patricia 156, 544 659, 261 90 360

stringsearch 156, 084 657, 609 83 332
rijndael 160, 141 673, 647 87 348
sha 138, 546 559, 957 26 104

CRC32 155, 669 655, 566 10 40
FFT 172, 347 734, 546 44 176

Figure 5.15: Program to compute digits of ⇡.

78

was implemented based on [70]. The program is depicted in Figure 5.15. It uses

sprintf function copied from dietlibc which converts a value to ASCII representation.

This program is adequate to analyze the implicit flow tracking technique, because

it is composed to implicit and explicit flows and has 7 nested branches (3 loops

and 4 if): 3 in the main function and 4 in the sprintf function. NIFT is compared

with both libdft and DYTAN. Since libdft implements just explicit propagation, its

result represents the lower bound of under-tainting. On the other hand, DYTAN

causes over-tainting indicating the upper bound. DYTAN’s taint propagation was

implemented on Pin. The sprintf function was slightly modified by inserting implicit

flows in the part that transforms decimal digits to ASCII form. Initially, the memory

location reserved for array a is tainted. At the end ofmain function execution, bu↵er

should be tainted by ASCII translation.

Figure 5.16: Comparison of tainted bytes in ⇡ computation program.

The results are shown in Figure 5.16. The tainted bytes were obtained at the

end of main function. Total of 2, 696 (337⇥8bytes) bytes are related to array a and

1, 003 (the one extra byte is tainted by sprintf which assigns 0 in the last location

bu↵er[1002]) bytes are related to bu↵er. libdft does not taint bu↵er since implicit

flow was added in sprintf. Both NIFT and DYTAN marked correctly 1, 003 bu↵er

locations as tainted, whereas NIFT was accurate without overly marking data.

Figure 5.17 shows the comparison of tainted bytes using NIFT, DYTAN and libdft

for 7 mibench applications which mark input file as tainted. For all applications,

NIFT achieves better taint propagation results, where in the best case it reduces

about 30.3 times the amount of tainted bytes compared to DYTAN for patricia

application. It was also accurate in security applications sha and rijndael. The

analysis of the results shows that the proposed NIFT e↵ectively tracks the implicit

79

(a) Tainted bytes of qsort, susan and patricia applications.

(b) Tainted bytes of dijstra, rijndael, sha and CRC32 applications.

Figure 5.17: Comparison of tainted bytes for mibench applications. Each bar has
the ratio of bytes considering under-tainting result as baseline.

80

information flow even in deeply-nested scenario without generating over-tainting.

5.4 Concluding Remarks

Since the main goal is to add implicit taint tracking to existing explicit propaga-

tion solutions, the required resources for hardware implementation are analyzed.

Primarily, the resources are the four 32-bit taint registers, the tbranch counter, the

tcontext counter and the nested implicit flow control unit. As tcontext increments for

each nested loop level, its counter may be implemented using simple shift opera-

tions by executing one left shift and right shift to increase and decrease its value,

respectively. The nested implicit flow control unit is responsible for detecting the

conditional branch instructions, immediate assignment instructions and taint in-

structions, forwarding the execution to the logic circuit for each type of instruction

as modelled in Section 5.2.2. The remaining resources consist of the control logic

to handle the taint registers and the taint propagation from tbranch to the general-

purpose registers. Those resources are extended at low cost in the hardware designs

presented in Section 2.3.2. Future work will focus on exploring mechanism to alarm

taint analysis using a taint counter approach for specific security applications.

NIFT can be easily implemented to extend explicit DIFT hardware and software

solutions. It provides an accurate nested implicit flow tracking ability with low cost

through management of four taint registers instead of using management of extra

stack resources as proposed in [70].

To complete the proposed hardware additions, a simple method is described to

start the taint data analysis in order to protect confidential data and avoid its leak-

age. A typical example is to protect the memory region where the AES cipher’s

private key is stored. Initially, the AES memory region should be tainted, for ex-

ample, by running an OS system call that allocates a memory space tagging it.

During the taint propagation, a taint counter tcounter increments whenever a new

output operand is marked as tainted. A threshold is determined to limit tcounter and

a supervisor process checks the tcounter value. When tcounter value exceeds the given

threshold, the taint analysis is invoked to detect suspicious activities. By detecting

successfully a malicious access, the process might be aborted. Otherwise, tcounter is

zeroed and the execution goes on.

Conclusion

Dynamic Information Flow Tracking is an appealing approach to detect malicious

operations at runtime. However, implicit propagation flow results in under-tainting

which can be exploited by the adversary to evade tracking. This work proposes NIFT

81

– a Nested Implicit Flow Tracking – which can be easily added to the conventional

information flow tracking architecture. The new approach includes taint registers

to tag the data a↵ected by control flow and relies on the compiler to handle cor-

rectly the scope of the implicit propagation tracking. To mitigate the over-tainting

problem, a new taint rule is applied to propagate it to no-operand instructions like

immediate assignments instructions in control-dependency. Furthermore, a formal

verification of NIFT hardware design is developed to prove its correctness. The

experimental results demonstrate a low overhead in terms of performance and mem-

ory consumption. NIFT was e↵ective in catching implicit information flows and our

taint propagation improve the accuracy to taint data in deeply-nested cases without

generating over-tainting. The proposed portable implicit information tracking is a

general approach that can be easily implemented in hardware and software explicit

information flow mechanisms with low resources overhead through management of

four taint registers.

82

Chapter 6

Memory E�cient WiSARD using

Approximate Membership Query

Weightless Neural Network (WNN) is an abstract model of biological neuron where

each neuron is defined as Random Access Memory (RAM) node [47]. As it can be

implemented using existing memory resources in devices and the neurons are rep-

resented in a binary format, this model o↵ers attractive practical solutions to solve

pattern recognition and artificial consciousness applications achieving competitive

performance. WiSARD (Wilkie, Stoneham and Aleksander’s Recognition Device)

is the simplest WNN model inspired by the n-tuple classifier [49] that provides e�-

cient implementation using standard RAM memory technology, enabling to deploy

learning capabilities into real-time and embedded systems as introduced in Section

2.2.

In certain applications, the straightforward WiSARD implementation requires

a considerable amount of memory resources to achieve good learning features. For

example, a 1024⇥1024 binary input with total size of 1, 048, 576 bits can be mapped

into 64-bit tuples to 16, 384 RAMs (64⇥16, 384 = 1, 048, 576). In this configuration,

each RAM would consume 264 locations which is impracticable to be implemented

in actual technology. To deal with this constraint, the RAMs are commonly imple-

mented using dictionary/hash table structures where the tuples values are stored as

key-value pair at each position, with the key representing the memory address and,

the value, the tuple [101].

To address this problem, this Chapter proposes novel WiSARD models based

on Approximate Membership Query (AMQ) structures which are probabilistic data

structures to represent a set using less space than popular dictionary implementa-

tions [102]. Most relevant AMQ structures: Bloom filter, Cuckoo filter and Quotient

filter, are explored to extend the original WiSARD model. Finally the proposed

models are compared to the standard WiSARD and WiSARD implemented with

hash table.

83

6.1 Approximate Membership Query Structures

Approximate Membership Query data structures maintain a probabilistic represen-

tation of a set S by providing lookup and insert operations over the elements on it.

They o↵er a space e�ciency through a trade-o↵: the membership query operation

is approximate. For an element e 2 S, LOOKUP (e) responds “present”, while

for e /2 S, LOOKUP (e) can also respond “present” with a probability at most ✏

which indicates the false-positive rate. In other words, sometimes the membership

query will respond that an element was stored while actually it was not inserted.

AMQs have been adopted in various kind of applications such as networks, stor-

age systems, databases, computational biology and other domains. Moreover, there

are AMQ structures that extend the supported number of operations by including

counting and delete operations.

This Section provides a brief overview of the major AMQ data structures, fol-

lowing the description of Bloom Filter, Cuckoo Filter and Quotient Filter.

6.1.1 Bloom Filter

ba

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c

0

0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 11

d e f

Insertion

Query

False Positive True Negative True Negative

1
1

1 1
1

0
0

0
0

0

1 0

Figure 6.1: Bloom filter operations example with 16-bit array and 4 hash functions.

Bloom filter is the most well-known space-e�cient data structure for AMQ which

tests whether an element belongs to a given set or not with a certain false positive

probability [103]. A Bloom filter consists of an m-bit array and k independent hash

functions that map an element into k bit array positions.

84

Figure 6.1 exemplifies the insertion and query operations supported by the stan-

dard Bloom filter. Initially, all bit array positions are zeroed. In the insertion

operation, an element is mapped into k positions of the bit array using the k hash

functions and the corresponding k bits are set to 1. In the example, a, b and c

are inserted using 4 hash functions. The query operation looks up the k positions

mapped from the input element, informing it as either a member of set, with a false

positive rate if all values are 10s, or a non-member when any value is 0. In Figure

6.1, d is a false positive element since it was suggested as member of set (only a, b

and c were inserted), while e and f do not belong to the set. Note that a Bloom

filter correctly reports a true negative whenever an element is not a member.

The probability of false positive p is a↵ected by the parameters m, n and k,

corresponding to bit array size, number of elements to store and number of hash

functions, respectively [104].

m = �n⇥ ln(p)

ln(2)2
(6.1)

k = m⇥ ln(2)

n
(6.2)

Given the probability p and capacity n, it is possible to determine the ideal

parameters m and k. The number of bits m is calculated by the Formula (6.1) [105],

while the number of hash functions k is obtained by the Formula (6.2) [104].

6.1.2 Cuckoo Hashing

Cuckoo hash table is an e�cient dictionary data structure which utilizes the cuckoo

hashing technique to resolve the hash collisions [106]. A basic cuckoo hash table

consists of an array of buckets where each item can be only stored in two candidate

buckets specified by hash functions h1(x) and h2(x). Cuckoo hashing is a form of

open addressing algorithm, which is a family of hashing techniques where each cell

of a hash table stores a single key-value pair.

The lookup operation verifies if the query item is stored in one of the two buckets.

The insertion operation is more complicated. If one of the two buckets is empty, the

item is stored there. Otherwise, one of the occupied buckets is selected and the item

is kicked out to the other location to free space for the new item. The kicked-out

item must be re-inserted possibly kicking out another item there, and so on. The

insertion will finish either all items inserted in their buckets, or it can fail forcing

the data structure to be rebuilt. The failure occurs when no vacant bucket is found

meaning the hash table is full to insert new item.

The Cuckoo hash table operations are exemplified in Figure 6.2. In the insertion

85

ba

0 0 0 0 0 0 0 0 0 0 0 0 0 e 0

c

d e f

Insertion

Query

True Negative True Positive True Negative

There is no False Positive cases

0 0 0 0 0 0 g 0 0 0 0 0 0 0 h 0Entry 0

Entry 1 0

0 0 0 0 0 0 c 0 0 0 b 0 0 0 e 0

0 a 0 0 0 0 g 0 0 0 0 0 0 0 h 0Entry 0

Entry 1

relocate

h1
h2 h1

h1
h2 h2

Figure 6.2: Example of Cuckoo Hash Table operations with 16 buckets with 2 entries.
Each entry holds an element x which is mapped by h1(x) and h2(x) through cuckoo
hashing. Note that the insertion of the element c causes the relocation of the
element b as all entries of c are occupied.

operation, the element b is inserted in the entry 1 of the index h1(b). As all entries

are used when c is inserted, it kicks out the b element relocating it at the entry 1 of

the index h2(b). The query operation is the exact membership query returning no

false positive results since it is a type of hash table.

Cuckoo hashing provides high space occupancy by re-organizing the earlier item-

placements when new items are inserted. There are extended cuckoo hashing imple-

mentations that allow each bucket stores multiple items and use k hash functions

to determine k candidate buckets for each item. Configuring the correct parameters

of k and bucket size b, the cuckoo hash table space can be 95% filled with high

probability [107].

6.1.3 Cuckoo Filter

Cuckoo filter is AMQ data structure based on cuckoo hash tables [107] that stores a

small fingerprint for each element belonging to a set, instead of storing a key-value

pair. Cuckoo filter consists of an array of m buckets with b entries where each entry

stores a f -bit fingerprint. Similar to cuckoo hash table, each item has two candidate

buckets specified by hash functions h1(x) and h2(x). However, as Cuckoo filter stores

the fingerprint of each item from the set, cuckoo hashing cannot be used in Cuckoo

filter because it needs to access the original item in the occupied entry to calculate

86

ba

0 0 0 0 0 0 0 0 0 0 0 0 0 f(e) 0

c

d e f

Insertion

Query

False Positive True Positive True Negative

f(d) = f(b)

0 0 0 0 0 0 f(g) 0 0 0 0 0 0 0 f(h) 0Entry 0

Entry 1 0

0 0 0 0 0 0 f(c) 0 0 0 f(b) 0 0 0 f(e) 0

0 f(a) 0 0 0 0 f(g) 0 0 0 0 0 0 0 f(h) 0Entry 0

Entry 1

relocate

h1
h2 h1

h1
h2 h2

Figure 6.3: Example of Cuckoo filter operations with 16 buckets with 2 entries.
Each entry holds the fingerprint f(x) of an element x which is mapped by h1(x)
and h2(x) through partial-key cuckoo hashing. Note that the insertion of the
element c causes the relocation of the b’s fingerprint as all entries of c are occupied.

the new entry for relocation during insertion procedure. The cuckoo hashing variant

referred to as partial-key cuckoo hashing enables Cuckoo filter to dynamically insert

new items.

Figure 6.3 shows examples of insertion and query operations performed by

Cuckoo filter. In both operations, the partial-key cuckoo hashing is used to cal-

culate the indexes of two candidate buckets from an item x as follows. Considering

the fingerprint f(x), the first index will be given by h1(x) = hash(x) and the

second index will be h2(x) = h1(x) � hash(f(x)). The XOR operation allows to

calculate h1(x) from h2(x) using the same formula. Thus, when one bucket i is

occupied (i might be h1(x) or h2(x)), the alternate bucket j is directly calculated by

j = i � hash(fingerprint) where fingerprint = bucket[i]. In the insertion opera-

tion, the fingerprint of the input item is inserted into one of the empty entries of the

two candidate buckets as occurring with the element a. If no empty entry is found,

an occupied entry is selected to store the new fingerprint and the old fingerprint

is kicked out to other location and, then, the kicked-out fingerprint is recursively

displaced in same manner as in cuckoo hashing method. As shown in the exam-

ple, primarily the fingerprint of element b is inserted using the index h1(b). After

inserting the element c, the b’s fingerprint is relocated at the entry 1 of the index

h2(b). The query operation checks if the fingerprint of the input item matches to any

entries of the two candidate buckets. If so, the item is suggested as member of set

87

represented by Cuckoo filter with false positive probability of ✏. The false positive

cases happen when two elements have the same fingerprint and they are mapped to

some common bucket as exemplified with the element d.

The false positive probability ✏ can be estimated by approximately 2b/2f , where

b is the bucket size and f is the number of bits for the fingerprints. This formula

can be obtained by observing that, in query operation, the probability of each entry

matched against the input fingerprint to be a false positive case is at most 1/2f .

Therefore, the total of 2b entries can be compared from buckets h1(x) and h2(x)

resulting the total false positive probability hit of 2b/2f .

6.1.4 Quotient Filter

Quotient filter is AMQ data structure designed to maintain the locality of data

by supporting all functionality of Bloom filter, in addition the merge and delete

operations [108]. Quotient filter represents a multi-set S as an array of buckets

that store fingerprints corresponding to each element. A hash function h(x) defined

as h : U ! {0, 1, ..., 2p � 1} is used to map an element x to a p-bit fingerprint.

Considering the false positive probability � and capacity n (number of elements) in

the set, the ideal parameter p can be calculated by p = log2
n

�
.

To store the fingerprints, Quotient filter divides h(x) into h0(x), which is the

quotient containing the first q bits (upper bits), and h1(x), that is the remainder

containing the remaining r = p � q bits (lower bits). Quotient filter keeps an

array Q of 2q buckets, each of which can hold one (r + 3)-bits: the r-bit remainder

plus 3 metadata bits. By inserting an element x, the filter stores the remainder

h1(x) into the home slot Q[h0(x)]. If the slot is already occupied, then a variant

of linear probing algorithm is performed using the metadata bits to find a nearby

empty slot to store the remainder h1(x). In collision cases, the remainders are

stored contiguously in order and they have the same quotient forming a sequence

of occupied slots called run. The sequence of consecutive runs is called cluster. For

creating run and cluster, the linear probing algorithm guarantees three invariants:

(1) remainders can only be shifted to right from their home slot, (2) all remainders

are stored in order such that if h(x) < h(y), h1(x) will be stored in a slot before

h1(y) and (3) there are no empty slots between an item and its home slot.

The insertion and lookup operations require a sequential search starting from

the home slot to the correct run of the input item as exemplified in Figure 6.4. The

run of each slot is determined by analyzing its three metadata bits: is occupied,

is continuation and is shifted. The is occupied bit indicates if the slot i is the home

slot for any remainder stored in the Q, in other words, if there exists h(x) such that

h0(x) = i. The slot marked with is continuation bit stores the remainder which is

88

ba

0 0 0 0 r(g)r(h) r(e) 0 0 0 0 0 0 0 0

c

d e f

Insertion

Query

False Positive True Positive True Negative

q(d) = q(c)
r(d) = r(c) no run

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0

is_occupied
is_continuation
is_shifted

r(i)

run 1 run 2

cluster

0 0 r(a) 0 r(g)r(h)r(c) r(i) r(e)r(b) 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

run 1 run 2

shifted to right

Figure 6.4: Example of Quotient filter operations with 16 buckets. For an element
x, the quotient is given by q(x) and the remainder by r(x). The arrows coming from
the elements point to their home slot. Note that the insertion of the element c shifts
to right the elements of run 2, consequently shifting the position of element b.

Table 6.1: Meaning of metadata bit combinations from Quotient Filter.

is
o
cc

u
p
ie
d

is
co

n
ti
n
u
a
ti
o
n

is
sh

if
te
d

Meaning

0 0 0 Empty slot.
0 0 1 Slot storing the first remainder of a run that has been

shifted from its home slot.
0 1 0 Not used.
0 1 1 Slot storing the continuation of a run that has been

shifted from its home slot.
1 0 0 Slot storing the first remainder of a run in its home

slot.
1 0 1 Slot storing the first remainder of a run that has been

shifted from its home slot. There exists a run
associated to the home slot which was shifted to right.

1 1 0 Not used.
1 1 1 Slot storing the continuation of a run that has been

shifted from its home slot. There exists a run
associated to the home slot which was shifted to right.

89

not the first in its run. Finally, the is shifted bits indicates that the remainder in a

slot is not its home slot. The meaning of the possible combinations of these bits is

summarized in Table 6.1.

Figure 6.4 exemplifies the Quotient filter operations. In the insertion operation,

is occupied bit is always set to 1 in the home slot of the inserted item. Element b’s

fingerprint is inserted at end of run 2, updating the is continuation and is shifted

bits since it is not the first remainder neither it is in its home slot. By inserting

element c, all elements of run 2 are shifted to right updating the is shifted bit from

the first remainder of run 2 (element i). Also, is continuation and is shifted bits

are updated for the c’s slot as it is the last remainder from run 1. In the query

operation, the false positive cases occur if two elements have the same fingerprint

as depicted with element d.

There are e�cient implementations of Quotient filter to improve the lookup

performance such as Rank-and-Select based Quotient Filter (RSQF) and Count-

ing Quotient Filter (CQF) proposed in [109]. These implementations also support

counter operations and provide e�cient lookup operations on 64-bit vectors using

X86 instruction set. The good data locality of the implementations enables Quotient

filter operates e�ciently on SSD.

6.2 WiSARD based on AMQ Filters

When adopting a WiSARD architecture, the binary transformation can impact the

accuracy and the learning capacity of the model a↵ecting directly its input size,

which determines the number of RAMs and the tuple size for each discriminator.

Consequently, large RAMs might be required to achieve a good accuracy.

Additionally, it is common to have few memory addresses accessed in comparison

with the total positions after training huge RAMs, resulting in several positions with

00s. To reduce the memory resources by avoiding storage of irrelevant zero positions,

WiSARD is extended by replacing RAMs with AMQ filters. The new model is

termed AMQ WiSARD which is specialized in one of the AMQ filters discussed in

Section 6.1. The key idea is to store a set of tuples mapped to each AMQ filter

and test if a given tuple belongs to its corresponding set with certain false positive

probability.

6.2.1 Bloom WiSARD - WiSARD based on Bloom Filters

Bloom WiSARD has the same operations as WiSARD. On the training phase, the

tuples are inserted into Bloom filters by updating the k bit array positions as illus-

trated in Figure 6.5. On the classification phase, the tuples are queried into their

90

1 1

1 0

1 0

1 0

0 0

1 1

0 0

1 0

Binary Input

0
Hash 0

Hash 1

1
0
1
1
0
1
1

Hash 2

Bloom Filter 3

0

Hash 0

Hash 1

1
0
1
1
0
1
1

Hash 2

Bloom Filter 0

1
Hash 0

Hash 1

0
0
1
1
0
1
1

Hash 2

AND

Bloom Filter 2

1
Hash 0

Hash 1

1
0
0
1
1
1
0

Hash 2

AND

Bloom Filter 1

AND

AND 0111 0001

0001
0111

Figure 6.5: Example of training in Bloom WiSARD with 16-bit input, 4-bit tuples
and 4 Bloom filters.

1 1

1 0

1 0

1 1

0 0

1 1

0 0

1 1

Binary Input

Discriminator
Response

2

1

1 0

0
Hash 0

Hash 1

1
0
1
1
0
1
1

Hash 2

Bloom Filter 3

0

Hash 0

Hash 1

1
0
1
1
0
1
1

Hash 2

Bloom Filter 0

0

1
Hash 0

Hash 1

0
0
1
1
0
1
1

Hash 2

AND

Bloom Filter 2

1
Hash 0

Hash 1

1
0
0
1
1
1
0

Hash 2

AND

Bloom Filter 1

+
AND

AND 1111 0001

0001
1111

Figure 6.6: Example of classification in Bloom WiSARD with 16-bit input, 4-bit
tuples and 4 Bloom filters.

91

associated Bloom filters returning whether each tuple is a member or not by ANDing

all k bit values as presented in Figure 6.6. Similar to WiSARD, the discriminator

responses are calculated by summing the N Bloom filter membership results so that

the highest response selects the appropriate discriminator to represent the input

[110].

In this work, the Bloom WiSARD implementation utilizes a double hashing

technique [111] to generate k hash functions in the form: h(i, k) = (h1(k)+i⇥h2(k))

(mod n), where h1 and h2 are universal hash functions. MurmurHash function[112]

was adopted as seed hashes h1 and h2.

6.2.2 Cuckoo WiSARD - WiSARD based on Cuckoo Filters

1 1

1 0

1 0

1 0

0 0

1 1

0 0

1 0

Binary Input

Cuckoo Filter 3

Cuckoo Filter 0

Cuckoo Filter 2

Cuckoo Filter 1

0111 0001

0001
0111

0 Fingerprint

Hash 1

0
0
f2
0
0
0
f5

Hash 2

0
f6
0
f1
f3
0
f4
0

=

f6 0Fingerprint

Hash 1

f4
0
0
0
0
f5
0

Hash 2

f6
f1
0
0
f3
f2
0
0

=

f3

f6
Fingerprint

Hash 1

0
0
f3
0
0
0
0

Hash 2

f2
0
0
f1
f5
0
0
f4

=

f1
0 Fingerprint

Hash 1

0
0
f4
0
0
f6
0 Hash 2

0
0
0
f2
f5
0
f1
f3

=

f5

Figure 6.7: Example of training in Cuckoo WiSARD with 16-bit input, 4-bit tuples
and 4 Cuckoo filters.

On Cuckoo WiSARD, the tuples are inserted into Cuckoo filters by updating

the entries indexed by hash functions h1 or h2 as illustrated in Figure 6.7. Cuckoo

WiSARD does not support counting operations so that the fingerprints are inserted

only once. During classification phase, the tuples are queried into their associated

Cuckoo filters returning whether each tuple is a member or not, by comparing the

input fingerprint against all fingerprints found at entries associated to the buckets

of the query item, as presented in Figure 6.8. The discriminator responses are

calculated by summing theN Cuckoo filter membership responses so that the highest

response selects the appropriate discriminator to represent the input.

92

1 1

1 0

1 0

1 1

0 0

1 1

0 0

1 1

Binary Input

Discriminator
Response

2

1

1 0

0 Fingerprint

Hash 1

0
0
f4
0
0
f6
0 Hash 2

Cuckoo Filter 3

Cuckoo Filter 0

0

f6
Fingerprint

Hash 1

0
0
f3
0
0
0
0

Hash 2

Cuckoo Filter 2

0Fingerprint

Hash 1

f4
0
0
0
0
f5
0

Hash 2

Cuckoo Filter 1

+

1111 0001

0001
1111

0 Fingerprint

Hash 1

0
0
f2
0
0
0
f5

Hash 2

0
f6
0
f1
f3
0
f4
0

=

f1

f6
f1
0
0
f3
f2
0
0

=

f3

f2
0
0
f1
f5
0
0
f4

=

f1
0
0
0
f2
f5
0
f1
f3

=

f4

Figure 6.8: Example of classification in Cuckoo WiSARD with 16-bit input, 4-bit
tuples and 4 Cuckoo filters.

In this work, the Cuckoo WiSARD implementation utilizes MurmurHash

function[112] to generate the fingerprint and the hash functions h1 and h2.

6.2.3 Quotient WiSARD - WiSARD based on Quotient Fil-

ters

Quotient WiSARD inserts the tuples into Quotient filters by adding the remainder

into the correct slot (in order) starting from its home slot as illustrated in Figure 6.9.

If the remainder is already included, the insertion operation does not replicate it in

other slot. Therefore, it does not support counting operation. On the classification

phase, the tuples are queried into their associated Quotient filters returning whether

each tuple is a member or not, by comparing the queried remainder against all

remainders in the input run as presented in Figure 6.10. By summing theN Quotient

filter membership results, it will generate the discriminator response. In the same

manner as in WiSARD, the highest discriminator response selects the appropriate

discriminator to represent the input.

In this work, the Quotient WiSARD implementation utilizes MurmurHash

function[112] to generate the fingerprint which is split into quotient and remain-

der.

93

1 1

1 0

1 0

1 0

0 0

1 1

0 0

1 0

Binary Input

Quotient Filter 3

Quotient Filter 0

Quotient Filter 2

Quotient Filter 1

0111 0001

0001
0111

quotient remainder

0 f6 0 f1 f3 0 f4 0

=

f6

Fingerprint

quotient remainder

0 f6 0 f1 f3 0 f4 0

=

f6

Fingerprint

quotient remainder

0 f6 0 f1 f3 0 f4 0

=

f4

Fingerprint

Quotient Filter 1

f6 0 0 0 f2 f3 f1 0

=

f3

quotient remainder

Fingerprint

0 0 0 f2 f5 0 f1 f3

=

f2

quotient remainder

Fingerprint

f2 0 0 f1 f5 0 0 f4

=

f1

quotient remainder

Fingerprint

Figure 6.9: Example of training in Quotient WiSARD with 16-bit input, 4-bit tuples
and 4 Quotient filters.

1 1

1 0

1 0

1 1

0 0

1 1

0 0

1 1

Binary Input

Discriminator
Response

2

1

1 0

Quotient Filter 3

Quotient Filter 0

0

Quotient Filter 2

Quotient Filter 1

+

1111 0001

0001
1111

quotient remainder

0 f6 0 f1 f3 0 f4 0

=

f6

f6 0 0 0 f2 f3 f1 0

=

f3

f2 0 0 f1 f5 0 0 f4

=

f1

0 0 0 f2 f5 0 f1 f3

=

f4

Fingerprint

quotient remainder

Fingerprint

quotient remainder

Fingerprint

quotient remainder

Fingerprint

Figure 6.10: Example of classification in Quotient WiSARD with 16-bit input, 4-bit
tuples and 4 Quotient filters.

94

6.3 Experiments and Results

This Section evaluates all proposed models in comparison with two di↵erent WiS-

ARD versions: standard WiSARD and dictionary WiSARD, on real-world bench-

marks with datasets for binary and multiclass classification. Dictionary WiSARD is

implemented with Hash Tables (HT) in place of RAMs to store the tuple values as

key-value pair in each HT position with the key representing the memory address

[101].

6.3.1 Dataset

Table 6.2: Specification of binary classification datasets.
Dataset # Train # Test # Features
Adult 32, 561 16, 281 14

Australian 460 230 14
Banana 3, 532 1, 768 2
Diabetes 512 256 8
Liver 230 115 6

Mushroom 5, 416 2, 708 22

Table 6.3: Specification of multiclass classification datasets.
Dataset # Train # Test # Features # Classes
Ecoli 224 112 7 8
Glass 142 72 9 7
Iris 100 50 4 3

Letter 13, 332 6, 668 16 26
MNIST 60, 000 10, 000 784 10
Satimage 4, 435 2, 000 36 6
Segment 1, 540 770 19 7
Shuttle 43, 500 14, 500 9 7
Vehicle 564 282 18 4
Vowel 660 330 10 11
Wine 118 60 13 3

A subset of binary classification and multiclass classification datasets used in

[113] and MNIST database [114] were selected to extensively evaluate the new WiS-

ARD models. Most of the problems were taken from UCI public repository [115]

and they have di↵erent characteristics in terms of number of samples, number of

classes and number of features. Table 6.2 and Table 6.3 tabulate the parameters of

the binary and multiclass classification datasets, respectively.

For datasets that do not provide the training set and testing set in separated files,

the same methodology applied in [113] was adopted: the single data is randomly

95

shu✏ed and partitioned in 3 parts, such that 2/3 are used as training set and 1/3

composes the testing set.

6.3.2 Experimental Setup

The experiments were performed on CPU machine with an Intel Core i7-

8700(3.20GHz) processor and 64GB of RAM running Ubuntu Linux 16.04 operating

system. All WiSARD versions were implemented using C++11 language with sin-

gle thread providing a library to be utilized in Python, while the experiments were

implemented in Python. To convert the input attributes to binary format, all bi-

nary attributes are concatenated using thermometer to transform the continuous

attributes and one hot encoding to transform categorical attributes. The input size,

number of RAMs and tuple size varying according to dataset. These parameters

are kept to all WiSARD versions. In particular for Bloom WiSARD, the capacity

is empirically selected from each dataset and m and k are calculated through the

formulas presented in Section 6.1.1.

6.3.3 Accuracy, Performance and Memory Consumption

Results

For all datasets, each model was run 20 times and the mean of accuracy, training

time and testing time were obtained with negligible standard deviation. Bloom

filters are setup with 10% of false positive probability in Bloom WiSARD model.

The results for Cuckoo WiSARD and Quotient WiSARD are obtained with the best

configuration in number of buckets and fingerprint size which achieves competitive

accuracy in comparison with the other models. Tables 6.4 and 6.5 show the results

for binary classification and multiclass classification datasets, respectively.

Overall, Bloom WiSARD, Cuckoo WiSARD and Quotient WiSARD achieved

comparable accuracy, training time and testing time results while consuming less

memory than standard and dictionary versions. In some datasets, the training

time of standard WiSARD was slower as it has the larger RAMs and was not able

to take full advantage of cache locality. Dictionary WiSARD and the standard

WiSARD did not obtain the same accuracy as they have di↵erent pseudo-random

mappings for each run. AMQ WiSARD models’ memory consumption are reduced

up to 6 orders of magnitude (Adult and Letter) compared to standard WiSARD

and approximately 7.7 times (Banana) when compared with dictionary WiSARD.

The three models of AMQ WiSARD have competitive memory consumption where

each one obtains smaller memory than the others depending on the dataset. Since

Bloom WiSARD achieves interesting results, its memory resources can be further

reduced by increasing the false positive rate.

96

Table 6.4: Accuracy, training time, testing time and memory results for Binary
Classification problems.
Dataset WNN Accuracy (%) Training

(s)
Testing

(s)
Memory
(KB)

Adult

WiSARD 72.1 3.1284 0.7509 8978432
Dict WiSARD 72.14 1.4093 0.8741 392.08
Bloom WiSARD 70.69 1.3859 0.8585 48.164
Cuckoo WiSARD 74.77 1.2634 0.8208 17.125
Quotient WiSARD 75.56 1.805 1.1999 17.125

Australian

WiSARD 83.83 0.0016 0.0008 4096
Dict WiSARD 83.54 0.0017 0.0010 11.777
Bloom WiSARD 83.17 0.0017 0.0011 1.875
Cuckoo WiSARD 83.19 0.0025 0.0013 2.187
Quotient WiSARD 83.3 0.0019 0.0012 4.0

Banana

WiSARD 87.07 0.0365 0.0207 13312
Dict WiSARD 87.03 0.0397 0.0243 23.730
Bloom WiSARD 86.59 0.0418 0.0266 3.047
Cuckoo WiSARD 87.45 0.0398 0.0249 3.25
Quotient WiSARD 87.14 0.0422 0.0271 6.5

Diabetes

WiSARD 68.83 0.0009 0.0005 2048
Dict WiSARD 69.41 0.001 0.0006 6.992
Bloom WiSARD 67.69 0.001 0.0006 0.469
Cuckoo WiSARD 67.42 0.001 0.0006 0.375
Quotient WiSARD 67.15 0.0011 0.0007 1.0

Liver

WiSARD 59.0 0.001 0.0005 5120
Dict WiSARD 58.48 0.0011 0.0006 6.113
Bloom WiSARD 58.48 0.001 0.0007 2.344
Cuckoo WiSARD 58.83 0.0013 0.0006 1.875
Quotient WiSARD 58.69 0.001 0.0006 2.5

Mushroom

WiSARD 1.0 0.0355 0.02 8192
Dict WiSARD 1.0 0.0394 0.0244 20.850
Bloom WiSARD 1.0 0.0406 0.0257 3.75
Cuckoo WiSARD 99.51 0.0384 0.0238 2.0
Quotient WiSARD 99.99 0.041 0.0257 4.0

97

Table 6.5: Accuracy, training time, testing time and memory results for Multiclass
Classification problems.
Dataset WNN Accuracy (%) Training

(s)
Testing

(s)
Memory
(KB)

Ecoli

WiSARD 79.2 0.00039 0.00037 7168
Dict WiSARD 79.55 0.0004 0.00041 5.312
Bloom WiSARD 79.46 0.00039 0.00053 3.281
Cuckoo WiSARD 79.02 0.00039 0.00044 2.625
Quotient WiSARD 79.42 0.00039 0.00044 3.5

Glass

WiSARD 72.99 0.0021 0.002 51968
Dict WiSARD 71.53 0.002 0.002 20.61
Bloom WiSARD 72.64 0.0019 0.0025 23.789
Cuckoo WiSARD 73.19 0.0018 0.0022 19.031
Quotient WiSARD 72.22 0.0019 0.0024 25.375

Iris

WiSARD 97.6 0.00011 0.00007 1536
Dict WiSARD 98.0 0.00012 0.00007 0.732
Bloom WiSARD 97.7 0.00011 0.00008 0.703
Cuckoo WiSARD 98.3 0.0001 0.00007 0.562
Quotient WiSARD 97.9 0.0001 0.00007 0.75

Letter

WiSARD 84.77 0.17791 0.11618 10223616
Dict WiSARD 84.71 0.0533 0.17826 122.002
Bloom WiSARD 84.55 0.0517 0.17122 54.844
Cuckoo WiSARD 84.02 0.05116 0.1639 117.0
Quotient WiSARD 83.76 0.05254 0.17998 78.0

MNIST

WiSARD 91.65 3.5748 0.2478 9175040
Dict WiSARD 91.55 0.59067 0.3376 1447.803
Bloom WiSARD 91.68 0.56471 0.29368 819.219
Cuckoo WiSARD 91.2 0.53919 0.28843 280.0
Quotient WiSARD 91.5 1.13211 1.35538 280.0

Satimage

WiSARD 85.7 0.03479 0.02605 27648
Dict WiSARD 85.5 0.037198 0.03771 65.273
Bloom WiSARD 84.93 0.03893 0.03947 12.656
Cuckoo WiSARD 83.7 0.03812 0.03618 27.0
Quotient WiSARD 84.75 0.03797 0.0412 27.0

Segment

WiSARD 93.88 0.00642 0.00569 17024
Dict WiSARD 93.27 0.00676 0.0076 7.554
Bloom WiSARD 93.85 0.007132 0.00893 7.793
Cuckoo WiSARD 93.06 0.007519 0.00899 7.793
Quotient WiSARD 93.36 0.00686 0.00819 8.312

Shuttle

WiSARD 87.04 0.08499 0.04932 8064
Dict WiSARD 86.82 0.08813 0.05845 4.819
Bloom WiSARD 86.86 0.09726 0.08036 3.691
Cuckoo WiSARD 86.01 0.08884 0.06437 1.969
Quotient WiSARD 86.8 0.08972 .06535 3.937

98

Table 6.6: Accuracy, training time, testing time and memory results for Multiclass
Classification problems (continuation).
Dataset WNN Accuracy (%) Training

(s)
Testing

(s)
Memory
(KB)

Vehicle

WiSARD 67.76 0.00235 0.00156 9216
Dict WiSARD 66.42 0.002561 0.00195 17.734
Bloom WiSARD 66.52 0.002499 0.00218 4.219
Cuckoo WiSARD 66.98 0.00445 0.00279 5.625
Quotient WiSARD 66.79 0.00256 0.00225 9.0

Vowel

WiSARD 88.20 0.00146 0.00171 1144
Dict WiSARD 88.11 0.00179 0.00273 16.221
Bloom WiSARD 86.41 0.00171 0.0032 8.379
Cuckoo WiSARD 88.45 0.0031 0.00408 7.519
Quotient WiSARD 88.29 0.00164 0.00264 6.875

Wine

WiSARD 93.33 0.000417 0.000239 4992
Dict WiSARD 93.08 0.000423 0.000258 4.526
Bloom WiSARD 92.75 0.000382 0.000293 2.285
Cuckoo WiSARD 93.83 0.000376 0.000257 1.219
Quotient WiSARD 94.0 0.000382 0.000268 2.437

6.3.4 Bloom WiSARD: False Positive Rate vs. Accuracy

vs. Memory Analysis

In Section 6.3.3, the false positive rate of Bloom filters were fixed to 10% using

the formulas presented in Section 6.1.1. In contrast to traditional use of Bloom

filter, where it needs to ensure the correct query responses with high probability,

Bloom WiSARD does not require low false positive rate because even if a tuple is

erroneously returned as member of a Bloom filter, the model is not compromised and

can still improve the generalization capability of the system. In order to evaluate the

potential of Bloom WiSARD, the accuracy and memory consumption are evaluated

for di↵erent configurations of the false positive rate. For all datasets, the rate is

varied from 10% to 90%.

The results are presented in Figure 6.11. The memory consumption and accuracy

decrease according to the increase of the false positive probability. Overall, the

accuracy is kept acceptable until the 50% false positive rate that is decreased in

average 1.77% with worst case about 6.1% (Australian). Also, the memory is reduced

about 3.16 times in comparison against 10% of false positive rate. In addition, the

number of hash functions for each Bloom filter is reduced from 4 (10%) to 2 (50%)

resulting in slight increase of speed up on training and classification phase.

99

Figure 6.11: Accuracy and memory consumption results when varying the false
positive rate of Bloom WiSARD. In the legend, the number of hash functions is
shown in parentheses at end of each false positive rate. The accuracy is shown at
right side of each bar.

100

Table 6.7: Accuracy and memory results for AMQ WiSARD compared to 50% false
positive probability. The memory and accuracy results from Bloom WiSARD are
obtained with 50% false positive probability. The remaining results are selected
from configurations that approximate the Bloom WiSARD accuracy.

Dataset
Bloom WiSARD Cuckoo WiSARD Quotient WiSARD
Acc% M(KB) Acc% M(KB) Acc% M(KB)

Adult 65.28 14.717 73.34 8.562 68.58 2.141
Australian 77.11 0.594 80.59 0.937 79.28 0.5
Banana 84.31 1.016 87.45 3.25 87.64 1.625
Diabetes 66.74 0.156 66.54 0.25 66.11 0.5
Ecoli 78.44 1.039 79.02 2.625 78.84 0.875
Glass 72.57 7.533 71.60 12.687 71.18 6.344
Iris 98.00 0.223 98.30 0.562 97.90 0.375

Letter 80.24 16.758 79.99 58.5 82.18 39
Liver 58.74 0.742 58.83 1.875 58.13 1.25

MNIST 90.46 246.641 90.15 210 90.93 140
Mushroom 99.99 1.187 99.51 1 99.84 2
Satimage 80.96 4.008 80.26 10.125 80.48 6.75
Segment 92.94 2.468 92.61 6.234 93.02 4.156
Shuttle 87.42 1.169 87.11 3.076 87.15 5.906
Vehicle 62.64 1.336 63.05 2.25 64.75 2.25
Vowel 85.62 2.653 86.64 6.875 85.41 3.437
Wine 92.5 0.724 93.25 0.762 92.25 2.437

6.3.5 AMQ WiSARD: Accuracy vs. Memory Analysis

As analyzed in Section 6.3.4, Bloom WiSARD could obtain acceptable accuracy and

reduced memory when the false positive rate is configured to 50%. Unlike Bloom

WiSARD, the other AMQ filters were not generated using false positive probabil-

ity as parameter. In order to compare the AMQ WiSARDs, various results were

obtained from Cuckoo and Quotient WiSARD by varying the tags per bucket, tag

bits (fingerprint and remainder) and number of buckets parameters. The complete

results are displayed in Appendix B.

To evaluate AMQ WiSARDs with Bloom WiSARD with 50% false positive rate,

the results with competitive accuracy and low memory consumption are selected

and tabulated in Table 6.7. Bloom WiSARD achieves the best memory consumption

in 11 datasets, while Cuckoo WiSARD achieves in 1 and Quotient WiSARD in 5

datasets. In comparison against Bloom WiSARD 10% of false positive rate, the

memory is reduced in average 2.03 times with the best case about 5.62 (Adult) for

Cuckoo WiSARD and in average 3.47 times with the best case about 22.5 (Adult)

for Quotient WiSARD.

It indicates that all AMQ models have competitive potential to reduce the mem-

ory maintaining good accuracy. Bloom WiSARD can be easily configured by using

101

the formulas presented in Section 6.1.1 providing good learning capability. The

other models are required to be empirically analyzed with di↵erent configurations in

order to find reduced memory requirements. Even Bloom WiSARD is practical to

use, the other models are interesting approaches to be considered as they rely on few

universal hash functions that could be critical in hardware implementation. Both

Cuckoo and Quotient filter implementations are based on their standard model.

There are optimized versions elaborated to reduce the memory requirements such

as the semi-sorting buckets in Cuckoo filter which saves 1 bit per fingerprint [107]

and Rank-and-Select based Quotient Filter (RSQF) which uses 2.125 metadata bits

per slot (standard model uses 3 metadata bits per slot) [109].

6.4 Concluding Remarks

WiSARD is a powerful WNN model based on RAM memory that can be easily

implemented in hardware and real-time systems. Nevertheless, certain applications

require a considerable amount of memory to achieve good learning capabilities be-

coming impracticable to implement it in current technology. Alternative structures

like dictionary are required to implement the RAM nodes and enable the use of the

model. In this work, AMQ WiSARD model is proposed to address the memory

consumption of WiSARD by implementing RAM nodes as AMQ filters. By using

these filters, the memory resources are widely reduced by allowing occurrences of

false positives. The main AMQ filters: Bloom filter, Cuckoo filter and Quotient

filter, are used to construct the novel models. Although false positives are very

detrimental in certain applications, for pattern recognition purposes it was experi-

mentally found that they can build robustness into the system (as dropout does to

deep neural networks). The results show that the models provide good accuracy,

training and testing time. When Bloom WiSARD is setup to 10% false positive rate,

it consumes up to 6 orders of magnitude less resources than standard WiSARD and

about 7.7 times less resources than WiSARD implemented with dictionaries. In

addition, increasing the false positive rate to 50% results in 3.16 times less memory

and average of 1.77% decreased accuracy compared to 10% configuration. Simi-

lar results are achieved by Cuckoo WiSARD and Quotient WiSARD over standard

WiSARD and dictionary WiSARD. In comparison with approximate accuracy of

Bloom WiSARD with 10% false positive rate, the memory is reduced about 2.03

and 3.47 times, respectively. Future work will focus on extending the AMQ filter

operations such as frequency counts of elements stored, in order to enable AMQ

WiSARD to use improved techniques such as DRASiW. Hardware implementation

for AMQ WiSARD models will also be evaluated.

102

Chapter 7

Conclusion

HW-assisted security solutions have been deployed to support the security of data

which tra�cs over higher layers of system architecture and is out of user control.

Particularly, this thesis explores optimizations regard Physically Unclonable Func-

tions (PUFs) and Dynamic Information Flow Tracking (DIFT) fields which are

adequate for implementing HW-assisted Random Generation, HW-assisted Malware

Detection and HW-assisted Pointers Violation Prevention technologies.

PUFs are promising hardware security primitives to develop authentication and

key generation systems while they o↵er highly resistance against invasive attacks.

However, Strong PUF implementations are still inadequate as model building attacks

based on machine learning algorithms can clone them with high accuracy. This

thesis proposed various novel Strong PUF designs based on WiSARD, a simple

Weightless Neural Network (WNN) model, which increase the resistance against

machine learning attacks. Furthermore, an entropy source is combined to WNN

PUF architectures to create reliable Strong PUF keeping the high machine learning

attack resistance. As result, minimum reliable Strong PUFs with < 65% machine

learning accuracy can be constructed by using only 32 bits of reliable Weak PUF.

High volume manufacturing (HVM) of PUFs requires post-manufacturing real-

time analysis to test if the adequate uniqueness property is achieved among the

produced chips. As most of solutions proposes o✏ine analysis, this thesis elaborated

strategies to optimize an online design-for-test methodology based on Multi-Index

Hashing (MIH) structure. MIH is a fast search technique for binary codes in sub-

linear time in Hamming space. Nonetheless, it requires the data be copied into

multiple hash tables. By investigating the field of k-nearest neighbor (kNN) search

for Hamming space, the methods of distance free computation search and hamming

weight theorem are adapted in order to reduce the memory space without impact

the performance.

Recently, binary compression techniques have been employed to compact the

high-dimensional data into binary codes to make feasible kNN search applications.

103

Since MIH can be used as solution for kNN search using binary codes, this thesis

also formulated a co-processor design to accelerate data-intensive MIH operations.

It is composed of specialized Hamming distance calculation and Odd-even Merge

Sort Network circuits. The proposed hardware was implemented on low-cost FPGA

running at 100 MHz and evaluated for kNN search problem obtaining interesting

speedup in comparison with embedded ARM processor when dataset is large. The

co-processor can be applied properly in the online PUF testing with MIH and the

other online kNN search solutions based on Hamming distance calculation such as

Hamming Weight Tree.

DIFT is an appealing technique to track sensitive information propagation and

impede its leakage. Nevertheless, an adversary can explore implicit flows prop-

agation to evade explicit-propagation based tracking. This thesis developed a

lightweight Nested Implicit Flow Tracking (NIFT) technique able to track implicit

flow originated from control dependencies. In contrast to other implicit DIFT tech-

niques, it is e↵ective to hold implicit flow along multiple nested branches. A formal

verification is provided to validate the correctness of NIFT design. In addition, a

new taint propagation rule was defined to tag data under control dependencies when

it come from immediate assignment instructions. The experiments showed that the

new taint propagation mitigates the over-tainting problem and NIFT was precise in

catching implicit information flow with low overhead in terms of performance and

memory consumption.

As explored for Strong PUF designs, WiSARD is a simple WNN model that

can be e�ciently implemented in hardware. However, certain pattern recognition

applications require an impractical large amount of memory to achieve acceptable

learning results. Finally, this thesis proposed new WiSARD models based on Ap-

proximate Membership Query (AMQ) data structure. By using AMQ structures,

memory resources are significantly reduced at the expense of allowing false positives

when verifying if a given data was already recorded in the network. The experi-

ments showed that the proposed models achieve competitive accuracy, training time

and testing time consuming up to 6 orders of magnitude less resources than stan-

dard WiSARD and about 7.7 times less resources than dictionary-based WiSARD

when they are setup to 10% false positive rate. Increasing the Bloom WiSARD’s

false positive rate to 50%, the memory resources is reduced about 3.16 times and

the accuracy is decreased approximately 1.77% in comparison with 10% false posi-

tive configuration. Cuckoo WiSARD and Quotient WiSARD reduced the memory

about 2.03 and 3.47 times, respectively, in comparison against approximate accuracy

of Bloom WiSARD with 10% false positive rate. Additionally, the experimental re-

sults indicate that AMQ structures can build robustness into the system for pattern

recognition purposes.

104

Since pattern recognition applications are increasingly used on IoT environments,

the WiSARD model is an appealing solution to run on these systems. In the future,

AMQ WiSARD models can be implemented in hardware in order to evaluate the re-

quired resources for each design. As WiSARD was also applied for security purposes

to create new Strong PUF design, one work could analyze the resilience of proposed

models by including interference of noise on training or testing set. In the context

of hardware security, new mechanisms might be proposed to create more resilient

WNN model enabling it as secure solution in critical pattern recognition applications

such as pedestrian detection in autonomous car. Overall, the knowledge of robust

neural circuit is interesting making it possible to be used as hardware component to

support HW-assisted security technologies for any kind of applications running on

ubiquitous computing.

105

Appendix A

Hardware Similarity Search with

Multi-Index Hashing

In current decade, artificial intelligence and machine learning applications have re-

ceived widespread attention so that big companies such as Google [116], Microsoft

[117] and ARM [118] have invested on novel hardware architectures to accelerate

such domain specific problems. Furthermore, data-intensive applications have led

to architectural trends as Von-Neumann CPUs are not adequate to o↵er higher

throughput and lower latency required for such applications.

Similarity search is a class of data-intensive machine learning problems that is

important for several applications like computer vision [119], image retrieval [120]

and natural language processing [121]. Formally, the problem consists of searching

the most similar data from a database given a query as input. A well-know variation

is the k-nearest neighbors (kNN) search problem which selects only until k of the

most identical contents.

High dimensional real-valued feature vectors produced by modern applications

bring a challenge to appropriately manage them in practical time. To overcome this

barrier, binary code generation techniques have been broadly explored to improve

the e�ciency in similarity search domain by indexing high-dimensional vectors into

the Hamming space preserving similarity in the original space [122–127]. Since the

points are drastically reduced into binary code space, choosing the appropriate in-

dexing structure is critical as it impacts accuracy and performance of kNN search.

Recent work has shown that hash based structures achieve significant speed-up op-

portunities especially when distance search is done in Hamming Space [128].

Multi-index hashing (MIH) is a fast search technique to retrieve nearest neigh-

bors in Hamming space [76]. To speed up the search, it relies on multiple hash tables

to store indexes mapped by disjoint sub-strings partitioned from each binary code.

Thereby, parallel near neighbor searches on these sub-strings are able to find out all

neighbors for the complete binary code. This Chapter proposes an e�cient hardware

106

co-processor design to accelerate similarity search on MIH structure. The Hamming

distance calculation and partially sort of the candidate neighbors, that are exe-

cuted in each hash table, were identified as data-intensive and practical operations

to be accelerated in the hardware. The Register Transfer-Level (RTL) architecture

is specified in Verilog hardware description language and implemented in the pro-

grammable logic of a low-cost Xilinx FPGA (XC7Z020). Performance, circuit-area

and power requirement of the proposed accelerator are analyzed and compared to

embedded ARM processor in order to validate it for low-cost environment such as

IoT applications.

A.1 K-Nearest Neighbors Search Algorithm

Nearest neighbor search problem can be defined as retrieving the closest values of

a query q in a set P containing n objects represented as points in a space. When

P has high-dimensional objects, the search is challenging by requiring e�cient stor-

age/indexing strategies and distance calculation. A variation of the problem is the

k-nearest neighbors search where the number of found closest points is limited by k.

Recent works have proposed di↵erent types of indexing strategies on high-

dimensional data such as: hierarchical k-means, kd-trees, multi-probe locality sensi-

tive hashing (MPLSH) and multi-index hashing (MIH). The idea of these techniques

is to create a data structure by compacting the search space and, consequently,

drastically reducing the query time. Hierarchical k-means generates clusters of a

database organized in a tree structure, where the similar entries are holding in the

leaves that are accessed by a query with closest contents [129]. Identically, kd-trees

constructs a tree structure to index the clusters of a database which are formed by a

random slice of the database [130]. Multi-probe locality sensitive hashing (MPLSH)

is based on multiple hash tables, where each hash location stores similar entries

[131]. Unlike the conventional hash functions which aim to avoid collisions, MPLSH

holds hash functions to maximize collisions so that queries are mapped to hash table

locations with identical content. Multi-index hashing (MIH) stores the binary codes

into multiple hash tables indexed by disjoint parts of data as detailed in Section 2.5

[76, 132]. Even binary codes sacrifice accuracy during the quantization process, it

is cheap and straightforward to implement in hardware.

These techniques are based on some distance calculation between the stored data

and query to determine the level of similarity. There are several metrics for distance

like Euclidean distance, Hamming distance [133], cosine similarity, learned distance

metrics [134], Manhattan distance and Jaccard similarity. Although Euclidean dis-

tance is the most common, each metric is better for specific index strategy. Hamming

distance is prominent to measure distance in binary codes by taking advantage from

107

the MIH structure [76].

A.2 The Accelerator Architecture

Considering the MIH structure presented in Section 2.5, MIH hardware co-processor

is proposed to accelerate hamming distance calculation and partial sorting opera-

tions as soon as the sub-strings are looked-up from each hash tables. In other words,

the co-processor receives an input stream of binary codes and produces an ordered

list of candidates for each hash table.

A.2.1 Top View

The kNN search using MIH requires the delineation of a Hamming search radius r in

order to retrieve the k nearest neighbors from each hash table. Since di↵erent search

queries with radius r may produce more candidates than k, the radius parameter

must not be fixed. The search process starts from radius parameter r = 0 iterating

it until the top-k similar neighbors are found. In each radius iteration i, the i-

neighbors are validated as true neighbors and sent to an odd-even merge sort pipeline

to partially sort the already found exact candidates from each hash table. At the

end, the top k nearest candidates are selected from the final ordered list generated

by merging all ordered list corresponding to each hash table.

Figure A.1 illustrates how the MIH co-processor can be used to accelerate the

kNN search for a 16-bit binary query partitioned in 4 sub-strings and a Hamming

search radius r = 0 (one sub-string represents itself a neighbor). Each neighbor of

sub-string is a key to access a MIH hash table entry containing a list of indexes.

These indexes point out to the 16-bit binary code stored in the database. First the

complete neighbor data is recovered from the database through the indexes stored

in each entry of the hash. Then, the accelerator calculates the Hamming distances

between the query and the data streamed from the database. Independently, the

distances are ordered for each hash entry and are ranked among the hash tables

until to obtain the top-k candidates.

At certain conditions, kNN search in MIH may require multiple search radius

for all queries to find the most k similar neighbors. Moreover, huge databases are

likely to map several data onto the same hash table entry. Based on those facts,

MIH data-intensive computation comprises the hamming distance calculation and

the partial sorting of candidates performed in each hash table. As data-intensive

processing applications can benefit from higher memory bandwidth, the proposed

MIH accelerator implements specialized circuits for hamming distance calculation

and partial sorting. Several instances of the co-processor can be connected to each

108

0000

0001

0010

1111

...

[1, 2, 3]

[9, 8, ...]

[]

...

[4]

0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1

ID Value

0000

0001

0010

1111

...

[9, 2]

[7, 3]

[1, 4, 6]

...

[]

ID Value

0000

0001

0010

1111

...

[7, 5]

[6, 8]

[9, 1, 2]

...
[]

ID Value

0000

0001

0010

1111

...

[1, 2]

[6, 3]

[]

...
[5, 8]

ID Value

Query

Database

0010...0010

...

0010...0101

1000...0011

...

0000...0110

0000...0010

...

0010...0001

0010...0010

...

1000...0110

MIH IP MIH IP MIH IP MIH IP

1000...0011

...

0000...0110

Merge
Sort

Top K-NN

Hamming
Distance

Partial
Sort

Figure A.1: K-nearest neighbor search with Multi-Index Hashing (MIH) hardware
accelerator (MIH Intellectual Property - IP). It presents a search for a 16-bit binary
query partitioned in 4 sub-strings and a Hamming search radius r = 0.

hash table in order to quickly produce the sorted small lists with the top nearest

neighbors. Due to this, the merge sort process can be optimized considering that

the candidates from all hash tables are ordered by the query similarity.

A.2.2 Accelerator Design

To support the data-intensive execution phases, the MIH accelerator was designed

to communicate with external systems via Advanced eXtensible Interface (AXI)

Stream protocol, which is part of the Advanced Microcontroller Bus Architecture

(AMBA4). The accelerator has two main cores: the AXI Stream Slave, which re-

ceives the query and the stream of neighbor data, and AXI Stream Master, which

sends back the sorted distance list with the corresponding neighbor indexes. For

purposes of simplicity, the architecture is described to support 64-bit binary string

hamming distance calculation and 64 sorted neighbor distances and indexes. Di↵er-

ent configurations require the extension of the architecture components in order to

fulfill the specification. Figure A.2 depicts the MIH accelerator architecture.

The AXI Stream slave core holds a double bu↵er to store the sorted distances

and indexes. Initially, the first 64-bits are stored in the query register while the

subsequent data is stored in the rx data register. As soon as data is received, the

109

hamming distance is calculated and the data index (receiving order) is sent to the

sorter component. Both Hamming distance and sorter components are detailed in

Section A.2.3. When the first bu↵er is full (64 distances), the core waits until the

bu↵er ordering is completed to start the insertion in the second bu↵er. To speed up

the candidate selection, the distances are only kept in the second bu↵er if it is less

than the last distance stored in the first bu↵er. That rule avoids to sort far neighbors

by early eliminating the false nearest neighbors. When the second bu↵er is full, the

core starts the merge process between both bu↵ers to organize the smallest distances

into the first bu↵er and reinitialize the second bu↵er. The merge process is detailed

in Section A.2.4. After merging, the logic comes back to insert small distances on

the second bu↵er by comparing to first bu↵er. Those processes continue until the

last neighbor data is received.

AXI Stream master core starts after slave core has finished. The sorted distances

are sent to the host after all sorted indexes have been submitted. Since a double

bu↵er is used to store the indexes and distances, master core handles two pointers

to choose the smaller distances between the bu↵ers until it sends the k (k = 64)

candidates.

Distance

Index

Data Stream

MIH IP (Accelerator)

AXI Stream Slave

Index

Distance

AXI Stream Master

TX Data 64 Sorted Data

Buffer 1

Buffer 2

Data
Stream

Query

Hamming
Distance

rx_data

Odd-even Merge Sort

Distance

Buffer 1

Buffer 2

Index

TX
Data

Buffer 1

Buffer 2

Data
Stream

Distance

Buffer 1

Buffer 2

Index

64

64

Figure A.2: Overview of the MIH Accelerator. The AXI Stream Slave interface
receives the query and the stream of neighbor data (64-bit each), while the AXI
Stream Master sends back the top-64 sorted distances and the corresponding neigh-
bor index.

110

HA FA FA

HA

HA

HA

HA

HA HA

HA HA

OR OR

I0 I1 I2 I3 I4 I5 I6 I7

O0 O1 O2 O3

S S S

S S S S

S SS SC C C

C

C

C

C

CC C

C

8-bits bit-counting
circuit

XOR

a b

Hamming Distance

Figure A.3: 8-bits Hamming Distance counting component, as proposed in [4].

A.2.3 Specialized Components

The e�ciency of the co-processor comes from the fast specialized circuit to calculate

Hamming distance and the sorting network to sort the indexes and distances received

by slave core. Hamming distance between binary codes a and b can be e�ciently

obtained by counting number of 10s in a�b. There are several techniques to perform

bit-counting operation, which is known as popcount (population counts) operation.

For this work, the hamming distance component is implemented to take only one

cycle with the embedded bit-counting circuit proposed by Dalalah et al. [4] as their

circuit requires fewer resources and achieves low delay than other hardware solutions,

as shown in Figure A.3.

Following the method proposed by Dalalah et al. [4], the bit-counting circuit

can be recursively generated by extending the base 8-bits counting circuit. The base

circuit has 3 layers connecting Half Adder (HA) and Full Adder (FA) components

with OR logic gate. Table A.1 summarizes the number of gates required to build

such bit-counting circuit for di↵erent input sizes.

Table A.1: Bit-counting consumption. Each Full Adder consumes 5 gates and Half
Adder 2 gates.

Bit length # FAs # HAs # OR gates Total Gates
8 2 9 2 30
16 7 19 4 77
32 18 39 8 176
64 41 79 16 379

The partial sorting component is implemented through sorting network algo-

111

rithms that are very e�cient to implement and run on hardware. The circuit is

formed of horizontal wires and vertical comparators with the unsorted elements

come from left side. A fixed number of comparisons and swap operations are exe-

cuted along the wires to sort the elements two-by-two in each stage, keeping smaller

elements on the upper output wire while the larger elements are placed on lower out-

put wire. Several sorting network implementations have been evaluated on FPGA

by Mueller et al. who conclude that Batcher’s odd-even merge sort network is the

best cost benefit in terms of hardware resource and throughput [135]. Batcher’s

algorithm describes a recursive non-adaptive procedure to generate the sorting net-

work with a number of items with size of power of 2, taking O(log(n)2) depth to sort

n elements utilizing O(n log(n)2) resources. As that algorithm is adequate to sort a

short fixed sequence of items, the odd-even merge sort network is implemented as

the partial sorting component of the proposed MIH accelerator.

DistanceIndex

Odd-Even Merge Sort

Sorted
Distance

Sorted
Index

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10

Figure A.4: Odd-even merge sort component, exemplifying the sort network with
16-bit inputs, 16-bit outputs and 10 pipeline stages.

Figure A.4 exemplifies the odd-even merge sort network with 16-bit inputs and

16-bit outputs where the sorting is finished at last stage (stage 10). It is adapted to

perform index ordering synchronized with distance order checking and implemented

as a pipeline circuit which receives the distance and index bu↵ers together at first

stage. By using Batcher’s algorithm to sort 64 elements, the pipeline consists of 21

stages with the total of 543 comparators as tabulated in Table A.2.

112

Table A.2: Batcher’s odd-even merge sort pipeline consumption.
Bit length # Pipeline Stages # Comparator-and-Swap

4 3 5
8 6 19
16 10 63
32 15 191
64 21 543

A.2.4 Bu↵er Merge Strategy

When bu↵er 1 and 2 are full, the merge between both bu↵ers is executed to store

the first sorted elements between them into bu↵er 1, while bu↵er 2 is re-initialized

with maximum input values to receive the next distances from the input stream.

Bu↵er merge process is executed in three steps as demonstrated in Figure A.5.

Both bu↵ers have 64 items totaling 128. When merge is finished, bu↵er 1 will hold

the smaller 64 distances while the remaining (stored in bu↵er 2) will be discarded.

In step 1, the first 32 elements from bu↵er 1 and 2 are concatenated and sent to the

odd-even merge sorting network, which takes 21 cycles to complete. Similarly, the

last 32 elements from both bu↵ers are concatenated and sent to the sorting network

component in the step 2. As it also takes 21 cycles to finish, the sorted results from

step 2 are obtained one cycle after step 1 has finished due to the pipeline circuit

implementation. To summarize, steps 1 and 2 are completed in 22 cycles. Since

bu↵er 1 and 2 are initially sorted, the first 32 items merged by the step 1 represent

the true order, that is, they are the 32 smallest elements between bu↵er 1 and 2.

Finally, the last 32 elements resulted from step 1 are concatenated with the first

32 distances sorted from step 2 and, afterwards, they are submitted taking more 21

cycles. At the end, the first 32 items are updated as last 32 elements into bu↵er 1

which contains the 64 smallest distances between initial bu↵er 1 and 2. Thus, the

bu↵er merge process always takes 43 cycles.

A.3 Experiments

All experiments and results presented in this Section were executed and implemented

on ZYNQ XC7Z020-1CLG400C Xilinx FPGA attached on the Pynq-Z1 board, which

contains 512 MB DDR RAM and several I/O interfaces. The Zynq FPGA archi-

tecture embeds a Cortex-A9 multi-core processor around its reconfigurable logic.

The proposed MIH accelerator specified in Verilog is synthesized and implemented

through Xilinx Vivado tools, version 2018.1. In the Pynq boards, Linux Pynq Image

v2.3 was installed to execute Python 3.0 and implement the kNN search application

based on MIH to access the hardware accelerator. As the boards are not attached

113

Buffer 1

32

32

Buffer 2

32

32

Odd-even
Merge Sort

Odd-even
Merge Sort

Odd-even
Merge Sort

32

32

32

32

32

32

Buffer 1

32

Step 1

Step 2

Step 3

Figure A.5: Bu↵ering merge process of bu↵er 1 and 2. The process is concluded in
43 cycles - 22 cycles corresponding to steps 1 and 2 plus 21 cycles comes from step
3.

to any machine, they work as a standalone system emulating embedded/edge envi-

ronment by addressing a low power system with limited computational resources.

A.3.1 Data sets

To evaluate the proposed MIH co-processor implementation, the experiments were

conducted on two datasets: 80M 384D GIST descriptors from 80 million tiny im-

ages [119] and 1B 128D SIFT descriptors from BIGANN dataset[136]. Since these

datasets are not binary, the hyperplane Locality Sensitive Hashing (LSH) [137] was

used to generate 64-bit binary codes. Each experiment requires three set of data:

a training set to adjust the LSH parameters, a base set to populate MIH structure

and the query set that contains the query data. For GIST, the whole data is ran-

domly split into 300K items for the training set, 1000 items for query set and the

remaining for the base set in similar way as applied in [76]. SIFT descriptors are

already divided into training, base and query set.

To binarize the datasets, the mean of training set is subtracted with the input

data to normalize the input. Next, the dot product is calculated between a set of

coe�cients from normal distribution and the normalized input, finalizing with the

quantization. These generated binary data were saved into a 32GB microSD card

which is plugged into the Pynq board and later read by the application.

A.3.2 Performance

Three versions of the MIH kNN search are implemented to analyze the potential

performance of the MIH accelerator: C (entirely in software), Python (entirely in

software) and Python with MIH IP. All versions utilize only one core of the dual-

114

core ARM Cortex-A9 host processor. Since the dataset is binarized to 64-bit binary

codes, MIH is configured to hold 4 and 8 hash tables. Due to the limited resources

provided by the given Zynq FPGA chip (xc7z020), parts of the datasets are used:

SIFT10K, SIFT1M, GIST10K, GIST100K and GIST1M. SIFT10K and SIFT1M are

already available on the SIFT dataset. For the GIST dataset, 10K, 100K and 1M

points are randomly picked from the binary base set corresponding to GIST10K,

GIST100K and GIST1M, respectively. Table A.3 summarizes the dataset configu-

rations used to measure the performance.

Table A.3: Dataset configurations.
Dataset # training # base # query
SIFT10K 25, 000 10, 000 100
SIFT1M 100, 000 1, 000, 000 10, 000
GIST10K 300, 000 10, 000 1, 000
GIST100K 300, 000 100, 000 1, 000
GIST1M 300, 000 1, 000, 000 1, 000

For each configuration, the mean of 10 runs is obtained to calculate the speedups.

Figure A.6 presents the performance of the MIH accelerator compared to Python

code running on the ARM host processor. For all datasets, the MIH accelerator

achieves better results than the corresponding Python version. The number of hash

tables in MIH influences the distribution of indexes that are sent to the accelerator

and the number of radius searches to find the k nearest neighbors. In smaller

datasets, the average number of indexes submitted to MIH is less than 64. Since the

co-processor uses a sorting network, as presented in Section A.2.3, even receiving less

than 64 data, it takes 21 cycles to complete the ordering. The MIH configuration

with 8 hash tables obtained best results with the best case accelerating up to 33

times.

Figure A.7 shows the performance of the MIH accelerator compared to C code

running on the ARM host processor. Smaller datasets result in slowdown, because

the co-processor always takes 21 cycles to sort small list of indexes. Furthermore, the

data distribution in 8 hash tables configuration creates many small lists of indexes

for each hash table location, so that the C version also takes advantage of the cache

hit. The best results were obtained with 4 hash tables, with the best case presenting

approximately 19 times speedup.

The performance analysis shows that the MIH accelerator potentially improves

the performance of kNN search applications, especially considering that the Zynq

ARM processor operates at 667 MHz, while the accelerator operates at 100 MHz.

The bottleneck of MIH accelerator is strictly related to the number of indexes stored

in each hash table location which impacts the partial sorting operation. A large

amount indexes result in great speedup. As the experiments were performed using a

115

Figure A.6: Speedup of MIH IP compared to Python version.

Figure A.7: Speedup of MIH IP compared to C version.

116

single accelerator for all hash tables due to the limited number of resources available

on the Zynq FPGA, the results could be improved if one dedicated MIH accelerator

could be instantiated for each hash table.

A.3.3 Utilization Cost

This Section presents the results regarding resource consumption on the implemen-

tation of the Hamming distance and sorting algorithm on the Zynq FPGA. The

values of the Direct Memory Access (DMA) are also taken into account, since it is

needed due to Axi-Stream communication protocol.

Table A.4: Application utilization on the Pynq board.
Resource Utilization Available Utilization %

LUT 47228 53200 88.77
LUTRAM 1934 17400 11.11

FF 61564 106400 57.86
BRAM 18 140 12.86
BUFG 1 32 3.13

Table A.4 presents the resource consumption divided into Look-Up Ta-

bles(LUTs), Look-Up Tables RAMs Flip-Flops(FF), Block RAMs (BRAM) and

BUFG which is responsible for generating clock. FF is the most used resources

considering the raw value and not the percentage. As multiple pipelines are used in

the co-processor, data are forced to be stored in small register-like variables which

might be mapped onto Flip-Flops. The BRAM resources amounted to 12.86% uti-

lization due to store multiple 64-bit values for the partial sorting component. LUTs

are the most used resources ratio-wise achieving 88.77% as there are many logi-

cal and arithmetic operations occurring in parallel as seen in Figures A.2 and A.3,

which means the hardware needs to be replicated instead of reused. Also, the LUT

resource is the main building block of several architecture components.

A.3.4 Power

This Section presents power requirement estimations generated by Vivado power

analysis report. The analysis was executed on vectorless mode with a default toggle

rate set to 12.5% and static probability set to 0.5. Although the vectorless power

analysis is not accurate, it gives a reasonable estimation about the overall circuit

power consumption.

Figure A.8 displays the average power consumption in Watts, separated by

FPGA components. Total consumption is equivalent to 1.63 Watts per cycle, which

can be considered small when compared to common general purpose ASICs. PS7,

117

0.169
0.029
0.019
0.016

1.256
0.142

1.631

Watts

0 0.5 1 1.5 2

Clocks

Signals

Logic

BRAM

PS7

PL Static

Total

Figure A.8: Vivado 2018.1 Power consumption report based on vectorless mode,
with a default toggle rate set to 12.5% and static probability set to 0.5.

which is the processing system (ARM), has the most consumption overall, while

other components have a very small impact.

A.4 Concluding Remarks

Discussion

As the main goal of this work is to provide a design of hardware accelerator

to improve kNN performance using MIH structure, the accelerator can be easily

modified to support the variations of this structure such that Distance-Computation-

Free search proposed by Song et al. [90]. MIH is one type of Inverted Multi-Index

(IMI) structure which has been widely researched to provide e�ciency in similarity

search applications [90, 138, 139], where the key idea is to replace the standard

quantization techniques by inverted indices with product quantization [138]. Eghbali

et al. have elaborated Hamming Weight Tree (HWT) structure [92] which builds a

tree structure to map the query with bucket represented as a leaf, containing similar

neighbors. Even as in MIH, HWT might be used for kNN search and consists of

calculating HD for each candidate into the leaf and sort them to find the top-k most

similar neighbors among the leaves. The MIH co-processor can be straightforwardly

applied to work with HWT structure.

Moreover, MIH accelerator supports fixed configurations in term of number of

candidates to return and to sort by using the sorting network component. The setup

of this work uses 64 items to be able to run the empirical experiments discussed in

Section A.3.2. Typically, the kNN search uses 100-NN until 1000-NN neighbors

parameters. Adjusting these parameters embedded in the sorting network is im-

118

practicable due to resource constraints. Kobayashi et al. have proposed a sorting

accelerator that combines Sorting Networking and Merge Sorter Tree algorithms

with a data compression mechanism [140]. Upgrading the sorting network compo-

nent with their sorting accelerator, it would be possible to increase the number of

parameters enabling 1000-NN search in the hardware design.

Overall the results show that the MIH co-processor has the potential to accel-

erate kNN search consuming around 0, 375 Watts (excluding the ARM processor)

and running at 100 MHz. In future works, novel sorting network circuits applicable

into kNN search domain will be investigated. Additionally, the proposed design

will be replicated on FPGA devices containing more resources to test multi-parallel

execution with hamming distance calculations to complement the experiments. Fi-

nally, more experiments will be performed taking into consideration Intel and AMD

processors.

Conclusion

In order to keep acceptable accuracy when performing kNN search applications,

binary compression techniques have been proposed to compact the high-dimensional

data into binary codes. Multi-index hashing provides fast indexing solution by

mapping database indexes m times into m hash tables, which enables the search for

binary codes in sub-linear run-time in Hamming space. Its data-intensive tasks are

focused in Hamming distance calculation and the ordering over neighbor candidates

from each hash table.

In this work, a MIH hardware co-processor relying on specialized Hamming Dis-

tance calculation and Odd-even Merge Sort Network circuits is proposed. Details

of FPGA implementation using AMBA4 AXI Stream protocol are discussed and

the synthesis results are presented. The proposed hardware running at 100 MHz

frequency could achieve interesting speedup in comparison with embedded ARM

processor when the dataset is large. The complete co-processor occupies around

88% of the total Look-Up Tables and has low power consumption (around 0.375

Watts, excluding the ARM processor) in a small-sized, low-cost FPGA. The power

consumption estimation is based on Vivado’s vectorless mode, with a default tog-

gle rate set to 12.5% and static probability set to 0.5. In the future, architecture’s

power consumption will be meticulously measured in order to get more precise power

consumption results.

Finally, it is important to emphasize that although the proposed MIH accelerator

was implemented and evaluated using a FPGA chip, it could also be implemented as

an Application-Specific Integrated Circuit, especially because its RTL architecture

is already specified in Verilog hardware description language.

119

Appendix B

Complete Accuracy Results of

Cuckoo and Quotient WiSARD

This Appendix presents the complementary results regarding the Cuckoo WiSARD

and Quotient WiSARD presented in Chapter 6. Since both models have more pa-

rameters than Bloom WiSARD, the accuracy results with various settings are or-

ganized by dataset in the following Sections. The intention is that the reader can

fully verify the potential of AMQ WiSARD models. In Section 6.3.5, Bloom WiS-

ARD with 50% false positive rate is compared to Cuckoo and Quotient WiSARD

with approximate accuracy results selected from the experiments presented in this

Appendix.

B.1 Adult

The results of adult dataset are presented in Figure B.1 and Figure B.2 using various

configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.2 Australian

The results of australian dataset are presented in Figure B.3 and Figure B.4 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.3 Banana

The results of banana dataset are presented in Figure B.5 and Figure B.6 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

120

Figure B.1: Accuracy results of Adult dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

121

Figure B.2: Accuracy results of Adult dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

B.4 Diabetes

The results of diabetes dataset are presented in Figure B.7 and Figure B.8 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.5 Ecoli

The results of ecoli dataset are presented in Figure B.9 and Figure B.10 using various

configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.6 Glass

The results of glass dataset are presented in Figure B.11 and Figure B.12 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.7 Iris

The results of iris dataset are presented in Figure B.13 and Figure B.14 using various

configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

122

Figure B.3: Accuracy results of Australian dataset when varying capacity, number
of tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

123

Figure B.4: Accuracy results of Australian dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

B.8 Letter

The results of letter dataset are presented in Figure B.15 and Figure B.16 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.9 Liver

The results of liver dataset are presented in Figure B.17 and Figure B.18 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.10 MNIST

The results of mnist dataset are presented in Figure B.19 and Figure B.20 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.11 Mushroom

The results of mushroom dataset are presented in Figure B.21 and Figure B.22 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

124

Figure B.5: Accuracy results of Banana dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

125

Figure B.6: Accuracy results of Banana dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

B.12 Satimage

The results of satimage dataset are presented in Figure B.23 and Figure B.24 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.13 Segment

The results of segment dataset are presented in Figure B.25 and Figure B.26 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.14 Shuttle

The results of shuttle dataset are presented in Figure B.27 and Figure B.28 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.15 Vehicle

The results of vehicle dataset are presented in Figure B.29 and Figure B.30 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

126

Figure B.7: Accuracy results of Diabetes dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

127

Figure B.8: Accuracy results of Diabetes dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

B.16 Vowel

The results of vowel dataset are presented in Figure B.31 and Figure B.32 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

B.17 Wine

The results of wine dataset are presented in Figure B.33 and Figure B.34 using

various configurations of Cuckoo WiSARD and Quotient WiSARD, respectively.

128

Figure B.9: Accuracy results of Ecoli dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

129

Figure B.10: Accuracy results of Ecoli dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

130

Figure B.11: Accuracy results of Glass dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

131

Figure B.12: Accuracy results of Glass dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

132

Figure B.13: Accuracy results of Iris dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

133

Figure B.14: Accuracy results of Iris dataset when varying number of buckets (quo-
tient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis represents
the number of buckets and each line represents one tag bit setting. The highlighted
line indicates the best result in term of accuracy.

134

Figure B.15: Accuracy results of Letter dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

135

Figure B.16: Accuracy results of Letter dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

136

Figure B.17: Accuracy results of Liver dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

137

Figure B.18: Accuracy results of Liver dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

138

Figure B.19: Accuracy results of MNIST dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

139

Figure B.20: Accuracy results of MNIST dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

140

Figure B.21: Accuracy results of Mushroom dataset when varying capacity, number
of tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

141

Figure B.22: Accuracy results of Mushroom dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

142

Figure B.23: Accuracy results of Satimage dataset when varying capacity, number
of tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

143

Figure B.24: Accuracy results of Satimage dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

144

Figure B.25: Accuracy results of Segment dataset when varying capacity, number
of tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

145

Figure B.26: Accuracy results of Segment dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

146

Figure B.27: Accuracy results of Shuttle dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

147

Figure B.28: Accuracy results of Shuttle dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

148

Figure B.29: Accuracy results of Vehicle dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

149

Figure B.30: Accuracy results of Vehicle dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

150

Figure B.31: Accuracy results of Vowel dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

151

Figure B.32: Accuracy results of Vowel dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

152

Figure B.33: Accuracy results of Wine dataset when varying capacity, number of
tags (entries) per bucket and tag bits of Cuckoo WiSARD. The x axis represents
the number of tags per bucket and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

153

Figure B.34: Accuracy results of Wine dataset when varying number of buckets
(quotient bits) and tag bits (remainder bits) of Quotient WiSARD. The x axis
represents the number of buckets and each line represents one tag bit setting. The
highlighted line indicates the best result in term of accuracy.

154

Appendix C

List of Publications

C.1 Journal Articles

1. Leandro Santiago; VERONA, Leticia; RANGEL, Fábio; FARIA, F. F.;

MENASCHE, Daniel S.; et al. “Weightless Neural Networks as Memory Seg-

mented Bloom Filters”, Neurocomputing 2019. Submitted.

2. Leandro Santiago; PATIL, VINAY C.; PRADO, CHARLES B.; ALVES,

TIAGO A. O.; MARZULO, LEANDRO A.J.; FRANCA, FELIPE M.G.;

KUNDU, SANDIP. “Design of Robust, High-Entropy Strong PUFs via

Weightless Neural Network”, Journal of Hardware and Systems Security. ,

v.3, p.1 - 15, 2019. [3]

C.2 In Conference Proceedings

1. Santiago, Leandro; PATIL, VINAY C.; MARZULO, LEANDRO A.J.;

FRANCA, FELIPE M.G.; KUNDU, SANDIP. “E�cient Testing of Physically

Unclonable Functions for Uniqueness”, The 28th IEEE Asian Test Symposium

(ATS 2019), India. Submitted.

2. Santiago, Leandro; Marzulo, Leandro A. J.; ALVES, TIAGO A. O.; França,

Felipe M. G.; Koren, Israel; Kundu, Sandip. “Building a Portable Deeply-

Nested Implicit Information Flow Tracking”, The 37th IEEE International

Conference on Computer Design, Abu Dhabi. Submitted.

3. Santiago, Leandro; Ferreira, Victor C. ; Goldstein, Brunno F. ; Nery, Alexan-

dre S. ; Marzulo, Leandro A. J. ; Kundu, Sandip; França, Felipe M. G.

. “Hardware-Accelerated Similarity Search with Multi-Index Hashing”, The

17th IEEE International Conference on Pervasive Intelligence and Computing

(PICom 2019), Japan.

155

4. Leandro Santiago; VERONA, Leticia; RANGEL, Fábio; FARIA, F. F.;

MENASCHE, Daniel S.; et al. “Memory E�cient Weightless Neural Network

using Bloom Filter”, In: ESANN - European Symposium on Artificial Neural

Networks, Computational Intelligence and Machine Learning, 2019, Belgium.

ESANN 2019 proceedings. , 2019. [110]

5. SANTIAGO, LEANDRO; PATIL, VINAY C.; PRADO, CHARLES B.;

ALVES, TIAGO A. O.; MARZULO, LEANDRO A.J.; FRANCA, FELIPE

M.G.; KUNDU, SANDIP. “Realizing strong PUF from weak PUF via neural

computing”, In: IEEE International Symposium on Defect and Fault Toler-

ance in VLSI and Nanotechnology Systems (DFT), 2017, Cambridge. 2017

IEEE International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT). IEEE, 2017. p.1 - 6. [2]

156

Bibliography

[1] COPPOLINO, L., D’ANTONIO, S., MAZZEO, G., et al. “A comprehensive sur-

vey of hardware-assisted security: From the edge to the cloud”, Internet of

Things, v. 6, pp. 100055, 2019. ISSN: 2542-6605. doi: https://doi.org/10.

1016/j.iot.2019.100055. Dispońıvel em: <http://www.sciencedirect.

com/science/article/pii/S2542660519300101>.

[2] SANTIAGO, L., PATIL, V. C., PRADO, C. B., et al. “Realizing strong PUF

from weak PUF via neural computing”. In: 2017 IEEE International Sym-

posium on Defect and Fault Tolerance in VLSI and Nanotechnology Sys-

tems (DFT), pp. 1–6, Oct 2017. doi: 10.1109/DFT.2017.8244433.

[3] SANTIAGO DE ARAÚJO, L., C. PATIL, V., B. PRADO, C., et al. “Design

of Robust, High-Entropy Strong PUFs via Weightless Neural Network”,

Journal of Hardware and Systems Security, May 2019. ISSN: 2509-3436.

doi: 10.1007/s41635-019-00071-z. Dispońıvel em: <https://doi.org/

10.1007/s41635-019-00071-z>.

[4] DALALAH, A., BABA, S., TUBAISHAT, A. “New Hardware Architecture

for Bit-counting”. In: Proceedings of the 5th WSEAS International Con-

ference on Applied Computer Science, ACOS’06, pp. 118–128, Stevens

Point, Wisconsin, USA, 2006. World Scientific and Engineering Academy

and Society (WSEAS). ISBN: 960-8457-43-2. Dispońıvel em: <http:

//dl.acm.org/citation.cfm?id=1973598.1973623>.

[5] RAKOTONDRAVONY, N., TAUBMANN, B., MANDARAWI, W., et al. “Clas-

sifying malware attacks in IaaS cloud environments”, Journal of Cloud

Computing, v. 6, n. 1, pp. 26, Dec 2017. ISSN: 2192-113X. doi:

10.1186/s13677-017-0098-8. Dispońıvel em: <https://doi.org/10.

1186/s13677-017-0098-8>.

[6] WU, Z., XU, Z., WANG, H. “Whispers in the Hyper-space: High-

speed Covert Channel Attacks in the Cloud”. In: Presented as

part of the 21st USENIX Security Symposium (USENIX Security

157

http://www.sciencedirect.com/science/article/pii/S2542660519300101
http://www.sciencedirect.com/science/article/pii/S2542660519300101
https://doi.org/10.1007/s41635-019-00071-z
https://doi.org/10.1007/s41635-019-00071-z
http://dl.acm.org/citation.cfm?id=1973598.1973623
http://dl.acm.org/citation.cfm?id=1973598.1973623
https://doi.org/10.1186/s13677-017-0098-8
https://doi.org/10.1186/s13677-017-0098-8

12), pp. 159–173, Bellevue, WA, 2012. USENIX. ISBN: 978-

931971-95-9. Dispońıvel em: <https://www.usenix.org/conference/

usenixsecurity12/technical-sessions/presentation/wu>.

[7] STEWIN, P., BYSTROV, I. “Understanding DMA Malware”. In: Flegel, U.,

Markatos, E., Robertson, W. (Eds.), Detection of Intrusions and Mal-

ware, and Vulnerability Assessment, pp. 21–41, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg. ISBN: 978-3-642-37300-8.

[8] ROEMER, R., BUCHANAN, E., SHACHAM, H., et al. “Return-Oriented Pro-

gramming: Systems, Languages, and Applications”, ACM Trans. Inf.

Syst. Secur., v. 15, n. 1, pp. 2:1–2:34, mar. 2012. ISSN: 1094-9224. doi:

10.1145/2133375.2133377. Dispońıvel em: <http://doi.acm.org/10.

1145/2133375.2133377>.

[9] BLETSCH, T., JIANG, X., FREEH, V. W., et al. “Jump-oriented Program-

ming: A New Class of Code-reuse Attack”. In: Proceedings of the 6th

ACM Symposium on Information, Computer and Communications Se-

curity, ASIACCS ’11, pp. 30–40, New York, NY, USA, 2011. ACM.

ISBN: 978-1-4503-0564-8. doi: 10.1145/1966913.1966919. Dispońıvel em:

<http://doi.acm.org/10.1145/1966913.1966919>.

[10] COWAN, C., WAGLE, P., PU, C., et al. “Bu↵er overflows: attacks and defenses

for the vulnerability of the decade”. In: Foundations of Intrusion Tolerant

Systems, 2003 [Organically Assured and Survivable Information Systems],

pp. 227–237, Dec 2003. doi: 10.1109/FITS.2003.1264935.

[11] KELSEY, J., SCHNEIER, B., WAGNER, D., et al. “Cryptanalytic Attacks on

Pseudorandom Number Generators”. In: Vaudenay, S. (Ed.), Fast Soft-

ware Encryption, pp. 168–188, Berlin, Heidelberg, 1998. Springer Berlin

Heidelberg. ISBN: 978-3-540-69710-7.

[12] FRANCILLON, A., CASTELLUCCIA, C. “Code Injection Attacks on

Harvard-architecture Devices”. In: Proceedings of the 15th ACM Con-

ference on Computer and Communications Security, CCS ’08, pp. 15–

26, New York, NY, USA, 2008. ACM. ISBN: 978-1-59593-810-7. doi:

10.1145/1455770.1455775. Dispońıvel em: <http://doi.acm.org/10.

1145/1455770.1455775>.

[13] CHECKOWAY, S., SHACHAM, H. “Iago Attacks: Why the System Call API is

a Bad Untrusted RPC Interface”, SIGPLAN Not., v. 48, n. 4, pp. 253–264,

mar. 2013. ISSN: 0362-1340. doi: 10.1145/2499368.2451145. Dispońıvel

em: <http://doi.acm.org/10.1145/2499368.2451145>.

158

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
http://doi.acm.org/10.1145/2133375.2133377
http://doi.acm.org/10.1145/2133375.2133377
http://doi.acm.org/10.1145/1966913.1966919
http://doi.acm.org/10.1145/1455770.1455775
http://doi.acm.org/10.1145/1455770.1455775
http://doi.acm.org/10.1145/2499368.2451145

[14] ANDERSON, R. J. Security Engineering: A Guide to Building Dependable

Distributed Systems. 1st ed. New York, NY, USA, John Wiley & Sons,

Inc., 2001. ISBN: 0471389226.

[15] GASSEND, B., CLARKE, D., VAN DIJK, M., et al. “Silicon Physical Random

Functions”. In: Proceedings of the 9th ACM Conference on Computer

and Communications Security, CCS ’02, pp. 148–160, New York, NY,

USA, 2002. ACM. ISBN: 1-58113-612-9. doi: 10.1145/586110.586132.

Dispońıvel em: <http://doi.acm.org/10.1145/586110.586132>.

[16] PAPPU, R., RECHT, B., TAYLOR, J., et al. “Physical One-Way Functions”,

Science, v. 297, n. 5589, pp. 2026–2030, 2002. ISSN: 0036-8075. doi: 10.

1126/science.1074376. Dispońıvel em: <http://science.sciencemag.

org/content/297/5589/2026>.

[17] SUH, G. E., DEVADAS, S. “Physical Unclonable Functions for Device Authen-

tication and Secret Key Generation”. In: 2007 44th ACM/IEEE Design

Automation Conference, pp. 9–14, June 2007.

[18] DENNING, D. E., DENNING, P. J. “Certification of Programs for Secure

Information Flow”, Commun. ACM, v. 20, n. 7, pp. 504–513, jul. 1977.

ISSN: 0001-0782. doi: 10.1145/359636.359712. Dispońıvel em: <http:

//doi.acm.org/10.1145/359636.359712>.

[19] CAVALLARO, L., SAXENA, P., SEKAR, R. “On the Limits of Information

Flow Techniques for Malware Analysis and Containment”. In: Zamboni,

D. (Ed.), Detection of Intrusions and Malware, and Vulnerability Assess-

ment, pp. 143–163, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

ISBN: 978-3-540-70542-0.

[20] GUAJARDO, J., KUMAR, S. S., SCHRIJEN, G.-J., et al. “FPGA Intrinsic

PUFs and Their Use for IP Protection”. In: Paillier, P., Verbauwhede,

I. (Eds.), Cryptographic Hardware and Embedded Systems - CHES 2007,

pp. 63–80, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN:

978-3-540-74735-2.

[21] HOLCOMB, D. E., BURLESON, W. P., FU, K. “Power-Up SRAM State as

an Identifying Fingerprint and Source of True Random Numbers”, IEEE

Transactions on Computers, v. 58, n. 9, pp. 1198–1210, Sep. 2009. ISSN:

0018-9340. doi: 10.1109/TC.2008.212.

[22] LEE, J. W., LIM, D., GASSEND, B., et al. “A technique to build a secret key

in integrated circuits for identification and authentication applications”.

159

http://doi.acm.org/10.1145/586110.586132
http://science.sciencemag.org/content/297/5589/2026
http://science.sciencemag.org/content/297/5589/2026
http://doi.acm.org/10.1145/359636.359712
http://doi.acm.org/10.1145/359636.359712

In: 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE

Cat. No.04CH37525), pp. 176–179, June 2004. doi: 10.1109/VLSIC.2004.

1346548.

[23] RÜHRMAIR, U., SEHNKE, F., SÖLTER, J., et al. “Modeling Attacks on

Physical Unclonable Functions”. In: Proceedings of the 17th ACM Con-

ference on Computer and Communications Security, CCS ’10, pp. 237–

249, New York, NY, USA, 2010. ACM. ISBN: 978-1-4503-0245-6. doi:

10.1145/1866307.1866335. Dispońıvel em: <http://doi.acm.org/10.

1145/1866307.1866335>.

[24] KALYANARAMAN, M., ORSHANSKY, M. “Novel strong PUF based on non-

linearity of MOSFET subthreshold operation”. In: 2013 IEEE Interna-

tional Symposium on Hardware-Oriented Security and Trust (HOST), pp.

13–18, June 2013. doi: 10.1109/HST.2013.6581558.

[25] KUMAR, R., BURLESON, W. “On design of a highly secure PUF based on

non-linear current mirrors”. In: 2014 IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST), pp. 38–43, May 2014. doi:

10.1109/HST.2014.6855565.

[26] VIJAYAKUMAR, A., KUNDU, S. “A novel modeling attack resistant PUF de-

sign based on non-linear voltage transfer characteristics”. In: 2015 Design,

Automation Test in Europe Conference Exhibition (DATE), pp. 653–658,

March 2015. doi: 10.7873/DATE.2015.0522.

[27] VIJAYAKUMAR, A., PATIL, V. C., PRADO, C. B., et al. “Machine learning

resistant strong PUF: Possible or a pipe dream?” In: 2016 IEEE Inter-

national Symposium on Hardware Oriented Security and Trust (HOST),

pp. 19–24, May 2016. doi: 10.1109/HST.2016.7495550.

[28] XU, X., BURLESON, W. “Hybrid side-channel/machine-learning attacks on

PUFs: A new threat?” In: 2014 Design, Automation Test in Europe Con-

ference Exhibition (DATE), pp. 1–6, March 2014. doi: 10.7873/DATE.

2014.362.

[29] KUMAR, R., BURLESON, W. “Hybrid modeling attacks on current-based

PUFs”. In: 2014 IEEE 32nd International Conference on Computer De-

sign (ICCD), pp. 493–496, Oct 2014. doi: 10.1109/ICCD.2014.6974725.

[30] KUMAR, R., BURLESON, W. “Side-Channel Assisted Modeling Attacks on

Feed-Forward Arbiter PUFs Using Silicon Data”. In: Mangard, S., Schau-

160

http://doi.acm.org/10.1145/1866307.1866335
http://doi.acm.org/10.1145/1866307.1866335

mont, P. (Eds.), Radio Frequency Identification, pp. 53–67, Cham, 2015.

Springer International Publishing. ISBN: 978-3-319-24837-0.

[31] HOLCOMB, D. E., FU, K. “Bitline PUF: Building Native Challenge-

Response PUF Capability into Any SRAM”. In: Proceedings of the

16th International Workshop on Cryptographic Hardware and Embedded

Systems — CHES 2014 - Volume 8731, pp. 510–526, Berlin, Heidel-

berg, 2014. Springer-Verlag. ISBN: 978-3-662-44708-6. doi: 10.1007/

978-3-662-44709-3 28. Dispońıvel em: <https://doi.org/10.1007/

978-3-662-44709-3_28>.

[32] BHARGAVA, M., MAI, K. “An e�cient reliable PUF-based cryptographic

key generator in 65nm CMOS”. In: 2014 Design, Automation Test in

Europe Conference Exhibition (DATE), pp. 1–6, March 2014. doi: 10.

7873/DATE.2014.083.

[33] RAMESH, P., PATIL, V. C., KUNDU, S. “Peer pressure on identity: On

requirements for disambiguating PUFs in noisy environment”. In: 2017

IEEE North Atlantic Test Workshop (NATW), pp. 1–4, May 2017. doi:

10.1109/NATW.2017.7938023.

[34] BÖSCH, C., GUAJARDO, J., SADEGHI, A.-R., et al. “E�cient Helper Data

Key Extractor on FPGAs”. In: Oswald, E., Rohatgi, P. (Eds.), Cryp-

tographic Hardware and Embedded Systems – CHES 2008, pp. 181–197,

Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN: 978-3-540-

85053-3.

[35] MAES, R., TUYLS, P., VERBAUWHEDE, I. “Low-Overhead Implementa-

tion of a Soft Decision Helper Data Algorithm for SRAM PUFs”. In:

Clavier, C., Gaj, K. (Eds.), Cryptographic Hardware and Embedded Sys-

tems - CHES 2009, pp. 332–347, Berlin, Heidelberg, 2009. Springer Berlin

Heidelberg. ISBN: 978-3-642-04138-9.

[36] MAES, R., TUYLS, P., VERBAUWHEDE, I. “A soft decision helper data

algorithm for SRAM PUFs”. In: 2009 IEEE International Symposium on

Information Theory, pp. 2101–2105, June 2009. doi: 10.1109/ISIT.2009.

5205263.

[37] MAES, R., VAN HERREWEGE, A., VERBAUWHEDE, I. “PUFKY: A Fully

Functional PUF-Based Cryptographic Key Generator”. In: Prou↵, E.,

Schaumont, P. (Eds.), Cryptographic Hardware and Embedded Systems –

CHES 2012, pp. 302–319, Berlin, Heidelberg, 2012. Springer Berlin Hei-

delberg. ISBN: 978-3-642-33027-8.

161

https://doi.org/10.1007/978-3-662-44709-3_28
https://doi.org/10.1007/978-3-662-44709-3_28

[38] DELVAUX, J., GU, D., SCHELLEKENS, D., et al. “Helper Data Algo-

rithms for PUF-Based Key Generation: Overview and Analysis”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, v. 34, n. 6, pp. 889–902, June 2015. ISSN: 0278-0070. doi:

10.1109/TCAD.2014.2370531.

[39] XIAO, K., RAHMAN, M. T., FORTE, D., et al. “Bit selection algorithm suit-

able for high-volume production of SRAM-PUF”. In: 2014 IEEE Inter-

national Symposium on Hardware-Oriented Security and Trust (HOST),

pp. 101–106, May 2014. doi: 10.1109/HST.2014.6855578.

[40] MATHEW, S. K., SATPATHY, S. K., ANDERS, M. A., et al. “16.2 A 0.19pJ/b

PVT-variation-tolerant hybrid physically unclonable function circuit for

10% stable secure key generation in 22nm CMOS”. In: 2014 IEEE In-

ternational Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), pp. 278–279, Feb 2014. doi: 10.1109/ISSCC.2014.6757433.

[41] VIJAYAKUMAR, A., PATIL, V. C., KUNDU, S. “On Improving Reliabil-

ity of SRAM-Based Physically Unclonable Functions”, Journal of Low

Power Electronics and Applications, v. 7, n. 1, 2017. ISSN: 2079-9268.

doi: 10.3390/jlpea7010002. Dispońıvel em: <http://www.mdpi.com/

2079-9268/7/1/2>.

[42] BUCCI, M., LUZZI, R. “Identification circuit and method for generating

an identification bit using physical unclonable functions”. nov. 12 2013.

Dispońıvel em: <https://www.google.com/patents/US8583710>. US

Patent 8,583,710.

[43] GANTA, D., NAZHANDALI, L. “Circuit-level approach to improve the tem-

perature reliability of Bi-stable PUFs”. In: Fifteenth International Sym-

posium on Quality Electronic Design, pp. 467–472, March 2014. doi:

10.1109/ISQED.2014.6783361.

[44] PATIL, V. C., VIJAYAKUMAR, A., HOLCOMB, D. E., et al. “Improving

reliability of weak PUFs via circuit techniques to enhance mismatch”. In:

2017 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST), pp. 146–150, May 2017. doi: 10.1109/HST.2017.7951814.

[45] JANG, J., GHOSH, S. “Design and analysis of novel SRAM PUFs with

embedded latch for robustness”. In: Sixteenth International Sympo-

sium on Quality Electronic Design, pp. 298–302, March 2015. doi:

10.1109/ISQED.2015.7085443.

162

http://www.mdpi.com/2079-9268/7/1/2
http://www.mdpi.com/2079-9268/7/1/2
https://www.google.com/patents/US8583710

[46] BHARGAVA, M., MAI, K. “A High Reliability PUF Using Hot Carrier In-

jection Based Response Reinforcement”. In: Bertoni, G., Coron, J.-S.

(Eds.), Cryptographic Hardware and Embedded Systems - CHES 2013,

pp. 90–106, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN:

978-3-642-40349-1.

[47] ALEKSANDER, I., GREGORIO, M. D., FRANÇA, F. M. G., et al. “A brief

introduction to Weightless Neural Systems”. In: ESANN 2009, 17th Eu-

ropean Symposium on Artificial Neural Networks, Bruges, Belgium, April

22-24, 2009, Proceedings, 2009. Dispońıvel em: <https://www.elen.

ucl.ac.be/Proceedings/esann/esannpdf/es2009-6.pdf>.

[48] ALEKSANDER, I., THOMAS, W., BOWDEN, P. “WISARD·a radical step

forward in image recognition”, Sensor Review, v. 4, n. 3, pp. 120–124,

1984. doi: 10.1108/eb007637. Dispońıvel em: <http://dx.doi.org/10.

1108/eb007637>.

[49] BLEDSOE, W. W., BROWNING, I. “Pattern Recognition and Reading by

Machine”. In: Papers Presented at the December 1-3, 1959, Eastern Joint

IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM ’59 (Eastern),

pp. 225–232, New York, NY, USA, 1959. ACM. doi: 10.1145/1460299.

1460326. Dispońıvel em: <http://doi.acm.org/10.1145/1460299.

1460326>.

[50] DALTON, M., KANNAN, H., KOZYRAKIS, C. “Real-world Bu↵er Over-

flow Protection for Userspace & Kernelspace”. In: Proceedings of the

17th Conference on Security Symposium, SS’08, pp. 395–410, Berke-

ley, CA, USA, 2008. USENIX Association. Dispońıvel em: <http:

//dl.acm.org/citation.cfm?id=1496711.1496738>.

[51] SUH, G. E., LEE, J. W., ZHANG, D., et al. “Secure Program Execution

via Dynamic Information Flow Tracking”. In: Proceedings of the 11th

International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XI, pp. 85–96, New York, NY,

USA, 2004. ACM. ISBN: 1-58113-804-0. doi: 10.1145/1024393.1024404.

Dispońıvel em: <http://doi.acm.org/10.1145/1024393.1024404>.

[52] DALTON, M., KANNAN, H., KOZYRAKIS, C. “Raksha: A Flexible In-

formation Flow Architecture for Software Security”. In: Proceedings of

the 34th Annual International Symposium on Computer Architecture,

ISCA ’07, pp. 482–493, New York, NY, USA, 2007. ACM. ISBN: 978-

163

https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2009-6.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2009-6.pdf
http://dx.doi.org/10.1108/eb007637
http://dx.doi.org/10.1108/eb007637
http://doi.acm.org/10.1145/1460299.1460326
http://doi.acm.org/10.1145/1460299.1460326
http://dl.acm.org/citation.cfm?id=1496711.1496738
http://dl.acm.org/citation.cfm?id=1496711.1496738
http://doi.acm.org/10.1145/1024393.1024404

1-59593-706-3. doi: 10.1145/1250662.1250722. Dispońıvel em: <http:

//doi.acm.org/10.1145/1250662.1250722>.

[53] XU, W., BHATKAR, S., SEKAR, R. “Taint-enhanced Policy Enforcement:

A Practical Approach to Defeat a Wide Range of Attacks”. In: Pro-

ceedings of the 15th Conference on USENIX Security Symposium - Vol-

ume 15, USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Associa-

tion. Dispońıvel em: <http://dl.acm.org/citation.cfm?id=1267336.

1267345>.

[54] YUAN, J., QIANG, W., JIN, H., et al. “CloudTaint: An Elastic Taint

Tracking Framework for Malware Detection in the Cloud”, J. Super-

comput., v. 70, n. 3, pp. 1433–1450, dez. 2014. ISSN: 0920-8542. doi:

10.1007/s11227-014-1235-5. Dispońıvel em: <http://dx.doi.org/10.

1007/s11227-014-1235-5>.

[55] DOUDALIS, I., CLAUSE, J., VENKATARAMANI, G., et al. “E↵ective and

E�cient Memory Protection Using Dynamic Tainting”, IEEE Transac-

tions on Computers, v. 61, n. 1, pp. 87–100, Jan 2012. ISSN: 0018-9340.

doi: 10.1109/TC.2010.215.

[56] WEI, Z., LIE, D. “LazyTainter: Memory-E�cient Taint Tracking in Man-

aged Runtimes”. In: Proceedings of the 4th ACM Workshop on Security

and Privacy in Smartphones & Mobile Devices, SPSM ’14, pp. 27–

38, New York, NY, USA, 2014. ACM. ISBN: 978-1-4503-3155-5. doi:

10.1145/2666620.2666626. Dispońıvel em: <http://doi.acm.org/10.

1145/2666620.2666626>.

[57] BABIL, G. S., MEHANI, O., BORELI, R., et al. “On the e↵ectiveness of

dynamic taint analysis for protecting against private information leaks on

Android-based devices”. In: 2013 International Conference on Security

and Cryptography (SECRYPT), pp. 1–8, July 2013.

[58] MING, J., WU, D., XIAO, G., et al. “TaintPipe: Pipelined Symbolic Taint

Analysis”. In: Proceedings of the 24th USENIX Conference on Security

Symposium, SEC’15, pp. 65–80, Berkeley, CA, USA, 2015. USENIX Asso-

ciation. ISBN: 978-1-931971-232. Dispońıvel em: <http://dl.acm.org/

citation.cfm?id=2831143.2831148>.

[59] QIN, F., WANG, C., LI, Z., et al. “LIFT: A Low-Overhead Practical Infor-

mation Flow Tracking System for Detecting Security Attacks”. In: 2006

39th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO’06), pp. 135–148, Dec 2006. doi: 10.1109/MICRO.2006.29.

164

http://doi.acm.org/10.1145/1250662.1250722
http://doi.acm.org/10.1145/1250662.1250722
http://dl.acm.org/citation.cfm?id=1267336.1267345
http://dl.acm.org/citation.cfm?id=1267336.1267345
http://dx.doi.org/10.1007/s11227-014-1235-5
http://dx.doi.org/10.1007/s11227-014-1235-5
http://doi.acm.org/10.1145/2666620.2666626
http://doi.acm.org/10.1145/2666620.2666626
http://dl.acm.org/citation.cfm?id=2831143.2831148
http://dl.acm.org/citation.cfm?id=2831143.2831148

[60] KANG, B., KIM, T., KANG, B., et al. “TASEL: Dynamic Taint Analysis with

Selective Control Dependency”. In: Proceedings of the 2014 Conference

on Research in Adaptive and Convergent Systems, RACS ’14, pp. 272–

277, New York, NY, USA, 2014. ACM. ISBN: 978-1-4503-3060-2. doi:

10.1145/2663761.2664219. Dispońıvel em: <http://doi.acm.org/10.

1145/2663761.2664219>.

[61] KEMERLIS, V. P., PORTOKALIDIS, G., JEE, K., et al. “Libdft: Practical

Dynamic Data Flow Tracking for Commodity Systems”. In: Proceedings

of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution

Environments, VEE ’12, pp. 121–132, New York, NY, USA, 2012. ACM.

ISBN: 978-1-4503-1176-2. doi: 10.1145/2151024.2151042. Dispońıvel em:

<http://doi.acm.org/10.1145/2151024.2151042>.

[62] CLAUSE, J., LI, W., ORSO, A. “Dytan: A Generic Dynamic Taint Anal-

ysis Framework”. In: Proceedings of the 2007 International Symposium

on Software Testing and Analysis, ISSTA ’07, pp. 196–206, New York,

NY, USA, 2007. ACM. ISBN: 978-1-59593-734-6. doi: 10.1145/1273463.

1273490. Dispońıvel em: <http://doi.acm.org/10.1145/1273463.

1273490>.

[63] KANG, M. G., MCCAMANT, S., POOSANKAM, P., et al. “DTA++:

Dynamic Taint Analysis with Targeted Control-Flow Propagation.” In:

NDSS. The Internet Society, 2011.

[64] VENKATARAMANI, G., DOUDALIS, I., SOLIHIN, Y., et al. “Flexitaint:

A programmable accelerator for dynamic taint propagation”. In: High

Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th In-

ternational Symposium on, pp. 173–184. IEEE, 2008.

[65] NAGARAJAN, V., KIM, H.-S., WU, Y., et al. “Dynamic Information Flow

Tracking on Multicores”. 2008.

[66] CHEN, S., KOZUCH, M., STRIGKOS, T., et al. “Flexible Hardware Ac-

celeration for Instruction-Grain Program Monitoring”. In: 2008 Interna-

tional Symposium on Computer Architecture, pp. 377–388, June 2008. doi:

10.1109/ISCA.2008.20.

[67] KANNAN, H., DALTON, M., KOZYRAKIS, C. “Decoupling Dynamic Infor-

mation Flow Tracking with a dedicated coprocessor”. In: 2009 IEEE/IFIP

International Conference on Dependable Systems Networks, pp. 105–114,

June 2009. doi: 10.1109/DSN.2009.5270347.

165

http://doi.acm.org/10.1145/2663761.2664219
http://doi.acm.org/10.1145/2663761.2664219
http://doi.acm.org/10.1145/2151024.2151042
http://doi.acm.org/10.1145/1273463.1273490
http://doi.acm.org/10.1145/1273463.1273490

[68] LEE, J., HEO, I., LEE, Y., et al. “E�cient Dynamic Information Flow

Tracking on a Processor with Core Debug Interface”. In: Proceedings

of the 52Nd Annual Design Automation Conference, DAC ’15, pp. 79:1–

79:6, New York, NY, USA, 2015. ACM. ISBN: 978-1-4503-3520-1. doi:

10.1145/2744769.2744830. Dispońıvel em: <http://doi.acm.org/10.

1145/2744769.2744830>.

[69] DENG, D. Y., LO, D., MALYSA, G., et al. “Flexible and E�cient Instruction-

Grained Run-Time Monitoring Using On-Chip Reconfigurable Fabric”.

In: 2010 43rd Annual IEEE/ACM International Symposium on Microar-

chitecture, pp. 137–148, Dec 2010. doi: 10.1109/MICRO.2010.17.

[70] SHIN, J., ZHANG, H., LEE, J., et al. “A hardware-based technique for e�cient

implicit information flow tracking”. In: 2016 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), pp. 1–7, Nov 2016. doi:

10.1145/2966986.2966991.

[71] TIWARI, M., WASSEL, H. M., MAZLOOM, B., et al. “Complete Information

Flow Tracking from the Gates Up”. In: Proceedings of the 14th Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS XIV, pp. 109–120, New York, NY, USA,

2009. ACM. ISBN: 978-1-60558-406-5. doi: 10.1145/1508244.1508258.

Dispońıvel em: <http://doi.acm.org/10.1145/1508244.1508258>.

[72] LUK, C.-K., COHN, R., MUTH, R., et al. “Pin: Building Customized Pro-

gram Analysis Tools with Dynamic Instrumentation”. In: Proceedings of

the 2005 ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’05, pp. 190–200, New York, NY, USA, 2005.

ACM. ISBN: 1-59593-056-6. doi: 10.1145/1065010.1065034. Dispońıvel

em: <http://doi.acm.org/10.1145/1065010.1065034>.

[73] VANSTONE, S. A., OORSCHOT, P. C. V. An Introduction to Error Correcting

Codes with Applications. 1st ed. Norwell, MA, USA, Kluwer Academic

Publishers, 1989. ISBN: 0792390172.

[74] COOKE, B. “Reed-Muller error correcting codes”, MIT Undergraduate journal

of mathematics, v. 1, n. 06, pp. 21–26, 1999.

[75] FORNEY, G. D., FORNEY, G. D. Concatenated codes, v. 11. Citeseer, 1966.

[76] NOROUZI, M., PUNJANI, A., FLEET, D. J. “Fast Exact Search in Ham-

ming Space With Multi-Index Hashing”, IEEE Transactions on Pat-

tern Analysis & Machine Intelligence, v. 36, n. 6, pp. 1107–1119, June

166

http://doi.acm.org/10.1145/2744769.2744830
http://doi.acm.org/10.1145/2744769.2744830
http://doi.acm.org/10.1145/1508244.1508258
http://doi.acm.org/10.1145/1065010.1065034

2014. ISSN: 0162-8828. doi: 10.1109/TPAMI.2013.231. Dispońıvel em:

<doi.ieeecomputersociety.org/10.1109/TPAMI.2013.231>.

[77] MAES, R. “An Accurate Probabilistic Reliability Model for Silicon PUFs”.

In: Bertoni, G., Coron, J.-S. (Eds.), Cryptographic Hardware and Embed-

ded Systems - CHES 2013, pp. 73–89, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg. ISBN: 978-3-642-40349-1.

[78] LINNARTZ, J.-P., TUYLS, P. “New Shielding Functions to Enhance Privacy

and Prevent Misuse of Biometric Templates”. In: Kittler, J., Nixon, M. S.

(Eds.), Audio- and Video-Based Biometric Person Authentication, pp.

393–402, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN:

978-3-540-44887-7.

[79] DODIS, Y., REYZIN, L., SMITH, A. “Fuzzy Extractors: How to Generate

Strong Keys from Biometrics and Other Noisy Data”. In: Cachin, C.,

Camenisch, J. L. (Eds.), Advances in Cryptology - EUROCRYPT 2004,

pp. 523–540, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN:

978-3-540-24676-3.

[80] “NCSU FreePDK 45nm”. http://www.eda.ncsu.edu/wiki/FreePDK45:

Contents, 2018.

[81] “scikit-learn: Machine Learning in Python”. http://scikit-learn.org/

stable/, 2018.

[82] MISTRY, K., ALLEN, C., AUTH, C., et al. “A 45nm Logic Technology

with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Intercon-

nect Layers, 193nm Dry Patterning, and 100Pb-free Packaging”. In: 2007

IEEE International Electron Devices Meeting, pp. 247–250, Dec 2007. doi:

10.1109/IEDM.2007.4418914.

[83] “Nangate Open Cell Library”. http://www.si2.org/openeda.si2.org/

projects/nangatelib, 2018.

[84] GHOREISHIZADEH, S. S., YALÇIN, T., PULLINI, A., et al. “A lightweight

cryptographic system for implantable biosensors”. In: 2014 IEEE Biomed-

ical Circuits and Systems Conference (BioCAS) Proceedings, pp. 472–475,

Oct 2014. doi: 10.1109/BioCAS.2014.6981765.

[85] MAITI, A., GUNREDDY, V., SCHAUMONT, P. “A Systematic Method to

Evaluate and Compare the Performance of Physical Unclonable Func-

tions”. In: Athanas, P., Pnevmatikatos, D., Sklavos, N. (Eds.), Embedded

167

doi.ieeecomputersociety.org/10.1109/TPAMI.2013.231
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/

Systems Design with FPGAs, pp. 245–267, New York, NY, Springer New

York, 2013. ISBN: 978-1-4614-1362-2. doi: 10.1007/978-1-4614-1362-2

11. Dispońıvel em: <https://doi.org/10.1007/978-1-4614-1362-2_

11>.

[86] MAJZOOBI, M., KOUSHANFAR, F., POTKONJAK, M. “Lightweight secure

PUFs”. In: 2008 IEEE/ACM International Conference on Computer-

Aided Design, pp. 670–673, Nov 2008. doi: 10.1109/ICCAD.2008.4681648.

[87] HUSSAIN, S. U., YELLAPANTULA, S., MAJZOOBI, M., et al. “BIST-PUF:

Online, hardware-based evaluation of physically unclonable circuit identi-

fiers”. In: 2014 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pp. 162–169, Nov 2014. doi: 10.1109/ICCAD.2014.

7001347.

[88] CORTEZ, M., ROELOFS, G., HAMDIOUI, S., et al. “Testing PUF-based

secure key storage circuits”. In: 2014 Design, Automation Test in Eu-

rope Conference Exhibition (DATE), pp. 1–6, March 2014. doi: 10.7873/

DATE.2014.207.

[89] VIJAYAKUMAR, A., PATIL, V. C., KUNDU, S. “On testing physically un-

clonable functions for uniqueness”. In: 2016 17th International Sympo-

sium on Quality Electronic Design (ISQED), pp. 368–373, March 2016.

doi: 10.1109/ISQED.2016.7479229.

[90] SONG, J., SHEN, H. T., WANG, J., et al. “A Distance-Computation-Free

Search Scheme for Binary Code Databases”, IEEE Transactions on Mul-

timedia, v. 18, n. 3, pp. 484–495, March 2016. ISSN: 1520-9210. doi:

10.1109/TMM.2016.2515990.

[91] SHUAI, C., YANG, H., OUYANG, X., et al. “A Novel Accuracy and Similarity

Search Structure Based on Parallel Bloom Filters”, Intell. Neuroscience,

v. 2016, pp. 4–, dez. 2016. ISSN: 1687-5265. doi: 10.1155/2016/4075257.

Dispońıvel em: <https://doi.org/10.1155/2016/4075257>.

[92] EGHBALI, S., ASHTIANI, H., TAHVILDARI, L. “Online Nearest Neighbor

Search in Binary Space”. In: 2017 IEEE International Conference on Data

Mining (ICDM), pp. 853–858, Nov 2017. doi: 10.1109/ICDM.2017.104.

[93] LIPP, M., SCHWARZ, M., GRUSS, D., et al. “Meltdown”, ArXiv e-prints,

jan. 2018.

[94] KOCHER, P., GENKIN, D., GRUSS, D., et al. “Spectre Attacks: Exploiting

Speculative Execution”, ArXiv e-prints, jan. 2018.

168

https://doi.org/10.1007/978-1-4614-1362-2_11
https://doi.org/10.1007/978-1-4614-1362-2_11
https://doi.org/10.1155/2016/4075257

[95] NEWSOME, J., SONG, D. X. “Dynamic Taint Analysis for Automatic De-

tection, Analysis, and SignatureGeneration of Exploits on Commodity

Software.” In: NDSS, v. 5, pp. 3–4. Citeseer, 2005.

[96] CHEN, Y.-Y., JAMKHEDKAR, P. A., LEE, R. B. “A Software-hardware

Architecture for Self-protecting Data”. In: Proceedings of the 2012 ACM

Conference on Computer and Communications Security, CCS ’12, pp.

14–27, New York, NY, USA, 2012. ACM. ISBN: 978-1-4503-1651-4. doi:

10.1145/2382196.2382201. Dispońıvel em: <http://doi-acm-org.ez29.

capes.proxy.ufrj.br/10.1145/2382196.2382201>.

[97] YIN, H., SONG, D., EGELE, M., et al. “Panorama: Capturing System-wide

Information Flow for Malware Detection and Analysis”. In: Proceedings

of the 14th ACM Conference on Computer and Communications Security,

CCS ’07, pp. 116–127, New York, NY, USA, 2007. ACM. ISBN: 978-

1-59593-703-2. doi: 10.1145/1315245.1315261. Dispońıvel em: <http:

//doi.acm.org/10.1145/1315245.1315261>.

[98] “UPPAAL 4.0”. In: Quantitative Evaluation of Systems, International Confer-

ence on(QEST), v. 00, pp. 125–126, 2009. doi: 10.1109/QEST.2006.59.

Dispońıvel em: <doi.ieeecomputersociety.org/10.1109/QEST.2006.

59>.

[99] LATTNER, C. LLVM: An Infrastructure for Multi-Stage Optimization. Tese

de Mestrado, Computer Science Dept., University of Illinois at Urbana-

Champaign, Urbana, IL, Dec 2002. See http://llvm.cs.uiuc.edu.

[100] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., et al. “MiBench: A

free, commercially representative embedded benchmark suite”. In: Pro-

ceedings of the Fourth Annual IEEE International Workshop on Workload

Characterization. WWC-4 (Cat. No.01EX538), pp. 3–14, Dec 2001. doi:

10.1109/WWC.2001.990739.

[101] MITCHELL, R., BISHOP, J., MINCHINTON, P. “Optimising memory us-

age in n-tuple neural networks”, Mathematics and Computers in Simu-

lation, v. 40, n. 5, pp. 549 – 563, 1996. ISSN: 0378-4754. doi: https:

//doi.org/10.1016/0378-4754(95)00006-2. Dispońıvel em: <http://www.

sciencedirect.com/science/article/pii/0378475495000062>. Neu-

ral Network/Neural Computing.

[102] GEIL, A., FARACH-COLTON, M., OWENS, J. D. “Quotient Filters: Ap-

proximate Membership Queries on the GPU”. In: 2018 IEEE Interna-

169

http://doi-acm-org.ez29.capes.proxy.ufrj.br/10.1145/2382196.2382201
http://doi-acm-org.ez29.capes.proxy.ufrj.br/10.1145/2382196.2382201
http://doi.acm.org/10.1145/1315245.1315261
http://doi.acm.org/10.1145/1315245.1315261
doi.ieeecomputersociety.org/10.1109/QEST.2006.59
doi.ieeecomputersociety.org/10.1109/QEST.2006.59
http://www.sciencedirect.com/science/article/pii/0378475495000062
http://www.sciencedirect.com/science/article/pii/0378475495000062

tional Parallel and Distributed Processing Symposium (IPDPS), pp. 451–

462, May 2018. doi: 10.1109/IPDPS.2018.00055.

[103] BLOOM, B. H. “Space/Time Trade-o↵s in Hash Coding with Allowable Er-

rors”, Commun. ACM, v. 13, n. 7, pp. 422–426, jul. 1970. ISSN: 0001-0782.

doi: 10.1145/362686.362692. Dispońıvel em: <http://doi.acm.org/10.

1145/362686.362692>.

[104] DILLINGER, P. C., MANOLIOS, P. “Bloom Filters in Probabilistic Verifica-

tion”. In: Hu, A. J., Martin, A. K. (Eds.), Formal Methods in Computer-

Aided Design, pp. 367–381, Berlin, Heidelberg, 2004. Springer Berlin Hei-

delberg. ISBN: 978-3-540-30494-4.

[105] STERNE, P. “E�cient and robust associative memory from a generalized

Bloom filter”, Biological Cybernetics, v. 106, n. 4, pp. 271–281, Jul

2012. ISSN: 1432-0770. doi: 10.1007/s00422-012-0494-6. Dispońıvel em:

<https://doi.org/10.1007/s00422-012-0494-6>.

[106] PAGH, R., RODLER, F. F. “Cuckoo Hashing”, J. Algorithms, v. 51, n. 2,

pp. 122–144, maio 2004. ISSN: 0196-6774. doi: 10.1016/j.jalgor.2003.12.

002. Dispońıvel em: <http://dx.doi.org/10.1016/j.jalgor.2003.

12.002>.

[107] FAN, B., ANDERSEN, D. G., KAMINSKY, M., et al. “Cuckoo Filter: Prac-

tically Better Than Bloom”. In: Proceedings of the 10th ACM Interna-

tional on Conference on Emerging Networking Experiments and Tech-

nologies, CoNEXT ’14, pp. 75–88, New York, NY, USA, 2014. ACM.

ISBN: 978-1-4503-3279-8. doi: 10.1145/2674005.2674994. Dispońıvel em:

<http://doi.acm.org/10.1145/2674005.2674994>.

[108] BENDER, M. A., FARACH-COLTON, M., JOHNSON, R., et al. “Don’t

thrash: How to cache your hash on flash”. In: In Proceedings of the 38th

International Conference on Very Large Data Bases, 2012.

[109] PANDEY, P., BENDER, M. A., JOHNSON, R., et al. “A General-Purpose

Counting Filter: Making Every Bit Count”. In: Proceedings of the 2017

ACM International Conference on Management of Data, SIGMOD ’17,

pp. 775–787, New York, NY, USA, 2017. ACM. ISBN: 978-1-4503-4197-4.

doi: 10.1145/3035918.3035963. Dispońıvel em: <http://doi.acm.org/

10.1145/3035918.3035963>.

[110] SANTIAGO, L. R., VERONA, L. D., RANGEL, F. J. O., et al. “Memory

E�cient Weightless Neural Network using Bloom Filter”. 2018.

170

http://doi.acm.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692
https://doi.org/10.1007/s00422-012-0494-6
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://doi.acm.org/10.1145/2674005.2674994
http://doi.acm.org/10.1145/3035918.3035963
http://doi.acm.org/10.1145/3035918.3035963

[111] KIRSCH, A., MITZENMACHER, M. “Less Hashing, Same Performance:

Building a Better Bloom Filter”. In: Azar, Y., Erlebach, T. (Eds.), Al-

gorithms – ESA 2006, pp. 456–467, Berlin, Heidelberg, 2006. Springer

Berlin Heidelberg. ISBN: 978-3-540-38876-0.

[112] “MurmurHash Fuction”. Dispońıvel em: <https://en.wikipedia.org/

wiki/MurmurHash>. https://en.wikipedia.org/wiki/MurmurHash.

[113] HUANG, G., ZHOU, H., DING, X., et al. “Extreme Learning Machine for

Regression and Multiclass Classification”, IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), v. 42, n. 2, pp. 513–529,

April 2012. ISSN: 1083-4419. doi: 10.1109/TSMCB.2011.2168604.

[114] LECUN, Y. “The MNIST database of handwritten digits”, http://yann. lecun.

com/exdb/mnist/, 1998.

[115] DHEERU, D., KARRA TANISKIDOU, E. “UCI Machine Learning Reposi-

tory”. 2017. Dispońıvel em: <http://archive.ics.uci.edu/ml>.

[116] KAZ SATO, CLIFF YOUNG, D. P. “An in-depth

look at Google’s first Tensor Processing Unit

(TPU)”. https://cloud.google.com/blog/products/gcp/

an-in-depth-look-at-googles-first-tensor-processing-unit-tpu,

2017. [Online; accessed 12-October-2018].

[117] FOWERS, J., OVTCHAROV, K., PAPAMICHAEL, M., et al. “A Con-

figurable Cloud-Scale DNN Processor for Real-Time AI”. In: 2018

ACM/IEEE 45th Annual International Symposium on Computer Archi-

tecture (ISCA), pp. 1–14, June 2018. doi: 10.1109/ISCA.2018.00012.

[118] “ARM Project Trillium”. https://www.arm.com/products/

silicon-ip-cpu/machine-learning/project-trillium, 2018. [On-

line; accessed 12-October-2018].

[119] TORRALBA, A., FERGUS, R., FREEMAN, W. T. “80 Million Tiny Images:

A Large Data Set for Nonparametric Object and Scene Recognition”,

IEEE Trans. Pattern Anal. Mach. Intell., v. 30, n. 11, pp. 1958–1970,

nov. 2008. ISSN: 0162-8828. doi: 10.1109/TPAMI.2008.128. Dispońıvel

em: <http://dx.doi.org/10.1109/TPAMI.2008.128>.

[120] ALSMADI, M. K. “An e�cient similarity measure for content based image re-

trieval using memetic algorithm”, Egyptian Journal of Basic and Applied

Sciences, v. 4, n. 2, pp. 112 – 122, 2017. ISSN: 2314-808X. doi: https:

171

https://en.wikipedia.org/wiki/MurmurHash
https://en.wikipedia.org/wiki/MurmurHash
http://archive.ics.uci.edu/ml
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://www.arm.com/products/silicon-ip-cpu/machine-learning/project-trillium
https://www.arm.com/products/silicon-ip-cpu/machine-learning/project-trillium
http://dx.doi.org/10.1109/TPAMI.2008.128

//doi.org/10.1016/j.ejbas.2017.02.004. Dispońıvel em: <http://www.

sciencedirect.com/science/article/pii/S2314808X16300628>.

[121] TANDON, P., CHANG, J., DRESLINSKI, R. G., et al. “Hardware Acceler-

ation for Similarity Measurement in Natural Language Processing”. In:

Proceedings of the 2013 International Symposium on Low Power Elec-

tronics and Design, ISLPED ’13, pp. 409–414, Piscataway, NJ, USA,

2013. IEEE Press. ISBN: 978-1-4799-1235-3. Dispońıvel em: <http:

//dl.acm.org/citation.cfm?id=2648668.2648763>.

[122] LI, P., WANG, M., CHENG, J., et al. “Spectral Hashing With Semanti-

cally Consistent Graph for Image Indexing”, IEEE Transactions on Mul-

timedia, v. 15, n. 1, pp. 141–152, Jan 2013. ISSN: 1520-9210. doi:

10.1109/TMM.2012.2199970.

[123] LV, Y., NG, W. W. Y., ZENG, Z., et al. “Asymmetric Cyclical Hashing for

Large Scale Image Retrieval”, IEEE Transactions on Multimedia, v. 17,

n. 8, pp. 1225–1235, Aug 2015. ISSN: 1520-9210. doi: 10.1109/TMM.

2015.2437712.

[124] SONG, J., YANG, Y., HUANG, Z., et al. “Multiple Feature Hashing for

Real-time Large Scale Near-duplicate Video Retrieval”. In: Proceedings

of the 19th ACM International Conference on Multimedia, MM ’11, pp.

423–432, New York, NY, USA, 2011. ACM. ISBN: 978-1-4503-0616-4.

doi: 10.1145/2072298.2072354. Dispońıvel em: <http://doi.acm.org/

10.1145/2072298.2072354>.

[125] WANG, J., KUMAR, S., CHANG, S. “Semi-supervised hashing for scalable

image retrieval”. In: 2010 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, pp. 3424–3431, June 2010. doi:

10.1109/CVPR.2010.5539994.

[126] KULIS, B., JAIN, P., GRAUMAN, K. “Fast Similarity Search for Learned

Metrics”, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, v. 31, n. 12, pp. 2143–2157, Dec 2009. ISSN: 0162-8828. doi:

10.1109/TPAMI.2009.151.

[127] ZHANG, D., WANG, J., CAI, D., et al. “Self-taught Hashing for Fast Sim-

ilarity Search”. In: Proceedings of the 33rd International ACM SIGIR

Conference on Research and Development in Information Retrieval, SI-

GIR ’10, pp. 18–25, New York, NY, USA, 2010. ACM. ISBN: 978-1-

4503-0153-4. doi: 10.1145/1835449.1835455. Dispońıvel em: <http:

//doi.acm.org/10.1145/1835449.1835455>.

172

http://www.sciencedirect.com/science/article/pii/S2314808X16300628
http://www.sciencedirect.com/science/article/pii/S2314808X16300628
http://dl.acm.org/citation.cfm?id=2648668.2648763
http://dl.acm.org/citation.cfm?id=2648668.2648763
http://doi.acm.org/10.1145/2072298.2072354
http://doi.acm.org/10.1145/2072298.2072354
http://doi.acm.org/10.1145/1835449.1835455
http://doi.acm.org/10.1145/1835449.1835455

[128] LEE, V. T., MAZUMDAR, A., DEL MUNDO, C. C., et al. “Application

Codesign of Near-Data Processing for Similarity Search”. In: 2018 IEEE

International Parallel and Distributed Processing Symposium (IPDPS),

v. 00, pp. 896–907, May 2018. doi: 10.1109/IPDPS.2018.00099. Dispońıvel

em: <doi.ieeecomputersociety.org/10.1109/IPDPS.2018.00099>.

[129] MUJA, M., LOWE, D. G. “Fast Approximate Nearest Neighbors with Auto-

matic Algorithm Configuration.” In: Ranchordas, A., Araújo, H. (Eds.),

VISAPP (1), pp. 331–340. INSTICC Press, 2009. ISBN: 978-989-8111-

69-2.

[130] SILPA-ANAN, C., HARTLEY, R. “Optimised KD-trees for fast image descrip-

tor matching”. In: 2008 IEEE Conference on Computer Vision and Pat-

tern Recognition, pp. 1–8, June 2008. doi: 10.1109/CVPR.2008.4587638.

[131] LV, Q., JOSEPHSON, W., WANG, Z., et al. “Multi-probe LSH: E�cient

Indexing for High-dimensional Similarity Search”. In: Proceedings of the

33rd International Conference on Very Large Data Bases, VLDB ’07, pp.

950–961. VLDB Endowment, 2007. ISBN: 978-1-59593-649-3. Dispońıvel

em: <http://dl.acm.org/citation.cfm?id=1325851.1325958>.

[132] ESMAEILI, M. M., WARD, R. K., FATOURECHI, M. “A Fast Approxi-

mate Nearest Neighbor Search Algorithm in the Hamming Space”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, v. 34, n. 12,

pp. 2481–2488, Dec 2012. ISSN: 0162-8828. doi: 10.1109/TPAMI.2012.

170.

[133] GONG, Y., LAZEBNIK, S., GORDO, A., et al. “Iterative Quantization: A

Procrustean Approach to Learning Binary Codes for Large-Scale Image

Retrieval”, IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, v. 35, n. 12, pp. 2916–2929, Dec 2013. ISSN: 0162-8828. doi:

10.1109/TPAMI.2012.193.

[134] XING, E. P., NG, A. Y., JORDAN, M. I., et al. “Distance Metric Learn-

ing, with Application to Clustering with Side-information”. In: Proceed-

ings of the 15th International Conference on Neural Information Pro-

cessing Systems, NIPS’02, pp. 521–528, Cambridge, MA, USA, 2002.

MIT Press. Dispońıvel em: <http://dl.acm.org/citation.cfm?id=

2968618.2968683>.

[135] MUELLER, R., TEUBNER, J., ALONSO, G. “Sorting Networks on FPGAs”,

The VLDB Journal, v. 21, n. 1, pp. 1–23, fev. 2012. ISSN: 1066-8888.

173

doi.ieeecomputersociety.org/10.1109/IPDPS.2018.00099
http://dl.acm.org/citation.cfm?id=1325851.1325958
http://dl.acm.org/citation.cfm?id=2968618.2968683
http://dl.acm.org/citation.cfm?id=2968618.2968683

doi: 10.1007/s00778-011-0232-z. Dispońıvel em: <http://dx.doi.org/

10.1007/s00778-011-0232-z>.

[136] JÉGOU, H., TAVENARD, R., DOUZE, M., et al. “Searching in one bil-

lion vectors: re-rank with source coding”, CoRR, v. abs/1102.3828, 2011.

Dispońıvel em: <http://arxiv.org/abs/1102.3828>.

[137] CHARIKAR, M. S. “Similarity estimation techniques from rounding algo-

rithms”. In: Proceedings of the thiry-fourth annual ACM symposium on

Theory of computing, pp. 380–388. ACM, 2002.

[138] BABENKO, A., LEMPITSKY, V. “The Inverted Multi-Index”, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, v. 37, n. 6,

pp. 1247–1260, June 2015. ISSN: 0162-8828. doi: 10.1109/TPAMI.2014.

2361319.

[139] LIN, X., SHEN, Y., CAI, L., et al. “The distributed system for inverted

multi-index visual retrieval”, Neurocomputing, v. 215, pp. 241 – 249, 2016.

ISSN: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2015.11.131.

Dispońıvel em: <http://www.sciencedirect.com/science/article/

pii/S0925231216306427>. SI: Stereo Data.

[140] KOBAYASHI, R., KISE, K. “A High Performance FPGA-Based Sorting Ac-

celerator with a Data Compression Mechanism”, IEICE Transactions on

Information and Systems, v. E100.D, n. 5, pp. 1003–1015, 2017. doi:

10.1587/transinf.2016EDP7383.

174

http://dx.doi.org/10.1007/s00778-011-0232-z
http://dx.doi.org/10.1007/s00778-011-0232-z
http://arxiv.org/abs/1102.3828
http://www.sciencedirect.com/science/article/pii/S0925231216306427
http://www.sciencedirect.com/science/article/pii/S0925231216306427

	List of Figures
	List of Tables
	Introduction
	Contribution
	Thesis outline

	Background
	PUF
	Classification of PUFs
	Weak PUF
	Strong PUF

	Ideal Properties of PUFs
	Security
	Uniqueness
	Reliability

	Weak PUF Realibility

	WiSARD
	Dynamic Information Flow Tracking
	Under-tainting and over-tainting problems
	DIFT Designs
	Related Works

	Error Correction Codes
	Multi-Index Hashing

	Reliable Strong PUFs based on Weightless Neural Network
	Strong PUFs based on Weightless Neural Network
	WiSARD PUF
	Extensions to WiSARD PUF architecture
	Fuzzy logic based address generation
	Concatenated codes based response generation

	WNN PUF - Experimental Setup and Results
	Experimental Setup
	Uniqueness
	Reliability
	Machine Learning Attack Resistance
	Hardware Analysis

	Reliable Strong PUF Implementation
	Reliable Weak PUF Entropy Source
	Complete Strong PUF architecture

	Reliable Strong PUF - Experimental Setup and Results
	Experimental Setup
	Uniqueness
	Machine Learning Resistance

	Concluding Remarks

	Efficient Testing Strong PUF for Uniqueness
	MIH for Testing Strong PUFs
	Metrics for Uniqueness
	Problem Statement
	Multi-Index Hashing for Testing PUF
	Uniqueness Test Procedure

	Analyzing MIH Implementations
	Original MIH Implementation
	MIH Implementation with Global Index

	Strategies for Memory Reduction
	Distance Free Computation Strategy
	Hamming Weight Strategy

	Experiments and Results
	Experimental Setup
	Original MIH vs MIH with Global Index
	Strategy Thresholds Evaluation
	MIH Versions Analysis

	Concluding Remarks

	Deeply-Nested Implicit Information Flow Tracking
	Nested Implicit Flow Tracking Implementation
	Taint Propagation to No-operand Instructions
	Branch and Context Counter Scheme
	Taint Instructions

	Nested Implicit Flow Tracking Formal Verification
	UPPAAL Model Checker
	Modelling Nested Implicit Flow Tracking
	Correctness Verification

	Experiment Results
	Experimental Setup
	Performance Overhead
	Code Size
	Tainting Capabilities

	Concluding Remarks

	Memory Efficient WiSARD using Approximate Membership Query
	Approximate Membership Query Structures
	Bloom Filter
	Cuckoo Hashing
	Cuckoo Filter
	Quotient Filter

	WiSARD based on AMQ Filters
	Bloom WiSARD - WiSARD based on Bloom Filters
	Cuckoo WiSARD - WiSARD based on Cuckoo Filters
	Quotient WiSARD - WiSARD based on Quotient Filters

	Experiments and Results
	Dataset
	Experimental Setup
	Accuracy, Performance and Memory Consumption Results
	Bloom WiSARD: False Positive Rate vs. Accuracy vs. Memory Analysis
	AMQ WiSARD: Accuracy vs. Memory Analysis

	Concluding Remarks

	Conclusion
	Hardware Similarity Search with Multi-Index Hashing
	K-Nearest Neighbors Search Algorithm
	The Accelerator Architecture
	Top View
	Accelerator Design
	Specialized Components
	Buffer Merge Strategy

	Experiments
	Data sets
	Performance
	Utilization Cost
	Power

	Concluding Remarks

	Complete Accuracy Results of Cuckoo and Quotient WiSARD
	Adult
	Australian
	Banana
	Diabetes
	Ecoli
	Glass
	Iris
	Letter
	Liver
	MNIST
	Mushroom
	Satimage
	Segment
	Shuttle
	Vehicle
	Vowel
	Wine

	List of Publications
	Journal Articles
	In Conference Proceedings

	Bibliography

