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Pilotagem de veículos, alocação de recursos, controle de plantas industriais: esses

são apenas alguns exemplos dentre os muitos problemas interessantes que exigem

tomar decisões ao longo do tempo. Dados os impactos no mundo real e custos dessas

tarefas, o estudo de métodos para automatizá-las é de grande importância. Apren-

dizado por reforço (RL) é o ramo de aprendizado de máquina que lida com tomada

de decisão sequencial. Resultados impressionantes foram vistos em anos recentes de-

vido a RL, especialmente quando fazendo uso de modelos de aprendizado profundo.

Comparado a essas redes neurais, o uso de modelos de aprendizado alternativos não

recebeu a mesma atenção em trabalhos recentes. A adoção de redes neurais sem

peso, em particular, é pouco explorada. Não obstante, o estudo de seu uso nesse

contexto é de interesse, já que pode prover uma ferramenta a mais para a abor-

dagem de problemas de tomada de decisão sequencial e permitir que trade-o�s mais

favoráveis sejam feitos em instâncias especí�cas. Fazer uso de redes de n-tuplas em

RL, no entanto, não é uma questão de simplesmente acoplar arquiteturas existentes

a métodos de RL, visto que essas têm suposições subjacentes incompatíveis com as

di�culdades impostas por tomada de decisão sequencial. Para conciliar essa classe

de redes com RL, duas novas arquiteturas são propostas, uma fazendo uso de um

mecanismo simples semelhante ao esquecimento, e outra tomando inspiração com

aprendizado online com kernels. Com essas duas variantes, redes sem pesos podem

ser empregadas em métodos baseados em aproximação de função valor e política.

Os modelos propostos são avaliados em quatro tarefas de benchmark, cuidadosa-

mente analisando os efeitos de seus hiperparâmetros e as comparando com redes

feedforward, com resultados que mostram serem capazes de alcançar performances

competitivas.
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Driving vehicles, allocating resources, controlling industrial plants: these are just

a few examples of the many interesting problems that require making decisions over

time. Given the real-world impacts and costs of such tasks, the study of meth-

ods to automate these is of great importance. Reinforcement learning (RL) is the

branch of machine learning that deals with sequential decision-making. Impressive

results have been seen in recent years due to RL, especially when making use of

deep learning models. Compared to these neural networks, the use of alternative

learning models has not been as much of a focus in recent research. The adoption of

weightless neural networks, in particular, is underexplored. Nevertheless, the study

of their use in this context is worthwhile, as it can provide one more tool in tackling

decision-making problems and possibly allows more favorable trade-o�s to be made

for speci�c instances. Making use of n-tuple nets in RL, however, is not a matter

of simply plugging existing architectures in RL methods, as these are based on as-

sumptions incompatible with the issues imposed by sequential decision-making. To

reconcile this class of networks with RL, two novel architectures are proposed, one

leveraging a simple mechanism akin to forgetting, and the other drawing inspiration

from online learning with kernels. With these two variants, weightless nets can be

employed both in action-value and policy search methods. The proposed models are

evaluated in four benchmarks tasks, thoroughly assessing the e�ects of their hyper-

parameters and comparing them to feedforward networks, with results showing that

they can attain competitive performance.
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Chapter 1

Introduction

A plethora of interesting problems may be understood as instances of sequential

decision-making. Playing games, allocating resources, driving vehicles, and even

controlling robots. These are all examples of tasks where actions or control com-

mands must be chosen based on what is known of the problem at a given time and

be appropriately chained together to achieve a desirable end.

Some of these tasks are performed by humans as a matter of routine, relying

solely on muscle memory and demanding very little conscious e�ort. The ease with

which people approach them, however, belies the complexities involved. Complex-

ities due to which these have historically required direct human control or, at the

very least, supervision. This hidden sophistication may be seen in the simple act

of driving a car. Most drivers wouldn't think much of the work they realize when

steering a vehicle, but a lot is going on. A driver must be constantly interpret-

ing a stream of information coming from heterogeneous sources. Simultaneously, it

has to interface with its vehicle through a steering wheel, pedals, stick, and other

commands.

Car driving is a member of a set of problems where, despite their intricacies,

humans can excel. Evidently, this cannot be said of all tasks. For others, intuition

and re�ex aren't nearly as e�ective, and sometimes can even be harmful. Financial

decision making, where there is a large number of possibilities and a great deal

of uncertainty, is one of several possible examples. What both groups of decision-

making tasks have in common is a growing interest in automating them. The push

for automation is easily apprehensible. For those activities that can be accomplished

by a person through muscle memory, automation is an opportunity to avoid drudgery

and free time for more creative endeavors. For the tasks where humans struggle,

automation can be a way to achieve better results and increase productivity.

Due to their aforementioned pervasiveness, the challenge of automating decision-

making has been tackled independently from di�erent �elds, such as statistics, con-

trol theory, and arti�cial intelligence. One approach that has been garnering par-
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ticular interest in recent years is reinforcement learning (RL), a branch of machine

learning [1]. This can be attributed to promising results in challenging instances of

decision-making, such as robotic control [2] and game playing [3, 4].

1.1 Objectives and contributions

The results mentioned above were attained by leveraging deep neural networks, ma-

chine learning models with great representation capability that have fueled the most

recent wave of interest in the �eld [5]. Compared to these neural networks, the use of

alternative learning models has not been as much of a focus in recent research. The

adoption of weightless neural networks [6], in particular, is underexplored. Never-

theless, the study of their use in this context is worthwhile, as it provides one more

tool in tackling decision-making problems and possibly allows more favorable trade-

o�s to be made for speci�c instances. However, weightless networks were devised to

solve supervised and unsupervised learning problems. RL, on the other hand, is a

separate paradigm, with its particular issues, and existing weightless architectures

are not equipped to handle them.

The goal of this dissertation is to develop new n-tuple learning algorithms suit-

able for reinforcement learning. To achieve this end, the previously proposed n-tuple

regression network is analyzed in light of the unique requirements of RL, to showcase

the obstacles that must be surmounted. These observations underpin the proposal

of two novel n-tuple architectures, leveraging di�erent ideas and tackling the task of

training RL agents with value-based and policy-search approaches. Lastly, the ef-

fects of the hyperparameters of the proposed algorithms in the agent's performance

is carefully studied and comparisons are made to feedforward networks.

1.2 Structure of the text

Chapter 2 is a brief review of the fundamental concepts of reinforcement learn-

ing: the problem setting and the framework of Markov Decision Processes, value

functions and policies, and the major approaches based on approximating these

quantities. Chapter 3 presents n-tuple neural networks, with a focus on the n-

tuple regression network, given the interest in modeling value functions and policies

(vector-valued functions, in general). This chapter also touches upon fundamental

elements of learning with kernels that are later leveraged by a new architecture.

In chapter 4, the n-tuple regression network is further examined, pointing at its

shortcomings when considered from a RL perspective. To address these shortcom-

ings, two novel n-tuple architectures are proposed in sections 4.2 and 4.3, suitable

for value function approximation and policy search, respectively. Chapter 5 evalu-

2



ates the proposed architectures with four benchmark tasks, thoroughly examining

the e�ects of the algorithm's hyperparameters in the �nal performance of agents.

This Chapter also compares the proposed architectures to feedforward networks, to

showcase that the former are competitive in terms of reward maximization. Finally,

chapter 6 gives some concluding remarks on the work developed and point to future

work opportunities in this line of research.
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Chapter 2

Reinforcement learning

In a few words, reinforcement learning (RL) concerns both problems of sequential

decision-making and the algorithms to solve them. This problem statement is shared

with other �elds, such as control theory, and is not exclusive to RL. What sets

RL apart is not the tasks that motivate its algorithms, but a focus on large-scale

problems and approximate solutions, making use of models learned from data.

In the following sections, the mathematical framework of Markov decision pro-

cesses, through which many decision-making problems can be formulated, is pre-

sented. The formalization of the goal of reinforcement learning in Markov decision

processes leads to the central concepts of value functions and policies. Ultimately,

these give rise to the two major approaches in RL: value function approximation

and policy search.

2.1 Markov decision processes

In the Markov decision process (MDP) framework [7], problems are framed as an

interaction between an agent and its environment (�g. 2.1). The interaction happens

by an exchange of signals: the agent in�uences its environment through an action

signal. In response, the environment produces a state and reward signals to the

agent. This dissertation focuses solely on discrete and episodic MDPs, meaning that

agent-environment interactions occur at discrete time steps and eventually reach a

terminal state. An episode, therefore, consists of a �nite sequence of state, action,

and reward random variables (2.1).

S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT , ST (2.1)

The sequence (2.1) in an episode is governed by the agent's behavior and the

MDP's dynamics. This dynamics can be formalized as the joint probability distri-

bution of next state and reward given the history of all previous states and actions
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Figure 2.1: Interaction between agent and environment in a Markov decision process.

(2.2). However, as MDPs exhibit the Markov property, the next state and reward are

independent of the entire history given just the previous state and action (2.3). In

other words, the current state summarizes all information from the history relevant

for the next state transition.

P (St = st, Rt = rt|S0 = s0, A0 = a0, . . . , St−1 = st−1, At−1 = at−1) (2.2)

= P (St = st, Rt = rt|St−1 = st−1, At−1 = at−1) (2.3)

2.2 Value functions and policies

As the MDP framework models a decision-making process where the agent embodies

its goal-seeking aspect, it naturally should take into account the feedback from the

environment when selecting its actions. This closed-loop behavior does not need to

be deterministic and can be thought of as a map between states and probability

distributions over the possible actions. This mapping is known as a policy (2.4).

π(a|s) = p(At = a|St = s) t = 0, 1, 2, . . . , T (2.4)

The desirable ends sought in decision-making tasks might be quite diverse, but

they take a precise and common meaning when the problem is formulated as an

MDP: to maximize the long-term cumulative reward attained. As rewards are ran-

dom variables, this maximization is done in terms of expectation. With this goal,

the agent's action at each time step should strive to take into account not just the

immediate reward, but all forthcoming ones. The concept of return formalizes this

as a sum of rewards from a given time step onwards (2.5). γ ∈ [0, 1] is the discount

rate, used to modulate the emphasis given to near-term reward.

Gt = Rt+1 + γRt+2 + . . .+ γT−t−1RT =
T−t−1∑
k=0

γkRt+k+1 (2.5)

An agent's behavior, governed by a policy, together with the MDP's dynamics
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and reward signal, induces di�erent degrees of desirability, or value, over the possible

states. If a state has the potential to lead to highly rewarding future states and the

policy can take bene�t from it, that is a valuable state. On the other hand, if a

state does not carry that potential, such as a terminal state, for instance, the agent

doesn't want to �nd itself in it, no matter how e�ective its policy is.

Value functions [8, chapter 3] allow for the quanti�cation of the desirability of

states. They are de�ned as the expected return given a state (2.6). As the return

involves future rewards that depend on the agent's policy, so does the value function.

A similar concept is that of action-value functions, which quantify not the value of

a state, but of state-action pairs. That is the value of �nding oneself in a state and

then executing a particular action (2.7).

vπ(s) = Eπ[Gt|St = s] (2.6)

qπ(s, a) = Eπ[Gt|St = s, At = a] (2.7)

The values and action-values of states and state-action pairs can be related to

the ones of their successors in a recursive manner, in much the same way as the

return in a time step corresponds to the discounted return of the next time step

plus the reward of the next transition These recursive relations are known as the

Bellman equations for the value function (2.8) and action-value function (2.9) [9].

These are fundamental properties, with application throughout the �eld of RL.

vπ(s) = Eπ[Gt|St = s]

= Eπ
[
Eπ[Gt|St = s, At]

]
=
∑
a

π(a|s)Eπ[Gt|St = s, At = a]

=
∑
a

π(a|s)Eπ
[
Eπ[Rt+1 + γGt+1|St = s, At = a,Rt+1, St+1]

]
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)Eπ[Rt+1 + γGt+1|St = s, At = a,Rt+1 = r, St+1 = s′]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) {r + γEπ[Gt+1|St+1 = s′]}

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] (2.8)
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qπ(s, a) = Eπ[Gt|St = s, At = a]

= Eπ
[
Eπ[Rt+1 + γGt+1|St = s, At = a,Rt+1, St+1]

]
=
∑
s′,r

p(s′, r|s, a)Eπ[Rt+1 +Gt+1|St = s, At = a,Rt+1 = r, St+1 = s′]

=
∑
s′,r

p(s′, r|s, a)
{
r + γEπ[Gt+1|St+1 = s′]

}
=
∑
s′,r

p(s′, r|s, a)
{
r + γEπ

[
Eπ[Gt+1|St+1 = s′, At+1]

]}
=
∑
s′,r

p(s′, r|s, a)

{
r + γ

∑
a′

π(a′|s′)Eπ[Gt+1|St+1=s′,At+1=a′ ]

}

=
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qπ(s′, a′)

]
(2.9)

Value functions and policies are fundamental concepts because they immediately

tie into how MDPs might be solved. The goal of maximizing the expected cumulative

reward can be translated into one of �nding a good, if not optimal, policy. One

option would be to directly search for good policies. Alternatively, if the action-

value function associated with a good policy was known, it could be queried at each

step with di�erent possible actions, in search of the one with the greatest value.

These ideas underlie the two major approaches in RL: value-based and policy-based

methods.

2.3 Value-based algorithms

In value-based algorithms, the focus is on building approximations for value or

action-value functions. It might not be evident at �rst what would be the point

in doing so, as the goal in RL demands the estimation of a policy, but not nec-

essarily value functions. The justi�cation for this approach comes from the fact

that good policies can, in a sense, be extracted from good value functions. The

following subsections present how value functions can be iterated ever closer to

an optimal one, how these functions can be estimated from experience collected by

agent-environment interaction and what are the issues involved in representing these

functions.
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Figure 2.2: Generalized policy iteration scheme of cyclic policy improvement and
evaluation

2.3.1 Generalized policy iteration

Given an arbitrary policy π and its action-value function qπ, it is possible to obtain

a new policy π′ by selecting actions in a greedy manner. That is, selecting at a

state, not the action suggested by π, but the one that maximizes qπ at that state

(2.10). What is remarkable about this greedy policy is that it can be shown that, as

long as π wasn't already optimal, π′ is a better policy, in the sense that state values

under π′ are greater or equal than those under π, with at least one state value being

strictly greater. This result is known as the policy improvement theorem [9].

π′ = arg max
a

qπ(s, a) (2.10)

This mechanism of policy improvement can be put to use in a framework for

solving MDPs known as generalized policy iteration (GPI) [8, chapter 4]. The basic

idea is that a sequence of policies can be built, with each one being the improved

version of its predecessor, in an attempt to get policies ever closer to an optimal

one. To produce this sequence, two main steps are necessary. One is the already

mentioned policy improvement. however, this improvement can only take place if

the action-value function for the current policy is known. Therefore, the second

fundamental step in GPI is evaluating a policy. That is, estimating its action-value

function, which is the subject matter of the next two sections. This alternating

scheme of evaluation and improvement is summarized in �g. 2.2.

GPI is not a particular algorithm, but the basic idea that underlies several value-

based algorithms. It's a general structure that leaves room for a variety of possible

approaches in its steps. For instance, there is no requirement for value functions and

policies to be represented in a particular manner. Also, neither of the steps need

to be performed to their completion. For example, the policy evaluation step could

produce only a coarse approximation of the action-value function. The computa-

tional savings in that could enable more evaluation-improvement cycles. Di�erent
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instantiations of GPI can undertake di�erent trade-o�s in this manner.

2.3.2 Value function estimation

The previous subsection highlighted the central role that estimating value functions

can have in solving MDPs. Such estimates can be obtained in a number of ways. One

possibility is to make use of the Bellman equations as update rules (2.11), (2.12). By

iteratively applying these updates, it is possible to approximate the values functions

with arbitrary precision. A major shortcoming with this method, however, is that it

requires knowledge of the dynamics of the MDP, in the form of a distribution over

transitions. For many interesting problems, this is simply not feasible.

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvk(s
′)] (2.11)

qk+1(s, a) =
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qk(s′, a′)

]
(2.12)

When the distribution of transitions is unknown, it is not possible to compute

the functions as above, but learning them from experience is. To do so, it's necessary

to be able to interact with either the real decision problem or a simulated version

of it. These interactions result in data that can be regarded as samples from the

unknown distribution. These samples can be employed to estimate the expectation

in value functions by empirical means.

The most direct way this estimation can be done is by sampling entire episodes,

computing the returns for each of the states or state-action pairs visited, and av-

eraging them. This is known as a Monte Carlo evaluation [8, chapter 5]. Let Q

be the estimate for qπ. Q can be updated in an incremental, episode-by-episode

manner. If Gt is a sampled return starting from state-action pair (St, At), Q can

be updated according to (2.13). α ∈ (0, 1] is a step size parameter. A simple av-

erage of the experiences can be obtained by setting α = 1/N(St,At), where N(St, At)

is the number of times (St, At) was visited, including the visit that originated Gt.

However, a running average, favoring newer experiences, can be bene�cial in dealing

with nonstationarities. To do so, a constant step size can be used.

Qt(St, At)← Q(St, At) + α[G−Q(St, At)] (2.13)

The update rule (2.13) can be seen as pushing the estimate to a point between the

previous estimate Q and the sampled return. Gt is, in this view, and update target.

The rationale behind it is that returns are themselves estimates of qπ, precisely
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because qπ is de�ned as the expected value of the return. One disadvantage with

this choice of update target, however, is that it requires an entire episode to be

sampled before an update can take place. One idea that allows avoiding this issue

is targeting not a sampled return, but an estimated one.

If the true action-value function was known, it would be possible to take a

single transition and estimate the return as the sum of the observed reward and

discounted action-value of the next state-action pair. Just as the sample return,

this is an unbiased estimate of qπ (eqs. (2.14) to (2.16)). With the true action-value

function being unknown, qπ can be replaced by its estimate, Q, as in (2.17). This is

a 1-step (truncated) return (2.17), and gives rise to a new rule (2.18), that requires

only taking a single step in the MDP, observing the reward, next state and sampling

the next action from π. The idea of using the very estimate in its update target is

known as bootstrapping, and the overall idea of predicting by taking the di�erence

between estimates made in di�erent moments is known as temporal-di�erence (TD)

learning [10].

qπ(s, a) = Eπ[Gt|St = s, At = a] (2.14)

= Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At = a] (2.15)

= Eπ[Rt+1 + γGt+1|St = s, At = a] (2.16)

Gt:t+1 = Rt+1 + γQ(St+1, At+1) (2.17)

Qt+1(St, At) = Qt(St, At) + α[Gt:t+1 −Qt(St, At)] (2.18)

The one-step TD rule (2.17) allows for frequent updating, but biases learning,

as the possibly quite inaccurate current estimate, Q, is reinforced in each update.

This bias is a direct consequence of bootstrapping, and, therefore, inevitable in TD

learning, but its e�ects can be regulated. The bias is particularly damaging when Q

is a poor approximation of qπ, but the rewards sampled to form the update targets

are not enough to steer the estimate in the correct direction. One simple idea to

counteract this detrimental bias is taking not a single transition, but multiple ones

before bootstrapping (2.19). In this way, it is possible to have targets that are more

representative of qπ. The update rule takes a similar form to previous ones, di�ering

only in its use of the m-step return as target (2.20). This is known as multi-step

TD learning and can be understood as a generalization of both Monte Carlo and

one-step TD methods.
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Gt:t+m = Rt+1 + γRt+2 + . . .+ γm−1Rt+m + γmQ(St+m, At+m) (2.19)

Qt+m(St, At) = Qt+m−1(St, At) + α[Gt:t+m −Qt+m−1(St, At)] (2.20)

2.3.3 m-Step SARSA

With the value function estimation techniques discussed above, it is �nally possible

to come up with concrete algorithms that instantiate the GPI framework. One

such algorithm that makes use of multi-step TD learning is m-step SARSA 2.1 [8,

chapter 7]. This is an on-policy method, meaning that the policy being iterated and

improved is the same used by the agent to collect experiences. All RL algorithms

considered in this text are of this type.

Algorithm 2.1: m-Step SARSA
Input: Initial action-value function estimate Q

Number of steps m
step size α ∈ (0, 1]
Exploration ε, and discount rate γ

1 π ←− ε-greedy policy with respect to Q
2 for each episode do
3 S0 ←− initial state
4 A0 ←− sample from π( · |S0)
5 t←− 0
6 τ ←− −∞
7 T ←−∞
8 while τ < T − 1 do
9 if t < T then

10 Execute At, observe St+1, Rt+1

11 if St+1 is terminal then T ←− t+ 1
12 else At+1 ←− sample from π( · |St+1)

13 τ ←− t−m+ 1
14 if τ ≥ 0 then

15 G←−
∑min(τ+m,T )

i=τ+1 γi−τ−1Ri

16 if τ +m < T then G←− G+ γmQ(Sτ+m, Aτ+m)
17 Q(Sτ , Aτ )←− Q(Sτ , Aτ ) + α[G−Q(Sτ , Aτ )]

18 t←− t+ 1

Staying true to GPI scheme, the two major steps of evaluation and improvement

can be identi�ed in this algorithm. To evaluate the current policy, transitions must

be sampled. This is done in lines 9 through 12, where episode termination is also
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checked for. Line 14 checks whether conditions for updating have been met. they

can only take place after m transitions or episode termination. Lines 15 and 16

compute the update target, bootstrapping in case it's a truncated return. Finally,

line 17 updates Q.

Policy improvement takes place by acting greedily with respect to the action-

value function estimate, as in 2.10. This also means that there is no need for an

explicit representation of the policy. Only for Q. One issue regarding the policy,

however, is the matter of exploration. Monte Carlo and TD methods can estimate

value functions with great precision, without knowledge of the dynamics of the MDP,

but only if enough data and coverage are provided. For example, if certain state-

action pairs are never visited, no data regarding those are collected and the learning

method would never be able to adequately assess their value.

This is something that could happen if actions were always selected greedily

according to Q, implying a deterministic policy. The problem that this poses is

that the learning algorithm could end up being stuck with a drastically suboptimal

action-value estimate, with the agent, acting according to a deterministic policy,

being unable to collect experiences that suggest otherwise. To avoid this issue, it

is necessary to have the agent explore the space of state-action pairs. Stochastic

policies are a natural way to endow agents with an exploring behavior. In algorithm

2.1, this is done by having the policy be ε-greedy with respect to Q (line 1). This

means that actions are selected greedily with a probability of 1−ε. With probability

ε, however, actions are sampled uniformly from the space of possible actions, not

necessarily maximizing the value estimate.

In choosing the value of ε, a balance must be struck. Too small a ε could

lead to a restricted exploration of the state-action space, insu�cient to guide the

estimates towards the true values. Too big a ε, on the other hand, could also

impair the estimates. The credit attributed to a state-action pair is a function

of the sequence of action taken afterward. If a great number of those were to be

sampled randomly, estimates would be biased by trajectories unrepresentative of the

policy. Furthermore, as sampling random actions means not following the action-

value function estimate, what was learned is not entirely leveraged in maximizing

rewards. This tension is known as the exploration-exploitation dilemma.

2.3.4 Value function approximation

One aspect not adequately explored in the two previous subsections is in what way

value function estimates are encoded or represented. In fact, the update rules seen

above operated under an assumption that updates to a state-action pair could be

made without in�uencing the estimates of other pairs. That could only be possible if
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those estimates resided each in an individual cell, as in a table. A tabular represen-

tation would have the bene�t of isolated updates but comes with several drawbacks.

For control problems with large state and action spaces, such tables could be pro-

hibitively large. large tables impose a di�culty not only in the memory needed to

store them but also in the number of experiences required to produce su�ciently

good estimates. Given the locality of updates, each state-action pair would have to

be experienced a number of times for its value to be estimated with any degree of

con�dence. The inviability of this approach becomes even more pronounced when

the action or state spaces are continuous, with the number of state-action pairs

being in�nite and possibly with none of them being visited more than once.

In face of a scenario where the use of a table would be impractical, a learning

model could be employed to approximate the desired function, with a limited capac-

ity in comparison to the number of table cells that would be required. This limited

capacity implies that an update localized to a single state-action pair is not pos-

sible. It necessarily must a�ect several ones. The use of models, therefore, trades

in the ability, a�orded by full-blown tables, of driving estimation errors to zero.

On the other hand, it stands to reason that state-action pairs that are, in some

sense, similar also have similar values. that is, an underlying structure in the true

value function correlates them. The purpose of a learning model is to identify and

leverage these similarities, in a way that what is learned for a given input can be

generalized to similar ones. In the context of action-value function approximation,

this would mean being able to adequately evaluate a state-action pair even without

ever experiencing it before, only similar pairs.

An important comment that must be made about the use of learning models is

that the workings of RL demand certain characteristics from them, ones that pos-

sibly wouldn't be relevant in a di�erent context. First, as experiences are collected

by interaction, it is expected that the model can be trained incrementally, in an

online manner. This precludes the use of many learning methods that operate in a

batch mode, under the assumption that all data are known beforehand. Second, in

the framework of policy iteration, as the agent's policy changes for improvement, so

does its associated true value function. Therefore, the model's target is a moving

one, even if the environment's dynamics is stationary. It is expected that it can

learn under these shifting conditions.

2.4 Policy-based algorithms

The methods presented in the previous section centered around the idea of modeling

and improving value functions, and extracting policies from those. However, if the

goal in solving MDPs is �nding e�ective behaviors, why not search directly for good
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policies? This is the premise of a host of methods collectively known as policy-

based, where e�orts are directed to parameterizing policies with learning models

[11]. besides being conceptually simpler and more straightforwardly aligned with

the goals of reinforcement learning, this approach can also have some advantages in

comparison to value-based ones in certain scenarios.

For problems where the action space is continuous, value-based algorithms shown

before are not applicable, as they implied querying an action-value function for each

possible action in a state in search of the one pointing towards the greatest value.

Having a policy parameterized by a model, on the other hand, enables selecting

actions directly, regardless of whether the action space is discrete or continuous,

by choosing a suitable distribution to be parameterized [12]. A second context

where policy-based techniques may come out ahead is one of partial information.

Often when the agent is incapable of observing certain aspects of the environment

relevant for its decision-making, the best course of action is behaving stochastically

[8, chapter 13]. This can be achieved through policy search. Finally, it is not

inconceivable to have problems where good behaviors are quite simple, while their

associated value function is complex. For situations like this, it is preferable to learn

the policy directly.

2.4.1 Policy-gradient

One way policy search can be done is by framing the problem as an optimization

one, de�ning a performance measure, J , and iteratively updating a policy backed

by a model, π̂, according to gradients of such measure. This perspective leads to

policy gradient methods. In the episodic case, the performance can be de�ned as the

value of the start state of the episode (2.21). Now, it is necessary to know what is

the gradient of this metric with respect to the model underlying the policy. That

a change in the policy would enact a change in performance is a matter of course.

However, this relation between performance and policy could be expected to be quite

complex, as the latter a�ects the former in more than one way.

J(π̂) = vπ̂(s0) (2.21)

The �rst level of in�uence of the policy over the performance is through the action

selection process. That is because this process determines the transitions and their

subsequent rewards. Furthermore, the policy, together with the dynamics of the

environment, de�ne which states are visited, something that also has a bearing on

the performance. A change in the policy implies a change in the distribution of states

visited, outlining the second level of in�uence of the policy over the performance.

Given this complex interaction, it might come as a surprise that the gradient of
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the performance can be related to the gradient of the policy itself through a remark-

ably simple expression (2.22). This is known as the policy gradient theorem [11], and

is one of the most fundamental results in the theory of RL. In spite of its simplicity,

the theorem doesn't immediately lend itself to a method for policy optimization.

The reason is twofold: �rst, it depends on quantities generally unknown, such as

qπ̂, the action-value function, and µ(s), the distribution of states visited under π̂.

Second, it requires integrating over the entire state-action space. However, several

approximate gradient methods can be devised having the theorem as their basis.

∇J(π̂) ∝
∑
s

µ(s)
∑
a

∇π̂(a|s)qπ̂(s, a) (2.22)

= Eπ̂

[∑
a

qπ̂(St, a)∇π̂(a|St)

]

= Eπ̂

[∑
a

qπ̂(St, a)π̂(a|St)
∇π̂(a|St)
π̂(a|St)

]

= Eπ̂

[∑
a

π̂(a|St)qπ̂(St, a)∇ ln π̂(a|St)

]
= Eπ̂ [Eπ̂ [qπ̂(St, At)∇ ln π̂(At|St)]]

= Eπ̂ [Gt∇ ln π̂(At|St)] (2.23)

∇J(π̂) ≈ Gt∇ ln π̂(At|St) (2.24)

One approach to realize this gradient-based optimization approximately is to

frame the right-hand side of the theorem as an expected value (2.23) and approx-

imate the gradient from samples of the underlying distribution of the expectation

(2.24). In essence, this formulation does away with requiring knowledge of the state

distribution and action-value function by using, in place of them, sample trajectories

and full-episode returns. Algorithm 2.2 is known as REINFORCE [13] and makes

use of the approximate gradient (2.24) in its update rule. Line 6 does not specify

how the gradient is used in updating the model, as that is something that varies

between di�erent learning models.

2.4.2 Actor-Critic methods

The REINFORCE gradient estimate (2.24) enables computing approximations of

the performance measure in a sample-based manner and without bias. That is, the

estimates are, in expectation, equal to the true gradient. However, other qualities

besides unbiasedness are of interest in a stochastic gradient-based method. The
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Algorithm 2.2: REINFORCE
Input: Policy π̂, parameterized by learning model

Discount rate γ

1 for each episode do
2 Sample trajectory S0, A0, R1, . . . , ST−1, AT−1, RT according to π̂
3 G←− 0
4 for t = T − 1, T, . . . , 0 do
5 G←− Rt+1 + γG
6 Update learning model in the direction of G∇ ln π̂(At|St)

individual estimates produced during learning are noisy, meaning that they are likely

to di�er in some amount from the expected value. this is the variance inherent to

a stochastic estimation procedure. A large variance is highly undesirable, as it

demands a great number of updates, and therefore experiences, for convergence to

be reached.

One source of variance in (2.24) is the episodic return. Returns can vary widely

from one episode to another. As was done in value-based algorithms, returns can

be replaced by bootstrapped estimates. Bootstrapping enables reducing variance

because the multi-step returns di�er from an approximate value function only for

a limited number of sample rewards. A second variance-reducing modi�cation that

can be adopted is subtracting the state's value from its return, in order to weigh the

policy gradient by its performance relative to what was expected, and not the raw

return. This is known as adding a baseline, and the resulting weight, as an advantage

(2.25). The gradient estimate (2.26) combines these two techniques. This new

estimation procedure requires employing not only a learning model to approximate

a policy, but also one to approximate a value function. Actor-Critic methods make

use of estimates of the form (2.26), where actor denotes the approximate policy, and

critic, the approximate value function [14].

At = Gt:t+m − v̂(St) (2.25)

∇J(π̂) ≈ At∇ ln π̂(At|St) (2.26)
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Chapter 3

Kernel methods and n-tuple

networks

In the previous chapter, the problem targeted by RL and approaches to tackle it

were presented. The algorithms discussed focused on making use of learning models

to approximate policies and value functions, but no particular family of models was

assumed. In this dissertation, n-tuple neural networks are considered for the task

of approximating the quantities of interest in RL. For a model to be suitable for

this purpose, it must satisfy a set of requirements, as the workings of RL algorithms

impose unique challenges. To evaluate the properties of n-tuple nets and also devise

variants able to meet the challenges of RL, it can be useful to frame them as kernel

methods.

In the following sections, kernel methods are brie�y introduced and, being a

key characteristic of RL, online learning in kernel machines is discussed. Next,

n-tuple networks are presented, with a focus on regression-capable architectures,

given the goal of representing value functions and policies. The connection between

n-tuple nets and kernel machines is highlighted, something that is further explored

in chapter 4. Given that actions and states of the RL tasks later considered are

real- or vector-valued, encoding techniques must be employed to use these as inputs

to n-tuple nets. Finally, the interaction between encoding resolution and tuple size,

and its e�ect in the trade-o� between model capacity and its generalization ability

is deliberated.

3.1 Learning with kernels

Kernel methods are learning algorithms that primarily build upon the concept of

similarity between inputs. Kernel models produce their responses for a given input

by comparing it (either explicitly or implicitly) to training examples using a similar-
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ity measure, or a kernel. For the regression case, kernel models could take the form

of (3.1), where {xi}|Ni=1 is the set of training samples. An alternative view of how a

model like this works is that an output is made up of contributions of all samples,

and how strongly a sample contributes is a function of how similar it is to the query

input, according to the kernel in use. Kernel methods propose a supervised learning

paradigm where training samples have an active role when the model is put to use.

This could be contrasted to parametric models, where the data set is used only

insofar as �nding an appropriate parameterization.

f(x) =
N∑
i=1

αik(xi, x) (3.1)

A lot relies on how good a similarity measure the kernel is in building models

in the form of (3.1) that are useful. The appropriateness of a measure, however,

is not an intrinsic quality, but a task-dependent one. For a linearly separable clas-

si�cation problem in a Euclidean space, for instance, the Euclidean distance could

be a perfectly reasonable similarity metric. For more elaborate contexts, on the

other hand, such as image classi�cation, simple measures probably won't do. In

these more complex scenarios, however, it may be far from obvious how to design

contextually relevant similarity functions. One idea that comes up in cases such

as these is to map inputs into a more suitable, possibly higher dimensional, space,

one where simple, geometric-based, measures became appropriate. This is a central

idea for kernel-based algorithms, and kernels able to measure similarity in higher

dimensional spaces in a computationally e�cient manner are of special interest.

3.1.1 Feature maps and positive-de�nite kernels

The kernels that are generally adopted in kernel methods can be stated as inner

products in feature spaces (3.2), where φ is a feature map, a function that maps

inputs into the desired feature space. Furthermore, the kernels sought are ones

able to perform these inner products without having to explicitly map into feature

spaces. The reason is that �rst mapping inputs into a high-dimensional space and

subsequently computing the inner product of these large vectors could be rather

costly, both in terms of memory and time complexity. For instance, with w, x ∈ Rm,

the polynomial kernel kpoly(w, x) = 〈w, x〉d requires only a inner product in the input
space and an exponentiation operation. Its corresponding feature map, however,

consists of all dth degree products of entries of an input vector, yielding a feature

vector with
(
d+m−1

d

)
dimensions [15]. If m = 3 and d = 10, this would imply

66-dimensional feature vectors.
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k(w, x) = 〈φ(w), φ(x)〉 (3.2)

Kernels that admit being stated as above are also known as positive-de�nite

(PD) kernels, and this is an if and only if condition, meaning that if a map φ can

be found such that (3.2) holds, the kernel must be PD [16]. A PD kernel can have

more than one associated feature space. One special feature space that can always

be associated with a PD kernel k by construction is one where the members are

itself functions. The feature map for this space is given by φ(x)( · ) = k( · , x). That

is, x is mapped to k( · , x), the function that compares any valid input to x.

This function space can be used to highlight some important properties of PD

kernels. First, the feature space is a vector one, meaning that members can be added

together and multiplied by scalars to produce new members. f( · ) and g( · ) in (3.3),

for instance, are valid members of the feature space. These linear combinations are

of the same form as to how kernel models were presented, in (3.1). Therefore, a

learned model is one particular member of the function space spanned by its kernel.

A inner product can be de�ned in the space (3.4), and the operation satis�es linearity

(3.5). Finally, (3.6) follows directly from the de�nition of inner product and vector

spaces. This is known as the reproducing property, and has the special case (3.7).

f( · ) =
m∑
i=1

k( · , xi), g( · ) =
m′∑
j=1

βjk( · , x′j) (3.3)

〈f, g〉 =
m∑
i=1

m′∑
j=1

αiβjk(xi, x
′
j) (3.4)

〈λf, g〉 = λ〈f, g〉 (3.5)

〈k( · , x), f〉 = f(x) (3.6)

〈k( · , x), k( · , x′)〉 = k(x, x′) (3.7)

3.1.2 Online learning

The training of kernel models usually takes place in an o�-line manner and assumes

all data is known as a large batch before any learning can take place, such as in the

popular Support Vector algorithms [16]. However, domains such as reinforcement

learning present a problem setting where data becomes available only gradually.

Batch algorithms could be adapted to this context by using a sliding window over the

data, but that would constitute a computationally-intensive and wasteful recourse,

as models would be trained from scratch and then discarded. It is possible, though,

to learn kernel models in a manner more suitable to the online setting by leveraging
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the idea of gradient-based optimization.

Gradient descent is a widely used technique in the context of parametric models

to navigate in the space of possible parameters, in search of a locally optimal setting.

In the context of kernel models, on the other hand, the gradient is to be used

as a tool to navigate in the function space spanned by the chosen kernel. The

interpretation that allows this usage for learning with kernels is of the gradient as

the linear component of a change in a function in face of a small change ε in its input

[17]. For functions of real or vector values, this could be seen as (3.8). However,

in the function space-view of the problem, the interest is in taking gradients of

functionals : functions that take as input other functions. The concept of gradient

following this interpretation can be extended to the functional case through the

implicit de�nition in (3.9), where E is a functional.

h(x+ ε) = h(x) + ε∇h(x) +O(ε2) (3.8)

E[f + εg] = E[f ] + ε〈∇fE[f ], g〉+O(ε2) (3.9)

In a similar way to traditional gradient descent, the functional version makes

updates seeking to minimize a loss functional. Let f denote the model. At time step

t, an update is made upon observing a new sample by taking a step in the opposite

direction of the gradient, with step size ηt, according to the update rule (3.10). Lx,y
is the single-sample loss functional. The key element in computing the gradient of a

loss functional is �rst writing it in terms of the evaluation functional (3.11), which,

given a function, returns its value when evaluated at a given input. The gradient of

the evaluation functional can be derived following the implicit de�nition (3.9) and

the reproducing property (3.6): ∇fEx[f ] = k(x, · ) (3.12).

ft+1 ← ft − ηt∇ftLxt,yt [ft] (3.10)

Ex[f ] = f(x) (3.11)

Ex[f + εg] = f(x) + εg(x) + 0

Ex[f + εg] = f(x) + ε〈k(x, · ), g〉+ 0

Ex[f + εg] = f(x) + ε〈∇fEx, g〉+O(ε2) (3.12)

For instance, if the chosen loss is the squared error functional (3.13), its gradient

can be computed by applying the chain rule and replacing it in the gradient of

the evaluation functional (3.14). This example highlights that functional gradients
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are themselves functions, and their update steps add a new function to the kernel

expansion of the model, essentially moving it in the function space associated with

the PD kernel in use. Once again, this can be contrasted to gradient descent in

parametric models, where steps update a �xed set of parameters. One issue in

the functional approach, therefore, is that the kernel expansion grows with the

number of samples, which would result in growing memory usage and inference-

time complexity if the member functions in the expansion were all to be stored

in a list. This functional gradient-based approach for online learning with kernels

have been used in NORMA algorithms [18], which additionally propose dealing

with growing complexities by maintaining only a �xed number of the most relevant

member functions. Furthermore, functional gradient descent has been employed in

the past in the context of policy search [19].

Lx,y[f ] = (y − f(x))2

= (y − Ex[f ])2 (3.13)

∇fLx,y[f ] = ∇f (y − Ex[f ])2

= −2(y − Ex[f ])2∇fEx[f ]

= −2(y − f(x))2k(x, · ) (3.14)

3.2 n-tuple neural networks

Weightless, or n-tuple, neural networks are a class of learning architectures very

loosely inspired by the workings of the brain, with a long history [6, 20]. Its distin-

guishing feature is the use of RAM-based neurons. In contrast to the McCulloch-

Pitts neuron [21], where its output is a function of an inner product between the

neuron's inputs and a weight vector, a RAM neuron consists of a memory element,

and uses its input to address a position. The content of an addressed position is

what a RAM neuron outputs for a given input. To realize this addressing, it is

expected that the input is a binary pattern. This does not need not to be a hard

limitation on the domains RAM neurons and weightless nets can be applied, as tech-

niques can be applied to encode other forms of inputs into suitable binary patterns

(see section 3.2.3).

One of the simplest RAM neurons is one where a memory position stores only a

single bit (�g. 3.1a). Learning with such a neuron is quite simple. Given a desired

input-output mapping, it can be learned by setting the bit addressed by the input

to the value of the output, without a�ecting any other positions. Thus, this kind

of neuron can learn any Boolean mapping. A big downside, however, is that RAM
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(a)

(b)

Figure 3.1: (a) Single-bit RAM neuron. Its activation consists simply of the state of
the bit addressed by the input. (b) RAM discriminator, a network of RAM neurons
that behave as a learned similarity function. Each neuron observes only part of the
input, in a manner that the network can generalize to novel patterns.

neurons cannot generalize. What was learned from a given input cannot bene�t

some other one, no matter how similar the two are, because they address distinct

positions and have, therefore, uncorrelated outputs. One of the essential properties

of a learning model is that of being able to generalize to previously unseen entries.

A single RAM neuron is incapable of doing that. However, generalization can be

obtained by organizing these neurons into networks [22].

3.2.1 Discriminator networks

One of the simplest network organizations able to exhibit a generalization behavior

is the discriminator (�g. 3.1b). It consists of a set of single-bit RAM neurons, and

the way that it approaches generalization is having each of these neurons observe

only part of the binary input pattern. The subset of the input under observation

by a particular neuron is commonly referred to as a tuple. The alternative name

for models such as these, n-tuple networks, comes from this convention, with n

denoting the number of bits that make up a tuple. In this work, tuples are formed

by randomly sampling the bits from the input pattern, with no overlap between

tuples. The network's output, known as the discriminator's response, is computed

as the sum of the activations of the neurons. Therefore, a discriminator can produce

for a novel input a response that extrapolates from the training data, as long as at

least one neuron is able to match its tuple to the ones seen during training.

The discriminator architecture can serve as the basis for several more complex

n-tuple models. Its response ranges from 0 up to the number of neurons, N . A

response of zero occurs when all tuples in the input are completely foreign to their

neurons. N , on the other hand, happens when all tuples were previously seen during

training. intermediate values of response denote a partial level of recognition. In
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(a) (b)

Figure 3.2: (a) A multidiscriminator classi�er, also known as a WiSARD model.
Each discriminator is trained with samples of a particular class. When the model is
employed to classify an input, all discriminators respond to it, and a class is assigned
based on the greatest response. (b) A n-tuple regression network, an n-tuple net
made up of RAM neurons that hold a real value estimate and a counter per memory
position. The update rule and output function of the model are given by (3.15) and
(3.16).

this way, discriminators can be regarded as learned similarity functions, comparing

their inputs to the concept underlying the training samples. This similarity function

could be used as a building block for a classi�cation system, with several discrimi-

nators, each in charge of recognizing one class among all classes under consideration

(�g. 3.2a). To classify a novel input, the pattern is presented to each discriminator,

and the one with the greatest response attributes its class to it. Multidiscriminator

classi�er systems such as these are known as WiSARD models, in reference to one

of the �rst implementations [23].

3.2.2 n-tuple regression

The workings of the RAM discriminator lend it almost immediately to use in classi-

�cation tasks. However, it can be adapted to the domain of regression with only few

changes. The n-tuple regression network (NTRN) [24] does precisely so, serving as a

model capable of approximating real-valued functions. The network is organized as

the RAM discriminator seen before, but its neurons di�er. Instead of being single-

bit, memory positions store two values: a real value estimate, V , and a counter, C.

When training on a data set {(xt, yt)}Tt=1, consisting of pairs of inputs and target

values, the network is updated, for each pair, by simply adding the target to the

addressed estimates, and incrementing the addressed counters, as in (3.15). Here,
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V [i](xt) denotes the estimate addressed by input xt in neuron i, and C [i](xt), the

counter addressed by it in the same neuron. The output of the model is computed

by summing the addressed estimates and dividing by the addressed counters (3.16).

The network is depicted in �g. 3.2b.V [i](xt)← V [i](xt) + yt

C [i](xt)← C [i](xt) + 1
, i = 1, . . . , N, t = 1, . . . , T (3.15)

f(x) =

∑N
i=1 V

[i](x)∑N
i=1C

[i](x)
(3.16)

The NTRN highlights the connection that can be drawn between n-tuple nets and

kernel methods, as its architecture, update rule and output function were designed to

implement, in a memory and computationally e�cient manner, a Nadaraya-Watson

kernel regression [25, 26]. This connection can be made clear by �rst recognizing

that the tuple sampling performed by networks such as the NTRN naturally lead

to a distance measure between inputs. Let τ [i](x) be the tuple observed by neuron

i in input x. That is, τ [i](x) denotes the address that x indexes in neuron i. A

distance measure can be de�ned for two patterns in terms of the number of di�ering

tuples between them (3.17). If the two patterns are identical, all their tuples are the

same, and, as would be expected, their tuple distance is zero. On the other hand,

if the patterns di�er, some of their tuples wouldn't be the same, resulting a strictly

positive distance.

ρ(x, z) =
N∑
i=1

Jτ [i](x) 6= τ [i](z)K (3.17)

The tuple function τ can further be used in de�ning an indicator variableM [i]
t (x),

denoting whether the pattern x addresses the same position as sample xt in neuron

i (3.18). At �rst nonintuitive, this indicator allows expressing both the value and

the counter addressed in a neuron, V [i](x) and C [i](x), in terms of a summation over

the entire data set ((3.19), (3.20)). Furthermore, the indicator can be related to the

tuple distance when summed over all neurons (3.21).

M
[i]
t (x) =

1 if τ [i](x) = τ [i](xt)

0 otherwise
(3.18)

V [i](x) =
T∑
t=1

ytM
[i]
t (x) (3.19) C [i](x) =

T∑
t=1

M
[i]
t (x) (3.20)
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N∑
i=1

M
[i]
t (x) = N − ρ(x,xt) = N

(
1− ρ(x,xt)

N

)
(3.21)

With Equations (3.19) to (3.21), it is possible to demonstrate the equivalence

between the NTRN and a Nadaraya-Watson estimator (3.22). The proof also stress

the kernel function being implicitly used by the network under this perspective.

Given the equivalence in behavior, the appeal of using a NTRN instead of an explicit

Nadaraya-Watson kernel estimator is that the weightless network allows inferring

outputs in constant time and use a constant amount of memory, once the number of

neurons and tuple size has been set. An explicit kernel machine, on the other hand,

would have computational and storage requirements proportional to the number of

samples.

f(x) =

∑N
i=1 V

[i](x)∑N
i=1C

[i](x)

=

∑N
i=1

∑T
t=1 ytM

[i]
t (x)∑N

i=1

∑T
t=1M

[i]
t (x)

=

∑T
t=1 yt

∑N
i=1M

[i]
t (x)∑T

t=1

∑N
i=1M

[i]
t (x)

=

∑T
t=1 ytN

(
1− ρ(x,xt)

N

)
∑T

t=1N
(

1− ρ(x,xt)
N

)
=

∑T
t=1 yt

(
1− ρ(x,xt)

N

)
∑T

t=1

(
1− ρ(x,xt)

N

)
=

∑T
t=1 ytk(x,xt)∑T
t=1 k(x,xt)

, k( · , · ) =

(
1− ρ( · , · )

N

)
(3.22)

3.2.3 Encoding schemes for real and vector valued inputs

As mentioned previously, the formation of tuples and addressing of RAM neurons

require inputs to be binary patterns. To handle data in di�erent formats, a prepro-

cessing step is necessary. However, not any conversion scheme is appropriate. As

mentioned in section 3.2.2, n-tuple networks measure the similarity between binary

inputs in terms of the tuple distance (3.17), which could be regarded as a generalized

Hamming distance. Therefore, in order to preserve the similarity between inputs,

an encoding scheme should map similar inputs to binary patterns with a small tuple

distance between them. For instance, two IEEE 754-encoded numbers with small

tuple distance may not necessarily represent close numbers, as that will depend on
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Figure 3.3: Thermometer and circular encodings with 5-bit resolutions of two real
values de�ned in the [0, 1] interval. While thermometer encodings entail a variable
number of active bits, circular encodings have a �xed set given a resolution. The
example also showcases the wrap-around behavior of the circular encoder.

where on the pattern the di�ering bits lie (sign, exponent or signi�cand parts). In

reinforcement learning tasks, environment observations used as inputs to learning

models are commonly vectors of real values. In the present work, two encoding

schemes are considered in order to binarize samples of this nature: the thermometer

[27] and circular encoders [28]. These are suitable for encoding scalars. To bina-

rize vectors, it only takes encoding its components individually and stacking the

resulting patterns together.

Thermometer encoding

The thermometer encoder takes its name from the resemblance of its behavior to the

one of a thermometer when submitted to di�erent temperatures. Under this scheme,

real values are mapped to binary arrays that are more or less �lled depending on

whether it's closer to a given minimum or maximum. Formally, let x be the value

to be encoded, de�ned in a interval [l, u], and S, the output vector, made up of R

bits. Si is the value of the i-th bit of S, given by equation (3.23).

Si =

1 if x > l + (i− 1)× u−l
R

0 otherwise
, i ∈ [1, R] (3.23)

The thermometer encoding splits the interval in which the input is de�ned into

R subintervals, and all values belonging to a given subinterval are mapped to a

identical binary pattern. The extent of this aliasing of inputs is regulated by the

encoding parameter R. On one hand, the e�ect may be detrimental, as the network
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becames unable to tell apart aliased inputs. On the other hand, it enables the model

to draw answer to previously unseen inputs, favoring generalization.

Circular encoding

The second encoding scheme considered, circular encoding, maps to patterns with

a �xed number of activated bits, arranged contiguously as a block. Larger inputs,

in terms of how close they are to the upper bound of their interval, are mapped to

patterns where the block of activated bits is more shifted to the right. Furthermore,

the activated bits can be shifted beyond the edge of the pattern, wrapping around.

Besides aliasing inputs that fall into the same subinterval, this circular behavior

favors a radial similarity, as extreme values are mapped to similar patterns.

Instead of starting from a equation that determines the state of given bit in the

encoded pattern, as with the thermometer encoding, the circular encoding of an

input is more simply described as a two-step procedure. First, start with a base

pattern of R bits, where the �rst bR/2c ones are activated. Next, right-shift the

pattern nshift units, given by (3.24), where, once again, [l, u] is the interval where

x is de�ned and R, the encoding resolution. Figure 3.3 presents examples of both

thermometer and circular encodings.

nshift =

⌊
x− l
u− l

×R
⌋

(3.24)

3.2.4 Resolution, tuple size and the complexity-

generalization trade-o�

The previous section touched upon the e�ect that the choice of encoding scheme and

resolution have on generalization. For the two schemes presented, making use of a

smaller encoding resolution allows the model to generalize what was seen in a limited

data set to a wider range of inputs, as doing so entails a greater amount of aliasing.

However, this increase in generalization comes with an obvious price: limiting the

complexity of the model, and, therefore, the set of functions it can represent.

The tuple size used by the network has a similar e�ect. Using small tuples

relative to the size of the binary input means having several RAM neurons, each

connected to only a few bits of the input. The small tuples imply a reduced number

of possible addresses in the neurons. This, together with a large number of neurons,

increases the odds that the network is able to produce a response that generalizes

from the training set. However, the partition of the input into small tuples means

that important correlations between bits of the input might be missed when these

are broken and dispersed through several neurons.
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Larger tuples, on the other hand, might be able to capture the correlations

hidden in the data set, but at the expense of a few neurons with large address

spaces. Under these conditions, it's not unlikely that a novel input will address

positions in all neurons that weren't accessed during training. In a situation such

as this, the model is unable to generalize. The degenerate case that exempli�es

this point is a network made up of a single RAM neuron. Such a model is able to

memorize all training samples, but can only produce a default response to previously

unseen data.

Both encoding resolution and tuple size, therefore, a�ect the trade-o� between

model complexity and generalization, doing so jointly. The resolution does so both

directly, by in�uencing the likelihood of aliasing between input, and indirectly, by

determining the size of the binary patterns and the relative size of tuples.
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Chapter 4

n-Tuple-based reinforcement learning

As previously discussed, there are two main ways in which reinforcement learning

tasks may be tackled: value function approximation or policy search. In either of the

approaches, the role of the learning model in the general case is that of approximating

real or vector-valued functions. Therefore, to employ n-tuple systems, they must be

capable of performing regression.

The n-tuple regression network presented in the last chapter can represent func-

tions of this nature. However, it is a model originally devised for supervised learning

and its training algorithm operates under a set of assumptions associated with this

context. Reinforcement learning, on the other hand, imposes its own particular is-

sues. The desired n-tuple network, thus, must not only perform regression but also

meet the challenges of reinforcement learning.

4.1 The limitations of the n-tuple regression net-

work

To assess the suitability of the n-tuple regression network for reinforcement learning,

it is necessary to �rst delve deeper into its inner workings. Let X and Y denote

observation and target random variables. The goal in a regression problem is to

ascertain a function m : ΩX 7→ ΩY which is an estimator that provides a realization

of Y given a realization of X.

Being an estimator, it su�ers from estimation errors. Naturally, m should be

chosen to minimize the estimation errors in some sense. One sense in which it may be

minimized is in a mean squared one (4.1), which may be decomposed into two terms

(4.2). As the �rst term is independent of the choice of estimator, m must be chosen

to minimize the second term. Doing so leads to the conclusion that the conditional

expectation is the estimator that minimizes the mean squared error (4.3).
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m ∈ arg min
g

E[(Y − g(x))2|X = x] (4.1)

= arg min
g

Var[Y − g(x)|X = x] + E[Y − g(x)|X = x]2

= arg min
g

Var[Y |X = x] + {E[Y |X = x]− g(x)}2 (4.2)

m(x) = E[Y |X = x] (4.3)

=

∫
y · p(y|x)dy

=

∫
y · p(x, y)

p(x)
dy

=

∫
y · p(x, y)dy

p(x)
(4.4)

The conditional expectation estimator, however, is not very practical. Its exact

computation depends on the joint distribution pX,Y (x, y) (4.4), which is generally

unknown. Yet, the estimator can be approximated. Let {(xj, yj)|j = 1, . . . , T} be
a set of independent and identically distributed samples. Further, (4.5) and (4.6)

provide kernel density estimates of pX,Y (x, y) and pX(x), respectively.

p̂X,Y (x, y) =
1

T

T∑
j=1

k(x,xj)k(y, yj) (4.5)

p̂X(x) =
1

T

T∑
j=1

k(x,xj) (4.6)

These density estimates, in turn, can be used to approximate the conditional

expectation. (4.7) is known as the Nadaraya-Watson kernel regression, and as dis-

cussed in the previous chapter, is what the output function of the n-regression

network computes. This is the basis by which this network can approximate real-

valued functions. However, it is also the source of limitations when considered in a

reinforcement learning context.
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m(x) ≈
∫
y · p̂(x, y)dy

p̂(x)

=

∫
y ·
∑T

j=1 k(x,xj)k(y, yj)dy∑T
j=1 k(x,xj)

=

∑T
j=1 k(x,xj)

∫
y · k(y, yj)dy∑T

j=1 k(x,xj)

=

∑T
j=1 yj · k(x,xj)∑T
j=1 k(x,xj)

(4.7)

4.1.1 The assumption of a �xed joint distribution

The �rst issue stems from the approximation of the conditional expectation estima-

tor. This estimator builds upon the assumption that the joint distribution of the

observation and target variables, pX,Y (x, y), is �xed, albeit unknown. This assump-

tion is present in the approximation itself when it is stated that the samples are

independent and equally distributed.

To assume that the joint distribution is �xed may be natural for lots of supervised

learning tasks. Several of them conform to a pattern where the entire set of samples

is known before any training takes place and a deterministic mapping must be

uncovered from it. This assumption, however, is hardly reasonable in a reinforcement

learning scenario, where an agent learns while interacting with its environment.

Learning through interaction is a characteristic feature of reinforcement learning.

At the beginning of the training process, the agent does not possess a good policy.

More likely than not, it visits poor states and selects bad actions. As it explores

its environment, it gains evidence that greater returns can be attained by behaving

di�erently.

It is in this manner that the agent re�nes its policy and learns. As training

proceeds, it is expected that the visitation of undesirable states becomes less frequent

and the selection of good actions, more often. What takes place is a shift in the

distribution of observed states and performed actions. Unlike in batch learning, the

samples are generated sequentially, one at a time, and drawn from a distribution that

changes in lockstep with the change in behavior by the agent. For approximations

to be made from these samples, be it of value functions or policies, this periodic

change must be taken into account.

The assumption of a �xed joint distribution precludes the n-tuple regression net-

work of properly adapting to the altering distributions. As samples are presented

to the network, all of them are equally taken into account in an implicit approxima-

tion of the joint distribution. The result is that samples from the beginning of the
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Figure 4.1: A simpli�ed example of the negative e�ect of an estimation that assumes
�xed distribution in a changing environment. The solid line denotes the probability
density function from the true underlying distribution,ticks along the x axis denote
samples drawn from it, and the dashed line denotes a density estimate from all
available samples. As the distribution shifts, the estimate becomes a progressively
worst approximation of the true density.

learning process hold as much in�uence in the model as newer samples. This works

against the fundamental idea of deprecating older policies in favor of newer, more

e�ective ones. Figure 4.1 illustrates how an estimate can deteriorate if it attributes

equal importance to samples that are drawn from a distribution that shifts over

time.

4.1.2 The assumption of the error measure

A second limitation of the n-tuple regression network also originates from one of its

assumptions. Not pertaining to the data generating process, but the error measure

being minimized and the resulting learning procedure. That is, the fact that the

network attempts to minimize the mean squared error and that the update rule of

the model is tied to this metric.
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By implicitly realizing a Nadaraya-Watson kernel regression, the learning model

is fundamentally coupled to the mean squared error as an objective function. For

the classical regression setting, where the correct output for each sample is known,

this can be a useful objective. The reinforcement learning case, however, has an

additional layer of complexity, as the correct behavior for each sample observation

is not readily available.

This is a fundamental challenge of reinforcement learning, known as the credit-

assignment problem. The agent is only able to observe reward signals and not the

appropriate behavior. As the success or failure at the task at hand is the result of

a sequence of actions, it is not a simple matter to determine, from rewards alone,

which actions were adequate and which were not.

In the value function approach, this problem can be worked around. As discussed

in chapter 2, bootstrapped returns can be computed from a history of rewards and

the partially trained model and used as noisy samples from the real value function.

These computed samples allow the problem to be cast as classic regression and the

minimization of mean squared error can be used.

For the goal of direct policy search, such recasting of the problem is not possible.

That is not to say that the goal is infeasible, as the policy gradient theorem is

one theoretical result that enables the direct approximation of policies. The result,

however, assumes the objective function is task-dependent and updates make use of

gradient information.

The n-tuple regression network doesn't ful�ll any of the requirements. Once

again, the network cannot support di�erent objective functions, being tied to the

mean squared error. Furthermore, its update rule is not gradient-based. Such

architecture cannot make use of the policy gradient theorem without modi�cations.

4.2 Value function approximation with a forgetting

n-tuple neural network

For the approach based on value function approximation, the major hurdle in em-

ploying weightless systems is the change in the state, action and reward distributions

triggered by a change in policy. The NTRN is capable of representing real-valued

mappings such as value functions and would be usable were it not for its assumption

of a �xed joint distribution. Fortunately, a minimal and intuitive modi�cation to

the model enables a lessening of the e�ects of this assumption.

As mentioned in the previous section, the learning algorithm of the NTRN at-

tributes equal weights to all observations. As training proceeds, incoming observa-

tions have a progressively smaller in�uence on the approximation encoded by the
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model. In a sense, the problem is that the network never forgets older observations

in favor of newer ones. One idea that is naturally elicited from this consideration is

to force the network to forget.

4.2.1 Forgetting n-tuple regression network

To enforce forgetting, a new learning model is proposed. Its architecture is the same

as the NTRN, consisting of a RAM discriminator where memory positions store a

value and a counter. The di�erence lies in the update rule and the output function,

which also introduces a new hyperparameter: the forgetting factor, denoted by ϕ

and de�ned in the [0, 1] interval.

v
[i]
t+1(xt+1) = ϕv

[i]
t (xt+1) + yt+1

c
[i]
t+1(xt+1) = c

[i]
t (xt+1) + 1

i = 1, . . . , N (4.8)

The intuition behind the update rule (4.8) is the following: when a memory posi-

tion is to be updated, its content is �rst multiplied by the forgetting factor and then

incremented by the value associated with a new observation. In doing so, the con-

tribution of past observations decays exponentially and newer observations became

signi�cantly more determinant in the outcome of the approximation. Figure 4.2

illustrates the idea of employing exponentially decaying weights to handle a shifting

distribution.

ft(x) =


∑N

i=1 v
[i]
t (x)∑N

i=1 s
[i]
t (x)

∑N
i=1 s

[i]
t (x) 6= 0

0 Otherwise
(4.9)

In the original model, the output function was akin to a simple mean, with the

denominator being the total number of observations contributing to the output,

obtained by summing the addressed counters. In the modi�ed model, as the obser-

vations have di�erent weights, the output function (4.9) needs to take the form of

a weighted mean. The denominator (4.10) can no longer be the sum of counters, it

must be the sum of weights. Fortunately, this is easily obtainable, since it is simply

the sum of the �rst terms of a geometric series.

s
[i]
t (x) =

1−ϕc
[i]
t (x)

1−ϕ c
[i]
t (x) > 0 and ϕ 6= 1

c
[i]
t (x) Otherwise

(4.10)
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Figure 4.2: Weighted density estimation example. As in �g. 4.1, the solid line
denotes the probability density function of the unknown distribution, ticks along the
x axis are samples drawn from the distribution, and the dashed line is an estimate
of the density. Once again, the estimation takes into account all available samples.
However, older samples have their weights multiplied by a factor of 0.1 every time
a new batch of samples is drawn, in a manner that the estimate is better able to
track the underlying distribution.

4.2.2 Multi-step SARSA with a forgetting n-tuple regression

network

The introduction of the forgetting factor allows for learning under changing distri-

butions, but one issue remains before it can be put to use in a generalized policy

improvement scheme. To determine a greedy policy from value estimates, an ap-

proximation of a state-value function would only be enough if the agent had access

to a model of the dynamics of the task to simulate the possible next states and

compare their values. In the absence of that, action-value functions are required.

The obvious di�culty is the fact that action-value functions take two inputs,

while n-tuple regression architectures expect a single binary pattern. One possible

solution that merits exploration is to jointly encode state and action into a pattern.

However, a much simpler approach is handling state and action separately. The

separation could be understood as modeling a state-value function for each possible

action. With n-tuple systems, this means having multiple RAM discriminators.

Alternatively, a single discriminator could be used, but its memory positions would

store vectors of lengths corresponding to the number of actions. In either of the

implementations, only states require being encoded into a binary pattern. These

two approaches are exempli�ed in �g. 4.3.

Algorithm 4.1 summarizes the use of forgetting n-tuple regression networks with

multi-step SARSA. The algorithm follows the structure of its counterpart in the

tabular case closely, with the use of m-step bootstrapped returns as the update

targets for the model. Due to the aforementioned action-value representation issue,

the notation regarding the parts of the n-tuple network deviates slightly from what
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(a) (b)

Figure 4.3: Two approaches to modeling a vector-valued (three-dimensional vectors
in the example) function with discriminator-based n-tuple networks. In (a), a single
discriminator with vector-valued memory positions is used. Alternatively, as in (b),
multiple real-valued discriminators can be used, with each discriminator being in
charge of a component of the output.

was used in the previous section. The action taken as a second argument in the

output, value and counter functions simply resolve what is the correct discriminator,

as discussed above. f(encode(Sτ+m), Aτ+m), as an example, denote the output of

the n-tuple network bound to Aτ+m and given as input the encoded value of Sτ+m.

One last comment must be made with relation to the ε-greedy policy. Unlike

policy search approaches, methods based on GPI, such as algorithm 4.1, do not

maintain an explicit representation of a policy. Instead, policies are de�ned implic-

itly with respect to an action-value function (or an approximation of one). Actions

are selected based on the greatest action-value or, with low probability, selected

randomly. Algorithm 4.2 illustrates this procedure.

4.3 Policy search with a n-tuple system

In the last section, the use of n-tuple systems for the approximation of value func-

tions was explored. In this one, the focus is on employing them for direct policy

search. As highlighted earlier in the chapter, the use of a learning model in this

context is challenging. It must be capable not only of realizing regression, but doing

so under with distributions that change once the behavior of the agent is updated

and using gradient information, if it is to make use of the policy gradient theorem.
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Algorithm 4.1: Forgetting n-tuple multi-step SARSA
Input: Tuple size n, neuron count N , encoding, forgetting factor ϕ

Number of steps m, exploration ε, discount γ

π ←− ε-greedy policy with respect to n-tuple network
for each episode do

S0 ←− initial state
A0 ←− sample from π( · |S0)
t←− 0
τ ←− −∞
T ←−∞
while τ < T − 1 do

if t < T then

Execute At, observe St+1, Rt+1

if St+1 is terminal then T ←− t+ 1
else At+1 ←− sample from π( · |St+1)

τ ←− t−m+ 1
if τ ≥ 0 then

G←−
∑min(τ+m,T )

i=τ+1 γi−τ−1Ri

if τ +m < T then G←− G+ γmf(encode(Sτ+m), Aτ+m)
Scode
τ ←− encode(Sτ )
for i = 1, . . . , N do

v[i](Scode
τ , Aτ )←− ϕv[i](Scode

τ , Aτ ) +G

c[i](Scode
τ , Aτ )←− c[i](Scode

τ , Aτ ) + 1

t←− t+ 1

Algorithm 4.2: Action selection of ε-greedy policy wrt forgetting n-tuple
action-value approximation
Input: Action-value approximation, with tuple size n, neuron count N ,

encoding, forgetting factor ϕ
Exploration ε, discrete, �nite action space A
State S

Output: Selected action A

if Uniform(0, 1) < ε then
A←− Sample uniformly from A

else
A←− Sample uniformly from arg maxa∈A f(encode(S), a)
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To meet those demands, the connection between n-tuple networks and kernel

methods is further explored and a new architecture is proposed. It builds upon

the foundation of the n-tuple regression network but draws inspiration from online

learning with kernel machines using functional gradient descent. The end result is

a model that combines the strengths of both n-tuple networks and online kernel

methods.

4.3.1 Functional gradient-inspired n-tuple network

The new learning model is organized as a RAM discriminator. Unlike the NTRN,

however, the memory positions do not need to store access counters. They hold

only values, that are either scalars or vectors, depending on the dimensionality of

the target function. One additional di�erence between the networks is that the new

model requires the choice of an error metric, not having one implicitly.

The update rule and the output function are given by (4.11) and (4.12). The

notation is similar to the one used by the NTRN. (xt, yt) is the training sample at

time t, consisting of an input and a target. v[i]t (x) denotes the value addressed by

the tuple formed by x for neuron i after t samples. Once again, v[i]0 (x) = 0,∀x ∈
X , i = 1, . . . , N . c : X ×R2 7→ R is a di�erentiable loss function, taking an input, its

correct target and a target prediction and returning a measure of the error made by

the prediction. Finally, ηt is a learning rate that regulates how much values change

in the direction of the gradient.

v
[i]
t (xt) = v

[i]
t−1(xt) + ηtδt, i = 1, . . . , N (4.11)

δt = ∂ft−1(xt)c(xt, yt, ft−1(xt)) =
∂

∂z
c(xt, yt, z)

∣∣
ft−1(xt)

ft(x) =
1

N

N∑
i=1

v
[i]
t (x) (4.12)

The equations above describe the operation of the model, but they do not su�ce

in convincing that it is promising for policy search, let alone suitable for regression.

The NTRN was underpinned by the Nadaraya-Watson kernel regression, but the

same doesn't hold for the new model. Instead, it leverages the idea of functional

gradient descent in kernel machines. In the following subsections, the connection

between the proposed n-tuple system and this form of learning with kernels is es-

tablished.
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Connection to kernel methods

As the update rule (4.11) and output function (4.12) are considerably di�erent

than their counterparts in the NTRN, it is not obvious that the new network still

implements a kernel machine. However, it is straightforward to show that it does.

Once again, the proof revolves around the idea of tuple distance, ρ, a measure of

similarity between patterns in terms of the intersection of their tuple sets.

First, the content of a memory position at any point in time may be stated in

terms of all model updates up to that time (4.13). M [i]
t , here, serves as an indicator

variable denoting whether x addresses the same memory position as xt in neuron i

(4.14). τ [i](x) denotes the tuple formed by input x for neuron i. As in the NTRN,

a relationship may be established between the summation of the indicator variables

across all neurons and the tuple distance, and this distance, in turn, may be seen in

terms of a similarity function, that is, a kernel (4.15).

v
[i]
t (x) =

t∑
j=1

ηjδjM
[i]
j (x) (4.13)

M
[i]
j (x) =

1 if τ [i](x) = τ [i](xj)

0 otherwise
(4.14)

N∑
i=1

M
[i]
t (x) = N − ρ(x,xt)

= N

(
1− ρ(x,xt)

N

)

= Nk(x,xt), k(x,xt) =

(
1− ρ(x,xt)

N

)
(4.15)

Finally, (4.13) and (4.15) can be replaced into the output function (4.12). The

result (4.16) demonstrates that the network does indeed implement a kernel machine:

its output can be written as a summation of basis functions, positioned over the data

points and with weights ηjδj, j = 1, . . . , t learned from said data.
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ft(x) =
1

N

N∑
i=1

v
[i]
t (x)

=
1

N

N∑
i=1

t∑
j=1

ηjδjM
[i]
j (x)

=
1

N

t∑
j=1

ηjδj

N∑
i=1

M
[i]
j (x)

=
1

N

t∑
j=1

ηjδjNk(x,xt)

=
t∑

j=1

ηjδjk(x,xj) (4.16)

Implicit functional gradient descent

Proving that the network amounts to the summation of basis functions, as done

above, is only the �rst step in understanding its connection to kernel methods. The

next one concerns how the basis functions weights are learned and, more speci�cally,

how that ties into functional gradient descent. This can be seen by noticing that

a recurrence relation can be stated about the content of a memory position in this

model.

v
[i]
t (x) = v

[i]
t−1(x) + ηtδtM

[i]
t (x) (4.17)

The key idea is that, according to the update rule, for each time step the memory

positions that are addressed by the data point have their contents incremented by

ηtδt. The other memory positions, on the other hand, remain unchanged. Both

possibilities can be uni�ed, by means of the indicator variable M [i]
t , in a single

equation that relates the value of an arbitrary position at a given moment with its

value in the previous step (4.17).

By replacing (4.17) into (4.12), a recurrence relation for the output function of

the model can also be established (4.19). What is noteworthy about this relation-

ship is that it takes the form of a functional gradient descent update step, with

R[ft,xt, yt] = c(xt, yt, ft(xt)) being the di�erentiable risk functional that guides the

optimization. With this result and the one in the previous section, the operation

of the proposed n-tuple network is made clear: the system implicitly implements a

kernel machine that learns according to functional gradient descent.
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ft(x) =
1

N

N∑
i=1

v
[i]
t (x)

=
1

N

N∑
i=1

[
v
[i]
t−1(x) + ηtδtM

[i]
t (x)

]
=

1

N

N∑
i=1

v
[i]
t−1(x) +

ηtδt
N

N∑
i=1

M
[i]
t (x)

= ft−1(x) +
ηtδt
N

N∑
i=1

M
[i]
t (x)

= ft−1(x) + ηtδtk(xt,x)

= ft−1(x) + ηt∂ft−1(xt)c(xt, yt, ft−1(xt))k(xt,x)

= ft−1(x) + ηt∂ft−1(xt)c(xt, yt, ft−1(xt)) 〈k(xt, · ), k( · ,x)〉

= ft−1(x) + ηt
〈
∂ft−1(xt)c(xt, yt, ft−1(xt))k(xt, · ), k( · ,x)

〉
(4.18)

= ft−1(x) + ηt 〈∇fR[ft−1,xt, yt], k( · ,x)〉 (4.19)

Positive-de�niteness of the tuple distance kernel

In the last two sections, the relation between the proposed n-tuple system and online

learning with kernels using functional gradient descent was elaborated. However, in

doing so one result was assumed to hold without previous comment. From step (4.18)

to (4.19) the gradient of the evaluation functional ∇fEx[ft] = k(x, · ) was used.

This result, though, hinges on the kernel being positive-de�nite and, consequently,

exhibiting the reproducing property.

One central result in kernel theory is that kernels are positive-de�nite if, and

only if, they can be represented as inner products in a feature space. One possible

way to prove that the tuple distance kernel is positive-de�nite, therefore, is to come

up with a feature map for it. Before doing so, it is important to notice that the

kernel can be stated in a slightly di�erent manner.

k(w,x) = 1− ρ(w,x)

N

=
1

N

(
N − ρ(w,x)

)
=

1

N

N∑
i=1

Jτ [i](w) = τ [i](x)K (4.20)

=
1

N

N∑
i=1

2n−1∑
j=0

Jτ [i](w) = τ [i](x) = jK (4.21)
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The tuple distance kernel is directly proportional to the number of tuples shared

between the inputs (4.20). One alternative way of tallying this number is counting

the number of tuples between inputs that are simultaneously equal to a particular

value and summing for all possible tuple values (4.21). This somewhat convoluted

accounting is the basis for a feature map (4.22).

φ(x) =
1√
N


φ1(x)

φ2(x)
...

φ2n(x)

where φi(x) =


Jτ [1](x) = i− 1K
Jτ [2](x) = i− 1K

...

Jτ [N ](x) = i− 1K

 , i = 1, . . . , 2n (4.22)

φ(x) maps into a N2n binary vector, with each position denoting whether a

certain tuple of x is equal to a certain value. Every N -element block refers to one

possible tuple value. Now, the connection between the map and the kernel can be

veri�ed simply by the inner product of two transforms.

〈φ(w), φ(x)〉 =
1

N

2n∑
i=1

〈φi(w), φi(x)〉 (4.23)

=
1

N

2n∑
i=1

N∑
j=1

Jτ [j](w) = τ [j](x) = i− 1K (4.24)

=
1

N

N∑
j=1

2n∑
i=1

Jτ [j](w) = τ [j](x) = i− 1K

=
1

N

N∑
j=1

Jτ [j](w) = τ [j](x)K

= k(w,x)

In (4.23), the inner product is stated as the sum of N -element inner products.

Next, it is important to notice that the inner product of binary vectors corresponds

to the number of positions that have simultaneously value 1 in both vectors. As

the positions are associated with logical predicates, this operation corresponds to

realizing a conjunction of these predicates and counting the ones which are true

(4.24). From this point forward, it is a simple matter to show that it corresponds to

the tuple distance kernel and, in doing so, proving that the kernel is positive-de�nite.
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4.3.2 n-tuple REINFORCE

In the last few sections, a novel n-tuple learning model was introduced, realizing a

kernel machine in a considerably di�erent way than the n-tuple regression network.

However, it is not yet clear how this new system ties into policy search. By drawing

inspiration from online learning with kernels, it turns, the new n-tuple system can

solve the two issues highlighted in section 4.1 and approximate policies in much the

same manner as traditional neural networks.

The �rst issue, regarding the shift in distributions that is inherent to reinforce-

ment learning, is handled by the iterative updating of functional gradient descent,

as long as the step size is judiciously chosen. For the commonly used constant step

size, as an example, a new observation will a�ect the current approximation by

a constant and predetermined amount, regardless of how many observations were

seen before. This is quite a di�erent behavior than the decreasing in�uence of new

observations in the n-tuple regression network.

The second issue, concerning the objective function, is immediately resolved by

the updating mechanism of the new model. The error measure is no longer implicit,

being selected as a hyperparameter and minimized according to gradient descent.

In this way, objectives may be set on a case-by-case basis, imbuing the model with

greater �exibility.

Having dealt with these two fundamental challenges, the network is capable

of being employed in policy search. This is possible by making use of the policy

gradient theorem. In practice, as both the theorem and the model operate under

the assumption of gradient descent learning, this simply means that the choice of

objective function must satisfy a certain requirement.

The idea is that the objective should be chosen such that its gradient is, in

expected value, proportional to the gradient of the metric of performance in policy

gradient: the value of the initial state. One possible risk functional choice is given

in (4.25). This is inspired by the REINFORCE policy gradient algorithm and (4.26)

shows that its gradient leads to the same update target as the algorithm. The

negative sign is necessary because the n-tuple network minimizes its objective, while

what is strived in policy gradient is the maximization of the initial state's value.

These results can be put together into an algorithm (4.3) for policy search.

R[ft, St, At, Gt] = −Gt ln πft(At|St) (4.25)

∇ftR[ft, St, At, Gt] = −Gt∇ft lnπft(At|St) (4.26)

One yet unattended question is how exactly policies are represented. The issue is

made more complex by the fact that policies are probability distributions. If a direct
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Algorithm 4.3: n-tuple REINFORCE
Input: Tuple size n, neuron count N , encoding, learning-rate η

Discount γ

for each episode do
Sample trajectory S0, A0, R1, . . . , ST−1, AT−1, RT from environment
according to πf
for h = 0, 1, . . . , T − 1 do

G←−
∑T

k=h+1 γ
k−h−1Rk

Scode
h ←− encode(Sh)
for i = 1, . . . , N do

v[i](Scode
h )←− v[i](Scode

h ) + ηG∂f ln πf (Ah|Scode
h )

representation was used, that is, using a n-tuple network to map state-action pairs

to densities, two challenges would be raised. The �rst is the previously mentioned

challenge of handling state-action inputs. The second is ensuring that the network

behaves as a valid probability distribution.

A solution to both challenges is to opt for am indirect representation. This can

be done by adopting a family of distributions and parameterizing it with an n-tuple

network. The network takes as input the encoded state and outputs the parameters

of the distribution. From this parameterized distribution, actions can be sampled.

In this way, the network is adjusted during learning in the direction of producing

parameters that lead to distributions where appropriate actions are more likely to

be sampled.

4.3.3 Parameterization of policies

The indirect representation of policies through parameterization makes it possible

to adopt a wide range of distribution families. The choice of a family is due in

large part to the action space of the task at hand. As actions are sampled from the

parameterized distribution, its support must be the same, or at least be close to, the

action space. In this section, parameterizations for three common types of action

spaces are considered.

Sigmoid-based policy for binary action spaces

One of the common scenarios in reinforcement learning tasks is having binary action

spaces: that is, at any point in time, the agent is faced with only two options

for actions. Let +1 and −1 be the two possible actions. The natural choice of

a distribution to be used as a policy would be a Bernoulli, with ps denoting the

probability of sampling action +1 when the agent �nds itself in state s and 1− ps,
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the probability of sampling −1.

Having the network learn ps, however, would once again raise the issue of ensuring

that it behaves as a distribution. An alternative is having the network represent not

a probability, but a numerical preference, and the relation between this preference

and the probability of sampling +1 is established by the sigmoid function (4.27).

The probability of sampling action −1 is easily shown to be (4.28) and a single

formula describing the entire policy can be given using the sign function (4.29).

πf (a = +1|s) =
1

1 + exp(f(s))
(4.27)

πf (a = −1|s) = 1− πf (a = +1|s)

= 1− 1

1 + exp(f(s))

=
exp(f(s))

1 + exp(f(s))

=
1

1 + exp(−f(s))
(4.28)

πf (a|s) =
1

1 + exp(sign(a)f(s))
(4.29)

The probability density function (4.29) is used to sample actions from the policy,

but in order to update the model, it is necessary to also know the functional gradient

of its logarithm, as in (4.26). This functional gradient is given by (4.30).

lnπf (a|s) = − ln[1 + exp(sign(a)f(s))]

∇f lnπf (a|s) = −∇f exp(sign(a)f(s))

1 + exp(sign(a)f(s))

= − sign(a)
exp(sign(a)f(s))

1 + exp(sign(a)f(s))
∇ff(s)

= − sign(a)

[
1− 1

1 + exp(sign(a)f(s))

]
∇ff(s)

= − sign(a) [1− πf (a|s)]∇ff(s)

= − sign(a) [1− πf (a|s)] k(s, · ) (4.30)

softmax-based policy for discrete and �nite action spaces

Another usual scenario is having an agent faced with choosing one action out of a

discrete and �nite set of options. Let 1, . . . , l be the set of actions. By seeing this
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as an extension of the previous case, the choice of probability distribution to use as

policy would be a categorical distribution, parameterized by a vector of probabilities

ps of dimension l.

The approach of using the n-tuple network to represent preferences once again

can be adopted, but this time one must be learned for each possible action. There-

fore, the network's output is no longer a scalar, but a vector of length l. In order to

relate the preferences to the probability of selecting an action, the softmax function

is used (4.31). êi denotes the unit vector in the ith direction.

πf (a|s) =
exp(f(s)[a])∑l
i=1 exp(f(s)[i])

=
exp(f(s)ᵀêa)∑l
i=1 exp(f(s)ᵀêi)

(4.31)

lnπf (a|s) = f(s)ᵀêa − ln
l∑

i=1

exp(f(s)ᵀêi)

∇f lnπf (a|s) = ∇ff(s)ᵀêa −
∑l

i=1 exp(f(s)ᵀêi)∇ff(s)ᵀêi∑l
i=1 exp(f(s)ᵀêi)

= êak(s, · )−
l∑

i=1

πf (i|s)êik(s, · )

=

[
êa −

l∑
i=1

πf (i|s)êi

]
k(s, · ) (4.32)

The functional gradient of the logarithm of the policy is given by (4.32). the

weight that accompanies the basis function is naturally a vector of length l. As an

example, if the action space consisted of three actions and the �rst one was selected,

the gradient would be given by (4.33).

∇f ln πf (1|s) =

1− πf (1|s)
−πf (2|s)
−πf (3|s)

 k(s, · ) (4.33)

Gaussian-based policy for continuous action spaces

Finally, one last common action space is a continuous one, where the agent must

select an action out of the in�nite possibilities contained in a continuous interval.

Evidently, assigning individual preferences as done in the last two sections is not

feasible. A continuous distribution must be used, and one possible candidate is the

Gaussian distribution (4.34). ζ denotes the density function normalizing constant,

while Σ is a prede�ned covariance matrix. The gradient of interest is given by (4.35).
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πf (a|s) =
1

ζ
exp

(
−1

2
(f(s)− a)ᵀΣ−1(f(s)− a)

)
(4.34)

lnπf (a|s) = − ln ζ − 1

2
(f(s)− a)ᵀ Σ−1(f(s)− a)

∇f lnπf (a|s) = −1

2
∇f

[
(f(s)− a)ᵀΣ−1(f(s)− a)

]
= −1

2

(
Σ−1 + Σ−ᵀ

)
(f(s)− a)∇f [f(s)− a]

= −1

2
2Σ−1(f(s)− a)∇ff(s)

= −Σ−1(f(s)− a)k(s, · )

= Σ−1(a− f(s))k(s, · ) (4.35)

4.3.4 n-tuple Actor-Critic

The n-tuple REINFORCE algorithm introduced in subsection 4.3.2 makes use of a

functional n-tuple network in a method based solely on the approximation of a policy.

However, as previously discussed in subsection 2.4.2, a more stable learning can be

obtained by maintaining models for both value function and policy and learning

them simultaneously, in an approach known as Actor-Critic. n-tuple systems can

also be employed in this manner.

More speci�cally, an n-tuple-based Actor-Critic approach would use a forgetting

n-tuple network to approximate a value function and once again a functional n-tuple

network to represent a policy. As this approach makes use of a model to bootstrap

state-value estimates, the risk functional adopted by the policy network is slightly

di�erent than the one used before.

In the new objective (4.36), m-step bootstrapped returns are used in place of

full returns. This allows the models to be updated with a limited number of steps,

instead of only after full episodes. Additionally, the policy gradient is weighted not

be a state-value estimate but by the di�erence between a new state-value estimate

and the current value approximation given by the model, a di�erence known as

advantage (see section 2.4.2).

R[fvalue
t , fpolicy

t , St, At, Gt:t+m] =

− (Gt:t+m + γmfvalue
t (St+m)− fvalue

t (St))∇fpolicy lnπfpolicy( · |St) (4.36)
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Algorithm 4.4: n-tuple Actor-Critic
Input: Value net : Tuple size nvalue, neuron count Nvalue, forgetting factor ϕ

Policy net : Tuple size npolicy, neuron count Npolicy, learning-rate η
Encoding
Number of steps m, discount γ

for each episode do
S0 ←− initial state
A0 ←− sample from πfpolicy( · |S0)
t←− 0
τ ←− −∞
T ←−∞
while τ < T − 1 do

if t < T then

Execute At, observe St+1, Rt+1

if St+1 is terminal then T ←− t+ 1
else At+1 ←− sample from πfpolicy( · |St+1)

τ ←− t−m+ 1
if τ ≥ 0 then

G←−
∑min(τ+m,T )

i=τ+1 γi−τ−1Ri

if τ +m < T then G←− G+ γmfvalue(encode(Sτ+m))
Scode
τ ←− encode(Sτ )
α←− G− fvalue(Scode

τ )
for i = 1, . . . , Npolicy do

v
[j]
policy(S

code
τ )←− v

[j]
policy(S

code
τ ) + ηα∂f ln πf (Aτ |Scode

τ )

for j = 1, . . . , N value do

v
[j]
value(S

code
τ , Aτ )←− ϕv

[j]
policy(S

code
τ , Aτ ) +G

c
[j]
value(S

code
τ , Aτ )←− c

[j]
policy(S

code
τ , Aτ ) + 1

t←− t+ 1
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Chapter 5

Experimental results

In this chapter, the algorithms previously proposed are put to test through bench-

mark reinforcement learning tasks. The goal is to not only assess the resulting

agents' �nal performance but also to understand how the distinguishing character-

istics of these n-tuple systems interact with the already mentioned reinforcement

learning challenges and in�uence learning. Furthermore, algorithms making use of

multilayer perceptrons are also examed, to evaluate how weightless networks fare

against more established learning models in the context of RL.

5.1 Benchmark tasks and experimental setup

Reinforcement learning algorithms are commonly tested using simulated control

problems. The advantages of using simulators instead of learning directly in phys-

ical systems are numerous. It allows for simpler troubleshooting of algorithms, by

separating failures stemming from the control scheme itself from other real-world

sources, such as mechanical or electronic ones. Further, as learning often demands

a great number of samples, interactions between agent and environment can be

simulated in faster than real-time.

Besides the aforementioned ease of experimentation, simulated tasks also allow a

more rigorous evaluation and quanti�cation of performance. For a �xed set of simu-

lation parameters, no systematic bias can arise between executions of the algorithm.

That is, no gradual or sudden change in the experimental conditions can happen.

This leads to a degree of reproducibility. Physical systems, in contrast, can have

several sources of systematic bias, whose e�ect on performance can be hard to �lter

out, such as mechanical wear, for example.

Reinforcement learning control algorithms are not generally expected to handle

arising systematic biases, as the one exempli�ed above. They are, however, ex-

pected to be robust in the face of random errors. These take many forms: sensor

noise or starting-state uncertainty, to name a few. In simulation, random errors are
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(a) (b)

Figure 5.1: The Cartpole (a) and Lunar Lander (b) environments.

modeled by making use of (pseudo)random number generators. Therefore, even full

reproducibility of experiments can be attained by setting the generator state.

Finally, simulated tasks can be used as a simple way to compare di�erent al-

gorithms. As the simulations take the form of computer programs, they are easily

shareable. Further, by setting their parameters, simulation conditions can be made

the same across experiments (except for random errors). In this way, meaningful

comparisons can be made in terms of the algorithm's own merits. Non-simulated

experiments, on the other hand, face the additional challenge of whether to attribute

distinct results to signi�cant di�erences between algorithms or varying experimental

conditions.

For the reasons listed, a set of four simulated tasks from the Open AI Gym [29]

and Bullet [30] libraries were used to assess the algorithms proposed in chapter 4.

These were chosen to represent di�erent kinds of control tasks and to showcase the

capabilities of the algorithms. The simulations di�er mainly in terms of their action

spaces and the complexity of their dynamics.

5.1.1 Discrete action space tasks

Two tasks with discrete action spaces were used: Cartpole (CartPole-v1) and Lunar

Lander (LunarLander-v2). The Cartpole task (�g. 5.1a) consists of a cart con-

strained to a horizontal track and with a pole mounted on top of it. The pole,

however, is not rigidly �xed to the cart's frame, but held by a rotary joint. There-

fore, it sways with the cart's movement and can topple towards the ground. The

goal is to maintain it upright for as long as possible while avoiding the edges of the

environment.

The observations made by its controlling agent are state vectors of four numerical

quantities: the horizontal position of the cart, its linear velocity, the angular position

of the pole, and its angular velocity. The components of the initial state are all drawn
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from a uniform distribution U(−0.05, 0.05). At every time step, the agent enacts

one out of two possible commands: apply a force on the cart directed left or apply

it directed right. As no direct control of the angle of the pole is possible, it must be

balanced through the cart's motion.

Episodes terminate when at least one out of three conditions is met. First,

when the angle formed by the pole and the vertical becomes larger than a certain

threshold, it is regarded as having fallen and the episode is terminated. Second,

when the cart crosses the frontiers of the edges of the environment. Third, when the

agent is able to maintain the pole upright and avoid the edges for 500 time steps,

the episode is also terminated. This last case is the desired outcome.

For the reward signal, the agent receives a "+1" every time step for as long as

the episode lasts. This signal is useful for attaining the desired behavior because

maximizing the cumulative reward can only be done by extending the duration of

episodes. The maximum duration, in turn, is reached only when the agent is able

to balance the pole and stay close to the center, which is precisely the task goal.

The lunar lander (�g. 5.1b) represents a slightly more complex task than cartpole.

It consists of a rocket that is initially o�-ground, �ying over a jagged surface. As

in cartpole, the vehicle resides in a bidimensional plane, but di�ers in its freedom

of movement: through its thrusters, the rocket is able to rotate and move both

horizontally and vertically. The goal is to safely descent the rocket on a landing

pad.

The state vector observed by the agent is made up of 8 components: the hor-

izontal and vertical coordinates of the rocket, the linear velocities along the two

dimensions, the heading of the vehicle and its angular velocity, and lastly two in-

dicator variables denoting whether the landing legs are in contact with the ground.

The initial state is determined by spawning the rocket mid-air and applying a force

to it whose components are randomly sampled from U(−1000, 1000).

The lander can maneuver in the air and reach the pad through the use of its

thrusters. At every time step, there are 4 actions available: �re the main, downward

thruster, �re the left- or right-facing thrusters, or do nothing. The heading of the

rocket is not under direct control, being indirectly determined by the forces applied

by the thrusters. Episodes terminate when the rocket comes to rest on the surface,

either by landing or crashing down.

The reward signals are computed based on multiple factors. Descending towards

the pad contributes positively to the reward while rising contributes negatively.

Crashing greatly decreases the rewards, while coming to rest smoothly greatly in-

creases it. Having thrusters activated in a time step slightly penalizes the reward

while having a landing leg touching the ground slightly abet it. Therefore, maxi-

mizing the cumulative reward entails landing the rocket in the pad as smoothly and
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(a) (b)

Figure 5.2: The Mountain Car (a) and Hopper (b) environments.

as economically as possible.

5.1.2 Continuous action space tasks

In order to represent the continuous action space control problem variant, theMoun-

tain Car (MountainCarContinuous-v0) and Hopper (HopperBulletEnv-v0) tasks

were adopted. As in Cartpole, the Mountain Car task (�g. 5.2a) consists of a

car that moves along a single-dimensional track. However, the track is not �at but

forms a valley. The goal is to reach the �ag at the top of the right-side hill, but to

do so it must �rst gain momentum, for the car is underactuated and cannot drive

from the bottom of the valley to the top of the hill directly.

Observations are state vectors of two dimensions: the horizontal coordinate of the

car's position and its linear velocity. For the initial state, the horizontal coordinate

is sampled from U(−0.6,−0.4) and the velocity is set to 0, which puts the car close to

the bottom of the valley. Actions taken are scalars in the interval [−1, 1]. Negative

values denote forces applied to the left, positive denotes to the right and 0 means

the car is idle.

Episodes terminate only under one condition: reaching the �ag. For the reward

signal, the agent receives a big, positive one upon reaching the goal. for all other time

steps, the reward is negative and proportional to the magnitude of the action. In

this way, a reward maximizing agent is incentivized not only to arrive at the hilltop

but also to move in a way that strikes a balance between energy consumption and

time taken to reach the goal.

The Hopper task (�g. 5.2b) di�ers from the previous ones by its substantially

greater complexity and by having an action space that is not only continuous but also

multidimensional. It consists of a one-legged robot with three joints. The goal is to

simply move onward. Because of its structure, the robot can only attain consistent

forward motion by hopping. This may be done by appropriately commanding the
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torques in the joints to launch itself forward without falling.

The state vector observable by an agent is made of the positions and velocities of

each of the joints. As the robot moves along a single dimension, a position or velocity

of a joint is speci�ed by a 2-dimensional vector. Taking into account the 3 joints

makes for a total of 12 values in an observation. For the initial state, a random value

for each of the components is sampled from U(−0.005, 0.005). Actions are drawn

from a 3-dimensional space, with each coordinate denoting the torque applied to a

joint, ranging from −1 to 1.

Episodes terminate when either the number of time steps elapsed reach 1000 or

when the robot falls over. Rewards given are proportional to how much forward

progress was attained in a time step. The reward structure, together with the

terminal conditions, encourages a learning agent to not only adopt a hopping gait

but to express one that covers as much ground as possible in the limited duration

of an episode.

5.1.3 Experimental considerations

One important issue to be addressed pertains to the random errors commonly present

in reinforcement learning tasks. Events such as inaccurate sensing or imprecise ac-

tion execution may lead two learning trials with the same task, algorithm, and hy-

perparameterization to perform di�erently and observe distinct state-action-reward

trajectories. In simulation, the source of these events is a random number generator,

which could be set to behave deterministically.

However, doing so would only serve to ignore an important nature of control

problems. This could lead to the development of brittle systems, where the results

are deeply dependent on the state of random generators. These results would not be

very useful, as performance under less constrained conditions could vary drastically.

Therefore, the assessment of reinforcement learning systems is not done based on

single trials, but in terms of expected value.

As expected performance cannot be measured directly, it must be approximated

by an average of multiple trials, each with a di�erent seed for its random genera-

tor. How representative this mean is of the expected value depends on the number

of trials averaged. The quality of the approximation increases with the number

of samples. On the other hand, executing more trials demands more time. The

computational resources available for experimentation, however, are limited. There-

fore, the number of trials for each of the assessments done in the following sections

were chosen seeking to strike a balance between statistical representativeness and

running-time reasonability.
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5.2 Forgetting n-tuple SARSA evaluation

In this section, the aptitude of forgetting n-tuple networks in modeling value func-

tions and deriving suitable implicit policies is put to test. The focus is on the e�ect

of the network's hyperparameters in learning, and not on parameters such as dis-

count factor or temporal di�erence step count, as their e�ects are relatively invariant

to the learning model used. The discrete action space tasks are used in these ex-

periments, as the action-value function representation adopted requires one RAM

discriminator for every possible action.

5.2.1 E�ect of the encoding resolution and tuple size

As previously addressed in subsection 3.2.4, the input and tuple sizes in RAM dis-

criminator architectures have a joint e�ect. They determine a trade-o� between the

model's capacity, that is, the diversity of functions it can represent, and how easily it

generalizes from samples an output for a novel entry. In general, a balance between

these two desirable properties must be sought.

Too large a tuple size relative to the input may lead to a network with few neu-

rons, capable of learning complex input-output mappings but incapable of properly

generalizing. On the other hand, too small a tuple size can entail a network with

many neurons, each observing only a small part of the input. These limited neurons,

in their turn, may be blind to the correlations between input components and be

unable to approximate the underlying function.

In order to evaluate the impact of this trade-o� in n-tuple SARSA, 12 pairs of

encoding resolution and tuple size values are considered in the cartpole and lunar

lander tasks. As the observations made by a learning agent are state vectors of real

components, they must be encoded before being used as input by a n-tuple model.

The encoding resolution is controlled precisely because it dictates the �nal input

size. All other parameters are held constant, according to the tables in 5.1.

Hyperparameter Value

Steps (m) 500
Forgetting factor (ϕ) 0.85
Discount (γ) 1.0
Exploration (ε) 0.005
Encoding Circular

(a) Cartpole

Hyperparameter Value

Steps (m) 50
Forgetting factor (ϕ) 0.85
Discount (γ) 1.0
Exploration (ε) 0.01
Encoding Circular

(b) Lunar lander

Table 5.1: Invariant hyperparameters for the resolution and tuple size experiment
with n-tuple SARSA and discrete action space tasks

54



Figure 5.3: Learning curves for the cartpole task and an assortment of resolutions
and tuple sizes

The average learning curves for the cartpole and lunar lander problems can

be seen in �gs. 5.3 to 5.4, respectively. Each of these is obtained by averaging

the learning curves of 50 experiment replications, using di�erent random number

generator seeds to approximate the expected behavior. The shading around the

curves denotes the 95% bootstrap con�dence interval, using 1000 bootstrap samples.

Furthermore, the curves are smoothed using a simple moving average with a window

of 5 points to highlight their trends.

It is noticeable in �g. 5.3 that the resolution greatly impacts the learning agent

performance. In the cartpole problem, the maximum attainable return is 500, when

the agent can balance the pole for the entire duration of the episode. In the experi-

ments, only the agents using the highest resolutions can consistently achieve results

close to this maximum. For a 16 bit resolution, all agents, regardless of the tuple

size, behave far from optimally.

Still on the topic of the encoding resolution, one consideration that must be

made from these results is that, although too small a value can be detrimental,

increasing it clearly has diminishing returns. The 64 bit resolution agents achieve

nearly the same performance as their 128-bit counterparts, but use only half the

encoding resolution, which means a smaller memory and computational complexity.

Also of notice is how the performance associated with tuple size changes across

the experiments. For the 64 and 128 bit encoding resolutions, the larger the tuple,
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the better the result attained. This pattern, however, does not hold for the smaller

resolutions. For these two, the best results were achieved with tuple sizes smaller

than 64 bits. This di�erence can be understood through the previously mentioned

interaction between input and tuple sizes.

With a resolution of 16 bits and a state vector of length 4, the encoded cartpole

observation inputs consist of only 64 bits. If a tuple size of 64 is used, the resulting

network is made up of a single neuron, incapable of generalizing. For the 32 bit

encoding resolution, the larger tuple size performs better, but still leads to improper

generalization. These observations support the understanding that the tuple size

must be chosen to lead to a reasonable number of units, capable of producing the

necessary generalization for the task.

Increasing the number of units, however, doesn't always have a positive e�ect.

This can be seen by comparing the curves associated with the 16 bit tuple size across

the di�erent resolutions. With a resolution of 128, the network has eight times

the number of units than with the 16 bit resolution, and yet the result is slightly

worst with the larger network. This makes clear the negative e�ect of increasing

the number of neurons to the point that each has too limited a view of the input,

missing important correlations.

Many of the observations derived from the cartpole results also apply for the

lunar lander ones 5.4. The best results were achieved with the larger resolution, but

the second larger lags only slightly behind. Secondly, the e�ect of the tuple size is

greatly dependent on the resolution, with the larger tuple size only leading to the

best results when larger resolutions are also used. These also support the heuristic

of balancing resolution and tuple size.

5.2.2 E�ect of the encoding scheme

The encoding scheme adopted, that is, the rule used to convert inputs to binary

patterns, is of great importance in n-tuple systems, as these rules can promote the

construction of di�erent similarity relationships of the inputs by the learning model.

Evidently, this learned relation should be as semantically relevant as possible. In

order to observe the impact of the encoding scheme choice in n-tuple SARSA, models

were trained using the simple and circular thermometers for both the cartpole and

lunar lander tasks.

The results can be seen in �g. 5.5. Once again, the curves are computed as the

mean of 50 replications, smoothed with a simple moving average and a shaded area

representing the 95% bootstrap con�dence interval. All hyperparameters except the

encoding scheme were kept constant, with values as in the tables in 5.2.

For both tasks, the circular thermometer reaped better results than the simple
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Figure 5.4: Learning curves for the lunar lander task and an assortment of resolutions
and tuple sizes

one, with the di�erence being more pronounced with lunar lander. This outcome can

be understood by taking into consideration a characteristic shared by both control

problems. Their de�nition and reward structure make them, in a sense, regulation

tasks, where actions must be chosen to bring the state close to a given set-point and

keep it that way inde�nitely.

In cartpole, for example, an adequate behavior would be one where the pole

is kept in an upright position, and the cart brought to the center of the track to

avoid the edges. This behavior implies a particular evaluation of states: Those with

extreme values, that is, high speeds, positions close to the edges and pole angles far

from upright are all similarly of low value, while states with moderate values, with

positions close to the center, pole angle close to upright and low speeds, have high

values.

Likewise for lunar lander, good agent behaviors should be able to bring the rocket

down smoothly onto the landing pad, located on the origin of the coordinate system.

This once again implies that extreme states, with positions far from the pad and

high speeds, are regarded as of low value, while moderate states, with the rocket

close to the origin and moving at low speeds, are regarded as of high value.

For both tasks, the desired behaviors lead to state evaluations that are symmet-

rical around a set-point. Those closer to the set-point have higher values, while

the ones farther away have lower values. Additionally, this also entails a similarity
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Hyperparameter Value

Steps (m) 500
Resolution 128
Tuple size 64
Forgetting factor (ϕ) 0.85
Discount (γ) 1.0
Exploration (ε) 0.005

(a) Cartpole

Hyperparameter Value

Steps (m) 50
Resolution 128
Tuple size 32
Forgetting factor (ϕ) 0.85
Discount (γ) 1.0
Exploration (ε) 0.01

(b) Lunar lander

Table 5.2: Invariant hyperparameters for the encoding scheme experiment with n-
tuple SARSA and discrete action space tasks

Figure 5.5: Learning curves for the cartpole and lunar lander tasks using the simple
and circular thermometer encodings

relationship between states in terms of how close they are to the set-point. This

observation sheds light on the better performance seen by the agents that made

use of the circular thermometer, as this encoding precisely promotes a kind of radial

similarity, with inputs whose distance to the center of the encoding interval are close

being mapped to similar binary patterns.

5.2.3 E�ect of the forgetting factor

The distinguishing characteristic of forgetting n-tuple networks, that separates them

from the n-tuple regression networks on which they are based, is the use of a for-

getting factor. The factor is a mechanism that allows a weighting of observations,

biasing network estimates towards the information brought by newer samples. This

was introduced in subsection 4.2.1 as a means to better suit n-tuple systems to

online learning scenarios where distributions from which samples are drawn from

might change, such as reinforcement learning problems.

This weighting of observations is done by multiplying, on each update, the cur-

rent content of an addressed memory position by the forgetting factor. The mag-

nitude of the bias depends on the value of the factor, which ranges from 0, where
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Figure 5.6: Learning curves for the cartpole and lunar lander tasks using di�erent
forgetting factor values

only the most recent observation to address a position in�uence it, to 1, where all

samples to address a position in�uence its content equally and the system behaves

exactly as an n-tuple regression network.

Hyperparameter Value

Steps (m) 500
Resolution 128
Tuple size 64
Discount (γ) 1.0
Exploration (ε) 0.005
Encoding Circular

(a) Cartpole

Hyperparameter Value

Steps (m) 50
Resolution 128
Tuple size 32
Discount (γ) 1.0
Exploration (ε) 0.01
Encoding Circular

(b) Lunar lander

Table 5.3: Invariant hyperparameters for the forgetting factor experiment with n-
tuple SARSA and discrete action space tasks

To evaluate how the choice of forgetting factor value a�ects n-tuple SARSA,

agents were trained in the two discrete action space tasks using di�erent factor

values. All other hyperparameters were kept as in 5.3. As in the two previous

subsections, curves were computed as the average of 50 replications and smoothed

with a simple moving average with 5 samples for a window. Shaded areas around

the curves indicate the 95% bootstrap con�dence interval, using 1000 bootstrap

samples. Results can be seen in �g. 5.6.

For both tasks, the best results were achieved using a forgetting factor of 0.85,

which corresponds to a moderate level of forgetting. That is, estimates are biased

towards newer observations, but older ones still hold some in�uence over said esti-

mates, long after they were �rst seen. In contrast, no forgetting at all, with a factor

of 1.0, leads to considerably worst returns. This wide di�erence underlines how the

assumption of a �xed joint distribution, made by the n-tuple regression network,

can be incompatible with the reinforcement learning setting.
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On the other side of the continuum, the result stemming from a factor of 0.1

shows that too strong a forgetting can also be harmful to the agent's performance.

The agent, as in the no-forgetting case, plateaus in a suboptimal behavior, but for a

di�erent reason. As argued in subsection 4.1.1, with a shifting distribution, unequal

weights must be assigned to observations in order to track a shifting distribution.

However, as the shift occurs progressively, past observations are approximately valid

samples for a long horizon. If a small forgetting factor is used, valuable information

in older observations may be rapidly discarded, leaving the network with a limited

sample set and ever unable to properly approximate the target.

5.3 n-tuple Policy Gradient evaluation

In contrast with the previous section, this one concerns the �tness of n-tuple systems,

in the form of functional n-tuple networks, in representing good policies directly.

Once again, the focus is on observing the e�ects of the distinguishing hyperparame-

ters of the algorithm. For n-tuple REINFORCE, these are the architecture-de�ning

encoding resolution and tuple size, encoding scheme, and learning rate. The assess-

ments are done with the mountain car and hopper control tasks, but the algorithm

may be applied to any of the four tasks by appropriately choosing the policy pa-

rameterization.

5.3.1 E�ect of the encoding resolution and tuple size

In a similar manner as in n-tuple SARSA, encoding resolution, and tuple size also

regulate a trade-o� between model capacity and generalization in the context of

n-tuple REINFORCE. Di�erent combinations of values for these hyperparameters

are tested and the results can be seen in �gures 5.7 and 5.8 for the two continuous

action space tasks. Again, results are depicted as average learning curves and 95%

con�dence intervals, using 50 replications for the mountain car tasks, and 10 for

hopper. All other hyperparameters are set according to the tables in 5.4.

One comment should be made about the variance. As the tasks have contin-

uous action spaces, a Gaussian-based policy parameterization is used. However,

the hopper task demands the use of multivariate Gaussians, while distributions for

mountain car are univariate, as actions for the former are vectors in R3, and scalars

for the latter. The use of the univariate policy requires the de�nition of a scalar

variance, while the multivariate requires a variance matrix. In order to simplify

matters in the multivariate case, scaled identity matrices, that is, diagonal matrices

where all nonzero elements are the same, are used.

In the mountain car results in 5.7, one noticeable outcome is that average returns
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Figure 5.7: Learning curves for the mountain car task and an assortment of resolu-
tions and tuple sizes

of 50 or more were attainable across all resolutions under consideration. Such returns

correspond to agents capable of reaching the �ag quickly. This means that in no

experiment were the agent held back by the resolution of the encoded observations.

Even coarse encodings using 16 bits were enough for an agent to learn an appropriate

behavior.

If the encoding resolution did not prove to be a limiting factor, the same cannot

be said for the tuple size, as performance varied drastically with this parameter. One

common pattern throughout the di�erent resolutions is best results being achieved

with larger tuple sizes, while the smallest one considered collected the lowest returns

across the board. For the 16 and 32 bit resolutions, for example, the best curves

are associated with tuple sizes of 32 and 64 bits, respectively. Therefore, these

results come from models with a single RAM neuron. This suggests that for the

n-tuple REINFORCE approach to mountain car, agents are much more bene�ted

from greater model capacity than generalization ability.

While agents in 5.7 were able to quickly come close to a limiting high-value

return, learning was considerably slower and noisier in the hopper task, as can be

seen in 5.8. It is also important to point out that the return of 500 that many of the

curves oscillate around corresponds to agents able to stand upright, but not able to

consistently hop. This is largely due to the greater challenge imposed by this task

in comparison to the other three. Not only does it have a continuous action space,

61



Hyperparameter Value

Discount (γ) 1.0
Learning rate (η) 8× 10−4

Variance (σ2) 0.5
Encoding Simple

(a) Mountain car

Hyperparameter Value

Discount (γ) 0.9999
Learning rate (η) 2× 10−5

Variance (σ2) 0.2
Encoding Circular

(b) Hopper

Table 5.4: Invariant hyperparameters for the resolution and tuple size experiment
with n-tuple REINFORCE and continuous action space tasks

but a three-dimensional one.

It is possible to see in 5.8 that the encoding resolution has an e�ect in the

attained returns, but a limited one. The agents using 16 bit resolution achieved

lower returns than their higher-resolution counterparts (64 bit tuple size curves

notwithstanding). However, it is hard to ascertain if there is any gain from going

above 32 bits, especially when taking into account the signi�cant overlapping of the

con�dence intervals.

The e�ect of the tuple size, on the other hand, is quite clear. Across all encoding

resolutions, smaller tuple sizes were associated with faster learning. In fact, agents

using a tuple size of 64 bits were never able to progress beyond the starting behavior.

Sizes of 16 and 32 bits attain similar performance by the end of training, but agents

using the former tuple size reach this �nal performance with fewer episodes.

5.3.2 E�ect of the encoding scheme

As discussed in subsection 5.2.2, encoding schemes can work to highlight similari-

ties between states that arise in certain families of control tasks. To evaluate if any

bene�t can be gained from the choice of encoding, now in the context of n-tuple

REINFORCE, and the mountain car and hopper tasks, the simple and circular ther-

mometers are once again contrasted. The learning curves can be seen in �g. 5.9,

averaged over 50 runs for mountain car, and 10 for hopper. Remaining hyperpa-

rameters are set according to tables in 5.5.

The results in 5.9 point to no signi�cant di�erences between encoding schemes,

in sharp opposition to what was seen with the discrete action space benchmark

tasks. This is due to the nature of mountain car and hopper. They cannot be cast

as regulation problems, as pushing the state towards a set-point does not translate

to good policies. In mountain car, the position of the �ag could be regarded as a

set-point, but it is only possible to reach it by �rst moving away from this set-point.

Hopper is even farther away from a regulation problem, as a hopping gait would

entail a constantly changing state.
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Figure 5.8: Learning curves for the hopper task and a assortment of resolutions and
tuple sizes

5.3.3 E�ect of the learning rate

Like most iterative and gradient-based learning algorithms, functional n-tuple net-

works are considerably sensitive to the learning rate hyperparameter. The depen-

dency of adequate learning rate values on the nature of the task at hand complicates

matters further. To evaluate how this choice impacts the performance of agents in

the continuous action space benchmarks, four di�erent values were considered for

each task, and the results can be seen in �g. 5.10. Remaining parameters are set

according to 5.6.

A common trend is that the learning rate must strike a balance between larger

values that lead to unstable learning and possibly irreversible loss of progress, and

smaller values that are too slow. The results for mountain car and hopper in 5.10

show that n-tuple REINFORCE is no di�erent. In mountain car, learning rates

of 10−3 and 10−4 both lead to similar performances by the end of learning, but

the agent using the smaller rate progressed much slower. The even smaller rate of

10−5 is unable to break away from the initial behavior, while the larger rate of 10−2

updates the memory positions so aggressively that the end result is worse than all

other trials. Likewise for hopper, learning rates of 2 × 10−7 and 2 × 10−6 are too

small for agents to improve their behavior, while the larger 2×10−4 leads to unstable

learning.
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Hyperparameter Value

Resolution 16
Tuple size 32
Discount (γ) 1.0
Learning rate (η) 8× 10−4

Variance (σ2) 0.5

(a) Mountain car

Hyperparameter Value

Resolution 32
Tuple size 16
Discount (γ) 0.9999
Learning rate (η) 2× 10−5

Variance (σ2) 0.2

(b) Hopper

Table 5.5: Invariant hyperparameters for the encoding scheme experiment with n-
tuple REINFORCE and continuous action space tasks

Figure 5.9: Learning curves for the mountain car and hopper tasks using the simple
and circular thermometer encodings

5.4 Comparative assessment

In previous sections of this chapter, measurements were made in an attempt to

characterize how the main hyperparameters of the value-based and policy-based n-

tuple approaches in�uence learning. In this section, the proposed methods, including

the actor-critic one, are compared against each other across all four benchmark tasks.

To contextualize these results, measurements are also made with baseline algorithms.

One of the hypotheses of this dissertation is that n-tuple networks can be suc-

cessfully employed in the context of reinforcement learning. To corroborate this, it

is necessary to not only demonstrate that n-tuple agents can learn (which can be

seen in results from previous sections), but also that they can achieve results at least

comparable to the ones reached with other learning models commonly adopted in

RL. The baseline algorithms used were chosen with this goal in mind. To provide a

fair comparison and isolate the e�ect of the choice of learning model, the counter-

parts of the n-tuple algorithms, SARSA, REINFORCE and Actor-Critic, were used

as these baselines, but adopting feedforward networks as function approximators.

These baseline algorithms made use of the Spinning up RL library [31].

All networks in the baseline experiments share a common architecture except
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Hyperparameter Value

Resolution 16
Tuple size 32
Discount (γ) 1.0
Variance (σ2) 0.5
Encoding Simple

(a) Mountain car

Hyperparameter Value

Resolution 32
Tuple size 16
Discount (γ) 0.9999
Variance (σ2) 0.2
Encoding Circular

(b) Hopper

Table 5.6: Invariant hyperparameters for the learning rate experiment with n-tuple
REINFORCE and continuous action space tasks

Figure 5.10: Learning curves for the mountain car and hopper tasks using di�erent
learning rates

for their output layers. Two hidden layers were used, with 32 units each and ReLU

activations [32]. Parameter optimization was done using the Adam algorithm [33].

Network architectures are summarized in �g. 5.11. Other hyperparameters used, in

both the baseline and n-tuple algorithms can be found in Appendix A.

Output layers depend on whether the network is being used to approximate a

value function or a policy. For approximate value functions, the network outputs a

vector of state-action values, each entry referencing a particular action. For approx-

imate policies, the outputs are the parameters for a distribution. With binary and

discrete action spaces, these are action preferences, made into action probabilities

by the application of sigmoid and softmax functions, respectively. For continuous

action spaces, the output is a mean vector for the Gaussian distribution.

Each pair of algorithm and benchmark task is executed 10 times, with distinct

random initializations, for 2000 episodes, except for hopper, whose experiments

are run for 5000 episodes. Tables 5.7 and 5.8 list the average cumulative rewards

attained by the end of each experiment, along with their 95% bootstrap con�dence

bounds, using 1000 bootstrap samples.

The common trend in these results is how comparable the performances attained

by n-tuple algorithms are to their multilayer perceptron (MLP) counterparts. For
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Figure 5.11: Feedforward network architectures used in the baseline experiments.
Output layers di�ered based on whether the model was being used to approximate
a value function or parameterize a policy.

Benchmarks

Algorithm Cartpole Lunar Lander

n-tuple SARSA 425.2(354.6, 513.3) 142.9(52, 239)
n-tuple REINFORCE 460.3(420.6, 530.1) 82.1(−0.3, 161.3)
n-tuple Actor-Critic 500(500, 500) 102.5(24.4, 181.5)
SARSA 408.9(317.8, 528.3) 222.2(191.2, 528.3)
REINFORCE 406.4(312.8, 544.8) 106.5(35.2, 180.0)
Actor-Critic 486.1(472.2, 513.9) 126.6(55.9, 209.6)

Table 5.7: Average cumulative rewards in the discrete action space environments

some environments, such as Cartpole and hopper, the n-tuple algorithms can achieve

slightly higher rewards, while in Lunar Lander, the MLP ones have the advantage.

However, in these three environments, the results are so close that it is not possible

to discard the slight di�erences being on account of random e�ects. Mountaincar,

on the other hand, di�ers from this norm, as the results with the n-tuple approaches

are unequivocally better. This is due to the MLP methods having optimized their

agents to a local optimum of not moving the car. In this way, they never incur the

penalty of expending energy, but also never attain the reward of reaching the �ag.
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Benchmarks

Algorithm Mountaincar Hopper

n-tuple REINFORCE 90.9(−12.4, 92.1) 499.6(356.2, 651.7)
n-tuple Actor-Critic 93.3(92.9, 93.8) 748.8(741.7, 758.0)
REINFORCE −1.5(−1.5,−1.4) 437.0(221.5, 653.1)
Actor-Critic −0.02(−0.03,−0.02) 643.6(577.0, 746.0)

Table 5.8: Average cumulative rewards in the continuous action space environments
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Chapter 6

Conclusion

The central problem that motivated this work was sequential decision-making, par-

ticularly when cast into the framework of Reinforcement Learning, brie�y reviewed

in chapter 2. Markov decision processes, one of the main abstractions in RL, allow

representing a large range of virtual and real-world decision-making challenges in

a simple and mathematically uni�ed way, and recently developed RL algorithms

making use of deep neural networks can solve even very large MDPs. The use of

models other than deep learning ones is a topic that deserves consideration, as they

could provide di�erent kinds of trade-o�s, such as ones in terms of computational

costs. Nevertheless, the use of such alternative models is underexplored, and this is

particularly the case for weightless neural networks. Seeking to �ll this gap, this dis-

sertation focused on examining the use of weightless neural networks to encode value

functions and policies. This is not a simple matter of leveraging existing weight-

less architectures, as these were designed for supervised and unsupervised learning

tasks. RL problems, on the other hand, impose a particular set of challenges. There-

fore, the use of n-tuple nets in this context requires architectures that take those

challenges into account.

section 4.1 was dedicated to identifying the design choices behind the n-tuple

regression network that clash with issues inherent to RL. The two shortcomings of

the NTRN are an assumption that the data is drawn from a �xed joint distribution

and that the mean squared error is the metric to be minimized. In RL, changes

in distributions naturally occur due to the iterative change in the agent's behavior

during training. Furthermore, in the case of policy search, the error measure that

must be minimized depends on what probability distribution is parameterized by

the n-tuple net, which, in turn, depends on the action space of the task.

Two weightless architectures are proposed in section 4.2 and section 4.3, exploring

di�erent solutions to the issues outlined previously. The �rst one is a simple variation

on the NTRN and focuses on the use of networks to approximate value functions.

It hinges on the observation that, when NTRNs are used in this context, values are
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estimated through unweighted averages of the experiences. This is a poor estimator

because the behavior of the agent changes, and so does the value of states or state-

action pairs. A simple solution to this predicament is to attribute more weight to

the more recent experiences, which is akin to slowly forgetting older ones.

The second architecture turns to the challenge of using n-tuple nets as policies,

and not value functions. To this end, one of the most popular policy search schemes,

policy gradient, was used. The most challenging aspect of this combination is that

weightless networks aren't usually trained using gradient-based algorithms. To rec-

oncile the model with this family of optimization algorithms, the already known

connection between weightless networks and kernel machines was further leveraged,

leading to an architecture that operates in a manner equivalent to functional gradi-

ent descent. It can be deployed both in a pure policy gradient scheme, with a single

network in charge of approximating a policy, or in an actor-critic scheme, bringing

together both architectures.

In chapter 5, the learning models were evaluated in four benchmark control tasks.

Besides the varying complexity of their dynamics, the tasks di�er on the nature of

their action spaces: cartpole and lunar lander have discrete action spaces and can

be handled by both the value-based and policy search algorithms. On the other

hand, mountaincar and hopper have continuous action spaces, preventing the use of

n-tuple SARSA. The e�ect of the main network hyperparameters � resolution and

tuple size, encoding scheme, forgetting factor, and learning rate � on the learning

curves is carefully examined, and, lastly, an empirical comparison is drawn between

the n-tuple RL algorithms and their multilayer perceptron counterparts.

6.1 Future work

While investigating the use of weightless nets in problems of RL, this dissertation

focused on theoretical characteristics that imposed barriers to this use and algorith-

mic ideas to overcome them. One of the most important next steps in this line of

research is a more extensive experimental comparison between n-tuple- and deep

neural network-based RL algorithms, especially along dimensions of computational

resource usage. It is not expected that one approach or the other is an unequivo-

cal winner, but that in some applications the use of one is more advised than the

other. Identifying these applications and quantifying the performance di�erences

could serve as a guideline for the practical use of n-tuple nets in RL.

On the subject of the theoretical understanding of n-tuple nets, the mathematical

workings of these networks were analyzed through the lens of kernel machines, but a

connection that also merits exploration is one to linear models, with inputs mapped

to feature vectors. The output of an n-tuple network is a linear combination of the
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contents of the memory positions addressed by the input in each of the neurons. To

reproduce this behavior with a linear model, the weight vector would need to have

a length of N × 2n (N being the number of neurons and n, the tuple size). The

feature map would take the binary inputs and convert them to binary arrays also of

length N × 2n, with only N positions with value 1. These active positions are the

ones corresponding to the memory positions that would be activated in the n-tuple

net.

although this hypothesized linear model could behave exactly the same as its

associated n-tuple network, their computational costs would di�er. The linear model

approach requires computing inner products of vectors that are large, but mostly

�lled with zeros. Therefore, the n-tuple approach could be seen as one that better

leverages sparsity. Furthermore, the quantization performed by the thermometer

and circular encoding schemes could also be related to tile coding [8, chapter 9], a

feature extraction scheme commonly used with linear models in RL.

Extensions on the algorithmic side of this work are also possible. For instance,

one opportunity lies in the n-tuple model inspired by online learning with kernels

and making use of stochastic gradient descent. SGD is a simple and often e�ective

algorithm but can lead to unstable policy updates due to its �xed step size. There-

fore, more sophisticated gradient-based optimization algorithms could be adopted.

One option particularly auspicious is making use of the Kullback-Leibler divergence

to limit policy updates. This is a technique adopted by some of the state-of-the-art

policy search methods, such as TRPO [34] and PPO [35].

Finally, the architectures developed here are not necessarily tied to applications

in RL. Tasks that involve inferences in the �nancial or energy sectors, or processing

sensor readings, just to name a few examples, must be able to intake streaming data

[36]. Furthermore, in complex domains such as these, the underlying processes are

hardly stationary. Therefore, machine learning attempts for these tasks must oper-

ate online and handle variabilities. The n-tuple network variants presented, albeit

designed aiming at RL, could be suitable candidates for use in these application

domains.
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Appendix A

Hyperparameters used in the

Comparative assessment

The following tables summarize the values of the hyperparameters for the di�erent

algorithms and benchmark tasks in the comparative assessment of section 5.4.

benchmarks

Hyperparameter Cartpole Lunar Lander

Steps (m) 500 50
Tuple size (n) 64 64
Encoding scheme Circular Circular
Resolution 128 128
Forgetting factor 0.85 0.85
Discount (γ) 1.0 1.0
Exploration rate (ε) 0.005 0.01

Table A.1: Hyperparameters for n-tuple SARSA

Benchmarks

Hyperparameter Cartpole Lunar Lander Mountaincar Hopper

Tuple size (n) 64 64 32 16
Encoding scheme Circular Simple Simple Circular
Resolution 128 128 128 32
Learning rate (η) 0.002 0.004 0.0008 0.00002
Discount (γ) 1.0 0.99 0.99 0.9999
Covariance (Σ) - - 0.5 0.3

Table A.2: Hyperparameters for n-tuple REINFORCE
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Benchmarks

Hyperparameter Cartpole Lunar Lander Mountaincar Hopper

Steps (m) 500 50 100 1000
Tuple size (n) 64 64 32 16
Encoding scheme Circular Simple Simple Circular
Resolution 128 128 128 32
Forgetting factor 0.85 0.85 0.85 0.85
Learning rate (η) 0.002 0.008 0.0008 2× 10−5

Discount (γ) 1.0 1.0 1.0 0.9999
Covariance (Σ) - - 0.5 0.3

Table A.3: Hyperparameters for n-tuple Actor-Critic

Benchmarks

Hyperparameter Cartpole Lunar Lander

Steps (m) 500 5
Learning rate (η) 0.0008 0.001
Discount (γ) 1.0 0.99
Exploration rate (ε) 0.1 0.1

Table A.4: Hyperparameters for SARSA

Benchmarks

Hyperparameter Cartpole Lunar Lander Mountaincar Hopper

Learning rate (η) 0.0003 8× 10−5 1× 10−5 1.5× 10−4

Discount (γ) 1.0 0.85 0.95 1.0
Covariance (Σ) - - 0.4 0.6

Table A.5: Hyperparameters for REINFORCE

Benchmarks

Hyperparameter Cartpole Lunar Lander Mountaincar Hopper

Steps (m) 50 500 500 1000
Learning rate (η) 1× 10−4 9× 10−5 1× 10−5 3× 10−5

Discount (γ) 1.0 0.99 0.95 0.999
Covariance (Σ) - - 0.4 0.6

Table A.6: Hyperparameters for Actor-Critic
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