
IMPROVING THE LEARNING PERFORMANCE OF THE RESTRICTED
BOLTZMANN MACHINE THROUGH OPTIMAL CONNECTIVITY AND

NETWORK GRADIENTS

Amanda Camacho Novaes de Oliveira

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
de Sistemas e Computação, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia de Sistemas e
Computação.

Orientador: Daniel Ratton Figueiredo

Rio de Janeiro
Março de 2022

IMPROVING THE LEARNING PERFORMANCE OF THE RESTRICTED
BOLTZMANN MACHINE THROUGH OPTIMAL CONNECTIVITY AND

NETWORK GRADIENTS

Amanda Camacho Novaes de Oliveira

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO
GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E
COMPUTAÇÃO.

Orientador: Daniel Ratton Figueiredo

Aprovada por: Prof. Daniel Ratton Figueiredo
Prof. Carlos Eduardo Pedreira
Prof.a Elizabeth Fialho Wanner

RIO DE JANEIRO, RJ – BRASIL
MARÇO DE 2022

Oliveira, Amanda Camacho Novaes de
Improving the Learning Performance of the Restricted

Boltzmann Machine through Optimal Connectivity and
Network Gradients/Amanda Camacho Novaes de Oliveira.
– Rio de Janeiro: UFRJ/COPPE, 2022.

XV, 56 p.: il.; 29, 7cm.
Orientador: Daniel Ratton Figueiredo
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2022.
Referências Bibliográficas: p. 49 – 53.
1. Neural Networks. 2. Restricted Boltzmann

Machine. 3. Network Connectivity. 4. Network
Pruning. 5. Neural Architecture Search. 6. Connectivity
Optimization. 7. AutoML. I. Figueiredo, Daniel Ratton.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Título.

iii

Continue a nadar

iv

Agradecimentos

Agradeço muito aos meus pais, Izo e Márcia, que sempre me apoiaram muito, e
também aos meus irmãos, Iasmin e Tiago. Obrigada por me aturarem nesses dois
anos de pandemia, não estaria aqui sem vocês.

A todos os meus familiares, avós, tios, primos, obrigada pelo carinho e ajuda.
Sei que aluguei alguns ouvidos de vez em quando, como o Rafa e o Leozinho podem
atestar. Aos meus amigos, vocês também foram fundamentais. Em especial, a
Amanda Azevedo, o Vinícius Garcia e o Diego Amaro me ajudaram muito durante
o mestrado, superamos algumas adversidades juntos. E, claro, não pode faltar aquela
menção aos meus amigos da T-18, sempre lá para dar aquela descontraída.

Agradeço também à UFRJ, pelas oportunidades e experiências. Em especial,
agradeço também ao meu orientador, Daniel, sem o qual este trabalho não teria
nem sequer começado.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

APRIMORAMENTO DO DESEMPENHO DO APRENDIZADO DA
RESTRICTED BOLTZMANN MACHINE POR MEIO DE OTIMIZAÇÃO DA

CONECTIVIDADE E GRADIENTES DA REDE

Amanda Camacho Novaes de Oliveira

Março/2022

Orientador: Daniel Ratton Figueiredo

Programa: Engenharia de Sistemas e Computação

A despeito das técnicas de Busca por Arquitetura Neural (NAS) e de Poda de
Redes terem sido recentemente redescobertas como estratégias poderosas para a
criação de redes neurais mais eficientes e com menos parâmetros, o foco tem sido
em melhorar modelos de redes neurais profundas, com milhões de parâmetros. En-
tretanto, a conectividade da rede também tem papel fundamental no desempenho
do aprendizado de redes rasas, como o modelo da Máquina de Boltzmann Restrita
(RBM). Este trabalho apresenta um estudo do espaço de conectividade tal como ele
afeta o aprendizado da RBM, além de propor um método para encontrar padrões
de conectividade ótimos: o Gradiente de Conectividade da Rede (NCG). O NCG é
baseado na ideia de gradientes da rede: ele computa o gradiente de cada conexão
em potencial, dada a conectividade atual, e usa esse gradiente para atualizar o
parâmetro, contínuo, da força da conexão, que por sua vez é usado para atualizar
a conectividade em si. Dessa forma, o aprendizado dos parâmetros tradicionais
da RBM e das conexões é realizado concomitantemente, mesmo que com taxas de
aprendizados diferentes, e sem alteração na função objetivo do modelo. O método
é aplicado aos dados BAS e MNIST, gerando modelos melhores de RBMs para as
tarefas de geração de amostras e classificação de dados. Ademais, a rede completa-
mente conectada tem desempenho superado tanto por padrões criados manualmente
quanto pelo NCG para ambos os conjuntos de dados, ilustrando a importância de
projetarmos padrões de conectividade que levem a modelos de maior acurácia até
para redes neurais simples de duas camadas.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

IMPROVING THE LEARNING PERFORMANCE OF THE RESTRICTED
BOLTZMANN MACHINE THROUGH OPTIMAL CONNECTIVITY AND

NETWORK GRADIENTS

Amanda Camacho Novaes de Oliveira

March/2022

Advisor: Daniel Ratton Figueiredo

Department: Systems Engineering and Computer Science

While Network Architecture Search (NAS) and Network Pruning have recently
re-emerged as powerful techniques to design more effective networks with less param-
eters, their focus has been on improving deep neural network models with millions
of parameters. However, network connectivity also plays a significant role on the
learning performance of shallow two-layer networks, such as the classic Restricted
Boltzmann Machine (RBM). This work presents a comprehensive study of the con-
nectivity space on the learning performance of RBMs, as well as a method to find
optimal connectivity patterns for them: Network Connectivity Gradient (NCG).
NCG is based on the idea of network gradients: it computes the gradient of every
possible connection, given a specific connection pattern, and uses the gradient to
drive a continuous connection strength parameter that in turn is used to determine
the connection pattern. Thus, learning RBM parameters and learning network con-
nections is truly jointly performed, albeit using different learning rates, and with no
changes to the objective function of the model. The method is employed on the BAS
and MNIST datasets showing that better RBM models are found for the benchmark
tasks of sample generation and input classification. Moreover, the fully connected
network is outperformed both by manually designed connectivity patterns and NCG
for the considered datasets, indicating the importance of designing more effective
connectivity patterns even for simple two-layer neural networks.

vii

Contents

List of Figures x

List of Tables xii

List of Symbols xiii

List of Abbreviations xv

1 Introduction 1
1.1 Contributions . 2
1.2 Organization . 3

2 Background and Datasets 5
2.1 Neural Architecture Search . 5
2.2 Network Pruning . 5
2.3 The Restricted Boltzmann Machine 6

2.3.1 Usage . 7
2.3.2 Training the Model . 9

2.4 Datasets . 11
2.4.1 Bars And Stripes . 11
2.4.2 MNIST Database of Handwritten Digits 12

3 Network Connectivity and Performance Estimation 13
3.1 Network Connectivity . 13
3.2 Generative Performance Estimation 14

3.2.1 Monte Carlo . 14
3.2.2 Truncation . 15
3.2.3 Comparison . 16

4 Connectivity Search Space Analysis 21
4.1 Connectivity Patterns . 21
4.2 Analysis on BAS . 22

4.2.1 Connectivity Structure . 23

viii

4.2.2 Number of Connections . 25
4.2.3 Contrastive Divergence Approximation 26
4.2.4 Larger Models . 27

4.3 Analysis on MNIST . 29

5 Network Connectivity Gradient 31
5.1 Method . 31
5.2 Initialization . 32
5.3 Implementation . 33
5.4 Experiments on BAS . 35
5.5 Experiments on MNIST . 36

5.5.1 Generative Results on MNIST 38
5.5.2 Classification Results on MNIST 41

6 Conclusions 47
6.1 Future Work . 48

References 49

A Connectivity Analysis Quartile Figures 54
A.1 Analysis on BAS . 54

A.1.1 Number of Connections . 54
A.1.2 Contrastive Divergence Approximation 55
A.1.3 Larger Models . 55

A.2 Analysis on MNIST . 56

ix

List of Figures

2.1 RBM network graph . 7
2.2 RBM used as a generator . 8
2.3 RBM used as a classifier . 8
2.4 RBM used for pre-processing . 9
2.5 BAS 4 sample examples . 11
2.6 Binary MNIST sample examples . 12

3.1 Adjacency matrix of the RBM . 13
3.2 Truncation estimator dominion . 16
3.3 Performance of NLL estimators on BAS 18
3.4 Comparison of NLL estimators on MNIST 19

4.1 Manually designed connectivity patterns 22
4.2 Learning curves for different connectivity patterns 24
4.3 Learning curves for different number of connections (separated plots) 25
4.4 Learning curves for different number of connections 26
4.5 Learning curves for different CD approximations 27
4.6 Learning curves for larger BAS models 28
4.7 Learning curves on MNIST . 30

5.1 NCG learning curves on BAS 5 . 36
5.2 NCG learning curves for generative experiments 38
5.3 Connectivity degree evolution for generative experiments 39
5.4 NCG learning curves for generative experiments with CD-1 40
5.5 Connectivity degree evolution for generative experiments with CD-1 . 41
5.6 NCG learning curves for classification experiments 42
5.7 Connectivity degree evolution for classification experiments 43
5.8 NCG learning curves for classification experiments with CD-1 44
5.9 Connectivity degree evolution for classification experiments with CD-1 44
5.10 NCG learning curves for classification experiments with αA = 0.1 . . 45
5.11 Connectivity degree evolution for classification with αA = 0.1 46

x

A.1 Learning curves for different number of connections 54
A.2 Learning curves for different CD approximations 55
A.3 Learning curves for larger BAS models 55
A.4 Learning curves on MNIST . 56

xi

List of Tables

3.1 Performance of NLL estimators on BAS 17
3.2 Comparison of NLL estimators on MNIST 19

xii

List of Symbols

mod Modulo function, p. 21

f Optimization objective function (in this work the average NLL
is used), p. 9

E Energy of configuration (x,h) of a RBM, p. 7

F Free energy of a configuration (x) of a RBM, p. 7

H Number of hidden units of the RBM, p. 6

X Number of visible units of the RBM, p. 6

α Learning rate of RBM training, p. 10

αA Connectivity learning rate for NCG training, p. 32

γ Connectivity learning threshold for NCG training, p. 32

ĥ Auxiliar function in CD training, p. 10

B Batch of data samples, p. 10

1 Step (or indicator) function, p. 32

σ Sigmoid function, p. 10

A Adjacency matrix of the RBM, p. 13

A′ Connectivity strength parameters, p. 32

C Acting weights of RBM with arbitrary connectivity pattern, p.
14

W Weights of the RBM, p. 7

b Biases of the hidden units of the RBM, p. 7

d Biases of the visible units of the RBM, p. 7

xiii

h Hidden units of the RBM, p. 6

x Visible units of the RBM, p. 6

θ Set of RBM parameters, p. 7

xiv

List of Abbreviations

BAS Bars And Stripes, p. 11

CD Contrastive Divergence, p. 10

CNN Convolutional Neural Network, p. 1

DBN Deep Belief Network, p. 8

DL Deep Learning, p. 6

MC Monte Carlo (as in Monte Carlo algorithms), p. 14

ML Machine Learning, p. 9

NAS Neural Architecture Search, p. 5

NCG Network Connectivity Gradient, p. 31

NLL Negative Log-Likelihood, p. 9

RBM Restricted Boltzmann Machine, p. 6

SGD Stochastic Gradient Descent, p. 9

xv

Chapter 1

Introduction

With the high demand for intelligent algorithms that can solve increasingly hard
problems, deep neural networks have become the standard tool for a variety of
problems in areas such as computer vision and natural language processing, for
example [1, 2]. In order to excel in specific tasks, different network architectures
have been manually designed such as ResNets [3] and BERT [4]. However, designing
high performance neural networks is non-trivial, which has prompted the automation
of network design in an area known as Neural Architecture Search (NAS) [5].

Despite the advancements, NAS focuses on the interconnection of network layers
(modules) and the corresponding activation/aggregation functions. In particular,
when two layers are to be connected, a fully connected network is often adopted:
all outputs of one layer are connected to all inputs of the next layer. Thus, NAS
focuses on macroscopic aspects of the neural network.

However, it is known that the connection pattern between two layers is of fun-
damental importance for the learning performance of the network. Fukushima &
Miyake [6] who also introduced convolutional layers, emphasized decades ago the
role of the connectivity pattern within a layer in order to enable the network to rec-
ognize visual patterns even when they are deformed or shifted in position within the
image. Since their seminal work a wide variety of Convolutional Neural Networks
(CNN) have been designed, and deep CNNs are often easier to train and generalize
better than their fully connected counterparts [7].

Indeed, while most neural network architectures adopt a fully connected network
between units of successive layers, the significance of the connectivity has been long
recognized, for it is not only able to reduce the number of parameters but also lead to
more accurate models or faster learning [8, 9]. In the last years, these findings have
reemerged in the context of deep neural networks, and while classic architectures
have millions of parameters that must be learned, recent works indicate that only
a small fraction is necessary for the model to attain a similar performance given an
equivalent training effort [9].

1

While both NAS and network pruning have been applied to deep neural networks,
the problem of designing more effective neural networks is also relevant on shallow
networks. Consider a classic two-layer Restricted Boltzmann Machine (RBM). Al-
though past works have addressed the problem of determining the number of neurons
in the hidden layer [10], the connectivity pattern between the input and hidden layers
has not been addressed, to the best of our knowledge.

However, the connectivity pattern between layers influences the learning perfor-
mance of the network, even for shallow networks such as the RBM. Intuitively, too
few connections are likely not enough for an effective learning, while too many con-
nections may require a longer training period. Moreover, the connectivity pattern,
and not just the number of connections, is likely to play a fundamental role. Finally,
the connectivity space is extremely large: there are 2n2 different ways to connect two
layers with n neurons each, indicating the complexity of finding connection patterns.
In fact, the connectivity of an RBM can be interpreted as a hyperparameter, just
as the number of neurons in its hidden layer, which is known to also influence its
performance [10, 11].

Therefore, the goal of this dissertation is to explore and design network con-
nectivity patterns for RBMs in order to characterize the learning performance as
a function of the network. How sensible are RBMs to connectivity patterns? Are
there optimal connectivity networks for a given task? Is it possible to learn good
connection patterns from the data? This work addresses these and other questions,
in order to answer them in a satisfactory manner.

1.1 Contributions

The contributions of this work are manifold, and they are divided into the sub-topics
listed below.

Connectivity search space A comprehensive study of the connectivity search
space for the RBM is presented, using the synthetic Bars And Stripes (BAS) model
and the MNIST dataset. The main findings are summarized as follows:

• Using different connectivity patterns with a parameter that determines the
number of connections in the pattern, results on BAS indicate that learn-
ing performance is not monotonic with the number of connections. For each
pattern, there is an optimal number of connections.

• Using different connectivity patterns with the same number of connections,
results on BAS clearly indicate that the patterns play a fundamental role
when the number of connections is small. However, the performance difference

2

among different patterns diminishes as the number of connections increase.
Moreover, more localized connectivity patterns show superior performance for
the same number of connections.

• Results on the MNIST dataset indicate that the number of connections plays
a role more important than the connectivity pattern, and performance is su-
perior with only 16 connections per unit (as opposed to 784). However, once
again the importance of the connectivity pattern increases with the decrease
in the number of connections. Furthermore, the results indicate that sparser
connectivity patterns often lead not only to better performance, but also to
faster learning (achieve peak performance in less epochs).

Network Connectivity Gradient A novel method is proposed for optimizing
the connectivity structure in RBMs during the learning procedure based on the no-
tion of “network gradients”, the Network Connectivity Gradient (NCG). It computes
the gradient for every possible network connection for any given connectivity pattern
and uses a continuous parameter to represent the strength of each possible connec-
tion. The network strengths are updated according to the gradient and then thresh-
olded to yield a discrete connectivity pattern which in turn determines how informa-
tion (probabilities) and gradients flow on the model during training. The implemen-
tation is open source, and available at https://github.com/AmieOliveira/NCG.

Furthermore, evaluations on both BAS and MNIST are presented. For MNIST,
two orthogonal tasks are used to access RBMs: sample generation (average NLL
is the performance metric) and input classification (classification accuracy is the
performance metric). In both tasks NCG shows a superior learning curve, both
learning faster and learning a more accurate model than a classic fully connected
RBM. The evaluation also shows that NCG removes and adds network connections
during training, indicating its effectiveness in searching for optimal network patterns.

Generative performance estimation We propose two techniques to approx-
imate and estimate the RBM’s normalization constant and, therefore, its learn-
ing performance via the classic Negative Log-Likelihood (NLL). A comparison of
the proposed techniques with the traditionally used Annealed Importance Sampling
(AIS) [12] is presented under different datasets.

1.2 Organization

This work is organized in 5 additional chapters. In Chapter 2 the subject of NAS,
Pruning and RBMs are discussed, as well as the datasets used in the experiments.

3

https://github.com/AmieOliveira/NCG.

It presents the necessary background information and related works that this dis-
sertation builds upon.

Chapter 3 starts this work’s contributions by discussing the modifications made
upon the RBM to allow for the change in the connectivity network between its
layers, as well as methods developed to estimate its partition function (normalization
constant). This is an important task in the evaluation of the learning performance
of RBMs, especially when the model is used for generative purposes.

In order to understand the role of network connectivity on the learning per-
formance of RBMs, Chapter 4 presents a comprehensive study of the connectivity
space using the (BAS) model and the MNIST dataset. The findings corroborate the
importance of designing connectivity patterns that exhibit effective learning per-
formance even when considering simple two-layer neural networks such as RBMs,
which in turns motivates designing a method that is capable of finding the optimal
connectivity network.

Therefore, Chapter 5 proposes a novel method tailored to RBMs that is based
on the notion of “network gradients”, the Network Connectivity Gradient (NCG).
Beyond the proposal, the method is evaluated with the BAS model and the MNIST
dataset on two tasks: sample generation and input classification. In both tasks NCG
shows a superior learning curve, both learning faster and learning a more accurate
model than a classic fully connected RBM.

Last, Chapter 6 has the concluding remarks, reviewing this works’ key aspects
and proposing future work directions.

4

Chapter 2

Background and Datasets

2.1 Neural Architecture Search

Deep neural networks have become the state-of-the-art paradigm for tackling hard
problems in areas such as computer vision and natural language processing [1, 2,
13, 14]. Traditionally, new architectures are designed by human experts, a process
that is time consuming and prone to errors. In response to the rising need, the field
of Neural Architecture Search (NAS) has been steadily growing in recent years [5].

The recent developments in NAS focus on the design of more effective deep neural
networks that are tailored to a specific task. The goal of most approaches is to
determine the macro arrangement of network layers as well as the type of operation
(aggregation/activation) applied by each layer [15] which in turn determines how
information flows through the model. The DARTS algorithm [16], for example,
searches for cells with a pre-defined number of layers and afterwards creates a deep
architecture by stacking the cells in a bigger network. Most current benchmarks
follow this particular cell search trend [17, 18].

Some works broaden their search. For example, Fang et al. [19] proposes a
densely connected search space that can generate networks without fixing a priori
the number and size of the layers, and thus can generate more diverse networks. Even
then, despite the increased flexibility of recent advancements, there is no inclusion
of the connectivity pattern between consecutive layers in the search space (other
than pre-defined aggregation patterns, such as convolutions).

2.2 Network Pruning

Independently of NAS, the idea of removing (pruning) connections between two
adjacent network layers has recently reemerged in the context of deep neural net-
works [9]. It is a known rule for good generalization, that the simplest model to

5

fit the data be used [20], and the concept has been much utilized in the context of
Deep Learning (DL). Pruning can improve the model’s learning curve (learning faster
and/or better) and drastically reduce the number of model parameters [8, 9, 21].

Finding the best1 connectivity pattern for two adjacent layers is not a trivial task.
Most approaches start with dense networks and iterate in rounds of training the
model parameters and using the parameter values (and the input samples) to prune
network connections [22, 23]. However, recent works indicate that it is possible to
train sparse networks from the beginning given a favorable weight initialization [24]
or identifying more relevant connections (and pruning others) using the data prior
to training [25, 26].

A more principled yet less explored approach explicitly includes the network con-
nectivity as a parameter of the model. Thus, the network connectivity becomes part
of the optimization problem. However, this often requires increasing the number of
parameters and modifying the objective function (in order to induce pruning). A
prominent example is Continuous Sparsification [27] that uses continuous parameters
and continuous functions to approximate the discrete nature of network connections,
and adds a penalization term to the objective function. The discrete network con-
nectivity is determined at the end of training rounds. UGS [28] deploys a similar
approach tailored to Graph Neural Networks (GNN). While SR-STE [29] differs by
evolving the (discrete) connectivity pattern at each iteration, the method considers
N : M sparse neural networks where N and M are hyperparameters of the model
(sparsity is predefined, and the connectivity pattern must be learned).

All prior works mentioned above focus on deep neural networks, which is indeed
the main focus of Network Pruning. However, network connectivity also plays a
fundamental role on simple two-layer networks, such as the Restricted Boltzmann
Machine (RBM), as will be shown in this work.

2.3 The Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM), first proposed by Smolensky under the
name Harmonium [30], is an energy-based model for unsupervised learning, a classic
network architecture that has been widely explored and applied in literature [11, 31].

An RBM is a probabilistic model that can be interpreted as a stochastic neural
network composed of two layers of binary units: one visible x of size X, representing
the data, and one hidden (or latent) h of size H, that extracts characteristics and
increases learning ability. The two layers are fully connected through undirected
weighted connections in a bipartite network. Figure 2.1 shows the example of an
RBM network with X = 4 and H = 5.

1One usually defines the best models as the ones that learn faster or more accurately

6

h1 h2 h3 h4 h5

x1 x2 x3 x4

W

b1 b2 b3 b4 b5

d1 d2 d3 d4

Figure 2.1: RBM network graph for 4 visible and 5 hidden units

Each configuration (x,h) has an associated energy, defined as:

E(x,h) = −htWx− xtd− htb, (2.1)

for which W ∈ RH,X is the weight matrix of the layers’ connections (wij is the
weight between visible unit xj and hidden unit hi), d ∈ RX is the visible units’ bias
vector (dj is the bias for xj) and b ∈ RH is the hidden units’ bias vector (bi is the
bias for hi). Note that W, d and b are the model parameters, subsequently denoted
by θ = (W,d,b).

The probability distribution of the RBM is given by the Gibbs distribution [32],
and is defined as

Pθ(x,h) = Z−1e−E(x,h) , (2.2)

with Z being the normalization constant (or partition function), given by Z =∑
x,h e

−E(x,h). Note that this equation is in general not tractable due to the very
large number of configurations, which is given by 2X+H since all units are binary.

From this formula, the marginal distribution Pθ(x) = Z−1e−F (x) can be derived,
as well as the conditional distributions Pθ(x|h) =

∏X
j=1 Pθ(xj|h) and Pθ(h|x) =∏H

i=1 Pθ(hi|x), which are used for the actual training of the model [11].

2.3.1 Usage

Before attempting to train an RBM, it is important to know how the model is to
be used. An RBM is capable of learning the underlying probability distribution of
a dataset. Thus, it is a generative model, and allows for sampling from the learned
distribution [31, 33]. One can use it to create artificial data or to complete corrupted
data, for example [34]. This more traditional use of the RBM can be observed in
Figure 2.2.

Another use of the RBM is as a classifier [35, 36]. One can train the model using
the joint probability distribution of the data and labels, both represented by the
RBM’s visible units, without changing the training algorithm. The resulting visible
units should be a concatenation of the data sample and its corresponding label. It

7

Training Data

Learning

Samples

Generation

Figure 2.2: Illustration of RBM usage for sample generation. During training, data
is given to the RBM, that learns its distribution (left). Once trained, it can be used
to generate samples (right).

is usual to represent the label units with one-hot-encoding [36], which means each
unit corresponds to a possible label and has value 1 when the data label matches it
(or 0 otherwise).

To classify the data, similarly to completing corrupted data, one needs to fix the
visible units that correspond to the input data, and sample the units that correspond
to the label. Figure 2.3 shows an illustration of a RBM used for classification.

Training
data

Learning

Labels

Classification

Data Label

(1)

(0)

(1)

Figure 2.3: Illustration of RBM usage for classification. During training, the aggre-
gated data/label pair is given to the RBM, that learns its distribution (left). Once
trained, it can be used to classify samples by fixing the data visible units and sam-
pling the label units (right).

Third, a common use of RBMs is as a pre-processing model. The hidden units
of trained RBMs represent relevant features of the data, and thus they can serve as
input for other architectures [37]. By stacking RBMs in this way we obtain Deep

8

Belief Networks (DBN), which have been widely used in the literature [12, 38]. This
use case is illustrated in Figure 2.4.

Training Data

Extracted features

Some ML
model

Final Model

Extracted features

Figure 2.4: Illustration of RBM usage for pre-processing. During training, the data
is given to the RBM to learn its distribution, which makes the hidden units capable
of extracting features from the data (left). Once trained, other models can be stacked
upon it to form a more complex architecture (right).

Despite the different ways one can utilize the RBM, in this work, only the first
two approaches are implemented and evaluated.

2.3.2 Training the Model

The RBM is typically trained to minimize the Negative Log-Likelihood (NLL) of
the available dataset, which is equivalent to maximizing the Log-Likelihood. In this
case, the average NLL is often adopted in order to simplify the learning procedure.
Given a dataset {x(t)}t=1,...,T with T samples, the average NLL of the model, which
corresponds to the objective function, is given by

f(θ) =
1

T

T∑
t=1

− lnPθ(x(t)) . (2.3)

Note that the probability Pθ(x(t)) depends on the model parameters, θ.
The RBM is trained by applying Stochastic Gradient Descent (SGD) [39] to its

parameters. The gradient of the model is given by:

∇θf(θ) =
1

|B|
∑
t∈B

Eh
[
∇θE(x,h)

∣∣x = x(t)
]
− Ex,h [∇θE(x,h)] , (2.4)

9

where B corresponds to a batch of samples randomly chosen from the dataset, since
computing the gradients using batches rather than the full data often leads to better
learning curves [40]. However, Equation 2.4 is usually intractable due to the second
expectation, which requires computing a sum with 2X+H terms (the space of possible
configurations).

In order to overcome this intractability, several methods use gradient approxima-
tions. One such method is the Contrastive Divergence algorithm (CD) [41], which
substitutes the expectation of the normalization constant with an expectation over
the RBM probability distribution. The gradient under CD is given by

∇θf(θ) ≈
1

|B|
∑
t∈B

(
Eh

[
∇θE(x,h)

∣∣x = x(t)
]
− Eh

[
∇θE(x,h)

∣∣x = x̃(t)
])

, (2.5)

where x̃(t) is a random sample of the RBM given its parameters. Note that Equation
2.5 requires generating a random sample from the RBM distribution for each data
sample x(t). In the original CD algorithm, x̃(t) is generated applying k steps of Gibbs
Sampling on the model, starting from the data sample x(t).

There are other proposed methods that yield better approximations by changing
how one obtains x̃(t) [11, 35], but in this work only the traditional CD method was
used. Note that it is also possible to change the training objective function, for
example, to account for a classification task [36].

Calculating the corresponding expectations for each model parameter wij, bi, dj,
the resulting update rules of the SGD are given by:

W←W + α
1

|B|
∑
t∈B

(
ĥ(x(t))x(t)t − ĥ(x̃(t))x̃(t)t

)
(2.6)

b← b + α
1

|B|
∑
t∈B

(
ĥ(x(t))− ĥ(x̃(t))

)
(2.7)

d← d + α
1

|B|
∑
t∈B

(
x(t) − x̃(t)

)
; (2.8)

where α > 0 is the learning rate hyperparameter and ĥ (x) = σ(b+Wx), with σ(·)
being the element-wise operation of σ(y) = 1

1+e−y .
As would be expected, the RBM has a set of hyperparameters that influence its

learning performance. The learning rate α and batch size |B|, for example. The
training guide by Hinton [40] presents a qualitative discussion of good hyperpa-
rameter choices for the RBM acquired through experience, indicating the inherent
difficulty of this task in general. Notwithstanding, some works have proposed au-
tomating the search for effective hyperparameters [42] and also the internalizing the
hyperparameters [10]. In particular, Côté & Larochelle modify the RBM making the

10

number of hidden units a parameter of the model which is then determined along
with other parameters during training [10].

In this context, the network connectivity pattern of the RBM can also be in-
terpreted as a hyperparameter that must be determined. However, this is only
meaningful if the connectivity pattern has a fundamental influence on the learning
performance of the model, which is not a given, a priori. The analysis of the influ-
ence of the connectivity upon the RBM is addressed in Chapter 4, which has proved
favorable. Therefore, Chapter 5 proposes and analyzes the Network Connectivity
Gradient (NCG) method, which in turn optimizes the connectivity together with
the classical RBM parameters.

2.4 Datasets

In order to evaluate the proposed methods, two datasets were selected: BAS and
MNIST. BAS is a toy dataset, used to perform tests upon constrained conditions, in
which we can limit the RBM size to perform exact NLL calculations, for example.
MNIST, especially, is commonly used in the RBM literature [10, 11, 31, 35, 43],
although BAS has also been used before [11], which is the reason they have been
selected for this work’s analyses.

2.4.1 Bars And Stripes

Bars And Stripes (BAS) [44] is a model of parameterized datasets where elements
are a square of l2 unit-squares with either a set of rows or columns painted black
or white (l is the sole parameter). A random sample can be generated by choosing
an orientation (horizontal or vertical) with equal probability and then selecting for
each row or column a color black or white, also with equal probability. Considering
all possible arrangements of black and white rows or columns, the dataset contains
C = 2l+1 configurations. Five examples for l = 4 (BAS 4) can be seen in Figure 2.5.

Figure 2.5: Examples of BAS 4 configurations

Since the BAS model has a uniform distribution over its samples, the average
NLL for the model can be computed exactly, and is given by

1

C

C∑
t=1

− lnP (x(t)) = lnC , (2.9)

11

where C is the number of configurations. Note that this value is the optimal average
NLL for a trained RBM.

The BAS provides a controlled and relatively simple environment to assess the
influence of network connectivity on the learning performance of the RBM, where
results can be interpreted more easily.

2.4.2 MNIST Database of Handwritten Digits

Although good for a initial evaluation, the BAS model is relatively contrived due to
its regularity and far from real world data. To overcome this limitation and broaden
the experiments, the MNIST dataset2 was used. This dataset contains images of
handwritten digits and is a frequently used benchmark in computer vision, including
the RBM literature. Thus, it is an important dataset to consider for this work’s
studies.

The MNIST dataset consists of gray-scale square images of 28 × 28 pixels. It
has two separate sets of data: a train set, with 60 k samples; and a test set, which
has 10 k samples. Only the train set was used to train the RBMs, although some
experimental results are also reported on the test set. The images were converted
into black and white in order to be directly used as input to the RBM. The conversion
was probabilistic such that each pixel was assigned a black color with probability
proportional to its darkness (gray-scale) in the original image, a methodology widely
adopted [10, 12]. Some examples of the resulting data samples are shown in Figure
2.6.

Figure 2.6: Examples of MNIST images after conversion to binary.

This dataset enables for performing two kinds of tasks: sample generation, for
which new digit images can be sampled from the trained RBM distribution; and
image classification, for which the RBM should predict the digit of a given sample.

2Dataset available at http://yann.lecun.com/exdb/mnist/.

12

http://yann.lecun.com/exdb/mnist/

Chapter 3

Network Connectivity and
Performance Estimation

3.1 Network Connectivity

The classic RBM considers a fully connected network between its input and hidden
layers. However, this connectivity may not be adequate for training an RBM on a
specific task, in the sense that other connectivity patterns could yield better learning
curves. In order to explore this possibility, the RBM must be first extended to allow
for any connectivity pattern.

Let A ∈ BH,X denote a binary matrix that represents a given connectivity pattern
for the RBM, in the sense that aij = A[i, j] = 1 if hidden unit hi is connected to
input unit xj, or aij = A[i, j] = 0 otherwise. Figure 3.1 shows examples of the
adjacency matrix (or weight’s mask) A for two connectivity patterns. Note that the
size of the space of connectivity networks (all possible matrices A) is given by 2HX ,
and is generally intractable even to enumerate in the case of small models.

A =

1 1
1 1
1 1

 h1 h2 h3

x1 x2

A =

1 0
0 1
1 1

 h1 h2 h3

x1 x2

Figure 3.1: Two examples of adjacency matrices A (left) and the corresponding
RBM network (right): the classic fully connected network (top), and an example
with two suppressed connections, x1 − h2 and x2 − h1 (bottom).

In order to incorporate A into the model, the weights in matrix W must be

13

forced to zero on entries where a connection is not present. Thus, let C = W⊙A
denote the acting weights of the model where ⊙ is the element-wise matrix product
such that cij = C[i, j] = wijaij. The resulting energy function, thus, is the same as
Equation 2.1, with only weight modifications. Indeed, the acting weights function as
merely weight modifiers, not changing the theory behind the energy function. The
resulting energy corresponds to

E(x,h) = −htCx− xtd− htb , (3.1)

which is the same as the original (Equation 2.1) with a number of weights being
forced to zero by A, resulting in the acting weights C.

The classic model parameters (W, b, d) are learned as before, however using
matrix C instead of W to compute the gradients.

3.2 Generative Performance Estimation

For a generative task, RBMs are trained to minimize the Negative Log-Likelihood
(NLL) of the training data. However, this metric is intractable for non trivial models
because of the complexity of computing the normalization constant of the model,
which makes evaluating the performance of training difficult.

Therefore, there are many techniques to approximate the NLL, and in the case
of RBMs the most used is Annealed Importance Sampling (AIS), as proposed by
Salakhutdinov & Murray [12]. However, this is a very complex method, which
prompts for simpler (and perhaps faster) estimation methods. The two methods
proposed in this work, one estimating through Monte Carlo and the other approxi-
mating through truncation, have not been able to achieve good results on the MNIST
dataset, as the following experiments show in comparison to AIS.

The time results here presented correspond to wall time values obtained on a
personal computer running macOS Big Sur with a processor Intel i5, 1.6GHz.

3.2.1 Monte Carlo

The first alternative algorithm proposed for estimating the partition function is a
simple Monte Carlo (MC) implementation [45]. The idea, in this case, is to find an
expectation through which one can calculate Z.

The partition function is the constant used to normalize the probability distribu-
tion, so that the sum of all probabilities is equivalent to 1. As defined in Section 2.3,
the constant is Z =

∑
x,h e

−E(x,h). However, sampling over both x and h is more
complex than sampling only over x. For that reason, we simplify the formula using

14

the RBM’s visible units distribution Pθ(x) = Z−1e−F (x) with the resulting equation
being:

Z =
∑
x

e−F (x) . (3.2)

Therefore, a simple expectation can be used to find Z, that is the expected value
of eF (x):

EPθ(x)
[
eF (x)] = ∑

x

eF (x)Pθ(x) =
∑
x

eF (x) e
−F (x)

Z
=

1

Z

∑
x

1 =
1

Z
2X , (3.3)

where X is the number of input units. Accordingly, if the expected value is known,
it is trivial to calculate the normalization constant:

Z =
2X

EPθ(x) [e
F (x)]

. (3.4)

Now, one can estimate the expectation of eF (x) through sampling, as per Monte
Carlo (MC) algorithms. If we sample enough xi values according to the Pθ(x)
distribution (e.g. the RBM’s visible units distribution), then the sample mean of
eF (xi) should converge to the expectation EPθ(x)

[
eF (x)

]
, by the law of large numbers:

lim
n→∞

1

n

n∑
i=1

eF (xi) = EPθ(x)
[
eF (x)] . (3.5)

Therefore, this simple method only needs to determine n, the number of samples
to perform so that a good estimation of Z is obtained. However, it is tricky to
obtain xi independent samples from the RBM distribution Pθ(x), since many Gibbs
Sampling steps may be required, making the algorithm too costly. Furthermore,
it is not easy to ascertain how many steps are needed to guarantee independence
between the samples (and therefore an unbiased estimator).

3.2.2 Truncation

Since the MC estimator might severely increase the computational load with larger
RBMs, a second estimator is proposed, which truncates the partition function.

The idea of truncation is that, since one has a summation with too many parcels,
one clips (or truncates) the sum to a smaller number of parcels, so that it becomes
feasible to compute it in a reasonable time. The truncated estimate can be defined
as

Ẑ =
∑
x∈X ′

e−F (x) , (3.6)

where X ′ ⊆ BX . Note that by definition, if no sample x is added twice, the estimator

15

is a lower bound on the constant: Ẑ ≤ Z. In order to be a good estimator, it is
necessary that all the parcels with larger values (greater participation in the final
sum) be used for the truncated summation.

In this work, we propose to select, based on data, the configurations of visible
units which should be the most important to the calculation of Z. After all, the RBM
is trained to match the data distribution and, consequently, as training progresses,
the configurations found on the dataset should become more probable and such an
estimator should only get better.

Therefore, we define the subset X ′ as the set of all the samples in the dataset, plus
all samples that differ from the dataset ones by a single unit (which, being similar
enough to the correct samples, could still have high probabilities). To illustrate how
such a dominion is formed, consider Figure 3.2: if the dataset has the sample on
the left (a), the truncation method will sum not only the parcel relative to it, but
also the four other displayed on the right (b), which are all configurations that differ
from (a) by a single unit.

(a) Original sample (b) Extra samples generated

Figure 3.2: An example of how the dominion X ′ is formed for the estimation of the
partition function through Truncation. For every sample (a) in the dataset, X extra
samples are generated (b) by changing a single unit from the original sample.

Note that, by the X ′ definition, this truncation proposal corresponds to a deter-
ministic method, always producing the same estimate for a given RBM and dataset.
Furthermore, truncating the normalization constant should allow for a faster code
than the MC estimation, for it does not need to sample from the RBM. It may,
however, become slow with the increase in the dataset size.

3.2.3 Comparison

Before comparing both the Monte Carlo and the Truncation methods, they need to
be validated to certify that they work as expected. That was done using the BAS 5
dataset, with a minor modification to suit Truncation better: the repeated samples
were removed. In BAS, by its law of creation, there are two configurations that are
duplicated: the ones with all squares of the same color. That happens because there
are two ways to get such configurations: by having all rows in the same color, or by

16

having all columns on the same color. With their removal, the assumption that the
truncated estimate Ẑ must be smaller or equal to the actual normalization constant
Z holds true.

Table 3.1 shows the results for both MC and Truncation for two different RBMs:
one that was trained for only 100 epochs (dubbed the undertrained model) and
another trained for 1.5 k epochs (dubbed the trained model). Training was achieved
using CD with 10 steps of Gibbs Sampling (CD-10), α = 0.1 and batch size of 5
random samples. The RBM was initialized with null biases and weights uniformly
sampled between −1 and 1. The exact NLL for these networks are 13.022 and 7.186
respectively, with the calculus taking approximately 35ms to determine it. MC
used 10 k samples, giving int (lnX) = 3 Gibbs Sampling steps between samples. 5
repetitions were performed to acquire the mean and standard deviation values. Note
that truncation has no standard deviation because it is deterministic by nature.

Table 3.1: Performance of NLL estimation using MC (a) and Truncation (b). For
each method, the estimate, its error and the time needed to perform it are presented
for two RBMs trained with the BAS 5 dataset: one undertrained model, for which
100 epochs are performed; and one fully trained mode, with 1.5 k epochs of training.
A negative error indicates that the resulting estimate is bigger than the real value
of the NLL.

(a) MC Estimation

Undertrained Model Trained Model
NLL Estimate 13.016± 0.028 8.160± 3.123

Mean Relative Error 0.5% −13.6%
Time (ms) 77± 3 75± 2

(b) Truncation Estimation

Undertrained Model Trained Model
NLL Estimate 7.494 7.089
Relative Error 42.5% 1.3%

Time (ms) 2 2

One can see that there is an inversion between the estimates: MC begins as
the better estimate, when the RBM distribution is still very random, and worsens
with training; Truncation, on the other hand, begins as a very poor estimate, but
grows closer to the correct value as the RBM distribution grows closes to the data
distribution.

This trend is more notable with a visual inspection, provided by Figure 3.3.
Alternate versions of the MC method were added, using different numbers of samples
n to calculate the sample mean (n ∈ {100, 1 k, 10 k, 100 k, 1M}). In the figure, each
single estimation is marked by an “×”, which is colored according to the estimator
used. Since the truncation estimate is deterministic, it was performed only once,
while MC estimated were repeated 5 times for each configuration. The exact value

17

of the NLL is marked by the black line, with the black circle indicating the time it
took to calculate it.

Es
tim

at
iv

e

7

9

11

13

15

Time (ms)
0,1 1 10 100 1K 10K 100K

Truncation MC - 10k MC - 1k
MC - 100 Real Value

(a) Undertrained Model

Es
tim

at
iv

e

-2

2

6

10

14

Time (ms)
1 10 100 1K 10K 100K

Truncation MC - 10k MC - 1k
MC - 100k MC - 1M Real Value

(b) Trained Model

Figure 3.3: Scatter plot of NLL estimation performance (wall time × value) using
MC and Truncation for two RBMs on BAS 5: one trained for 100 epochs (a) and
one for 1.5 k epochs (b). MC was applied with different numbers of samples (varying
between n = 100 and n = 1M), each experiment repeated 5 times. The black line
corresponds to the exact NLL, and the time taken to calculate it is marked with a
circle.

With the increase in the number of samples n the MC estimator gets better,
diminishing the variance observed, as would be expected. Also, there seems to be
no bias in the estimation, which suggests that the method functions as it should.

The results with n = 100 have comparable wall time as Truncation, and indeed
are a better estimate for a poorly trained network. However, with more training even
n = 106 still presents a high variance, despite it already being a costly algorithm,
when you compare with the time it took to calculate the exact value. Truncation, on
the other hand, presents itself as a good estimator, for it gets a very good estimate
in a very short time for the trained model (1.5 k epochs).

Having validated the proposed estimators on BAS, the next step is to compare
them under a more strenuous setting. Therefore we use an RBM trained on MNIST.
Training was achieved using CD-10 for 6 k epochs, having α = 0.01, with batch size
of 50 randomly drawn samples. The weights were initialized with small random
values, uniformly distributed in the [−1, 1] interval, and the biases were initialized
at zero.

This network uses only 16 hidden units (H = 16), which enables us to calcu-
late the exact NLL, despite the great number of visible units (X = 784). Besides
the exact calculation, MC was calculated using 10 samples to compose the sample
average (n = 10), applying approximately 3 million Gibbs Sampling steps between
samples. 1 Lastly, the AIS estimator was added for comparison, for it is the tech-

1We used 2 953 133 steps between samples, which is equivalent to 10
[
ln

(
2X

)]2.
18

nique used in the RBM literature. AIS was calculated with 100 runs and 5 500

intermediate distributions.
The NLL results are presented at Table 3.2, including the exact value. It is

clear that the best estimation is provided by AIS, which is made even clearer by the
analysis of Figure 3.4. In the figure, each single estimation is marked by an “×”,
which is colored according to the estimator used. Since Truncation is deterministic,
it was performed once only, while MC and AIS were repeated 5 times. The exact
value of the NLL, which is the goal of the estimations, is displayed as a black lines.

Table 3.2: Comparison of NLL estimations for a classical RBM used with the MNIST
dataset. For each method, the estimated value and the time taken to acquire it are
reported. Average and standard deviation reported for MC and AIS, calculated for
5 estimates.

Real Value Truncation MC AIS
NLL Calculated 153.85 98.94 467.63 ± 7.78 153.62 ± 0.13

Time (s) 54 1007 ± 77 66 ± 6

Es
tim

at
iv

e

40

155

270

385

500

Time (s)
10 100 1000 10000

Truncation MC AIS Real Value

Figure 3.4: Scatter plot of NLL estimation performance (wall time × value) for
a RBM used with the MNIST dataset. MC and AIS estimations were repeated 5
times, and the black line corresponds to the exact NLL.

It is clear that the MC did not perform well and, indeed, has a large bias in
the output, which suggests that despite the already huge computational load, there
are still not enough Gibbs Sampling steps to guarantee that the acquired samples
are independent. This makes unfeasible the use of this estimator, since it is already
so much more costly than the others. As for the truncation method, it does not
have such a good estimate yet, even after 6 000 epochs, and it takes almost as much
time to calculate as the AIS method does, which has a much better accuracy, and
excellent precision to boot.

These findings show that there is no gain in applying those methods, as they are
to the RBM performance estimation problem. The standing AIS method is much

19

more suited to the task, and it is the one that will be used throughout the remainder
of this work.

20

Chapter 4

Connectivity Search Space Analysis

The connectivity pattern between layers influences the learning performance of the
network, in particular for shallow networks such as the classic RBM. While recent
works have addressed the problem of determining the number of neurons in the
hidden layer [10], the connectivity pattern between the input and hidden layers
have not been addressed, to the best of our knowledge.

In order to understand the role of network connectivity on the learning perfor-
mance of RBMs, this chapter presents a comprehensive study of the connectivity
space using the synthetic BAS model and the MNIST dataset. Different connectivity
structures are proposed, and the effect of training RBMs with those is evaluated.

4.1 Connectivity Patterns

In order to characterize the effect of network connectivity, four connectivity patterns
are considered in this work: line, spiral, stairs and cross.

Figure 4.1 shows an illustration of the patterns. It portrays the connections
with regards to the hidden unit h11 for BAS 4 with 8 neighbors (v = 8) for the two
parameterized patterns. For other units hi, the connections should merely shift the
start point (marked 1 in the figures) to the corresponding unit. The numbers in the
illustrations give an idea of the pattern obtained for other values of v, in the case of
the line and spiral patterns.

The line pattern is the most simple: each hidden unit hi is connected to the
v adjacent visible units {xj|i ≤ j ≤ [(i + v) mod X] + 1}, where r mod q is
the remainder of the division r/q. Note that v is a parameter of the pattern that
represents the number of connections of each hidden unit (and consequently visible
unit). This is obviously a very important parameter, and analyses of the impact of
changing this parameter are presented throughout the chapter.

The spiral pattern was inspired by the convolutional layers from neural networks
applied to computer vision: considering the organization of the visible units arranged

21

1 2
3 4 5 6

7 8

(a) Line

12
3 4

567
8

(b) Spiral

1 2
34

5 6
7 8

(c) Stairs

1 23 4
5

6
7

(d) Cross

Figure 4.1: Connections of unit h11 in BAS 4. The line (a) and spiral (b) patterns
use v = 8, while the stairs (c) and cross (d) patterns have a fixed number of 8
connections and 7 per unit, respectively. The grid represents the 16 visible units
and the blue squares are the visible units connected to h11 (the 11th visible unit
x11 corresponds to the square in the 3rd row and 3rd column) for each pattern.
The numbers indicate the order in which the units are added, to illustrate how the
pattern is generated as a function of v, the number of connections.

into rows and columns, each hidden unit hi is connected to its respective visible unit
xi and to other v − 1 units in an spiral pattern beginning in xi. The spiral is
constructed clockwise starting to the left of the initial unit, forming squares. Each
new square begins with a downward step from xi. The spiral assumes that the space
of rows and columns wraps around itself.

The stairs pattern was designed specifically for the BAS model (see Section 2.4.1).
Considering that this dataset is formed of painted rows or columns, each hidden
unit needs only to know the state of two neurons in each row and in each column
in order to be able to ascertain the whole state of the configuration. Organizing the
connections in the form of stairs generates a pattern with the minimum amount of
connections that still guarantees that all rows and all columns in the hidden layer
are connected to two different units. For BAS 4, this corresponds to 8 connections
for each unit. Note that the stairs pattern has no parameter.

Finally, the last pattern is the cross which was also designed for the BAS model.
It connects each hidden unit to the row and column of its respective visible unit, so
that the resulting pattern forms a cross centered on that visible unit. The intuition
is that, if the input values for both the row and column are known, the color of the
center of the cross should be trivially determined in a valid configuration.

4.2 Analysis on BAS

For the first set of experiments, the BAS model (Section 2.4.1) is utilized. It gener-
ates simple artificial datasets, and its clear formation rule together with the small
sizes considered makes it a prime candidate for initial testing.

Most of the following experiments use BAS 4 which means the RBM has 16
visible units (X = 16) and there are C = 32 configurations in total. The number of
hidden units is the same as the visible units (H = X = 16). Training was achieved

22

using CD with 10 steps of Gibbs Sampling (CD-10), with the exception of Section
4.2.3. The learning rate was α = 0.01 and the batch size was 5 randomly chosen
samples.

The model’s parameters are updated after every batch and an epoch corresponds
to an iteration of updates through the entire dataset. No momentum or weight decay
was used. The RBM was initialized with null biases and random weights uniformly
distributed in [−1, 1]. Each experiment was independently repeated 25 times to
account for statistical fluctuation at initialization. The lines in the plots correspond
to the sample average and the shades, when available, correspond to the distribution
quartiles (50% of the results fall within the shaded area). Note that not all plots
contain the quartiles’ information to avoid visual pollution. The missing quartile
figures can be found in Appendix A.

In this scenario (BAS 4 and BAS 5), the normalization constant, as well as the
average NLL, can be computed in an exact manner, and therefore the learning curve
of the RBM can be precisely evaluated (at every epoch for BAS 4 and at every 5
epochs for BAS 5). For BAS 8, it is intractable to compute the normalization
constant exactly, thus it was approximated using Annealed Importance Sampling
[12] every 5 epochs. The parameters for the AIS was 100 runs and 14.5k intermediate
distributions.

Although it is known that fine-tuning its hyperparameters improves the RBM
training, the purpose here is to ascertain the impact of different connectivity net-
works and therefore it focuses on comparative results instead of trying to obtain the
best possible RBM.

4.2.1 Connectivity Structure

For the first set of experiments, a comparison of the connectivity patterns presented
in section 4.1 was made. For fairness of comparison, the line and spiral patterns use
v = 8, so that the networks mostly have the same number of connections.

Figure 4.2 shows the evolution of the average NLL as a function of the training
epochs for the four connectivity patterns, where all units have 8 neighbors (v = 8),
and the cross pattern 7 neighbors. The curves indicate a clear difference in the
average NLL among the patterns, and the relatively small uncertainties (shaded
area) show that the patterns have consistent results regardless of the initialization.

Although the three first patterns have the same number of connections, it is
clear that the structure itself is of fundamental importance, for they have vastly
different learning curves. It is also of notice that despite having one less connection
than the others, the cross pattern presents a superior performance for the first 4000
epochs, with the fastest initial decrease in the average NLL. At around 6 k epochs,

23

0 2000 4000 6000 8000 10000
Epoch

4

6

8

10

12

14

Av
er

ag
e

NL
L

Line (v = 8)
Spiral (v = 8)
Stairs
Cross

Figure 4.2: Evolution of the average NLL over training epochs for four different
connectivity networks: stairs, spiral and line, that have 8 connections per each unit,
and cross, that has 7 connections per unit. The black dashed line corresponds to
the data (optimal) average NLL.

the spiral learning curve overtakes the cross, and the mean results suggest that it
has the better learning performance by the end of 10 k epochs (smallest average NLL
mean).

Interestingly, the stairs pattern showed the worst learning curves for all epochs,
despite being intuitively designed for the BAS model. Thus, intuition did not work
for this pattern. Finally, line pattern showed comparable performance to the spiral
during the first thousand epochs but then distanced itself from the decay of the
spiral.

The results indicate that hidden units of the RBM prefer to have more local than
scattered information from the input. Note that the spiral pattern has the most local
information: if you take into account the square numbered 2 in Figure 4.1(b), the
hidden unit is connected to seven of the eight possible neighboring squares, and to
the four cardinal neighbors (north, south, east and west squares). In comparison, the
square numbered 1 in the cross pattern has four of the eight possible neighboring
square, all cardinals. The square numbered 5 in line pattern is connected to 5
neighboring squares, of which three are cardinals, and in the stairs pattern units are
connected to two cardinal neighbors and two diagonal neighbors. Last, the spiral
pattern is identical to a convolution connection when v is a square number, and
corroborates the vast success of convolutional patterns in image recognition tasks.

24

4.2.2 Number of Connections

Intuitively, the learning performance of the RBM depends not only on the connec-
tivity pattern but also on the number of connections in the pattern. But it begs the
questions of whether this dependence is monotonic. In other words, whether having
more connections for a given pattern yields a strictly better learning curve.

Figure 4.3 shows the learning curves for networks with different number of con-
nections for two patterns (line and spiral). For both patterns, note that as the
number of connections increases from 6 to 8 to 12, the learning curve improves
monotonically. However, as the number of connections continues to increase from
12 to 14 to 16, the learning curves do not strictly improve across all epochs. In par-
ticular, the learning curves cross one another and for a large enough epoch the best
apparent learning performance is attained with v = 12 connections. Interestingly,
this observation holds for both line and spiral patterns. Last, while the differences
in the learning curves for v ∈ {12, 14, 16} are rather small for BAS 4, Section 4.2.4
shows that such differences are very significant as the model becomes larger (e.g.,
BAS 8).

4000 5000 6000 7000 8000 9000 10000
Epoch

3.5

4.0

4.5

5.0

5.5

6.0

Av
er

ag
e

NL
L

v = 16
Line, v = 14

Line, v = 12
Line, v = 8

Line, v = 6

(a) Line

4000 5000 6000 7000 8000 9000 10000
Epoch

3.5

4.0

4.5

5.0

5.5

6.0

Av
er

ag
e

NL
L

v = 16
Spiral, v = 14

Spiral, v = 12
Spiral, v = 8

Spiral, v = 6

(b) Spiral

Figure 4.3: Evolution of the average NLL over training epochs for different numbers
of connections for the line (left plot) and spiral patterns (right pattern). The network
with v = 16 is the same for both patterns and corresponds to the fully connected
traditional RBM. The black dashed line corresponds to the data (optimal) average
NLL.

As the number of connections increases, the differences between the patterns
diminish. For example, for v = 12 both line and spiral patterns are relatively
similar (since there are at most 16 connections). Will this observation reflect on the
learning curves?

Figure 4.4 shows the learning curves for both the line and spiral patterns for

25

different values of v. The cross pattern is also added for comparison, but its perfor-
mance seems not to be comparable to the best line and spiral patterns. Note that
for the same value for v the spiral pattern has a superior learning performance which
is more pronounced when v is small (e.g., v = 4 and v = 6). However, this superi-
ority diminishes as v increases, such that for v = 12 and larger both patterns show
comparable performance. Indeed, at v = 16, which corresponds to a fully connected
network (the traditional RBM architecture), both patterns become identical.

0 2000 4000 6000 8000 10000
Epoch

4

6

8

10

12

14

Av
er

ag
e

NL
L

v = 16
Line, v = 14
Spiral, v = 14
Line, v = 12
Spiral, v = 12
Line, v = 8

Spiral, v = 8
Line, v = 6
Spiral, v = 6
Line, v = 4
Spiral, v = 4
Cross

Figure 4.4: Evolution of the average NLL over training epochs for different numbers
of connections for the line (full curves) and spiral patterns (dashed curves). The
cross pattern is also added. RBMs with the same number of connections are shown
with different shades of the same color. The network with v = 16 is the same for
both patterns and corresponds to the fully connected traditional RBM. The black
dashed line corresponds to the data (optimal) average NLL.

Interestingly, when v is small the patterns are more different and thus their
performance depends more on the pattern, in which case the spiral is superior.
Moreover, if v is too small (e.g., v = 4) the RBM cannot be trained adequately and
the average NLL does not decay (line pattern) or decays very slowly (spiral pattern).
Again, RBM seems to prefer connections that are more localized (spiral) even if the
image is a regular pattern, as the BAS model.

4.2.3 Contrastive Divergence Approximation

The previous experiments have been training the models using 10 steps of Gibbs
Sampling (CD-10). However, it is well known that the number of steps has great
influence over training, which leads to the question of how this influence impacts
different connectivity networks and whether it changes the conclusions drawn from

26

the previous experiments.
Figure 4.5 shows the comparison of connection structures with different v for

three different CD approximations: with 1, 10 and 100 sampling steps. It is clear
from the results that the increase in the number of steps is beneficial to training,
from the NLL point of view. In fact, CD-100 manages results very close to the NLL
lower bound for both the traditional training and patterns with v = 12.

0 2000 4000 6000 8000 10000
Epoch

4

6

8

10

12

14

Av
er

ag
e

NL
L

v = 16
Line, v = 14
Spiral, v = 14
Line, v = 12
Spiral, v = 12

Line, v = 8
Spiral, v = 8
Line, v = 4
Spiral, v = 4

(a) CD-1

0 2000 4000 6000 8000 10000
Epoch

4

6

8

10

12

14

Av
er

ag
e

NL
L

v = 16
Line, v = 14
Spiral, v = 14
Line, v = 12
Spiral, v = 12

Line, v = 8
Spiral, v = 8
Line, v = 4
Spiral, v = 4

(b) CD-10

0 2000 4000 6000 8000 10000
Epoch

4

6

8

10

12

14

Av
er

ag
e

NL
L

v = 16
Line, v = 14
Spiral, v = 14
Line, v = 12
Spiral, v = 12

Line, v = 8
Spiral, v = 8
Line, v = 4
Spiral, v = 4

(c) CD-100

Figure 4.5: Evolution of the average NLL over training epochs for different numbers
of connections and network structures. Each subplot corresponds to a different CD
approximation: the left plot was trained with CD-1, in which only 1 sampling step is
applied, the center plot uses 10 sampling steps and the right plot 100 steps. RBMs
with the same number of connections are shown with different shades of the same
color. The network with v = 16 is the same for both patterns and corresponds to
the fully connected traditional RBM. The black dashed line corresponds to the data
(optimal) average NLL.

Although the plots are different from each other, the overall pattern remains
and the conclusions drawn from the results are unchanged. It is of note, however,
that with worse gradient approximations (less sampling steps) the connectivity bears
higher impact upon the results and there is greater advantage in using them in such
cases. With a higher number of steps, the final results between the fully connected
network and spiral/line patterns with v = 12 get more similar, to the point where
in CD-100 we see no apparent advantage in using a connectivity different from the
complete graph, which is already very close to the desired data NLL.

Even then, these findings still point out towards there being advantages in chang-
ing the model’s connectivity network, for it only became moot when the traditional
network is already capable itself of achieving near optimal results, which is unlikely
to occur in most datasets, even with CD-100 approximation.

4.2.4 Larger Models

All prior experiments used BAS 4 which albeit efficient to train is a rather small
model (C = 32). However, the previous findings concerning patterns and number
of connections are not an artifact of BAS 4. On the contrary, the differences are

27

magnified as the model increases complexity.
Figure 4.6 shows the learning curves for the line and stairs patterns, using differ-

ent numbers of connections, for BAS 5 (top plot) and BAS 8 (bottom plot). Note
that the number of hidden units is the same as the number of visible units, and
therefore BAS 5 has H = 25 and BAS 8 has H = 64.

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

4

6

8

10

12

14

16

18

20

Av
er

ag
e

NL
L

v = 25
Line, v = 18
Spiral, v = 18
Line, v = 13
Spiral, v = 13
Line, v = 8
Spiral, v = 8

(a) BAS 5

0 200 400 600 800 1000
Epoch

5

10

15

20

25

30

35

40

45

50

Av
er

ag
e

NL
L

v = 64
Line, v = 48
Spiral, v = 48
Line, v = 32
Spiral, v = 32
Line, v = 16
Spiral, v = 16

(b) BAS 8

Figure 4.6: Average NLL through training epochs for different numbers of connec-
tions and BAS models: BAS 5 with X = 25 (a) and BAS 8 with X = 64 (b). For
each plot, RBMs with the same number of connections are shown with different
shades of the same color. The fully connected RBM is the same for both patterns
(blue curves). The black dashed line corresponds to the data (optimal) average
NLL.

It is of note, that in the right plot (BAS 8) there is a clear increase in the average
NLL after 200 training epochs for most of the learning curves. That is a common
behavior in RBMs: since training is achieved by approximating the gradient, if
the model is trained for too many epochs the performance starts to deteriorate
instead of improve. These phenomena can be mitigated by increasing the number
of Gibbs Sampling steps performed, which improves the quality of the gradient
approximation.

For BAS 5, the results are qualitatively similar to BAS 4, where the two patterns
have different performance for small enough v (spiral is superior to the line) and
identical performance for large enough v, and that learning curves are not monotonic
for large enough epochs.

However, the learning performance for BAS 8 is quantitative and qualitatively
different, in particular with respect to the non-monotonicity of the learning curves,
which cross over quite early in the training. The plot shows the spiral and line pat-
terns with 16, 32 and 48 connections per unit, and all of them eventually surpassed
the performance of the fully connected network. Moreover, even early in training
the fully connected network was not superior, showing performance comparable to

28

v = 48 for both patterns. Interestingly, the best learning curve is the spiral pattern
with v = 16 which has only 1/4 of the connections of the fully connected network,
but its performance is not matched by the line pattern with v = 16. Note that for
v = 16 the spiral corresponds to a perfect 4× 4 convolution.

As illustrated by BAS 8, it is clear that both the connectivity pattern and number
of connections play a fundamental role in the learning performance. Intuitively, a
model with higher complexity has more parameters to train, and thus offer more
opportunities for sparse connectivity patterns to have a learning performance that
is superior to the fully connected network.

4.3 Analysis on MNIST

Although the previous experiments indicate the importance of the connectivity pat-
tern and number of connections even for small scale networks, the BAS model is
relatively contrived due to its regularity and far from real world data. To overcome
this limitation and broaden the findings, the MNIST dataset (see Section 2.4.2) is
used to characterize the learning performance of the RBM under different connec-
tivity patterns.

The RBMs were trained with 784 hidden units which is the same number of
visible units for the dataset. The learning rate used was 0.01, with batch size of 50
randomly chosen samples. Runs used CD-10 and each configuration was repeated 10
times. The sample average is reported, and the distribution quartiles are added in
Appendix A. RBM parameters were initialized as in the previous experiments: null
biases and small random weights uniformly distributed between -1 and 1. As with
the previous experiments, further fine-tuning of these parameters was not attempted.
Also, as with BAS 8, the normalization constant cannot be computed exactly for
this model and was approximated using AIS [12].

Figure 4.7 shows the evolution of the learning curve for the line and spiral pat-
terns varying the number of connections. Note that v = 784 corresponds to the fully
connected network. The two patterns were evaluated with 3

4
(v = 588), 1

2
(v = 392),

1
4
(v = 196) and 1

8
(v = 98) of the maximum number of connections, as well as v = 16

connections per unit, which forces a significant difference between line and spiral
patterns (perfect 4× 4 convolution for spiral and single line for line pattern).

Interestingly, the the fully connected network showed the worst performance. As
the number of connections decrease, the learning performance of both alternative
patterns improve in general. Clearly, a more sparse network can be trained more
effectively, improving the average NLL by a factor of four at epoch 60 (if compared
to the fully connected network). However, the learning curves of the model with less
connections (v = 196, v = 98 and v = 16) did not show a decreasing trend over the

29

0 10 20 30 40 50 60
Epoch

100

200

300

400

500

600

Av
er

ag
e

NL
L

v = 784
Line, v = 588
Spiral, v = 588
Line, v = 392

Spiral, v = 392
Line, v = 196
Spiral, v = 196
Line, v = 98

Spiral, v = 98
Line, v = 16
Spiral, v = 16

Figure 4.7: Average NLL through training epochs for different numbers of connec-
tions and connectivity patterns. RBMs with the same number of connections are
shown with different shades of the same color. v = 784 corresponds to the fully
connected RBM.

epochs, suggesting that their best performance (minimum NLL) was reached early
in training (before 10 epochs), which is also a positive observation (after 10 epochs,
the average NLL of the fully connected model is 5 times larger).

It is also of note that no significant difference between the line and spiral pattern
was observed in the learning curves, with the exception of v = 16. In this case,
the spiral pattern shows the best performance, together with v = 98 results, while
the line pattern presents higher NLL values than v = 196 curves. Intuitively, with
such a small number of connections the differences between the connection patters is
greater, and the chosen pattern has greater impact upon the results. Still, the num-
ber of connections plays a more important role in the overall training performance,
for these patterns and this dataset.

30

Chapter 5

Network Connectivity Gradient

The previous chapter presented an analysis of the connectivity effect upon the the
RBM training, attesting to the importance of choosing a good connectivity pattern
in order to enhance learning. Of course, finding the best network connectivity for a
given task is not a trivial problem, even in the context of RBMs. It is dependent on
the input (training data), the discrete nature of the connections, and the exponen-
tially large space of possible connection patterns (there are 2n

2 different networks
between two layers with n units each).

In this chapter, a novel method tailored to RBMs is proposed, which is based
on the notion of “network gradients”. The Network Connectivity Gradient (NCG)
method computes the gradient for every possible network connection for any given
connectivity pattern. Note that the gradient can be non-zero even when a connec-
tion is not present in the pattern. Moreover, NCG uses a continuous parameter
to represent the strength of every possible network connection which is updated
according to the gradient. Finally, the network strength is thresholded to yield a
discrete connectivity pattern during optimization (i.e., at each iteration) which in
turn determines how information (probabilities) and gradients flow on the model
during training.

5.1 Method

The novelty of the proposed method lies on computing a gradient for the connectivity
pattern, A. This gradient (Equation 2.5) can be analytically derived in the same
manner the other RBM parameters’ gradients. The optimization is performed over
θ, which in NCG also includes A. In particular, the expectation over the energy
gradient is given by

31

Eh
[
∇aijE(x,h) |x

]
= Eh

[
∇aij(−hiaijwijxj)

∣∣x]
= −Pθ(hi = 1|x)wijxj

= −σ(Ci·x + bi)wijxj

= −ĥi(x)wijxj ;

(5.1)

where Ci· is the i-th row in matrix C. This expectation is used to calculate the
gradient, given by Equation 2.5. Note that the gradient for a connection (i, j) can
be non-zero even when aij = 0. This is a key aspect in the methodology here
proposed, since it provides a gradient for absent connections and consequently the
possibility for them to be enabled.

However aij is binary, and thus the usual continuous optimization framework
that leverages the gradient to update its value does not apply. To circumvent this
limitation, a continuous parameter denoting the connectivity strength is introduced
in the model, and represented by A′ ∈ [0, 1]H,X such that 0 ≤ a′ij = A′[i, j] ≤ 1.
Thus, the connection strength can be updated using the corresponding gradient
(but saturating at 0 or 1). Moreover, the binary connection is a function of the
connection strength. In particular, a simple threshold (step) function is used to
determine the presence or absence of a connection. This idea leads to the following
two-step update rule for the connection parameters in the SGD framework:

a′ij ←a′ij +
αA

|B|
∑
t∈B

[
ĥi(x(t))wijx

(t)
j − ĥi(x̃(t))wijx̃

(t)
j

]
aij ←1

[
a′ij ≥ γ

]
;

(5.2)

where γ is the hyperparameter that denotes the threshold for enabling/disabling a
connection based on the connection’s strength, 1[·] corresponds to the indicator/step
function, and αA the connectivity learning rate. We have named the method as
Network Connectivity Gradient (NCG), and it jointly learns the connectivity pattern
and classic model parameters for the RBM. Note that αA allows to decouple the
learning rate of model parameters from the connectivity, which has empirically been
shown to bring advantages to the learning curves (discussed in Section 5.5.2).

5.2 Initialization

A fundamental aspect in continuous optimization frameworks such as SGD is the
initialization of the parameters that must be optimized. Being parameters, the
connectivity pattern and connection strengths must also be initialized. While the
fully connected network is a possible initialization, intuitively it may not be the best
pattern to start the optimization since it may take too many iterations to remove

32

connections. A common initialization in the context of the RBM (and other models)
is choosing random and small values for the parameters. This approach is also taken
for initializing the connection pattern and connection strengths, as follows.

Each connection is randomly initialized according to a probability parameter
p. In particular, aij = 1 with probability p and aij = 0 with probability 1 − p,
independently from any other connection. Note that the initial connection pattern
is a random bipartite graph where p determines the (expected) edge density of the
network. Intuitively, p will influence the learning performance of the RBM, since
large/small p can lead to dense/sparse networks that may require many iterations
to evolve. Thus, p is a hyperparameter of the initialization procedure.

Once the initial connection pattern has been determined, the connection
strengths must also be defined. While initializing a′ij = aij is a possible initialization,
this leads to connection strengths that are either 0 or 1 which may require too many
iterations in order to cross the threshold to enable or disable the connection, respec-
tively. A more effective initialization should also to resort to randomness. Thus,
connection strengths are randomly initialized given the corresponding connection as
follows:

a′ij = U(0, γ)1 [aij = 0] + U(γ, 1)1 [aij = 1] , (5.3)

where U(a, b) is the continuous uniform random value in the interval [a, b]. Note
that the random value of the connection strength depends on the threshold γ for
enabling/disabling the connection. Intuitively, a random value is chosen in the
segment corresponding to the connection being absent (range [0, γ]) or present (range
[γ, 1]). The idea behind this initialization is also to avoid the cold start for the
connection strengths while following the (random) initialization of the corresponding
connection.

5.3 Implementation

In order to test the proposed method, the RBM model and its training (with or
without changing the connectivity network) were implemented on the Program-
ming Language C++. The full project code is available at https://github.com/

AmieOliveira/NCG, and it was tested for MacOS BigSur and Ubuntu 18 operating
systems.

Programming in C++ allows for very efficient coding in comparison to other higher
level languages, which is the main reason it was chosen for this project. Since
the RBM training is mostly based in matrix operations, the linear algebra library
Eigen was used as a base, which allows for efficient calculation and dynamic matrix
allocation.

33

https://github.com/AmieOliveira/NCG
https://github.com/AmieOliveira/NCG

The program was implemented with the Object Orientation paradigm, with a
class Data for the datasets used and a class RBM to store the model, with its param-
eters and training algorithms. The following snippet illustrates the creation of Data
and RBM objects, that are in turn used to train the RBM model.

1 #include "RBM.h"
2 #include <stdlib.h>
3 #include <fstream >
4

5 using namespace std;
6

7 // Creating BAS 4 dataset
8 int size = 4;
9 Data bas(DataDistribution ::BAS , size);

10

11 // Creating RBM with H=X=16 (for the BAS 4 dataset ’bas ’)
12 int X = bas.get_sample_size ();
13 int H = X;
14 RBM model(X, H);
15

16 // Training the classical RBM for 10 epochs with CD -10
17 unsigned seed = 728356;
18 int k = 10;
19 int iter = 10;
20 int b_size = 5;
21 double l_rate = 0.01;
22 bool calculate_NLL = true;
23

24 model.setRandomSeed(seed);
25 model.trainSetup(SampleType ::CD , k, iter , b_size , l_rate ,

calculate_NLL);
26 model.fit(bas);
27

28 // RBM can be saved for later examining
29 model.save("myClassicalRBM.rbm");
30

31 // Same holds true for training history (NLL through epochs)
32 vector <double > h = model.getTrainingHistory ();
33 ofstream f;
34 f.open("nll_history.csv");
35 f << "NLL" << endl;
36 for (auto s: h) {
37 f << s << endl;
38 }
39 f.close();
40

41 // Alternatively , you can train with NCG (p = 0.5)
42 double p = 0.5;
43 model.optSetup(Heuristic ::SGD , p);
44 model.fit_connectivity(bas);
45

46 // And later print the resulting RBM paramters
47 model.printVariables ();

The RBM (object model) is first trained in the traditional way, with no connec-
tivity change whatsoever, for 10 epochs, and later with NCG for 10 epochs more.

34

Besides specifying the training parameters (CD-10, batch of size 5, α = 0.01), it is
important to set the random seed to be used (via method RBM::setRandomSeed).
Keeping track of the seeds used enables results reproducibility.

Some useful tools are also presented, such as the RBM::save method, which
allows for saving the RBM weights and biases in a text file, to be further ana-
lyzed at a later date or imported in other programs. If you simply wish to dump
the RBM parameters you can use the RBM::printVariables instead. By using
RBM::getTrainingHistory, after the model has been trained, you get a vector

with the NLL values through the training epochs. For large RBMs the value is an
AIS estimate.

5.4 Experiments on BAS

In order to validate the method, it was firstly tested upon the BAS model (Section
2.4.1). The dataset BAS 5 with 25 hidden units was used (H = X = 25), for
which we are still able to calculate the exact NLL. Training was performed using
CD with 10 steps of Gibbs Sampling (CD-10). As with previous BAS experiments,
the learning rate was set to α = 0.01 and the mini-batches use 5 random samples for
each update, with no momentum or weight decay (see Section 4.2). The decoupled
connectivity learning rate was set to 5 times the network’s connectivity, obtaining
αA = 0.05, and the training threshold was set to a neutral γ = 0.5 (it does not favor
either sparser or denser networks). A training epoch iterates batches until all the
dataset is used to update the model. The NLL was calculated at every 5 epochs.

The RBM is initialized with null biases and small random weights uniformly
distributed between −1 and +1. Each experiment was repeated 25 times to account
for statistical fluctuation, and therefore the plots show the sample average as the
lines for a set of experiments, and the distribution quartiles as the shades (as per
the quartile definition, 50% of the results fall within the shaded area).

Although better hyperparameter fine-tuning could improve the overall RBM per-
formance, this test aims at validating the NCG method behavior and comparing its
performance to the traditional, unmodified model, and therefore one does not need
the best set of hyperparameters.

Figure 5.1 shows the evolution of the NLL through the training epochs for the
fully connected RBM and three NCG initializations. This result is qualitatively
similar to the ones obtained in Section 4.2.4, for the traditional network has a steeper
initial NLL decrease, but after 2 k epochs the learning curves invert themselves and
NCG trainings with p = 0.5 and p = 1 end with smaller NLL means, and appear to
have better performance.

While the NCG method is able to eventually surpass the fully connected model,

35

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

4

6

8

10

12

14

16

18

20

Av
er

ag
e

NL
L

Traditional Network
NCG, p = 1
NCG, p = 0.5
NCG, p = 0.1

Figure 5.1: Average NLL over the training epochs for different NCG initializations.
Training performed over BAS 5 dataset. The black dashed line corresponds to the
data (optimal) average NLL.

these results still do not show much advantage in utilizing it. The increase in
performance is minimal, and comes coupled not only with a higher computational
load, but also with an increase in the noise of the learning curves.

However, this is a very small model, with a fairly simple dataset. This is not the
ideal condition to see the potential benefits of changing the connectivity pattern.
Section 4.3 shows that on the MNIST dataset the performance gain is significantly
higher than on BAS. The next section aims to evaluate this method on MNIST, for
which it is expected that there is much more to gain from introducing the connec-
tivity optimization.

5.5 Experiments on MNIST

Since the BAS dataset is artificial and very different from what one is likely to find
in real world scenarios, Sections 5.5.1 and 5.5.2 present experiments performed upon
the MNIST dataset (Section 2.4.2), considering the sample generation task (average
NLL is the performance metric) and the image classification task (accuracy is the
performance metric), respectively.

In the sample generation task, a classic generative RBM is trained as to generate
random samples similar to the input examples. The performance is assessed using

36

the average NLL across the training set. However, since the exact average NLL can-
not be computed due to intractability of the normalization constant, the Annealed
Importance Sampling (AIS) method is used to derive an approximation [12].

In the classification task, the RBM is trained to classify the digit in the input
image. The RBM is expanded to have 10 additional visible (input) units in order
to encode the label of the image during training. Note that exactly one of the
additional visible units is activated for each input sample, the one corresponding to
the digit (from 0 to 9) in the image. The objective function used in this task was the
same as in the previous task, and is given by the Contrastive Divergence equation
(see Eq. 2.5).

Each image in the dataset has 784 pixels, each of which corresponds to a visible
unit of the RBM. All experiments use 500 hidden units, and training was achieved
using CD with 10 steps of Gibbs sampling (CD-10), or with CD-1, when thus speci-
fied. The learning rate for the model parameters was set to α = 0.1 and mini batches
to size 50. The connectivity learning rate was set to αA = 0.5, with the exception
of one of the experiments in Section 5.5.2, for which αA = α = 0.1 was used. No
momentum or weight decay were used.

The RBMs weight parameters were initialized with null biases and small random
weights, uniformly distributed between [−1, 1]. For the connection threshold in
NCG, γ = 0.5 was adopted as this is the midpoint value in the possible range
for the connection strengths, not favoring either a more sparse (γ > 0.5) or dense
network (γ < 0.5). The connections in NCG were initialized using three values for
p ∈ {1.0, 0.5, 0.1}, which includes initializing with a fully connected network, when
p = 1. Note that in the classification task, the 10 visible units corresponding to the
label of the image are always connected to all hidden units, and these connections
are not subject to optimization.

During training, one epoch corresponds to one iteration over the entire training
dataset with the model’s parameters being updated at every batch. Since the batch
size was 50 data samples, an epoch corresponds to 1200 parameter updates necessary
to iterate over the 60 k samples in the dataset. Batch elements are randomly de-
termined for every epoch. The normalization constant used to compute the average
NLL was approximated using AIS with 100 runs and 14.5 k intermediate distribu-
tions.

Each generative experiment was repeated 10 times and each classification exper-
iment was repeated 25 times. The sample mean performance (lines) along with the
sample distribution quartiles (shades) are reported (50% of the results are within
the shaded area).

Once again, although fine-tuning these parameters could potentially improve the
learning performance of the RBM, the goal here is to compare NCG with the fully

37

connected RBM, and not necessarily obtain the best model.

5.5.1 Generative Results on MNIST

The first set of experiments performed upon the MNIST dataset are similar to the
ones’ observed in Section 4.3, in which the NLL that the RBM achieves throughout
training is analyzed, and the performance obtained by NCG is compared with the
fully connected, traditional RBM.

Figure 5.2 shows the learning curve (evolution of the average NLL over the
epochs) for the classic fully connected RBM and three initializations of the NCG
method. Clearly, the fully connected network exhibits a significantly worse learning
curve, both in terms of sample mean and variance. Interestingly, the three different
initializations for NCG exhibit a very similar performance (with the exception of
apparent outliers observed for the case p = 1).1 While the mean performance for
p = 0.1 could be said to be slightly better, the overlapping quartiles show that the
sparsity of the random initialization is not particularly important in this scenario.
Indeed, the similar learning curves for very different initial networks indicates that
NCG can find effective networks independent of the (random) initial connectivity
pattern.

25 50 75 100 125 150 175 200
Epoch

100

120

140

160

180

200

Av
er

ag
e

NL
L

Traditional Network
NCG, p = 1

NCG, p = 0.5
NCG, p = 0.1

Figure 5.2: Average NLL over the training epochs for different NCG initializations.
Training performed over MNIST dataset with CD-10.

Despite the similar learning curves, the evolution of the network degrees is very
dissimilar across the different initializations. Figure 5.3 shows the evolution of the

1NCG training with p = 1 initialization showed 2 of the 10 runs with much higher than average
NLL at epoch 120 and 1 of the 10 runs at epoch 200.

38

0 50 100 150 200
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(a) p = 1

0 50 100 150 200
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(b) p = 0.5

0 50 100 150 200
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(c) p = 0.1

Figure 5.3: Degree statistics (minimum, average, maximum) of the hidden units
over the training epochs for three different NCG initializations. Generative results
on MNIST, trained using CD-10.

maximum, minimum and average degree of the hidden units for the three initializa-
tions. For p = 1 a sharp decrease is observed in all three statistics in the first 10
epochs, with the curves indicating a slight decay even aver 200 epochs (in particular
the average degree). For p = 0.5 , the initial decrease is not as strong and the curves
indicate convergence after 200 epochs. Interestingly, the case p = 0.1 shows an in-
crease in all three statistics in the first 10 epochs and convergence after 200 epochs.
This indicates that NCG can not only prune connections but also add connections
when the network is too sparse. However, the average degree of the network after
200 epochs depends on the initialization, and is proportional to the density of the
initial network.

The similar learning curves but different network patterns indicate that the joint
optimization of model parameters and network connectivity can compensate for
one another, leading to similar performance even when the connectivity pattern is
different. Indeed, recent results in network pruning suggest that different network
patterns can often achieve similar performance [9]. Moreover, the fast initial change
in the connectivity pattern is related to the relatively large connectivity learning
rate, αA, in comparison to the learning rate of other model parameters (i.e., 5 times

39

larger). The next section explores this hyperparameter.

Contrastive Divergence Approximation

The previous experiments all used the CD-10 approximation, but it is well known
that the number of steps of Gibbs Sampling performed has fundamental influence
over training performance. Therefore, this next set of experiments attempts to
evaluate what is the impact of using CD-1 training (1 step of Gibbs sampling) upon
the NCG method.

Figure 5.4 portrays the learning curves of the traditional and NCG RBMs, and
5.5 the corresponding degree statistics. It is clear that the change to CD-1 results
in a major performance drop for all the considered models: by the end of training
the fully connected RBM has the average NLL around 290 in comparison to the 150
previously achieved, and the models trained with the NCG method reach at most
150, when before the worse average did not surpass 120. The degree statistics for
p = 1 and p = 0.5 appear to show less change than what was observed in CD-10,
but not dramatically so.

25 50 75 100 125 150 175 200
Epoch

150

200

250

300

350

400

Av
er

ag
e

NL
L

Traditional Network
NCG, p = 1

NCG, p = 0.5
NCG, p = 0.1

Figure 5.4: Average NLL over the training epochs for different NCG initializations.
Training performed over MNIST dataset with CD-1.

Interestingly, the NCG models’ NLL values suffer less increase than the classical
RBM, for which the end result is double the CD-10 value, and the relative increase
in performance derived from optimizing the connectivity in this instance increases.

40

0 50 100 150 200
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(a) p = 1

0 50 100 150 200
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(b) p = 0.5

0 50 100 150 200
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(c) p = 0.1

Figure 5.5: Degree statistics (minimum, average, maximum) of the hidden units
over the training epochs for three different NCG initializations. Generative results
on MNIST, trained using CD-1.

5.5.2 Classification Results on MNIST

While the generative task relied on the approximate average NLL to measure the
learning performance of the RBM, the classification task uses a direct and easy to
compute performance metric: the classification accuracy. Thus, the model is trained
to classify the digit in the input image, and the accuracy of the model is simply the
fraction of images correctly classified.

Recall that for the classification task, 10 additional visible units are added to the
input, each corresponding to a digit (from 0 to 9). The connections between these
visible units and all hidden units are not subject to optimization, as they are crucial
for the classification task. In particular, the RBM is trained using Contrastive
Divergence as in the generative task, and is not a priori aware of the classification
task.

Classification is performed by presenting the image to the RBM, setting each la-
bel units to 0.5, calculating the probabilities of each hidden unit being activated, and
finally selecting the label unit (digit) with the higher probability of being activated.
This digit is the predicted label for the image.

Figure 5.6 shows the evolution of the classification accuracy over the epochs for

41

different models for the training and test sets (the test set accuracy is obtained using
the model trained up to the corresponding epoch). Note that all three NCG initial-
izations generate models that appear consistently better than the fully connected
RBM, for both the training and test sets, with higher accuracy means and no over-
lap of the uncertainty’s areas at the end of 10 epochs. Moreover, the performance in
the training and test set are qualitative and quantitatively similar, indicating there
is likely no overfitting occurring.

2 4 6 8 10
Epoch

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

Traditional Network
NCG, p = 1
NCG, p = 0.5
NCG, p = 0.1

(a) Train Set

2 4 6 8 10
Epoch

87
88
89
90
91
92
93
94

Ac
cu

ra
cy

 (%
)

Traditional Network
NCG, p = 1
NCG, p = 0.5
NCG, p = 0.1

(b) Test Set

Figure 5.6: Classification accuracy over the training epochs for different NCG ini-
tializations. Results shown for the train (a) and test (b) sets. Trained with CD-10
and αA = 0.5.

Interestingly, results show that accuracy is inversely proportional to the initial
density during the first epochs of training: initializing the network with fewer con-
nections yields superior accuracy in early stages of training. However, as the number
of epochs increase, the accuracy between the NCG models becomes more similar.
In fact, for 10 epochs the model initialized with p = 0.5 has slightly superior per-
formance. This indicates that NCG is capable of overcoming a poorly initialized
connectivity pattern by adjusting the connections and model weights.

Figure 5.7 portrays the degree statistics (minimum, average, and maximum) of
the network’s hidden units over the epochs for three initializations. Note that for
p = 1 all degrees are 784 at time zero, and NCG significantly reduces the degrees
of the network; the average degree is reduced by 30% after 10 epochs. On the
other hand, for p = 0.1, NCG significantly increases the degrees of the network;
the average degree is 2.5 times larger after 10 epochs. Finally, for p = 0.5 NCG
shows a relatively small change in the degrees. Moreover, while the degrees change
and converge over the epochs, the initialization density has a strong influence: the
average degree of the three models after 10 epochs reflects their initial density.

42

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(a) p = 1

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(b) p = 0.5

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(c) p = 0.1

Figure 5.7: Degree statistics (minimum, average, maximum) of the hidden units
over the training epochs for three different NCG initializations. Classification results
trained with CD-10 and αA = 0.5.

Contrastive Divergence Approximation

As in the generative experiments, we wish to know how the Contrastive Divergence
approximation, as given by the number of Gibbs Sampling steps performed, affects
the NCG method for this alternative task.

In the classification task, NCG is already at a disadvantage, because its goal,
maximize the accuracy, is not the objective function used during training with CD,
which aims to minimize the NLL, and is an approximation to boot. Therefore NCG
trains the connectivity network for a slightly inaccurate objective, as well as all the
other parameters that the traditional network trains. It stands to reason, therefore,
that in worsening the approximation, its performance might suffer.

One can see in Figure 5.8 the evolution of the accuracy over epochs for the
traditional RBM as well as three NCG experiments with initializations, for both the
train and test sets. Figure 5.9 presents the corresponding degree statistics evolution,
giving an idea of how the connectivity changes with training. Once again, the degree
statistics do not show much difference from their CD-10 counterparts, except that
they suffer less change through the training.

Although all RBMs have a worse accuracy performance for this training, it is

43

2 4 6 8 10
Epoch

84

86

88

90

92
Ac

cu
ra

cy
 (%

)

Traditional Network
NCG, p = 1
NCG, p = 0.5
NCG, p = 0.1

(a) Train Set

2 4 6 8 10
Epoch

84

86

88

90

92

Ac
cu

ra
cy

 (%
)

Traditional Network
NCG, p = 1
NCG, p = 0.5
NCG, p = 0.1

(b) Test Set

Figure 5.8: Classification accuracy over the training epochs for different NCG ini-
tializations. Results shown for the train (a) and test (b) sets. Trained with CD-1
and αA = 0.5.

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(a) p = 1

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(b) p = 0.5

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(c) p = 0.1

Figure 5.9: Degree statistics (minimum, average, maximum) of the hidden units
over the training epochs for three different NCG initializations. Classification results
trained with CD-1 and αA = 0.5.

clear from the images that the NCG method loses also relative performance with
respect to the fully connected model. In these circumstances, only NCG initializing
with all connections activated (p = 1) manages to surpass the traditional RBM,
and even then they have very close results. It is not clear that the difference is

44

statistically significant. The p = 0.1 training seems to suffer the most, not managing
a better accuracy even in the first epoch of training. Overall, we see an altogether
different situation as the one observed in the generative task, for which the addition
of connectivity optimization resulted only in positive results, regardless of the CD
approximation used.

Connectivity Learning Rate

The relatively higher connectivity learning rate αA = 0.5 plays an important role in
allowing the network to evolve fast in the early stages of training. Intuitively, this
allows NCG to quickly adjust for poor initial network patterns before other model
parameters start to converge.

Figure 5.10 shows the accuracy when using a connectivity learning rate of αA =

0.1, which is equal to the learning rate of other model parameters. Note the decrease
in the accuracy for all three initializations for all 10 epochs (in comparison to Figure
5.6).

2 4 6 8 10
Epoch

86
87
88
89
90
91
92
93

Ac
cu

ra
cy

 (%
)

Traditional Network
NCG, p = 1
NCG, p = 0.5
NCG, p = 0.1

(a) Train Set

2 4 6 8 10
Epoch

87

88

89

90

91

92

93

Ac
cu

ra
cy

 (%
)

Traditional Network
NCG, p = 1
NCG, p = 0.5
NCG, p = 0.1

(b) Test Set

Figure 5.10: Classification accuracy over the training epochs for different NCG
intializations. Results shown in the train (a) and test (b) sets. Trained with CD-10
and αA = 0.1.

Interestingly, while the performance for p = 0.1 is superior after 1 epoch of
training (as with αA = 0.5), the model fails to improve its accuracy as in the
previous experiment and falls behind the other models, including the fully connected
network. Intuitively, the model cannot adjust its connection pattern fast enough
and the connectivity gradient becomes subdued by other model parameters. This is
corroborated by the results observed in Figure 5.11, that has the degree statistics
evolution through training. It is clear, when compared with Figure 5.7, that there
is a much slower connectivity update.

This example highlights the importance of decoupling the learning rates when
jointly optimizing network connectivity and other model parameters.

45

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(a) p = 1

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(b) p = 0.5

0 2 4 6 8 10
Epoch

0

200

400

600

800

De
gr

ee

Max
Mean
Min

(c) p = 0.1

Figure 5.11: Degree statistics (minimum, average, maximum) of the hidden units
over the training epochs for three different NCG initializations. Classification results
trained with CD-10 and αA = 0.1.

46

Chapter 6

Conclusions

This work presented a broad analysis of the Connectivity Network of the Restricted
Boltzmann Machine (RBM), first verifying that this hyperparameter plays a fun-
damental role in its learning performance, and then by proposing and perusing the
Network Connectivity Gradient (NCG) method, designed to learn the optimal con-
nectivity jointly with other model parameters (weights and biases).

Experiments with different connectivity patterns and different number of con-
nections (per unit) revealed that the average NLL for both the synthetic BAS model
and the MNIST dataset strongly depends on the network connectivity. In particu-
lar, results demonstrate that connectivity pattern and number of connections play
independent roles: (1) two patterns with the same number of connections can have
very different performance; (2) a single pattern using two different number of con-
nections can have very different performance. Interestingly, for a given pattern the
learning performance is not monotonic on the number of connections, in the sense
that having less connections than the fully connected network can exhibit increased
performance, allowing for faster and/or better learning. Moreover, for larger models
(BAS 8 and MNIST) the learning performance of the RBM depends even more on
network connectivity given that differences in patterns and number of connections
are magnified.

NCG computes gradients for each possible network connection given a connec-
tivity pattern. The gradients are used to drive the continuous connectivity strength
parameter that in turn determines to maintain, add or remove the connection. NCG
requires no change in RBM’s objective function nor its classic optimization frame-
work. Despite not showing much improvement on the BAS 5 dataset, evaluation of
NCG on a generative and classification task using MNIST data demonstrated its ef-
fectiveness in learning better models (learning faster and better), and also robustness
with respect to initialization.

47

6.1 Future Work

There are many more analyses that can still be made upon the NCG method. For
example, we wish to evaluate what is its performance using other types of initial-
ization, in particular deterministic initializations. It would be interesting to observe
what is the method’s performance if the RBM already starts with a “good” con-
nectivity pattern. Will it surpass the training without connectivity optimization or
perhaps fall short? This analysis could include both the neighbors patterns pro-
posed in Chapter 4 and others obtained through the analysis of the data, such as
techniques used to prune neural networks at the initialization phase [25, 26, 46]. We
believe that these changes can greatly improve NCG’s performance.

Furthermore, we wish to further explore both the connectivity and the default
training learning rates. These are key paramters, and can greatly improve the RBM
learning. In this work only static learning rates have been used, but it is known
that better results are yielded by using dynamic rates, which start with high values,
providing a fast initial improvement, and decrease with learning time, so that a
better parameter fine-tuning can be achieved.

It is also important to address the issue of determining which connectivity learn-
ing threshold should be used. We have utilized the intuitive value of 0.5, but it is
not clear that this is the best for training. It is important that the variation of the
threshold be explored. Favoring of a more sparse network via the use of a higher
threshold could be beneficial to training, as the works on network pruning suggest.
Moreover, the optimal threshold might not be symmetrical: hysteresis could help
avoid oscillations and make the connectivity optimization more dynamic.

48

References

[1] DAI, Z., LIU, H., LE, Q. V., et al. “CoAtNet: Marrying Convolution and Atten-
tion for All Data Sizes”. In: Advances in Neural Information Processing
Systems (NIPS), 2021.

[2] BROWN, T., MANN, B., RYDER, N., et al. “Language Models are Few-
Shot Learners”. In: Advances in Neural Information Processing Systems
(NIPS), pp. 1877–1901, 2020.

[3] HE, K., ZHANG, X., REN, S., et al. “Deep Residual Learning for Image Recogni-
tion”. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 770–778, 2016.

[4] DEVLIN, J., CHANG, M.-W., LEE, K., et al. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”. In: Conference
of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-HLT), pp. 4171–4186,
2019.

[5] LINDAUER, M., HUTTER, F. “Best Practices for Scientific Research on Neural
Architecture Search”, Journal of Machine Learning Research, v. 21, n.
243, pp. 1–18, 2020.

[6] FUKUSHIMA, K., MIYAKE, S. “Neocognitron: A Self-Organizing Neural Net-
work Model for a Mechanism of Visual Pattern Recognition”. In: Compe-
tition and Cooperation in Neural Nets, pp. 267–285, 1982.

[7] LECUN, Y., BENGIO, Y., HINTON, G. “Deep learning”, Nature, v. 521, n.
7553, pp. 436–444, 2015.

[8] REED, R. “Pruning Algorithms–A Survey”, IEEE Transactions on Neural Net-
works, v. 4, n. 5, pp. 740–747, 1993.

[9] BLALOCK, D., GONZALEZ ORTIZ, J. J., FRANKLE, J., et al. “What is the
State of Neural Network Pruning?” In: Machine Learning and Systems
(MLSys), pp. 129–146, 2020.

49

[10] CÔTÉ, M.-A., LAROCHELLE, H. “An Infinite Restricted Boltzmann Ma-
chine”, Neural computation, v. 28, n. 7, pp. 1265–1288, 2016.

[11] FISCHER, A., IGEL, C. “Training Restricted Boltzmann Machines: An intro-
duction”, Pattern Recognition, v. 47, n. 1, pp. 25–39, 2014.

[12] SALAKHUTDINOV, R., MURRAY, I. “On the Quantitative Analysis of
Deep Belief Networks”. In: International Conference on Machine Learning
(ICML), pp. 872–879, 2008.

[13] GRCIĆ, M., GRUBIŠIĆ, I., ŠEGVIĆ, S. “Densely connected normalizing flows”.
In: Advances in Neural Information Processing Systems (NIPS), 2021.

[14] XIE, Q., DAI, Z., HOVY, E., et al. “Unsupervised Data Augmentation for
Consistency Training”. In: Advances in Neural Information Processing
Systems (NIPS), pp. 6256–6268, 2020.

[15] ELSKEN, T., METZEN, J. H., HUTTER, F. “Neural Architecture Search: A
Survey.” Journal of Machine Learning Research, v. 20, n. 55, pp. 1–21,
2019.

[16] LIU, H., SIMONYAN, K., YANG, Y. “DARTS: Differentiable Architec-
ture Search”. In: International Conference on Learning Representations
(ICLR), 2019.

[17] YING, C., KLEIN, A., CHRISTIANSEN, E., et al. “NAS-Bench-101: Towards
Reproducible Neural Architecture Search”. In: International Conference
on Machine Learning (ICML), pp. 7105–7114, 2019.

[18] DONG, X., LIU, L., MUSIAL, K., et al. “NATS-Bench: Benchmarking NAS
Algorithms for Architecture Topology and Size”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, v. PP, pp. 1–1, 2021.

[19] FANG, J., SUN, Y., ZHANG, Q., et al. “Densely Connected Search Space for
More Flexible Neural Architecture Search”. In: IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 10628–10637,
2020.

[20] ABU-MOSTAFA, Y. S., MAGDON-ISMAIL, M., LIN, H.-T. Learning from
data, v. 4. 2012.

[21] LIANG, T., GLOSSNER, J., WANG, L., et al. “Pruning and quantization for
deep neural network acceleration: A survey”, Neurocomputing, v. 461,
pp. 370–403, 2021.

50

[22] LECUN, Y., DENKER, J. S., SOLLA, S. A. “Optimal Brain Damage”. In:
Advances in Neural Information Processing Systems (NIPS), pp. 598–605,
1990.

[23] HAN, S., POOL, J., TRAN, J., et al. “Learning Both Weights and Connec-
tions for Efficient Neural Networks”. In: Advances in Neural Information
Processing Systems (NIPS), p. 1135–1143, 2015.

[24] FRANKLE, J., CARBIN, M. “The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks”. In: International Conference on Learning
Representations (ICLR), 2019.

[25] LEE, N., AJANTHAN, T., TORR, P. “SNIP: Single-shot Network Pruning
based on Connection Sensitivity”. In: International Conference on Learn-
ing Representations (ICLR), 2019.

[26] DE JORGE, P., SANYAL, A., BEHL, H. S., et al. “Progressive skeletonization:
Trimming more fat from a network at initialization”. In: International
Conference on Learning Representations (ICLR), 2021.

[27] SAVARESE, P., SILVA, H., MAIRE, M. “Winning the Lottery with Continuous
Sparsification”. In: Advances in Neural Information Processing Systems
(NIPS), pp. 11380–11390, 2020.

[28] CHEN, T., SUI, Y., CHEN, X., et al. “A Unified Lottery Ticket Hypothesis
for Graph Neural Networks”. In: International Conference on Machine
Learning (ICML), pp. 1695–1706, 2021.

[29] ZHOU, A., MA, Y., ZHU, J., et al. “Learning N:M Fine-grained Structured
Sparse Neural Networks From Scratch”. In: International Conference on
Learning Representations (ICLR), 2021.

[30] SMOLENSKY, P. “Information Processing in Dynamical Systems: Foundations
of Harmony Theory”. In: Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Vol. 1: Foundations, p. 194–281, 1986.

[31] DECELLE, A., FURTLEHNER, C. “Restricted Boltzmann Machine: Re-
cent advances and mean-field theory”, Chinese Physics B, v. 30, n. 4,
pp. 040202, 2021.

[32] LANDAU, L. D., LIFSHITZ, E. M. “Chapter III - The Gibbs Distribution”. In:
Statistical Physics, pp. 79–110, 1980.

51

[33] ROUX, N. L., HEESS, N., SHOTTON, J., et al. “Learning a generative model
of images by factoring appearance and shape”, Neural Computation, v. 23,
n. 3, pp. 593–650, 2011.

[34] TANG, Y., SALAKHUTDINOV, R., HINTON, G. “Robust Boltzmann Ma-
chines for recognition and denoising”. In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 2264–2271, 2012.

[35] TIELEMAN, T. “Training Restricted Boltzmann Machines Using Approxima-
tions to the Likelihood Gradient”. In: International Conference on Ma-
chine Learning (ICML), p. 1064–1071, 2008.

[36] LAROCHELLE, H., MANDEL, M., PASCANU, R., et al. “Learning Algorithms
for the Classification Restricted Boltzmann Machine”, Journal of Machine
Learning Research, v. 13, n. 1, pp. 643–669, 2012.

[37] MIDHUN, M. E., NAIR, S. R., PRABHAKAR, V. T. N., et al. “Deep Model
for Classification of Hyperspectral Image Using Restricted Boltzmann Ma-
chine”. In: International Conference on Interdisciplinary Advances in Ap-
plied Computing (ICONIAAC), pp. 1–7, 2014.

[38] QIANG, N., DONG, Q., ZHANG, W., et al. “Modeling task-based fMRI data
via deep belief network with neural architecture search”, Computerized
Medical Imaging and Graphics, v. 83, pp. 101747, 2020.

[39] BOTTOU, L. “Large-Scale Machine Learning with Stochastic Gradient De-
scent”. In: International Conference on Computational Statistics (COMP-
STAT), pp. 177–186, 2010.

[40] HINTON, G. E. “A Practical Guide to Training Restricted Boltzmann Ma-
chines”. In: Neural networks: Tricks of the trade, pp. 599–619, 2012.

[41] HINTON, G. E. “Training Products of Experts by Minimizing Contrastive
Divergence”, Neural computation, v. 14, n. 8, pp. 1771–1800, 2002.

[42] PAPA, J. P., ROSA, G. H., COSTA, K. A., et al. “On the Model Selection
of Bernoulli Restricted Boltzmann Machines Through Harmony Search”.
In: Conference on Genetic and Evolutionary Computation (GECCO), p.
1449–1450, 2015.

[43] SAVARESE, P. H. P., KAKODKAR, M., RIBEIRO, B. “From Monte Carlo to
Las Vegas: Improving Restricted Boltzmann Machine Training through
Stopping Sets”. In: AAAI Conference on Artificial Intelligence, pp. 4016–
4025, 2018.

52

[44] MACKAY, D. J. C. Information Theory, Inference and Learning Algorithms.
2003.

[45] METROPOLIS, N. “The Beginning of the Monte Carlo Method”. In: Los
Alamos Science Special Issue, v. 15, pp. 125–130, 1987.

[46] WANG, C., ZHANG, G., GROSSE, R. “Picking winning tickets before training
by preserving gradient flow”. In: International Conference on Learning
Representations (ICLR), 2020.

53

Appendix A

Connectivity Analysis Quartile
Figures

This appendix contains the missing quartile figures from Chapter 4, organized by
the sections on which the original plots are displayed.

A.1 Analysis on BAS

A.1.1 Number of Connections

0 2000 4000 6000 8000 10000
Epoch

4

6

8

10

12

14

16

Av
er

ag
e

NL
L

v = 16
Line, v = 14
Spiral, v = 14
Line, v = 12
Spiral, v = 12
Line, v = 8

Spiral, v = 8
Line, v = 6
Spiral, v = 6
Line, v = 4
Spiral, v = 4
Cross

Figure A.1: (Regarding Figure 4.4) Evolution of the average NLL over training
epochs for different numbers of connections for the line (full curves) and spiral
patterns (dashed curves). The cross pattern is also added. RBMs with the same
number of connections are shown with different shades of the same color. The
network with v = 16 is the same for both patterns and corresponds to the fully
connected traditional RBM. The black dashed line corresponds to the data (optimal)
average NLL.

54

A.1.2 Contrastive Divergence Approximation

0 2000 4000 6000 8000 10000
Epoch

4

6

8

10

12

14

16

Av
er

ag
e

NL
L

v = 16
Line, v = 14
Spiral, v = 14
Line, v = 12
Spiral, v = 12

Line, v = 8
Spiral, v = 8
Line, v = 4
Spiral, v = 4

(a) CD-1

0 2000 4000 6000 8000 10000
Epoch

4

6

8

10

12

14

16

Av
er

ag
e

NL
L

v = 16
Line, v = 14
Spiral, v = 14
Line, v = 12
Spiral, v = 12

Line, v = 8
Spiral, v = 8
Line, v = 4
Spiral, v = 4

(b) CD-10

0 2000 4000 6000 8000 10000
Epoch

4

6

8

10

12

14

16

Av
er

ag
e

NL
L

v = 16
Line, v = 14
Spiral, v = 14
Line, v = 12
Spiral, v = 12

Line, v = 8
Spiral, v = 8
Line, v = 4
Spiral, v = 4

(c) CD-100

Figure A.2: (Regarding Figure 4.5) Evolution of the average NLL over training
epochs for different numbers of connections and network structures. Each subplot
corresponds to a different CD approximation: the left plot was trained with CD-1,
in which only 1 sampling step is applied, the center plot uses 10 sampling steps and
the right plot 100 steps. RBMs with the same number of connections are shown
with different shades of the same color. The network with v = 16 is the same for
both patterns and corresponds to the fully connected traditional RBM. The black
dashed line corresponds to the data (optimal) average NLL.

A.1.3 Larger Models

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

4

6

8

10

12

14

16

18

20

Av
er

ag
e

NL
L

v = 25
Line, v = 18
Spiral, v = 18
Line, v = 13
Spiral, v = 13
Line, v = 8
Spiral, v = 8

(a) BAS 5

0 200 400 600 800 1000
Epoch

5

10

15

20

25

30

35

40

45

50

Av
er

ag
e

NL
L

v = 64
Line, v = 48
Spiral, v = 48
Line, v = 32
Spiral, v = 32
Line, v = 16
Spiral, v = 16

(b) BAS 8

Figure A.3: (Regarding Figure 4.6) Average NLL through training epochs for dif-
ferent numbers of connections and BAS models: BAS 5 with X = 25 (a) and BAS
8 with X = 64 (b). For each plot, RBMs with the same number of connections
are shown with different shades of the same color. The fully connected RBM is the
same for both patterns (blue curves). The black dashed line corresponds to the data
(optimal) average NLL.

55

A.2 Analysis on MNIST

0 10 20 30 40 50 60
Epoch

100

200

300

400

500

600

Av
er

ag
e

NL
L

v = 784
Line, v = 588
Spiral, v = 588
Line, v = 392

Spiral, v = 392
Line, v = 196
Spiral, v = 196
Line, v = 98

Spiral, v = 98
Line, v = 16
Spiral, v = 16

Figure A.4: (Regarding Figure 4.7) Average NLL through training epochs for differ-
ent numbers of connections and connectivity patterns. RBMs with the same number
of connections are shown with different shades of the same color. v = 784 corre-
sponds to the fully connected RBM.

56

	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Contributions
	Organization

	Background and Datasets
	Neural Architecture Search
	Network Pruning
	The Restricted Boltzmann Machine
	Usage
	Training the Model

	Datasets
	Bars And Stripes
	MNIST Database of Handwritten Digits

	Network Connectivity and Performance Estimation
	Network Connectivity
	Generative Performance Estimation
	Monte Carlo
	Truncation
	Comparison

	Connectivity Search Space Analysis
	Connectivity Patterns
	Analysis on BAS
	Connectivity Structure
	Number of Connections
	Contrastive Divergence Approximation
	Larger Models

	Analysis on MNIST

	Network Connectivity Gradient
	Method
	Initialization
	Implementation
	Experiments on BAS
	Experiments on MNIST
	Generative Results on MNIST
	Classification Results on MNIST

	Conclusions
	Future Work

	References
	Connectivity Analysis Quartile Figures
	Analysis on BAS
	Number of Connections
	Contrastive Divergence Approximation
	Larger Models

	Analysis on MNIST

