
DETECTING MULTIPLE EPIDEMIC SOURCES IN NETWORK EPIDEMICS
USING GRAPH NEURAL NETWORKS

Rodrigo Gonçalves Haddad

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
de Sistemas e Computação, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia de Sistemas e
Computação.

Orientador: Daniel Ratton Figueiredo

Rio de Janeiro
Maio de 2023



DETECTING MULTIPLE EPIDEMIC SOURCES IN NETWORK EPIDEMICS
USING GRAPH NEURAL NETWORKS

Rodrigo Gonçalves Haddad

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO
GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E
COMPUTAÇÃO.

Orientador: Daniel Ratton Figueiredo

Aprovada por: Prof. Daniel Ratton Figueiredo
Profª. Aline Marins Paes
Prof. Valmir Carneiro Barbosa

RIO DE JANEIRO, RJ – BRASIL
MAIO DE 2023



Gonçalves Haddad, Rodrigo
Detecting Multiple Epidemic Sources in Network

Epidemics using Graph Neural Networks/Rodrigo
Gonçalves Haddad. – Rio de Janeiro: UFRJ/COPPE,
2023.

XIV, 60 p.: il.; 29, 7cm.
Orientador: Daniel Ratton Figueiredo
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2023.
Referências Bibliográficas: p. 48 – 52.
1. Graph Neural Network. 2. Network Epidemic.

3. Graph Embedding. I. Ratton Figueiredo, Daniel.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Título.

iii



A minha mãe por me
proporcionar todas as

ferramentas para que eu pudesse
realizar meus sonhos.

iv



Agradecimentos

Primeiramente, expresso minha gratidão por tudo o que meu pais fizeram por mim;
o seu apoio e encorajamento me moldaram na pessoa que sou hoje. Mãe, o seu amor
e dedicação durante minha criação foram a base da minha vida e pavimentaram
minha jornada. Você sempre se fez presente como porto seguro e sou grato a isso.

Aos meus avós, sou grato por ter contato com sua sabedoria e lições de vida.
Desde pequeno, sempre pude contar com seu apoio mesmo com a distância. Vocês
têm sido fonte de inspiração e acolhimento e sou afortunado pelo privilégio de tê-los
comigo.

Aos meus amigos e namorada, seu apoio, conselhos e incentivos significam muito
para mim. Nossos momentos de descontração e desabafo foram valiosos para ajudar
a me recompor durante as dificuldades.

A todos os professores que tive contato desde os primeiros dias de escola, sou
grato pela dedicação, paciência e ensinamentos. Obrigado por serem parte de uma
classe tão importante na nossa formação.

Ao meu orientador, obrigado pela seus ensinamentos e acompanhamento ao longo
do mestrado. Seu apreço pela pesquisa é inspirador para mim e suas contribuições
me ajudaram a aprimorar minhas habilidades e a me tornar um melhor profissional.

A Universidade Federal do Rio de Janeiro, sou grato pela educação, oportu-
nidades e desafios proporcionados a mim. A sua excelência no ensino e pesquisa
me preparam para os desafios da vida e guardarei com agrado as memórias das
experiências que vivenciei na instituição desde a graduação.

v
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DETECÇÃO DE MÚLTIPLAS FONTES DE EPIDEMIA EM REDES
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Grafos são abstrações matemáticas usadas para representar entidades e relaciona-
mentos entre eles. Um dos processos mais importantes que podem ser modelados por
meio de grafos são as epidemias em redes. Nas epidemias em redes, as informações
se espalham pela rede e eventualmente atingem os nós localizados longe de seu local
de origem. Em muitos cenários, o processo de disseminação começa em um único ou
em um número relativamente pequeno de nós, conhecidos como fontes epidêmicas.
Identificar o nó fonte (ou vários nós fonte) após o desdobramento de uma epidemia
é um problema fundamental, pois revela sua origem. Este trabalho trata da de-
tecção de fontes epidêmicas em redes artificiais e do mundo real de diferentes tipos
e tamanhos com nós suscetíveis e infectados. É proposto um algoritmo para apri-
moramento de atributos de nós seguido pelo treinamento de redes neurais de grafos.
O modelo treinado é então aplicado a novos padrões de infecção e estruturas de rede
para encontrar os nós responsáveis por iniciar a epidemia.

vi



Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

DETECTING MULTIPLE EPIDEMIC SOURCES IN NETWORK EPIDEMICS
USING GRAPH NEURAL NETWORKS

Rodrigo Gonçalves Haddad

May/2023

Advisor: Daniel Ratton Figueiredo

Department: Systems Engineering and Computer Science

Graphs are mathematical abstractions used to represent entities and relation-
ships between them. One of the most important process that can be modeled
through graphs is network epidemics. In network epidemics, information spreads
throughout the network and eventually reaches nodes located far from its beginning
place. In many scenarios, the dissemination process starts on a single or a relative
small number of network nodes, known as epidemic sources. Identifying the source
node (or multiple source nodes) after an epidemic has unfolded is a fundamental
problem, since it reveals its origin. This work deals with the detection of epidemic’s
sources problem in artificial and real world networks from different types and sizes
with susceptible and infected nodes. It is proposed an algorithm for node attribute
enhancement followed by graph neural network training. The trained model is then
applied to new infection patterns and network structures to find the nodes respon-
sible for starting the epidemic.
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Chapter 1

Introduction

Due to the number of parties involved and the nature of their connection, relation-
ships between individuals can be quite complex, lacking regularity or simple rules
that can be difficult to model effectively. For that matter, graphs are mathematical
abstractions used to represent relationships between entities and provide a starting
point for mathematical analysis. The entities involved are represented by nodes and
edges represent relationships between entities. Nodes are used to represent people,
objects, geographic points, human cells and more. Edges are used to depict a variety
of relations such as interactions between cells in an organism, interactions among
people in a social network, submarine internet cable connections between countries
among others.

Among various processes that take place on graphs, the spread of information is
among the most important ones. Information can propagate through the network
reaching nodes far away from its starting point after some time. The propagation
takes form in natural and human related events that happen inside networks such as
social networks (rumors and false information spread), medical networks (contagious
diseases spread) and financial networks (financial failures) [11]. However, the spread
of information does not necessarily has a negative connotation; more frequently, non-
harmful information propagate by files, news and advertisements. Indeed, different
sorts of information travel through various networks in various ways.

In many scenarios, the dissemination process starts on a single or a very small
number of network nodes, known as the epidemic source. Thus, identifying the
source node (or multiple source nodes) after an epidemic has unfolded is a fun-
damental problem, since it reveals the origin of the epidemic. In spite of that,
identifying the source nodes is not an easy task and the difficulty lies on how much
the epidemic has advanced in the network after the first contagion. Usually, a single
snapshot of the network after the information has spread is available, making it
difficult to identify the initial infected nodes, then the more advanced the diffusion,
the harder it is to identify where it started. Network structure namely its degree
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distribution and diameter play a fundamental role on how information travels.

Figure 1.1: Advance of SARS-CoV-2 in a group of individuals from Haslemere-UK.
From a-b 10 days have passed, b-c 20 days have passed and c-d 70 days have
passed. The social network contains 468 nodes and 1257 edges weighted by the
contact strength. Extracted and adapted from [1].

For over a decade, efforts have been made to address the problem of identifying
the source of an epidemic. The pioneering methods started by classifying single
sources in networks that would contain only susceptible and infected nodes [12],
which evolved to multiple source detection on different diffusion patterns [13]. They
range from maximizing likelihood while trying to find nodes with great probability
of being sources [13] to iteratively propagate node labels to accumulate values from
its neighbors [14]. More recently, learning-based approaches began being used to
tackle the problem. In this case, the model is bound to the same graph structure
which the model was trained with and learns to identify the source of an epidemic
by creating latent representations for each node and classifying them as sources or
non-sources [10].

Besides the existence of said algorithms, the SD (Source Detection) problem
remains being challenging mainly when the epidemic starts in multiple nodes in a
large network. This thesis discusses the implementation of a learning-based method
which is not structure bound, i.e., it is capable of tackling the problem for unseen
networks and different contagions.
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1.1 Motivation

Numerous types of epidemics ranging from viral spread to information dissemina-
tion have occurred throughout human history with severe impact for mankind. The
most recent was the COVID-19 wave; Figure 1.1 depicts a simulated advance of
COVID-19 in a group of individuals from Haslemere-UK. This simulation shows
how quickly an epidemic that started on a single node is capable of spreading when
no control scenarios, such as quarantine and isolation, are taken. Network shown
in Figure 1.1(d) is the average of 75% of individuals infected after several simula-
tions, whereas more controlled scenario would reduced it to 16%. Also, while the
COVID-19 virus was physically spreading among humans, rumours and fakenews
were being disseminated through digital platforms. Overall, the study of epidemics
allows predicting the impact of an epidemic or evaluate the effectiveness of control
measures. The spread of information between individuals in a network can be ap-
proximated by mathematical models. There are numerous studies about different
types of epidemic models that try to simulate different kinds of diffusion; a model
that nicely captures the characteristics of a virus spread may not be the best to
capture the diffusion of rumours in a digital social network.

An important issue that naturally arises when considering epidemics is to find
where it started. In a network, this is equivalent to finding the node (or group of
nodes) responsible for the first contagion. This problem has real life applications
e.g., which account started a false message trend or in which computer a virus first
entered a corporate network.

One key factor is the network observed after the epidemic has started and what
information is provided in this observation. If the infection time of every node is
available, then identifying the source node is trivial. However, if no time data is
available and only the set of infected nodes is observed at a certain point in time,
then identifying the source node is much more challenging.

1.2 Problem Definition

Let G = (V,E) represent a connected undirected graph containing a set of vertices
V and a set of edges E and let Y in V denote the set of source nodes responsible
for initiating the spread of information.

Consider an epidemic model that infects uninfected nodes from the V set. After
a percentage of the graph is infected a snapshot of the graph denoted by O is taken.
O contains the same structure of G such that O = (V,E, I), where I is the set of
infected nodes, I ⊆ V .

The goal is to identify Y from O by designing a function F that returns the set
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of nodes where the epidemic started Y ∗ = F (O). As the ground truth is denoted by
Y , the quality of the function F can be measured by the Jaccard similarity between
the two sets Y ∗ and Y , which is given by:

q(F,O) = |Y
∗ ∩ Y |

|Y ∗ ∪ Y |
(1.1)

Observe that when q(F,O) depends also on the observation O and q(F,O) = 1

only when the exact set of source nodes is identified by F .

1.3 Objective and Contribution

This thesis addresses the problem of identifying multiple epidemic sources in different
types of networks under different observations (infection percentage) of the epidemic.
The main contributions are:

• The design and implementation of a framework using Graph Convolutional
Networks to identify the set of source nodes of an epidemic. The framework
is inductive and a trained model can be used in different unseen networks.

• Novel attributes for node features that reflect their local epidemic state, taking
into consideration neighborhoods at different distances.

• Empirical evaluation of the proposed framework on real networks and synthetic
network models along with an in depth discussion of the model performance
while varying the infection snapshot and number of source nodes. Curiously,
results indicate that the effectiveness of the framework improves as the number
of sources increases, despite the probable appearance of infection clusters that
overlap.

1.4 Structure

The following chapters are organized as follows:

• Chapter 2 presents the necessary background and related work. In particular,
epidemic models are introduced as well as algorithms used to generate node
embedding including a discussion about Graph Neural Network.

• In Chapter 3, it is discussed the novel metrics implemented to generate at-
tributes for nodes from the observation of a network with infected nodes. This
attributes are an important part of GNN application.

4



• In Chapter 4, it is presented the technical implementation of infection prop-
agation and GCN construction. It is further described metrics and baselines
used to compare to other works.

• Chapter 5 presents an empirical evaluation of the proposed framework under
various conditions such as different networks, observations, and numbers of
sources.

• Chapter 6 presents a conclusion of the work along with a path for future work.
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Chapter 2

Preliminaries and Related Work

This chapter presents related work and important concepts and is organized as
follows: Section 2.1 presents structural node embeddings which are used to create
vector representations for nodes of graphs in Euclidian space. Section 2.2 introduces
Graph Neural Networks (GNN) and its derivatives and how it is used to generate
graph embeddings leveraging node attributes. Section 2.3 introduces epidemics on
networks; the different models used to characterize different epidemics and different
models for observation after contagion. Section 2.4 discusses approaches that tackle
the source identification problem from pioneering works to those considered state-
of-art.

2.1 Node Embedding

Graph embedding is the task of generating a vector representation for nodes of the
graph with a desired number of dimensions. Embeddings have received a lot of
attention because they transform network information in latent data that can be
easily employed in mathematical models.

Figure 2.1: On the left, the well known Karate graph representing a social network.
On the right, a continuous two dimensional space embedding representation of the
nodes using DeepWalk. Extracted from [2].

Algorithms that generate embeddings take different features in consideration:
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structural embeddings take into account nodes neighbors; while GNN approaches
leverage node and edge attributes by using functions to aggregate structural and
attribute data.

2.1.1 Structural node embedding

The technique based on network structure generates a representation (embedding)
on d-dimensions leveraging primarily structural network characteristics. Because it
takes into consideration structural data, neighboring nodes will likely have similar
representation while distant nodes will differ. Some of the more prominent algo-
rithms to generate embedding are discusses below.

Word2vec [15] is a natural language processing algorithm that is not directly
connected to graph embedding. It aims to generate an embedding for every word
so it is possible to predict words inside the same context. At first glance, word2vec
seems useful only when dealing with text documents, however researchers were able
to establish a parallel for networks. The same way a piece of text is an ordered
sequence of words, one could apply random walks to sample nodes from a graph
extracting an ordered sequence of nodes. For that reason, word2vec inspired a series
of articles concerning structural embeddings.

DeepWalk [16] learns latent representations sampling neighborhoods for every
node in the graph by drawing random walks of certain size starting on the target
node. DeepWalk aims to provide a social representation of a graph’s vertex as
it captures neighborhood similarity and community membership. After sampling,
the node sequence is used as input to a SkipGram algorithm. As SkipGram [17]
maximizes the co-occurrence probability among the words that appear within the
same window, nodes close to each other will likely have a similar representation
and thus embedding. Figure 2.1 represents a embedding generated by DeepWalk.
Node2vec [18] is a semi-supervised algorithm for scalable feature learning in networks
and is based on DeepWalk. However, node2vec proposes a biased second order
random walk aiming at transitioning between DFS and BFS when walking the graph
by introducing two new parameters (called return and in-out) that control how fast
the walk explores and leaves the starting node neighborhood. DeepWalk is described
by node2vec creators as a special case of node2vec since similar algorithm can be
achieved by adjusting two parameters p (which controls the likelihood of immediately
revisiting a node in the walk) and q (which allows the search to differentiate between
visiting more frequently further away nodes from closer nodes).

A more recent approach struct2vec [19] makes use of structural identity. To reach
its objective, it calculates the structural similarity between each vertices pair present
in the graph for different neighborhood sizes. Next, a multi-layered weighted graph
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is constructed where layers represent the k-distance neighborhood. A biased random
walk is used to generate node sequences in the multi-layered graph (the sequences
are likely to have nodes structurally similar). Node sequence is then used as input
to a learning technique such as SkipGram, as node2vec.

Another algorithm example, subgraph2vec [20] learns latent representations of
rooted subgraphs from large graphs. First, it generates rooted subgraphs around
every node in a given graph applying Weisfeiler-Lehman kernel. After the subgraph
is extracted, it is used as input to a radial SkipGram model which differs from
the vanilla algorithm by learning the embedding of a target subgraph using its
surrounding radial context.

Noticeable, random walks are largely used to generate random sequences of nodes
of a graph while also reducing memory usage when extracting random samples of
large graphs (i.e., not all paths are considered). Also, structural embedding, as
the name suggests, does not seek to leverage node attributes when learning latent
representations leaving room for other algorithms that do.

2.2 Graph Neural Networks

Graph Neural Networks (GNN) were created to extend existing neural network meth-
ods for processing data in graph domains by mapping nodes into Euclidean space
applying supervised or unsupervised learning algorithms [21]. Bronstein et al.[3]
classifies GNN as one of the most general class of deep learning architectures as
other deep learning architectures can be interpreted as a special case of GNN. GNN
in itself can be divided in two functions: permutation equivariant and permuta-
tion invariant. Equivariant functions are constructed by applying shared invariant
functions over local neighborhoods. These local functions are usually referred as
“diffusion”, “propagation” or “message passing”, and the overall computation as a
“GNN layer”. Most GNN layers may be derived from three flavours of layers: convo-
lutional, attentional and message-passing. These flavours govern the extent to which
invariant functions transforms the neighborhood features. It is worth noting that the
presented types are nested as follows: convolution ⊆ attention ⊆ message-passing.

In all of them, permutation invariance is ensured by aggregating transformed
features with some permutation invariant function and then updating the features
of the target node by means of some function. Usually, the aggregator function is
non-parametric and not learnable, as it represents an operation such as sum, mean
or maximum.

Figure 2.2 visually presents the differences in each layer of the three types of
GNN. Convolutional envolves aggregating features of neighborhood nodes with
fixed weights (denoted by the constant cuv) that specify the importance of node v to
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Figure 2.2: A schematic of information flow through GNN’s different flavours. Ex-
tracted from [3].

node u depending on the adjacency matrix. Attentional on the other hand com-
putes the weight in a learnable fashion by αuv = a (xu,xv) while message-passing
aggregates vectors generated from neighboring nodes computed by muv = ψ (xu,xv).
More emphasis will be given to message-passing since it better describes the algo-
rithm used later in this work, which consists on computing arbitrary vector across
edges. Described as:

hu = ϕ

(
xu,

⊕
v∈Nu

ψ (xu,xv)

)
(2.1)

Where a vector message v is sent to node u by its neighbors and aggregated by⊕
function and updated by ϕ function. ψ is the learnable message function.
As per Hamilton[6], it is also important to disclose how different node classifica-

tion settings work during training. Transductive nodes are unlabeled nodes which
are involved in the message-passing operations and receive GNN hidden represen-
tations h(k)

v but are not used in the loss function computation. Training a GNN on
a citation network graph with some unlabeled nodes and then testing it on these
unlabeled nodes is an example of transductive node classification.

On the other hand, inductive nodes are not used in the GNN message passing
operations neither in the loss computation functions. In other words, these nodes
and all of its edges are never seen by the GNN model during training. An example of
inductive node classification would be training a GNN on one subgraph of a citation
network and then testing it on a completely disjoint subgraph of that network.

2.2.1 Graph Convolutional Networks

Graph Convolutional Networks (GCN) were introduced by Kipf et al.[4] as a subclass
of GNN designed for semi-supervised learning in the transductive setting. This
setting required the graph’s Laplacian matrix to be fully known beforehand and no
structural changes to the network are supported during testing.
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Kipf et al.[4] proposes a semi-supervised convolutional neural network which
operates directly and efficiently on graphs because it scales linearly in the number
of edges. In his work, the graph is encoded directly using a neural network model
and trained on a supervised target for all nodes with labels, learning hidden layer
representation that encode both graph structure and node attributes. Conditioning
the model on the adjacency matrix of the graph allows the model to distribute
gradient information and enables it to learn representation of nodes with and without
labels.

Figure 2.3: Schematic of a multi-layer GCN for supervised learning with C input
channels and F feature maps. Labels are denoted by Yi. Extracted from [4].

Consider a multi-layer GCN with the following propagation rule:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(2.2)

Ã is the adjacency matrix of a undirected graph with added self-connections,
D̃ii =

∑
j Ãij, W (l) is a layer-specific trainable weight matrix, σ denotes an activation

function, and H(l) is the matrix of activations in the lth layer.
A neural network model based on graph convolutions can therefore be built

by stacking multiple convolutional layers. Considering a two-layer GCN for semi-
supervised node with symmetric adjacency matrix A, the forward model takes the
form:

Z = f(X,A) = softmax
(
ÂReLU

(
ÂXW (0)

)
W (1)

)
(2.3)

Where Â = D̃− 1
2 ÃD̃− 1

2 . W (0) is an input-to-hidden weight matrix, whose dimen-
sions depend on the number of input channels and hidden layer’s feature maps, and
W (1) a hidden-to-output weight matrix, whose dimensions depend on hidden layer’s
feature maps and number of feature maps in the output layer. Note that W (0) and
W (1) are the parameters of this model that must be tuned during training.

Further, for multi-class classification, the cross-entropy error over all labeled
examples is computed by:
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L = −
∑
l∈YL

F∑
f=1

Ylf lnZlf (2.4)

Kipf et al.[4] performs batch gradient descent using the full dataset for every
training iteration which would be a problem in the case of very large datasets. Al-
ternatively, a memory-efficient approach would adopt mini-batch stochastic gradient
descent.

Further research implemented a variant of the algorithm which enabled more
memory-efficiency with inductive setting as the previous GCN method relied on the
same graph structure being used both in training and in testing, i.e., no new nodes
could be added.

2.2.2 GraphSAGE embedding

GraphSAGE [5] is an inductive node embedding algorithm which incorporates nodes
features and topological structure in order to learn an embedding function that gen-
eralizes embeddings to unseen nodes. The unseen nodes may comprehend new nodes
added to the graph structure as well as whole new graphs; one could train an em-
bedding generator on protein interaction network derived from a reference organism,
and then produce node embeddings for data collected on different organisms using
the trained model.

Figure 2.4: Illustration of GraphSAGE sample, aggregation and prediction. Ex-
tracted from [5].

Instead of training an embedding for each specific node which would make the
model bound to a certain graph structure, a trainable set of aggregator functions
that aggregate information from neighborhoods at different distances from the target
node is used.

GraphSAGE generates embeddings by making each node aggregate the repre-
sentation of the nodes in its immediate neighborhood into a single vector. This step
depends on the representation generated at the previous iteration and must have
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a base case (the initial representation). After aggregating the neighboring feature
vectors, GraphSAGE then concatenates the node’s current representation with the
aggregated neighborhood vector and uses it as the input to a fully connected layer
with nonlinear activation functions. The result is the representation that is then
used in next iteration.

Hamilton et al.[5] describes three types of aggregator functions: mean, LSTM
and pooling aggregators. LSTM and pooling reportedly outperformed GCN and
mean aggregator. However, LSTM is significantly slower than pooling by a factor
of two giving pooling aggregator a slight edge.

2.2.2.1 Message Passing

Message passing describes the whole process of how the target node receives in-
formation from neighboring nodes, aggregates and updates its own value at each
iteration.

The information comes in two forms as specified by Hamilton[6]. One of them is
the structural information e.g., encoded information about degrees of all the nodes
in the k-hop neighborhood. The other kind of information absorbed by GNN node
embedding is feature based. Equation 2.5 summarizes the whole message passing to
generate embedding for a target node u.

h(k+1)
u = UPDATE(k)

(
h(k)
u ,AGGREGATE(k)

({
h(k)
v ,∀v ∈ N (u)

}))
(2.5)

Figure 2.5: Overview of a single node aggregating messages from its local neighbor-
hood via an aggregate operator. Note that the message aggregated on the target
node also contains its own information from the perspective of its neighborhood.
Extracted from [6].

2.2.2.2 Aggregation

In general, the aggregation function aggregates information from other nodes with
information. There are different types of aggregation functions and messages; vectors
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are an example of messages and mean is an example of an aggregation function.
Figure 2.5 shows the aggregation step in a two-layer version of a message-passing
model. The computation graph forms a tree structure by placing the neighborhood
around the target node.

Bronstein et al.[3] states that the aggregator function is not usually learnable.
However, in GraphSAGE, a set of aggregator functions are trained in order to merge
feature information from a node’s local neighborhood. Since it is computed from the
features of nodes, the aggregator function may be applied to new nodes and even
whole new graphs. Ideally, the property of symmetry (i.e., invariant to permutation
of inputs) of aggregators should be ensured in order to guarantee that the neural
network model can be trained and applied to arbitrarily ordered node neighborhood
feature sets. The max pooling aggregator is an example of a both symmetric and
trainable operator. It is characterized by the following equation:

hk
N (v) ← max

({
σ
(
Wpool h

k−1
u + b

)
,∀u ∈ N (v)

})
(2.6)

Where σ represents a nonlinear activation function and max is an element wise
operator. For each depth k, each node v aggregates representations for every node
in its local neighborhood.

2.2.2.3 Update

Finally, after aggregating the information vectors, aggregation result from the pre-
vious step hk−1

N (u) and the current representation for the node, hk−1
u , are fed through

a fully connected layer with nonlinear activation function σ, as follows:

hk
u ← σ

(
Wk · CONCAT

(
hk−1
u ,hk

N (u)

))
(2.7)

This is then the representation for node u at layer k, and its final representation
depends on the total number of layers used in the model. Often, a few layers are
used in practice (e.g., two or three).

2.3 Network Epidemics

The study of mathematical models that characterize epidemics is at least two cen-
turies old. One of the oldest registered studies [22] began discussing epidemic models
back in 1766. More recently, a series of articles written by Kermack–McKendrick
proposed simple compartmental models that are the basis for various modern epi-
demic models, including network epidemics.

The aforementioned focused on analysing epidemic diseases. Kephart et al.[23]
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reports that there are compelling analogies between diseases spread and computer
viruses spread. This led to their effort of adapting existent diseases spreading math-
ematical models to computer virus spread. More specifically, Wang et al.[24] gath-
ers information about the dissemination of worms, a sub-class of computer viruses,
across computers. Worms search for new targets to transmit themselves and have
the ability to travel from host to host that are connected by a network. While in
the propagation phase, hosts in the network have three different states: susceptible,
infectious and removed. A host that is vulnerable to infection is called susceptible;
infectious a host that has been infected and can spread the infection to others; re-
moved host is immune or has died and is no longer able to be infected or spread the
infection.

Doerr et al.[25] discusses why rumours and news spread much faster in existent
online social networks than in other network topologies. They support this claim
by proliferating information in networks with power law degree distribution that
require sub-logarithmic time to spread news to all nodes while in other networks
topologies at least logarithmic time is needed. To simulate the epidemic, a push-pull
model [26] was adopted, where each node randomly communicates with one of its
neighbors, excluding the one contacted immediately before.

2.3.1 Propagation Models

David et al.[27] proposes a division of the models in two big groups: influence and
infection epidemic models. While infection models were used to describe disease
contagion among individuals, influence models were adopted to describe “social con-
tagion” because they spread from one individual to another similar to a biological
epidemic. Social and biological contagion have fundamentally different underlying
mechanisms; whereas biological contagion is based on the possibility of contract-
ing a disease-causing pathogen through contact with another peer, social contagion
typically involves decision-making on the part of the affected individuals. However,
the dynamics at the network level are comparable, and knowledge gathered from
the study of biological epidemics can be generalized when considering how diffusion
occurs on networks.

Starting from 1927, a series of three articles published the basis of modern epi-
demic modelling. Kermack et al.[28] theorized a partial differential-equation model
that structured the infected population in terms of time, while using the now pop-
ular labels susceptible (S), infected/sick (I), and recovered/removed (R) [28]. In
1932, a second article by the same authors was published to extend the model and
remove previous limitations [29]. They also added the effect of partial immunity
and fresh susceptible individuals to the system by birth and immigration. In 1933,
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minor improvements concerning new death rates to accommodate deaths by other
causes were included [30].

On the Susceptible-Infected (SI) model, nodes are initially susceptible and can
be infected. Once a susceptible node is infected, it never recovers. At the beginning
of the epidemic, considering t = 0, only one individual, or a set of individuals, are
infected nodes which are also the set of epidemic source nodes.

At each time slot, an infected node v tries to infect each one of its neighbors w
with probability pv,w. In the most basic form of this model, every infected node has
the same probability of infecting a susceptible node, therefore, pv,w = p. Supposing
w is surrounded by n infected nodes, the probability of w not being infected in the
current time step is pinf = (1 − p)n. Further, if the infection fails, the probability
remains the same in the next time step, given that no new nodes adjacent to w were
infected. Also, infected nodes try to infect all their susceptible adjacent nodes at
each time step making it possible that more than one new infection happens at time
step.

Figure 2.6: States of SI model followed by graph representation of the fraction of
infected nodes varying with time. Extracted from [7].

Figure 2.6 plots the fraction of infected nodes which follows the pattern of a
logistic growth curve. It shows rapid contagion growth in the first half as exponential
regime followed by saturation regime when most of the network is already infected.

The Susceptible-Infected-Recovered (SIR) model is similar to SI, the difference
resides on the Recovered state; at each time step, infected node v may recover with
probability q. Once recovered, it can not infect other nodes and neither be infected
again. Figure 2.7 shows the evolution of the fraction of nodes in each category; in
this example all nodes were infected and will thus recover.

Figure 2.8 shows that different compartmental models follow similar trend in
the exponential regime; when the number of affected individuals is small, the dis-
ease spreads freely and the number of affected individuals increases exponentially.
Nevertheless, after some time the difference between the models becomes clear: in
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Figure 2.7: States of SIR model followed by graph representation of the fraction of
the population of each state varying with time. Extracted from [7].

Figure 2.8: Comparing SI, SIS and SIR infection rate; their biggest difference reside
in the saturation regime. Extracted from [7].

the SI model every individual becomes infected, in the SIS model a fraction of in-
dividuals remains infected (which depends on model parameters), in the SIR model
the endemic states becomes dominated by recovered nodes. In the SIR model, the
epidemic dies out when the basic reproductive number is smaller than 1 (a number
that depends on the recovery rate and infection rate).

Influence models such as Independent Cascade (IC) and Linear Threshold (LT)
are other models for contagion. On IC [31] an initial set of active nodes unfolds
the process in discrete time steps according to the following rule: when node v first
becomes active (infected) in step t, it is given a single chance to activate (infect) each
currently inactive neighbor w; it succeeds with probability pv,w. The probability may
be different for each neighbor connection, or the same for all the connections inside
the network. If w has multiple newly activated neighbors, each attempts to active
w in random order within the same time step. If the activation succeeds, w will
become an active node in the next step. If it does not succeed, v cannot make any
more attempts at activating w, while w can still be activated when other non-active
neighbors become active.
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2.3.2 Categories of observations

In the source identification problem, one must determine the source nodes of an
epidemic given some data that is observed from the epidemic process. Thus, a
fundamental premise is the observation state of nodes during the propagation process
[8]. Since each type of observation changes the problem, it is important to establish
the observation category model under consideration.

Figure 2.9: Illustration of three categories of observation in networks. Extracted
from [8].

The complete observation reports the epidemic state of all nodes in the popula-
tion distinguishing susceptible and recovered (if applicable) at time t. An example
of complete observation is shown in Figure 2.9(A).

Snapshots provide partial knowledge of the sate of nodes at a given time t and are
presented in three forms that might intersect: (i) each node reveals its epidemic state
with probability p, (ii) only a fraction of nodes are known i.e., they are reportedly
infected or not (iii) only a set of nodes are observed when taking the snapshot. An
example of snapshot is presented in Figure 2.9(B).

Alternatively sensor observations are nodes that collect information about their
state, state transitioning time and infection directions. This representation is the
richest one in terms of information (since the time of infection is available), although
it is not feasible in most real world network applications because it depends on
the implementation of sensors before an epidemic starts. An example of complete
observation is shown in Figure 2.9(C).

The proposed framework assumes the input is a complete observation model but
does not require any additional information concerning the epidemic propagation
model.

2.4 Epidemic Source Detection

Epidemic source detection is the problem of identifying the source of an epidemic
given an observation model. Different approaches have been applied to this problem,
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from using entropy related ideas [32] to neural networks [10] and label propagation
[14]. Some of them are used to detect sources when a specific type of epidemic model
is used, while others are used to detect sources without any information about the
underlying epidemic model. The latter is specially useful in real world applications
where it may not be feasible to determine the model and its parameters value in
advance.

Shah et al.[12] provides a rigorous study on finding the single source of rumor in
a network affected by a SI epidemic. It involves finding the node with the maximum
likelihood of being the source, and thus assumes knowledge of the epidemic model.
The same authors continue their research working on a similar but evolved problem,
taking into consideration “how many” and “which” nodes caused the epidemic called
NetSleuth [13]. NetSleuth is a well-known Susceptible-Infected source detector: the
model starts by applying a submatrix-laplacian method to find out the best seed
sets given a certain number of seeds. The idea is that the nodes on the edge of
the infected snapshot are unlikely to be the sources due to the large number of
uninfected nodes surrounding them. After that, given the seed-sets, an algorithm
computes the Minimum Description Length (MDL) scores.

MDL states that given a set of models, the best model is the one that minimizes
the sum of length in bits of the model description and the length of the description
of the data encoded with the model. MDL is employed to identify the set of sources
and the propagation ripple that starting from those nodes would better describe the
given snapshot (input to the problem).

Wang et al.[14] applies the idea of source prominence through a detection method
called LPSI (Label Propagation based Source Identification). First, positive labels
(+1) are assigned to the infected nodes while negative labels (−1) are assigned to
the uninfected ones. Before iterating, a weight matrix is built to represent the prop-
agation probability between nodes (when neighbors). During the iteration phase,
each node receives a fraction of label information from its neighborhood while re-
taining some of its previous label information. Finally, the node is identified as
source if it satisfies two conditions: it was initially infected and its final label value
is bigger than those of its neighbors. See Figure 2.10 for a visual representation of
the aforementioned framework.

Zang et al.[9] addresses the problem for networks under SIR epidemic model by
applying the divide and conquer approach. The first part of the algorithm aims to
solve the problem of identifying recovered nodes that are not explicitly observed in
this problem formulation (only infected nodes are observed correctly). The score
based reverse propagation assigns 1 for infected observed nodes and fills the remain-
ing with zeros. Similar to LPSI, for every iteration, nodes are assigned the score sum
from its neighbors. After N iterations, nodes score are compared to a pre-defined
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Figure 2.10: LPSI’s framework consists on label propagation till convergence and
posterior label value analysis. Extracted from [9]

base score. If the node score is greater than the base score, the node is added as
part of what is called the “extended infected node set” which comprehends infected
nodes and nodes that are suspect of being recovered. Once this process finishes, the
extended infected network is partitioned using a leading eigenvector based partition
solution.

Also, a simple heuristic for estimating the number of sources is proposed. For
each number of sources k from 1 to K the modularity value is computed for the
extended infected network: if there is a significantly increase in its value, the new
k is preferred. Finally, a variation of the betweenness centrality is used to rank the
nodes of each partition and determine the source node.

MSD (Multiple Sources Detection) problem is known to be a supervised learning
problem and therefore the model can be trained with known sources. Dong et al.[10]
proposes a modified GCN that is used as supervised model to detect sources.

In the approach Graph Convolutional Networks based Source Identification (GC-
NSI)[10], every node is assigned a four element vector as features. The first element
comes from LPSI calculation and the remaining three come from superimposing
vectors. After adding this information to the nodes, the graph is given as input to
the GCN model where the batch-sized loss between input and output is calculated
to update the weight-matrix when a batch of samples is acquired. The sigmoid
cross-entropy is adopted as the loss function for this model, and is given by:

L(y′, y) = − log σ(y′)× y − log (1− σ(y′))× (1− y) + λ||w||2 (2.8)
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Where y′ is the output of the model, y is the true label value and σ is the sigmoid
function. Observe that w represents the weights in the GCNSI and ||w||2 is the L2
regularization with a coefficient λ. This loss function is similar to the one applied
in this work which will be later discussed.

GCNSI [10] is trained with samples generated by SI, SIR and IC epidemic models
in equal proportion and multiple types of networks are used. It is worth noting that
for each type of network, a different configuration of GCN is used in order to achieve
better results. Thus, the model is bound to the network structure used during
training; it is not possible to reuse it to indicate sources in a network structure
different from training.

An algorithm based on entropy proposed by Liu et al.[32] for the SI epidemic
model claims that it would also be successfully applied on other models, such as SIR,
when the complete observation is present. The approach indicates the possibility of
a node being the source based on its neighborhood entropy. The greater the entropy,
the more infection information the node carries in the network, and thus the higher
the chance of being the source. The algorithm is composed by two parts: one
with the lowest computational complexity but lacking more rigorous foundations
and the other which improves source identification recall at the cost of increased
computational complexity.
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Chapter 3

Proposed Framework

This chapter describes the network preprocessing algorithm that generates nodes
attributes by using the observed epidemic state of network nodes. Also, GCN build-
ing blocks involving stacking of neural network layers, loss function and sampling
algorithm are presented. Section 3.1 describes the algorithm that generates new
attributes and Section 3.2 describes GCN model used in this work.

3.1 Node Feature Generation

Although the observed network contains the epidemic state of all nodes when a
certain fraction of nodes is infected, it still lacks attributes to provide better inputs
to the GCN. These attributes should enrich nodes with information that characterize
its neighboring epidemic state. To accomplish that, two new attributes called ring
infection (RI) and depth ring infection (DRI) are proposed.

RI and DRI are calculated for every node by considering its neighborhood infec-
tion state up to a certain distance. Since the aim is to calculate attributes against
nearest nodes, BFS (Breadth First Search), which running time is O(|V | + |E|), is
used. However, this upper bound is rarely reached because the metric requires visit-
ing nodes until a pre-established distance; it starts by visiting every node within one
hop distance from the target node (the one that the attributes are being calculated
for) and added to a queue so that they are not visited again. For the next step,
neighbors of the previous one hop distance nodes are visited until a certain distance
is reached or until all nodes are visited. After that, the information of infection state
and distance discovered for each node is used to calculate both attributes for the
given node. This process repeats for every node in the graph. Algorithm 3.1 shows
the implementation of BFS.

Whereas the processing for every node is independent, it is possible to improve
performance by making better use of vacant computational resources. Nodes are
divided in k equal parts and each of these sets of nodes are used as the input to

21



Figure 3.1: Breadth First Search used to compute the metrics that are used as node
attributes.
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a different process that runs concurrently. In practice, the nodes of the graph are
divided and submitted to a different process that runs the BFS algorithm. Observe
that nodes belonging to a partition do not need to be adjacent. Despite making
calculations faster, the memory usage in this approach is high because every process
carries a copy of the graph.

The implementation for calculating the two attributes for all nodes takes as
parameters max distance and number of workers ; max distance, dmax, indicates the
distance from the target node until which the attributes are calculated, and the
dimension of the attribute vector for each metric (if depth equals one, only the
direct neighbours of the target node will be taken into account and each metric
will be an one-dimension vector). The parameter number of workers represents the
number of cores in the CPU and is used to determine the number of sets to divide
the nodes of the network.

3.1.1 Attributes

The node attributes are calculated to enhance node characterization based on its
neighboring labels. The RI leverages the epidemic state at k-hop distance while DRI
leverages the neighbors epidemic state of a node at k-hop distance from the target
node.

Figure 3.2: Graph example of how the ring infection is calculated for k = 1 and
k = 2. For k = 2, the result is αi = [3/4 0].

Ring infection (RI) is given by Equation 3.1 whereNk(i) represents the neighbor-
hood of node i in k-hop distance (i.e., set of nodes that are at distance k from node
i) and Ij the epidemic state of node j, where 1 indicates infected and 0 indicates
susceptible.

αi
k =

∑
j∈Nk(i)

Ij

|Nk(i)|
(3.1)

Note that αi
k denotes the fraction of values computed for each 1 ≤ k ≤ dmax from

a vector that is taken to be a feature to node i. For dmax = 3, the vector would be:

αi = [αi
1 αi

2 αi
3] (3.2)
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Figure 3.2 shows an example on how to calculate α for node i in a small graph.
The red arrows indicate which nodes are taken into account when calculating αi

k for
a certain distance k.

The second metric depth ring infection (DRI) is calculated according to Equation
3.3. Observe that DRI depends on the epidemic state of the neighbors of nodes that
are at distance k from node i. In particular, it computes the average of RI at distance
1 among its nodes that are at distance k. Note that a single node can be counted
multiple times in this metric, since it can be a neighbor of many nodes at distance
k from i. Also, observe that DRI provides information that is significantly different
from RI.

Figure 3.3: Graph example of how the depth ring infection is calculated for k = 1
and k = 2. For k = 2, the result is ηi = [37/48 2/3].

Again, values computed for each k form a vector that is taken to be a feature of
node i:

ηik =

∑
j∈Nk(i)

αj
1

|Nk(i)|
(3.3)

Figure 3.3 shows how to calculate ηi for node i on the same small graph. The
red arrows indicate which nodes are taken into account at a given distance and the
circles around the nodes indicate the edges of the neighborhood for each node taken
into account.

3.2 GCN model and implementation

GCNs are built by stacking layers that encode graph information at different dis-
tances. A well-known and well-documented framework called PyTorch Geometric
[33] uses PyTorch [34] to create a variety of GNN models, including SAGE layers,
which are used in this work.

Layers generate output that is used as input to the next layers until a final layer
is reached at which point a node embedding is generated. While a larger number of
layers makes the information scatter among neighboring nodes, a reduced number
of layers would prevent the information from spreading far. Thus, empirical studies
suggest using neural networks with three layers or so, as is the case in this work.
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The first layer needs to adjust to the number of inputs according to node features;
in this case, it comprehends nine dimensions, assuming dmax = 4: four for each
attribute and one for the infection state of the node. The output dimension is the
desired latent representation dimension. In this case, the dimension is 128 to avoid
overfitting while also being a relative large number compared to the size of the
networks to be tested.

The middle layer has the input dimension equal to the output dimension and, in
this work, equals to 128. On the last layer, the latent representation must converge
all of its information to a single neuron output. This is done because the source
identification problem consists of a binary classification problem and one output
being labeled 0 (not source) or 1 (source) is enough.

The first and second layers use the ReLU as activation function together with
a dropout layer to help avoid overfitting. The last layer output is passed to a
sigmoid function to output values between 0 and 1. Adam optimizer is the preferred
optimizer used with a low learning rate of 0.001.

Although smaller batch sizes may be used when dealing with large networks,
all network nodes were considered as a single batch at each learning epoch. As for
sampling neighboring nodes, nodes were picked up to a distance 3 of the target node.
This sampling strategy is used to balance computational cost and network coverage
as in this problem nearer nodes carry more important information.

Naturally, epidemic source nodes are underrepresented in all networks and for
that matter, a weight balancer is used in the loss function to calculate weight com-
pensation. The model is trained on 500 epochs and an early stopper is implemented
so that if no loss improvements are made in the validation network on 75 consecutive
epochs (patience), the training with the input network stops. The experiments were
carried on a computer with an Intel Core i7-11800H, GPU NVIDIA GeForce 3070
8GB and 16GB of RAM.

Algorithm 3.4 shows the general steps taken by the whole process to output a
trained GCN model that can identify epidemic source nodes. The code is divided
in two big loops that comprehend the data preparation and training. First, a bulk
of real world and synthetic networks (from different network models) are created
leveraging configuration parameters for training, validation and testing. For every
network, a epidemic is simulated according to an epidemic model until a certain
fraction of nodes become infected. Afterwards, a function to compute the node at-
tributes is executed. Note that algorithm 3.1 is called inside the attribute generator
function. The network configuration encompass, if synthetic, a network model, num-
ber of nodes, number of edges and edge probability, while infection configuration
encompass number of sources, infection fraction and node infection probability.

Once the dataset with the ground truth has been generated (network and node
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attributes), the data is split for test, training and validation. The model is trained
in two different ways: using only one specific network infection configuration and
network model in the same training session or using multiple network infection
configurations on the same network model. In order to avoid overfitting to a certain
network instance, a validation network is evaluated in every epoch and skips learning
with the current training network if it does not reduce the validation loss after a
certain number of iterations, denoted by patience in the code.

Figure 3.4: General framework to build a ground truth dataset and train a GCN
model to classify epidemic source nodes.

3.2.1 Loss Function

Recall that the GCN model proposed in this work has a single output neuron. Thus,
the loss function uses this single output in a supervised scenario in order to train
neural network parameters. In particular, the Binary Cross Entropy function was
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used and is given by:

li = −wi [yi · log σ (xi) + (1− yi) · log (1− σ (xi))] (3.4)

Where yi indicates if node i is a source node in the epidemic observed in the
network (ground truth), xi is the output of the neural network for node i, and wi is
a weight associated to node i. Despite being possible to associate different weights
for each node, a different weight is used for each class (source node or not source
node). A sigmoid function σ is applied to the output value of the neural network
such that the output value is between zero and one, taking advantage of the log-
sum-exp trick for numerical stability. Representing classes weights, W0 and W1 are
calculated for each network before training by:

Wc = Kc ·
n∑

i=0 [yi = c]
(3.5)

The amount of network nodes is denoted by n and Kc is a constant used to
increase class weight beyond balance value, the proposed framework opted to use
K0 = 1 and K1 = 100. Weight classes are then broken into node sample weights wi,
with each node having the weight of its infection state class. Finally, the loss of all
nodes are aggregated into a single loss through a weighted average using the same
weights as before, and given by function ℓ as:

ℓ =

∑
i li∑
iwi

(3.6)
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Chapter 4

Methodology and Evaluation

This chapter evaluates the model outputs when using different networks as inputs;
synthetic networks and real networks. It also discusses the creation of datasets
and training strategies. Section 4.1 describes how network samples were generated,
Section 4.2 explains metrics used to evaluate results and Section 4.3 displays results.

4.1 Infected Graph and Epidemic Factory

There are various approaches to train the proposed model, ranging from specialist to
generalist approach. In the former, the training set are networks samples of the same
network model that have the same size, while epidemics have the same parameters
and the same number of sources. In the latter, the training set is very diverse.
Both approaches will be evaluated in what follows. In any case, it is necessary to
generate networks and epidemics to build the training sets. For this purpose, a
framework was developed to simulate different types of epidemics through different
networks; for example, SI epidemic with multiple sources with different parameters
on different networks generated by the BA model. The framework generates multiple
networks by sampling random network models or reading an edge list and simulate
the epidemic using a network epidemic library according to the configuration file.

For generating random networks and manipulating them in general, NetworkX
[35] is the go to option as its is a well maintained Python package. NDLib (Network
Diffusion Library) [36] is a network epidemics library used to simulate epidemics on
networks according to different compartmental models such as SI, SIR and IC. Each
network is initialized with and epidemic with its respective parameters, SI uses β
for infection probability, and the initially infected nodes (sources), which may be
randomly or deterministically selected. For each network where the epidemic sources
have been chosen, iterations have to occur in order do propagate the epidemic to
other nodes. The initial number of infected nodes greatly influence the final result
and the speed at which the propagation occurs on the network, and the epidemic
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stops when a certain fraction of nodes have been infected. Notice that in order to
characterize the performance of the proposed methodology, network epidemics with
3, 5, 10 and 15 sources were considered until around 10%, 20% and 30% of the nodes
were infected. Observe that it is not possible to guarantee that an exact percentage
of the nodes are infected since each infected node is able to infect more than one
neighboring node in each interaction. However, it is guaranteed that at least that
percentage of nodes are infected. The infected network is added as a single sample
into the dataset. Different samples are generated independently by repeating the
entire process; generating another random network, randomly selecting the source
nodes, and simulating the random epidemic until a percentage of the nodes are
infected.

4.2 Evaluation

The dataset with the infected networks are divided in three different sets: training,
testing and validation. The implementation of early stopping algorithm previously
discussed relies on the training and validation datasets having the same number
of samples. The experiments are divided in two categories: (i) datasets where all
networks have the same network topology, number of sources and infection percent-
age, (ii) datasets where all networks have the same model but different number of
source and infection percentages. It is important to note that epidemics on real
networks differ only on the choice of source nodes, since the network is always the
same compared to random network models where each sampled network is different.

In the experiments that follows, the results are divided in two: (i) true positives
are only the epidemic source nodes and every other node identified by the framework
as a source is considered a false positive (ii) true positives are the epidemic sources
and their neighbors. Observe that the latter criteria measures the performance of
the framework on identifying the epidemic source or a neighbor of the source as the
epidemic source.

The evaluation also does not directly determine the number of epidemic sources.
Instead, every network node is taken as the input to the model which outputs the
probability that the node is an epidemic source. Nodes are then ranked according
to this probability and the top-k nodes are identified as the epidemic sources. Thus,
k is a parameter of the evaluation methodology.

4.2.1 Metrics

Note that accuracy is not a good metric to capture the model’s performance, since
having a very unbalanced dataset is a characteristic inherent (very few source nodes)
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to the problem. Thus, it is more useful to use metrics that capture the model’s per-
formance on correctly identifying the sources, hence metrics that take into account
true positives (TP), false positives (FP) and false negatives (FN) are preferred.

Using TP, FP and FN values, three evaluation metrics are considered: precision,
recall and F-score. Precision is denoted by the number of true positives identified
by the framework divided by the sum of true and false positives identified by the
framework. Recall is denoted by the number of true positives identified by the
framework divided by the sum of true positives and false negatives in the dataset.
Both metrics are combined to build F-score. The F-score used applies the same
weight to the two metrics and is given by:

F1 = 2 · precision · recall
precision + recall

(4.1)

Observe that the number of true positives plus the number of false positives iden-
tified by framework is given by k since these are the top-k most probable epidemic
source nodes.

4.2.2 Network models and real networks

The evaluation is divided in using random network models and real networks. Two
models are used: Barabási-Albert (BA) and Erdős–Rényi (ER)[37, 38], and two real
world networks are used: Facebook Ego Network [39] and the Power grid Network
[40]. Facebook Ego is a social network consisting of 10 ego-networks and 4039 users
as 10 Facebook users were asked to manually classify their friends. The power
grid network depicts the electrical power grid of the western United States. Vertices
represent generators, transformers and substations, and edges represent high-voltage
transmission lines between them. The Erdős–Rényi (ER) graph is also known as
Gn,p. Each possible edge is present in the graph with probability p.

The Barabási-Albert (BA) model is based on preferential attachment and gen-
erates a scale free network. It provides a better model for some real networks where
nodes tend to link to the more connected nodes [7]. For each newly added node,
m new edges are connected to m nodes already in the network, chosen at random
according to the preferential attachment rule.

The random networks are parameterized such that their average degree is 2log2n
where n is the number of network nodes. This is done so that the experiments are not
so biased due to very different average degrees. Table 4.1 shows some characteristics
for the networks used. Average degree values marked with an asterisk represent the
expected value, since edges are random.

On the BA model, the average degree is given by Equation 4.2 where m, which
is a parameter for network model, can be isolated.
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d =
2m(n− 1)

n

2 log2 n =
2m(n− 1)

n

m =
n log2 n

n− 1

(4.2)

For n = 1500, m = 10.558 and for n = 5000, m = 12.290. On the other hand,
on the ER model, the average degree is calculated by Equation 4.3 where the goal
is to isolate p that represents the probability for edge creation.

d = (n− 1)p

2 log2 n = (n− 1)p

p =
2 log2 n

(n− 1)

(4.3)

For n = 1500, p = 0.01408 and for n = 5000, p = 0.00492.

Network Nodes Edges Avg. Degree Diameter
BA 1500 1500 15827 21.102 4
BA 5000 5000 61438 24.575 4
ER 1500 1500 15827* 21.102* 4
ER 5000 5000 61438* 24.575* 4

Power grid 4941 6594 2.669 46
Facebook Ego 4039 88234 43.691 8

Table 4.1: Structure information about the networks used in the evaluation.

Regarding datasets size and split for training, validation and testing; for every
line in Table 4.1 concerning synthetic networks, 30 networks are generated and split
equally in three sets. For the real world networks, 50 networks are generated, from
which 1/5 are used for training, 1/5 for validation and the rest for testing. A
larger dataset is used for testing to guarantee a more stable average of values to be
compared with other articles results.

4.3 Results

The results are presented in three types of graphs discussed on the following para-
graphs. The first two focus on comparing the performance of identifying the source
node or a neighbor of the source, and the last one compares the models trained on
a more diverse dataset.
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4.3.1 Performance on artificial network models

On the first graph type, each line represents the average metric value for the test
set of the corresponding dataset. Whilst F-score is largely used alone to compare
MSD models, precision and recall are also shown here in order to better characterize
the results. The plot lines are divided in groups: (i) epidemic sources neighbors are
considered true positive and (ii) epidemic sources neighbours are considered false
positives. Even though the main goal of the model is to identify the epidemic source,
identifying a neighbor of an epidemic source also indicates that the model has come
close to identifying the source.

The second graph type compares precision, recall and F-score for the three frac-
tions of infected nodes. It allows to compare the evolution of results as the epidemic
infects a larger fraction of the network.

On both graphs aforementioned, the x axis represents the number of epidemic
sources identified by the framework as given by the top-k nodes (x axis corresponds
to k). The values are multiples of 2, 3, 4 and 5 of the true number of epidemic
sources. Thus, k = 30 if the number of sources is 10 and the multiple is 3.

(a) Precision (b) Recall

(c) F-score

Figure 4.1: Results for source identification considering the BA model network with
5000 nodes when 20% of them are infected.
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Figure 4.1 compares artificial network generated by BA model. On average,
with neighbors precision values decrease with the increase of top-k, while some
values of without neighbors, namely 10 and 15 sources, increase and decrease,
respectively, very little. With neighbors recall values increase very little with the
increase of top-k, while values of without neighbors have a greater value increase.
At last, F-score on without neighbors two smallest source values decrease with
top-k, whilst the other two increase, with neighbors show similar values, with the
exception of 15 sources, that follow an increase trend.

With neighbors precision values are larger than the without neighbors val-
ues, while without neighbors recall values are larger than the with neighbors
values. Therefore, without neighbors F-score values are on average larger because
of the larger recall values and not so small precision values.

(a) Precision (b) Recall

(c) F-score

Figure 4.2: Results comparison across different infection rates for BA model with
5000 nodes.

When the neighbors of source nodes ground truth are labeled as sources, it is
expected that the model achieves higher precision than when they are not. On the
other hand, it is expected that recall achieves lower values due to more false negatives
being present enforced by the low amount of predicted sources in comparison to the
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amount of neighbours now considered true positives.
Precision with neighbors is on average larger indicating that mistaking the

source neighbors for source occurs frequently. With neighbors reaches lower recall
values due to the increase in the number of false negatives that are represented by
the number of sources multiplied by average node degree. The value for F-score of
without neighbors ends up being higher on average because of with neighbors
recall value. The Appendix Section A.1.1 presents results for other fractions of
infected nodes. However, Figure 4.1 is illustrative of the general trend among these
results.

Figure 4.2 compares metrics values across different infection percentages. Note
that, in general, as the fraction of infected nodes increases, the performance de-
creases for both precision and recall. Moreover, the performance when having 5
or 10 epidemic sources are relatively similar for 20% and 30% infection rate,
with slightly better performance for 10 sources. Individually, the mean precision
for 10% infected 5 sources increases to its largest value when top-k = 2s, but
decreases beyond its initial top-k value, for 10% 10 sources the largest value is
reached when top-k = s and then it decreases, for 20% infected 5 sources the
largest value happens when top-k = s and it decreases from this point on.

While 10% infected case intuitively reaches larger F-score values and 30%
infection lower values, 20% infected results depend much more on the amount of
sources; the smaller the amount of sources the greater the F-score; 20% infected
5 sources reaches even larger values than the 10% infected case.

Figure 4.3 compares networks generated by G(n, p) model. On average, with
neighbors precision values increase with top-k, 3 and 5 sources increase very
little, while 10 and 15 sources decrease. With neighbors recall values increase
very little with top-k compared to without neighbors values. At last, F-score
for without neighbors 15 sources case reaches its peak at top-k = 2s and then
decreases, 10 sources values decreases but starts to show larger values after 3s,
whilst the other two (3 and 5 sources) increase, with neighbors show a increase
trend for all source number cases.

Similar to the previous experiment, the model mistakes the neighbor’s source for
source. Also, it is noticeable the drop in precision values when decreasing the amount
of sources. The 3 sources case on without neighbors stands out negatively, being
far below the other examples in the same label bracket. The values for F-score show a
expected behavior: with neighbors values surpass all of their without neighbors
counterparts with the increase of top-k. Thus, having more epidemic sources helps
improving the performance. The Appendix Section A.1.2 presents the results for
other infection ratios.

Figure 4.4 compares G(n, p) network metrics values across different infection per-
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(a) Precision (b) Recall

(c) F-score

Figure 4.3: Results for source identification considering the ER model network with
5000 nodes when 20% of them are infected.

centages. 10% 20% and 30% infected cases remain at the same relative position
in every graph. For 10% infection rate, having 5 or 10 epidemic sources yield
similar results. However, on 20% and 30% infection rates, performance with 10
sources is significantly better that with 5 sources. In such scenarios, having more
epidemic sources improves precision and recall. Nevertheless, there is a clear gap
between 10% infection rate results and the other two, showing that infection rate
variation greatly influences the model performance. This group of graphs illustrates
the intuition that the higher the infection, the lower the F-score.
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(a) Precision (b) Recall

(c) F-score

Figure 4.4: Results comparison across different infection rates for ER type network
with 5000 nodes.

4.3.1.1 Model comparison on artificial networks

The following results consider different kinds of datasets used for training. Two
scenarios are considered: models trained in a specific configuration are called indi-
vidual e.g. trained on the BA network model, 20% of the network infected and 5
source nodes. The other scenario is called general because the models were trained
using datasets comprising of networks of the same model but different number of
sources and infection rate. In order to verify the impact of network size on the task
of MSD, two network sizes are considered.
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Figure 4.5: Comparison of performance when training the model with BA type
network with different datasets.

Figure 4.5 BA 1500 10% infection shows an increase on F-score values when
increasing the number of sources, except on the individual 5 sources case where
it decreases. BA 1500 20% infection shows an increase on F-score values when
increasing the number of sources. BA 1500 30% infection also shows an increase
on F-score values when increasing the number of sources, except on individual 3
sources where it manages to reach the second largest value.

Group of graphs on Figure 4.5 BA 1500 portrays the trend that the larger
the infection percentage, the lower the F-score. A satisfying surprise comes when
comparing individual and general classification models. Despite being trained in
a more heterogeneous dataset, general F-score values are very close to individual,
even performing better in some cases. Group of graphs on Figure 4.5 BA 5000 also
portrays the same trend with the exception of 20% infection 3 sources outlier
case. The 30% infection rate scenario depicts one of the worst results among the
experiments with a F-score of 0 for 3 sources.

Despite intuition indicating that with more epidemic sources the harder is to find
them, since the infection clusters might mix and their intersection be identified as
sources, F-score increases together with the number of sources in most case scenarios.
Nevertheless, the expectation that it would be harder to find sources when the
infection rate increases remains true.

When comparing BA 1500 and BA 5000 results, it is noticeable that a deter-
mining factor for greater F-score values is the network size. Results for BA 1500
are on average two times larger than BA 5000 as it has 3.3 more nodes than BA
1500.

37



Figure 4.6: Comparison of performance when training the model with ER type
network with different datasets.

Figure 4.6 ER 1500 and ER 5000 10% infection show an increase on F-
score values when increasing the number of sources. ER 5000 20% infection
shows a decrease on F-score values when increasing the number of sources, except
on 5 sources, on the individual case, while on general it increases. ER 5000
30% infection also shows an increase on F-score on individual 5 sources and
general increases from zero with 10 and 15 sources.

Figure 4.6 ER 1500 shows that general surpass individual trained model on
average. While F-score value decreases with the infection percentage increase, it
presents slightly better values than BA with the same amount of vertices.

Figure 4.6 ER 5000 results frustrate the use of general trained model from
20% infection onward as individual reaches much better performance even when
general shows a F-score of zero (in 30% infection rate). Again, comparing to
ER 1500, the F-score decreases more significantly for general than for individual
that managed to score similar values on the 30% case.

4.3.2 Performance on real networks

Facebook Ego network results are shown in Figure 4.7 where with neighbors pre-
cision values decrease for 5 and 10 sources with the increase of top-k, 15 sources
starts decreasing before raising to its largest value where top-k = 5s and 3 sources
values slightly increase to its largest value where top-k = 2s before decreasing.
Without neighbors, namely 5, 10 and 15 sources, largest precision values are
when top-k = s and then they decrease, whilst 3 sources remains constant.

With neighbors precision values are much larger than the without neighbors
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values, while without neighbors recall values are larger than the with neighbors
values. Therefore, with neighbors F-score values increase with top-k while with-
out neighbors decrease.

(a) Precision (b) Recall

(c) F-score

Figure 4.7: Results for source identification considering the Facebook ego network
when 20% of them are infected.

There is a big gap between with neighbors and without neighbors precision
values. On recall graph, a behavior worth analysing happens from 4s to 5s for the
15 sources without neighbors case; the big drop on recall shows that, on average,
there was no improvement when increasing top-k, as false negatives increased more
than true positives. The Appendix Section A.2.2 presents results for other infection
rates.

On Figure 4.8, 10% infected precision values decrease with top-k, 20% in-
fected values decrease from the first x value top-k = s, 30% infected values
also decrease from the first x value top-k = s. Recall graph shows that all values
increase from the first top-k value, despite the 10% infected 5 sources case where
it remains constant from 3s to 5s. 10% 20% and 30% infected cases remain at
the same relative position in every graph.

Precision graph displays a unprecedented decline on the 10% case, although the
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(a) Precision (b) Recall

(c) F-score

Figure 4.8: Results comparison across different infection rates for Facebook ego
network.

same infection case with 5 sources shows a large increase on recall results. Thus,
on average, the model was not so efficient on correctly identifying sources with the
increase of top-k, however it did not fail on the same scale on not identifying true
sources.

Figure 4.9 shows results for the Power grid network experiments. On the pre-
cision graph, considering with neighbors 3 sources increases to its peak when
top-k = 3s.

Precision results are again superior for with neighbors in comparison to with-
out neighbors under the same number of sources, but interestingly, recall results
with neighbors are similar to without neighbors, differently from previous sce-
narios. Thus, F-score for with neighbors is significantly higher in comparison to
without neighbors for this network.

It shows the same trend considering with neighbors and without neighbors,
except with neighbors values with 3 sources that are so low that entangle with
without neighbors values. Appendix Section A.2.1 presents the remaining infec-
tion cases.
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(a) Precision (b) Recall

(c) F-score

Figure 4.9: Results for source identification considering the Power Grid network
when 20% of them are infected.

On Figure 4.10, precision graph shows that 10% case values decrease compared
to its first value where top-k = s, 20% case 5 sources reaches its peak where
top-k = 2s and 10 sources increases until it reaches its peak where top-k = 3s,
30% case 5 sources decrease from the first x value top-k = s and 30% infected
10 sources case increases until it reaches its peak where top-k = 2s. 10% 20%
and 30% infected cases remain at the same relative position in every graph.

Results concerning different infection rates are very similar, with the exception
of 10% infected with 10 sources which stands out. This could be happening
because the Power grid network structure has very low average degree, hampering
the emergence of infection clusters.
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(a) Precision (b) Recall

(c) F-score

Figure 4.10: Results comparison across different infection rates for Power grid net-
work.

4.3.2.1 Model comparison on real networks

Figure 4.11 10% infection general shows an increase on F-score values when
increasing the number of sources, on the individual case there is a big decrease on
5 sources value before reaching its largest value with 10 sources.

On Figure 4.11, aside from the 30% infection 3 and 5 sources, all the other
results from individual trained model far outweigh results from general. Results
for 10 and 15 sources are on average larger than 3 and 5 sources for all the
depicted cases reinforcing the idea that the model improves performance when in-
creasing the number of sources. The F-score greatly decreases on the 30% infection
case, where the first zero result for individual trained model happens (not shown
due to averaging).

Figure 4.12 for Power grid results 10% infection individual shows an increase
on F-score values when increasing the number of sources, on the general case there
is a decrease on 5 sources before increasing again. The same pattern from Facebook
Ego network is observed; individually trained model achieves much better results,
in many cases, up to twice the value of general. On 30% infection case, despite
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individual still having better results, they are much lower than the 20% case. In
addition, on general model scores very poor results on three and five sources.

Figure 4.11: Comparison of performance when training the model with Facebook
ego network with different datasets.

Figure 4.12: Comparison of performance when training the model with Power grid
network with different datasets.

4.4 Ablation Study

The proposed framework is divided in two parts; the attribute generator algorithm
and the GCN model. While the attribute generator is the responsible for generating
β and η, GCN uses said attributes and structural data to generate embeddings, while
using modifications proposed by this work, such as different sampling strategy, loss
function and class weights.

To better understand the impact of the new attributes and GCN modifications,
infected networks are used to train two different group of models, one group that
does not leverage node attributes (β and η) and the other that does. The model is
then trained and tested with the same dataset (with the exception of β and η).

Table 4.2 shows F-score results of models trained individually in specific network
configurations. For each group without generated attributes and with gener-
ated attributes, four GCNs are trained with the Power grid dataset with 30% of
network infected and one of the number of epidemic sources. Then, both groups are
tested in the same dataset, generating the results presented.
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Besides the 5 sources case where results on graphs without generated at-
tributes are larger, results are expected. Both average and max F-score values are
greater on with generated attributes in 3 out of the 4 cases.

Without generated attributes F-score
No.
sources

Max Average Variance

3 0.003704 0.000741 3× 10−6

5 0.040000 0.030800 9.9× 10−5

10 0.048000 0.041822 1.1× 10−4

15 0.056296 0.052593 1.5× 10−5

With generated attributes F-score
No.
sources

Max Average Variance

3 0.011111 0.008815 1× 10−5

5 0.017778 0.014089 1.1× 10−5

10 0.051111 0.049356 1.2× 10−5

15 0.065926 0.059556 2.6× 10−5

Table 4.2: Comparison of F-score values of GCNs trained and tested without the
generated attributes and with the generated attributes (Power grid network).

4.5 Comparison with Baselines

Although this work has focused on synthetic networks and two real networks, other
articles such as the one that implemented GCNSI [10] focused only on real world
networks. Table 4.3 compares F-score results for 3, 5 and 10 epidemic source on
30% infection rate with results generated by GCNSI, LPSI and NetSleuth (results
extracted from [10]). From these three frameworks, the only one that also uses GCN
is the GCNSI. Note that experiments were not carried on the exact same datasets
across SAGE and the other three algorithms. Although, the number of sources,
infection rate and network topology were the same. Results presented on Table
4.3 are from models trained in heterogeneous datasets, containing various types of
infection configurations.

Individually, it is noticeable that results are poor for all table entries since they
are much closer to zero than to one. That shows that MSD is rather a difficult
problem that still has a long way to being solved more effectively. In general, the
results improve with the increase of the number of sources. The framework here
proposed (SAGE in the table) stands out by having the best results across the table
for any scenario. Also, the gap between SAGE and the other frameworks increases
with the number of sources; SAGE’s result on Facebook Ego with 10 sources are 5
times better than the second best framework.
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s = 3
Power grid Facebook ego

SAGE (Max) 0.011 0.022
SAGE (Mean) 0.009 0.018
GCNSI 0.006 0.012
LPSI 0.003 0.009
NetSleuth 0.001 0.005

s = 5
Power grid Facebook ego

SAGE (Max) 0.018 0.047
SAGE (Mean) 0.014 0.039
GCNSI 0.009 0.017
LPSI 0.008 0.013
NetSleuth 0.003 0.006

s = 10
Power grid Facebook ego

SAGE (Max) 0.066 0.138
SAGE (Mean) 0.060 0.112
GCNSI 0.017 0.022
LPSI 0.013 0.020
NetSleuth 0.006 0.009

Table 4.3: Side by side comparison of F-score from other frameworks with 3, 5 and
10 sources, and SAGE indicates the framework here proposed. Results extracted
from [10].
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Chapter 5

Conclusion and Future work

Identifying epidemic source nodes is a fundamental problem that has been tackled
by multiple algorithms. The problem started by investigating the detection of single
source epidemics and them moved on to the more challenging scenario of multiple
sources. A good portion of the algorithms used for source detection included node
label propagation and are applicable to only a specific type of infection model and
can not be directly applied to different infection models. The most prominent and
recent algorithms for multiple source detection were discussed in this work [9, 10,
13, 32].

The framework here proposed starts by applying a node feature enrichment to
enhance the information associated with each network node since it is initially a
binary number denoting the infection status. The concept of neighborhood infection
is used to create attribute vectors that characterize the nearest neighbors infection
state. The key idea behind the proposed algorithm is to capture a pattern that
should repeat around other epidemic sources. The attributes generated from an
epidemic network serve as better input to a GNN model that not only leverages
network structure but also node attributes in order to classify nodes as epidemic
sources. Thus, the GNN model has a single output that is used for classification.
The proposed framework offers a general model that can be trained with any dataset
considering different networks, different number of nodes, and different infection
rates.

In order to measure and compare results, the BA and ER random graph models
were used to generate networks, along with Facebook and Power Grid real networks,
providing a rich and diverse set of network structures. The classic SI epidemic was
used to simulate epidemics on these networks with different number of sources.
The precision, recall and F-score were the metrics chosen to evaluate performance.
Moreover, the trained model can be applied to any epidemic network to perform
identification of epidemics sources, although it might not score the best results when
those are too different from the training set.

46



The empirical evaluation considered the identification of the epidemic source
or identification of the neighbor of the epidemic source. The performance of the
proposed framework was extensively evaluated in different scenarios.

Although the results are not satisfactory individually (low F-scores in almost all
scenarios) a direct comparison with prior works shows that this framework is com-
petitive with other published frameworks. In all scenarios available for comparison
on real networks, this framework showed significantly better results. Interestingly,
results indicate that this framework has better performance with increased amount
of epidemic sources and lower infection rate. While the latter is intuitive and has
been previously established, the former is an interesting finding of this works and is
possibly related to the GNN approach taken by the proposed framework.

5.1 Future work

There is still plenty of unexplored areas in this work and on the MSD problem
as a whole. The reader might have observed that experiments only considered SI
epidemic model, and thus there are many other epidemic models left to explore.
Although developing models that can be applied to a specific real scenario is chal-
lenging, it is common that the underlying epidemic model is not known beforehand
when trying to identify epidemic sources. Thus, training the proposed framework
with different epidemic models could improve its applicability.

There are also other types of GNN that could be tested as embedding model for
source identification. Below is a short list of possible future works for this thesis:

• Evaluate the performance of the framework when the number of sources is
increased to larger values (beyond 15) as this model obtained better results
with larger number of sources.

• Consider other epidemic models with different states and behavior, such as
SIR, IC and SIS. In particular, train the framework with datasets of different
epidemic models to evaluate its capacity to generalize.

• Enhance the node attributes using other methods such as label propagation
and possibly other epidemic information.
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Appendix A

Results for different infection rates

A.1 Artificial networks

A.1.1 BA network

(a) Precision (b) Recall

(c) F-score

Figure A.1: Results for source identification considering the BA network when 10%
of them are infected.
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(a) Precision (b) Recall

(c) F-score

Figure A.2: Results for source identification considering the BA network when 30%
of them are infected.
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A.1.2 ER network

(a) Precision (b) Recall

(c) F-score

Figure A.3: Results for source identification considering the ER network when 10%
of them are infected.
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(a) Precision (b) Recall

(c) F-score

Figure A.4: Results for source identification considering the ER network when 30%
of them are infected.
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A.2 Real Networks

A.2.1 Power grid network

(a) Precision (b) Recall

(c) F-score

Figure A.5: Results for source identification considering the Power grid network
when 10% of them are infected.
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(a) Precision (b) Recall

(c) F-score

Figure A.6: Results for source identification considering the Power grid network
when 30% of them are infected.
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A.2.2 Facebook ego network

(a) Precision (b) Recall

(c) F-score

Figure A.7: Results for source identification considering the Facebook ego network
when 10% of them are infected.
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(a) Precision (b) Recall

(c) F-score

Figure A.8: Results for source identification considering the Facebook ego network
when 30% of them are infected.
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