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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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Agrupamento de grafos é um problema fundamental, pois encontra aplicações
em uma infinidade de cenários diferentes. Enquanto métodos tradicionais têm se
concentrado na estrutura da rede, uma variação recente considera o cenário em que
os nós possuem atributos que também são informativos. Isso tem desencadeado
novos métodos que aproveitam as informações da rede (arestas) e as informações
dos nós (atributos) no desenvolvimento de novos algoritmos de agrupamento. Este
trabalho propõe um novo framework que utiliza redes neurais de grafos (GNNs) em
um processo de autoaprendizagem para resolver esse problema. Cada rodada de
treinamento gera representações dos nós para o agrupamento no espaço euclidiano,
influenciadas pelos resultados da rodada anterior. Além disso, um grafo de contexto
é construído usando o grafo original para refinar ainda mais as representações dos
nós. Resultados empíricos demonstram a eficácia de nossa abordagem na extração
de informações tanto das arestas da rede quanto dos atributos dos nós em dados
sintéticos. Ela supera algoritmos que se concentram exclusivamente na rede ou nos
atributos quando as informações são limitadas. Além disso, várias rodadas de apren-
dizado superam consistentemente o treinamento de uma única rodada, oferecendo
desempenho superior ao agrupamento clássico de grafos com GNN. Em conjuntos
de dados reais, nossa metodologia mostra superioridade em relação aos métodos de
ponta quando os tamanhos dos clusters são balanceados.
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Graph clustering is a fundamental problem as it finds applications in a myriad
of different scenarios. While traditional methods have focused on network struc-
ture, a recent variation considers the scenario where nodes have attributes that are
also informative. This has triggered novel methods that leverage network infor-
mation (edges) and node information (attributed) in the design of novel clustering
algorithms. This work propose a novel framework that utilizes graph neural net-
works (GNNs) in a self-learning process to this problem. Each round of training
generates node representations for clustering in Euclidean space, influenced by the
previous round’s results. Additionally, a context graph is constructed using the
original graph to further refine node representations. Empirical results demonstrate
the efficacy of our approach in extracting information from both network edges and
node attributes in synthetic data. It outperforms algorithms that solely focus on the
network or attributes when information is limited. Furthermore, multiple rounds
of learning consistently outperform single round training, offering superior perfor-
mance to classic GNN graph clustering. In real datasets, our methodology shows
superiority over state-of-the-art methods when cluster sizes are balanced.
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Chapter 1

Introduction

1.1 Motivation

Graph clustering, graph partitioning, or community detection is a fundamental prob-
lem in data science and network science, as depicted in Figure 1.1(a). It involves
dividing the nodes of a graph into subsets that reflect some underlying structure,
such as having more edges within subsets than between subsets.

A related, but even more fundamental problem is data clustering, as illustrated
in Figure 1.1(b). It involves grouping similar data points together based on their
intrinsic properties or similarities. Clustering techniques are widely applied in var-
ious fields, including pattern recognition, image analysis, customer segmentation,
anomaly detection, and many others [8].

While graph clustering and data clustering have been studied independently for
a long time, it is only recently that they have been unified into a single formulation.
In attributed networks, each node in the network is associated with a feature that
represents the node, such as the DNA of a person in a social network. These features
can be represented as points in a space. In the context of attributed networks, nodes
can be clustered using only the node attributes (data clustering), only the network
structure (graph clustering), or a combination of both types of information (joint
data and graph clustering). This work focuses on the problem of joint data and graph
clustering, where both attribute information and network structure are considered
together.

Integrating both node attributes and network structure to cluster nodes in an
attributed network involves combining evidence from both sources. Intuitively, ap-
proaches that leverage both types of information should outperform methods that
rely on only one type of information. The performance improvement is expected
to be more significant when both attribute and network information are noisy and
independent. In such cases, the joint approach can utilize more reliable attribute

1



(a) Graphs (b) Data points

Figure 1.1: Methods to solve both of these problems, data point and graph clustering
(community detection), have been investigated for decades.

information to compensate for noisy network information, and vice versa. However,
developing methodologies and algorithms that effectively leverage this intuition is a
non-trivial task and has been the focus of active research in recent years. Figure 1.2
illustrates an attributed graph representing a collaborative research network. In this
network, the nodes represent researchers who have collaborated on multiple papers,
and the node attributes provide information about the researchers such as their
qualifications, work locations, and journal reviewing activities. The clusters in the
graph are formed by considering both the network structure and node attributes, as
indicated by the different colors of circles.

Jointly using node attributes and network structure to cluster nodes of an at-
tributed network requires mixing evidence from the attributes with evidence from
the network structure. Intuitively, such approaches should outperform any approach
that uses just one kind of information, and performance gains should be higher when
both kinds of information are relatively noisy (and independent). In this scenario,
the joint approach can use more reliable attribute information to correct for noisy
network information, and vice-versa. Of course, designing methodologies and build-
ing algorithms that can leverage this intuition is not trivial, and has been an active
area of research over the past few years [9–12].

An important consideration concerning graph or data clustering is prior infor-
mation, or supervision. In a supervised setting, the labels of nodes or data points
are available and indicate their clusters (or partially available in a semi-supervised
setting). This information can be used to train a model that determines the cluster
of unseen nodes. In contrast, in an unsupervised setting there is no prior informa-
tion concerning the clusters. In modern and large problem instances, it is often the
case that label information is not available (or is not reliable). This work considers
the unsupervised scenario. The sole input to the problem here considered is a single
instance of an attributed network.

2



(a) Attributed graph

(b) Clustered attributed graph.

Figure 1.2: Example of a node clustering algorithm that incorporates both network
structure and node attributes for clustering, considering the attributes associated
with each node.

3



1.2 Problem Formulation

Given an attributed graph undirected G = (V,E,X), where V = {v1, v2, . . . , vn} is
a set of n nodes and E is a set of edges with eij = (vi, vj) ∈ E if an edge exists
between nodes vi and vj, and X = {x1, x2, . . . , xn} ∈ Rn×F is the attribute matrix,
where each node vi is associated to an attribute vector xi with dimension F . The
objective is to assign each node to a distinct and non-overlapping set C based on
both the node structure and their attributes

This version of the problem considers the graph clustering (community detec-
tion) with the added aspect that attributes can be utilized to reveal the underlying
communities. While many existing methods in network science focused solely on
the network structure, this thesis aims to bridge the gap by considering both the
attributes and the network structure for graph clustering.

GNNs have demonstrated successful applications in node classification and link
prediction across different domains. It is not surprising that GNNs have also re-
cently been employed for clustering nodes in attributed networks. In this context,
representations learned by GNNs can serve as input for data clustering tasks. This
thesis proposes a novel approach that combines GNNs and self-supervised learning
techniques to tackle the problem of clustering.

1.3 Contribution

This thesis addresses the problem of clustering an attributed network in a fully
unsupervised manner.
The main contributions are:

• Design and implementation of a framework using Graph Neural Networks in
a self-supervised manner to addressing graph clustering.

• Novel neighborhood methodology which avoids under-reaching and over-
smoothing commonly encountered in graph-based models.

• Empirical evaluation of the proposed framework on synthetic network and
real networks. In order to gain a deeper understanding of the framework, we
propose a method to create our own synthetic dataset to control the charac-
teristics and properties of the data and analyze the influence of the network
structure and attributes information on the learning process.
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1.4 Structure

The remainder of the text is organized as follows:

• Chapter 2 presents a literature review on data and graph clustering (with
and without attributes), methods for generating attributed graphs, system-
atic review of Graph Neural Networks, and the application of GNN in graph
clustering. The most prominent frameworks and their fundamental aspects are
discussed, including how researchers combine GNN models that are typically
trained in a supervised manner to tackle graph clustering as an unsupervised
task.

• Chapter 3 presents the proposed framework its characteristics and the moti-
vation behind the mechanisms utilized. The chapter also describes how the
model is trained in a self-learning manner, highlighting the iterative process.

• In Chapter 4, the proposed framework is empirically evaluated under differ-
ent conditions, including varying network structures and attributes. Synthetic
graphs were generated with the objective to examine individually the influence
of network structure and attribute on the proposed framework. Additionally,
the framework was evaluated using benchmarks commonly used for graph clus-
tering. Results are reported in terms of the cluster quality found.

• Chapter 5 presents a conclusion of the work along with a path for future work.

5



Chapter 2

Background and related work

This chapter presents related work and important concepts, and it is organized
as follows: Section 2.1 introduces data clustering, which is a classical problem in
data science. Section 2.2 discusses classical community detection algorithms for
unattributed graphs, such as the Girvan-Newman and Louvain algorithms. Sec-
tion 2.3 introduces several generators of synthetic attributed community graphs.
Finally, Section 2.4 focuses on related work that utilize Graph Neural Networks
(GNNs) for community detection in attributed graphs.

2.1 Data Clustering

Clustering, as described by Jain et al. [13], is indeed one of the fundamental tech-
niques in the field of Machine Learning. It is an unsupervised task that involves
grouping similar data points based on their similarities or patterns in a high-
dimensional space. The data points are represented as vectors in an n-dimensional
Euclidean space, where each dimension corresponds to a feature or attribute. Most
clustering algorithms seek to find natural clusters of data points based on their
distances or similarities using a defined similarity function. Some commonly used
similarity measures include Euclidean distance, cosine similarity, and correlation
coefficients.

Clustering has major applications across a wide range of domains, including im-
age segmentation, pattern recognition, anomaly detection, recommendation systems,
social network analysis, and various other data science problems.

Jain et al. [13] categorizes clustering algorithms into two groups: hierarchical
clustering algorithms and partitional algorithms. Hierarchical clustering is a method
that build a hierarchy of clusters, the hierarchical clustering algorithms are derived
from the single-link [14] and complete-link [15]. Partitional algorithms partition
the data set into non-overlapping clusters. These algorithms optimize a specific
objective function, such as minimizing the intra-cluster distance.

6



According to Jain [16], even though the k-means algorithm was proposed more
than 50 years ago, it remains one of the most important partitional clustering algo-
rithms. K-means aims to partition the data into K clusters by minimizing the sum
squared distances between the data points and their respective cluster centroids.
The objective function of the k-means algorithm can be represented as follows:

min
C

k∑
i=1

∑
x∈Ci

||x− µi||2 (2.1)

where C represents the set of K clusters, x represents a data point, and µi represents
the centroid of cluster Ci, where || · || represents the Euclidean distance between
two points. The algorithm iteratively updates the cluster assignments and centroid
positions until convergence is reached.

2.2 Network Community Detection

Graph clustering or graph partitioning or community detection involves partitioning
the set of nodes of a graph into disjoint subsets that reflect some higher order struc-
ture (e.g., many more edges within the subsets than across subsets). Community
detection is a fundamental problem in network science, with applications in social
networks, biological networks, and information networks. Researchers from different
fields have explored the problem of community detection for many years, employing
various problem formulations and approaches, such as fast heuristics for minimizing
modularity in network science or approximation algorithms for optimal ratio-cut in
graph theory [17].

Traditional methods such as graph partitioning involve dividing the vertices into
k groups of predefined sizes. The Kernighan-Lin algorithm, proposed by Kernighan
and Lin [18], is a heuristic for graph partitioning, which partition the nodes into two
disjoints subsets of equal (or nearly equal) size. Another popular technique is the
spectral bisection method proposed by Barnes and Earl [19].

Note that most traditional algorithms for graph partitioning dot not perform well
for community detection, because it is necessary to provide as input the number of
groups and the group sizes. In community detection, the intention is to discover the
community structure of a graph without prior knowledge about the community sizes.
A large number of techniques have been proposed to find optimal communities in
polynomial time. Most of these techniques are based on the optimization of objective
function.

Modularity optimization is one of the most widely used techniques in community
detection and the concept was proposed by Newman and Girvan [20]. The Modu-

7



larity M , Equation 2.2, quantifies the community quality where A is the adjacency
matrix, m is the number of edges and ki and kj, are respectively, the total degree
of the nodes within their respective communities. It measures the difference be-
tween the actual number of edges within communities (groups) in a graph against
the expected number of edges if the edges were randomly distributed according to a
random graph or a null model. The Modularity M value ranges from −1 to 1, where
a value closer to 1 indicates a strong community structure, while a value closer to 0

or negative values indicate a weak or no community structure.

M =
1

2m

∑[
Aij −

ki · kj
2m

]
(2.2)

As shown in Figure 2.1, the node coloring represents the community assignments.
Note that in Figure 2.1(a) the maximum value accurately captures the two obvious
communities, with a value of M = 0.41. Figure 2.1(b) has nodes associated with a
non-obvious community. M = 0 (Figure 2.1(c)) indicates a network with only one
community, and a negative value (Figure 2.1(d)) indicates that every node belongs
to a different community.

Figure 2.1: Different ways of assigning nodes to communities in the same graph, can
have a significant impact on the modularity measure. Extract from [1]

The Newman and Girvan algorithm [20] was the first heuristic algorithm pro-
posed to optimize the modularity quality measure. Another efficient approach for
community detection in graphs is the Louvain algorithm proposed by Blondel et
al. [21]. It is known for its scalability and ability to handle large-scale networks.
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The Louvain algorithm consists of a two-phase iterative procedure. In the first
phase, each node is assigned to its own community. Then, the algorithm iteratively
optimizes the modularity by greedily moving nodes between communities with the
objective of maximizing the modularity gain. In the second phase, the obtained
communities are treated as individual nodes, and the same optimization process is
applied to identify new communities. The Louvain algorithm performs well and is
widely used due to its efficiency, scalability, and ability to detect communities.

Although these methods are efficient, they suffer from certain limitations. First,
the algorithm fails to identify small or overlapping communities [22]. Second, they
are strongly dependent on the initial partitioning [23]. Third, they fail on graphs
that have communities with different sizes [24]. Indeed, Modularity algorithms are
typically designed for static graphs, as they assume a fixed network structure without
considering the addition or removal of nodes during runtime. When a new node is
added, the algorithm must be re-executed to update the community assignments
and reflect the changes in the network.

In addition to the challenge of handling communities with different sizes, an-
other limitation of traditional community detection methods is that they often do
not consider the attributes or features associated with the nodes in the graph. These
methods primarily rely on the network’s structural information, such as edge connec-
tions, to identify communities. However, in many real-world scenarios, the attributes
or features of nodes can provide valuable information that can aid in community
detection

2.3 Stochastic Block Model

Stochastic Block Model (SBM) [25] is a generative model proposed for modeling so-
cial networks. SBM produces graphs communities following the homophily concept,
which refers to the tendency of individuals with similar characteristics be connected
to each other. This phenomenon has been widely observed in various social, biolog-
ical, network systems and collaborative networks.

SBM (Stochastic Block Model) groups N nodes into K blocks, with Vi represent-
ing the set of nodes in the i-th block. Each node is assigned to a specific block, and
the probability of an edge existing between two nodes depends on the blocks they
belong to. This is determined by a symmetric matrix B ∈ RK×K , which specifies
the connectivity probabilities between the blocks (communities or clusters). The
entry bij in this matrix represents the probability of an edge e(u, v) existing between
a node u ∈ Vi and a node v ∈ Vj in different blocks. In general, the probability of
edges within the same cluster (intra-cluster) is higher than the probability of edges
between different clusters (inter-cluster), denoted as bii > bij for all i ̸= j. This
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Figure 2.2: Stochastic block model with Vi = 40 and probability intra-cluster is 0.2
and inter-cluster 0.01.

reflects the concept of homophily.
For example, consider the SBM sample shown in Figure 2.2, where |Vi| = 40,

K = 3, and the following probability matrix is used:

B =

 0.2 0.01 0.01

0.01 0.2 0.01

0.01 0.01 0.2

 (2.3)

2.3.1 Attributed Network

An attributed network nodes not only have connections (edges) but also possess
attributes or features. These features can provide additional information about the
nodes and their relationships, enabling a richer analysis of the network. In this
kind of network, each node is associated with a set of attributes or features values.
Features can be categorical or numerical, representing the characteristics of the
node. For example, in a social network, nodes could have attribute as age, gender,
occupation and interests and in a biological network nodes can have attribute as
DNA information.

Recently, the popularity of machine learning on graph-structured data has been
increasing, with various methods being proposed [26]. Tasks as node-classification,
link prediction and graph clustering have been adopted in several application do-
mains, such as recommender systems, social networks and web. Despite the abun-
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dance of graph learning methods, there is a limited number of real-world datasets
available as benchmarks, with many of them derived from academic citation net-
works. Among these datasets: Cora, Citeseer and PubMed are the most commonly
analyzed in various works [27–31].

Evaluating new algorithms on specific types of networks provides a limited sam-
ple to determine their overall performance and effectiveness. Therefore, it is cru-
cial to have a large and diverse set of graph datasets to ensure that overfitting is
avoided. In order to address this issue, a feature-rich synthetic graph generator can
be employed to produce a variety of synthetic graphs with different characteristics
and properties. This allows for a thorough examination of algorithms in various
scenarios, facilitating a more comprehensive evaluation and understanding of their
performance. Researchers can explore different network structures, sizes, commu-
nity distributions, and other important factors that may impact the behavior of the
algorithm. This approach helps to gain insights into the strengths, weaknesses, and
generalizability of the algorithm across different types of graphs, leading to more
robust and meaningful evaluations.

Several methods have been proposed for generating synthetic attributed graphs,
and one of them is the Degree-Corrected Stochastic Block Model (DC-SBM) [32].
DC-SBM is a probabilistic model that extends the Stochastic Block Model (SBM)
by incorporating continuous vector attributes. It uses a mixture of multivariate
Gaussian distributions to generate the attribute vectors for the nodes in the graph.
By combining the block structure of SBM with the continuous attributes, DC-SBM
allows for the generation of synthetic graphs that capture both the network struc-
ture and attribute characteristics of real-world networks. Furthermore, DC-SBM
takes into account the varying degrees of connectivity of nodes when modeling the
network structure and attribute dependencies. This makes DC-SBM a flexible and
realistic approach for generating synthetic attributed graphs for various research
and evaluation purposes.

The generator GenCAT [33] proposes a user-flexible attributed graph generator
that incorporates two phenomena: Core/Border nodes and Homophily/Heterophily.
The Core/Border nodes phenomenon refers to the existence of distinct classes of
nodes in real-world graphs. Core nodes have higher degrees, while Border nodes
have lower degrees and act as connectors between the core nodes and the rest of
the graph. The second phenomenon, homophily/heterophily, captures the tendency
of nodes with similar attributes to be connected. Homophily refers to the prefer-
ence for nodes with similar attributes to connect, whereas heterophily refers to the
preference for nodes with different attributes to connect. This means that nodes
with dissimilar characteristics are more likely to be connected. GenCAT incorpo-
rates homophily and heterophily by generating node attributes that influence the
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likelihood of connections between nodes. Therefore, GenCAT offers flexibility in
generating attributed graphs with different levels of core/border node structure and
homophily/heterophily. This allows for the generation of graphs that capture vary-
ing degrees of connectivity and attribute dependencies.

2.3.2 Simple Network Attibuted Generator

In our work, our primary focus is on developing a framework that can effectively
capture the relationship between the graph structure and the associated attributes to
detect meaningful communities within the network. We are interested in evaluating
the performance of this framework and gaining a comprehensive understanding of
its capabilities. It is crucial to consider the limitations that arise when isolating
the signals from network topology and node attributes, as well as when combining
both signals. By examining these scenarios, we can identify potential challenges that
may affect the accuracy and effectiveness of the framework in capturing the complex
relationship between these signals. This understanding will contribute to a more
informed analysis of the framework’s performance and guide future improvements.

We employed a simple approach to generate synthetic attributed graphs. We
incorporated both graph connectivity and node attribute information to infer node-
to-community assignments by assuming that they are conditionally independent,
given the community membership label. In this way, we incorporate the Stochastic
Block Model (SBM) to generate the graph structure and the nodes attributes was
generated by a mixture of Gaussian Distributions depending on the community they
belong to.

From the communities K sampled by the Stochastic Block Model (SBM), the
vector attribute Xu of a node u, which belongs to community k, is sampled from
the following distribution:

Xu ∼ N (µk, σ
2
k|K = k) (2.4)

Note that to increase the attribute signal between nodes that belong to the same
cluster, we can increase the distance between the Normal means and spread out the
data attributes around the Normal mean with a smaller standard deviation
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2.4 Graph Neural Network and Community Detec-

tion

2.4.1 Overview

Graph neural networks (GNNs), also known as deep learning on graphs, graph rep-
resentation learning, or geometric deep learning, have emerged as a hot research
topic in machine learning with a wide range of applications across various do-
mains [30, 34]. Unlike traditional deep learning models that operate on Euclidean
structure data (e.g., images, sequence text), GNNs are specifically designed to han-
dle non-Euclidean geometric data, represented as graphs, which are widely used to
model relationships (edges) between objects (nodes) [35].

Unlike Euclidean data, the nature of graph-structured data implies lack proper-
ties such as global parameterization, vector space structure, shift invariance and a
common system of coordinates. As a result, basic operations like convolution, which
are well-defined and widely used in Euclidean spaces, are not easily applicable or
even well-defined on non-Euclidean domains such as graphs.

(a) The convolutional operator is not directly applicable to graphs due to the absence of coordinates
and the lack of permutation invariance among the nodes.

(b) Convolutional operator applied in a image

Figure 2.3: Convolutional operator applied in two kinds of data: image of a dog and
a graph.
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With the recent advancements in deep learning, particularly in convolutional neu-
ral networks (CNNs) [36], there have been efforts to extend CNNs to non-Euclidean
domains, such as graph-structured data. These extensions aim to adapt the con-
volution operation to work effectively on graphs, taking into account the unique
characteristics of graph data. CNN have the ability to extract multi-scale localized
spatial features and compose from input data through the use of convolutional lay-
ers. These localized features are then combined and composed to construct highly
expressive representations that capture the relevant information. The key mecha-
nisms for the success of CNNs are local connections, weight sharing, and multiple
layers. Although these mechanisms also are important for graph learning, CNNs
can only be applied to Euclidean data. Due to the non-Euclidean nature of graphs,
it becomes challenging to define the position of convolutional filters in the graph, as
showed in the Figure 2.3, the convolution operator is represented by the red square
kernel.

In addition to CNNs, Recurrent Neural network (RNN) [37] have also contributed
to the development of Graph Neural Networks. Representation learning is another
machine learning field that has influenced the development of GNNs. Their pur-
pose is to learn latent, informative and low-dimensional vectors representations for
graphs, nodes and edges, which can preserve the network structure, nodes features,
labels and others informations.

DeepWalk [2] is regarded the first sucess methods based on representation learn-
ing. This unsupervised feature learning algorithm takes as graph as input and
produces the latent representation as an output for every node as can see in the Fig-
ure 2.4. DeepWalk applies the language model SkipGram [38] on the sequence nodes
generated by a stream of short random-walks. Similar approachs have been proposed
as Node2vec [39] and Struct2vec [3]. Node2vec is a method that maps nodes based
on neighborhood similarity, while Struct2vec maps nodes based on structural topol-
ogy. The embeddings generated by these methods can be utilized for tasks such as
node classification, edge prediction, and graph classification. Figure 2.5 depicts the
variation in the latent representation across these methods within the same graph.
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(a) Input: Karate Graph (b) Output: Latent Representation

Figure 2.4: DeepWalk applied on Karate Graph. Extracted from [2]

(a) Input: Barbel Graph (b) DeepWalk

(c) Node2vec (d) Struct2vec

Figure 2.5: DeepWalk, node2vec and struct2vec applied in Barbell graph B(10, 10).
Extracted from [3]

According to Hamilton et al. [40, 41], these methods also known as shallow em-
beddings, suffer from three significant limitations. The first limitation is that these
methods are inherently transductive, which means they have difficulty in generaliz-
ing to unseen nodes during the training phase. For example, if a new node is added
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to the graph, the method needs to be reapplied to generate its corresponding latent
representation. Second, is that they do not consider attribute information, which
can be highly informative in many graph-based tasks. By neglecting the attribute
data associated with nodes, shallow embedding methods may fail to capture the rich
and meaningful information encoded in the attributes. Third, they do not share pa-
rameters between nodes in the encoder. The lack of parameter sharing leads in
computational inefficiency, especially in large graphs, as the number of parameters
grows linearly with the number of nodes. This inefficiency hinders scalability and
can make the training and inference processes computationally expensive.

Graph Neural Networks (GNNs) were developed based on the premises of Con-
volutional Neural Networks (CNNs) and shallow embedding methods. Hamilton [40]
defines GNNs as a framework for defining deep neural networks on graph data. The
idea behind GNNs is to generate embedding vector representations for nodes, taking
into account both the graph structure and any available feature information. Thus,
GNN takes as a input graph G = (V,E) along with a set of node features X ∈ Rd×n

and uses this to generate node embeddings hu,∀u ∈ V
Bronstein et al. [4] mention that the majority of research on Graph Neural Net-

works (GNNs) can be categorized into three main flavors of GNN layers: convolu-
tional, attentional, and message passing, represented in Figure 2.6. Theses flavors
represent different approaches to aggregating and propagate information across the
graph. GNN architectures are characterized by being permutation equivariant func-
tions F (X,A), where X represents the node features vector and A is the adjacency
matrix constructed by applying shared permutation invariant functions ϕ(xu, XNu)

over the local neighbourhoods for every node u ∈ V . The function ϕ is also referred
as diffusion, propagation, or message passing, and it constitutes the overall computa-
tion of F as a GNN layer. Permutation invariance, in all three flavors, is achieved by
aggregating features from the neighborhood using a permutation-invariant function⊕

and then updating the features nodes by some function ϕ. The non-parametric
operation

⊕
can take various forms, such as sum, mean, or maximum, to aggregate

features from the neighborhood. Additionally, the functions ϕ and ψ are learnable
parameters.
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Figure 2.6: Convolutional and attention architectures aggregate the neighborhood
representation vectors. In convolutional architecture, the node neighborhoods are
aggregated according to a fixed weight parameter c. In attentional architecture,
the aggregation of nodes is based on a learned parameter α. The message passing
process, on the other hand, aggregates the information generated by the neighboring
nodes. Extracted from [4]

In the convolutional flavor [42], the Convolutional Neural Network (CNN)
operator is adapted to the graph domain. This flavor aggregate information from
the neighborhood of each node by considering the node features of its neighbors. The
aggregation is performed by taking the normalized sum of the node features of the
neighboring nodes. This approach allows capture local patterns and dependencies
within the graph structure. The convolutional operator is described as follow:

hu = ϕ

xu, ⊕
v∈N(u)

wuvψ(xv)

 (2.5)

Note that wuv represents the fixed weight that indicates the importance of the signal
from node v to node u in the representation.

On the other hand, in the attentional flavor, as described below, an attention
mechanism is incorporated, denoted by α, which assigns different importance to the
signals coming from the node’s neighborhood.

hu = ϕ

(
xu,

⊕
v∈Nu

α(xu, xv)ψ(xu, xv)

)
(2.6)

The last flavor, message-passing, as described below, computes the messages
mvu sent from every node v which belongs to the neighborhood of node u and then
aggregates them using the permutation-invariant function

⊕
.

hu = ϕ

xu, ⊕
v∈N(u)

ψ(xu, xv)

 (2.7)
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2.4.2 Graph Neural Networks Architectures

Graph Convolution Network

Proposed by Kipf et al. [42], the Graph Convolutional Network (GCN) is a scalable
approach for semi-supervised learning on graph-structured data, based on a variant
of a convolutional neural network. The multi-layer Graph Convolutional Network
(GCN) applies the following layer-wise propagation rule:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(2.8)

Note that:
H(0) = X

Where Ã = A + I, where I ∈ Rn×n is the identity matrix with goal to add self-
loops and the degree diagonal matrix with D̃ii =

∑
u∈V Ãij. The matrix W l of the

l-th layer is a trainable parameter in GCN and σ is the activation function, such as
the ReLU(·) = max(0, ·) The last layer of embedding matrix H(l) ∈ Rn×F contains
in each row the corresponding node representation with dimension F .

The proposed GCN uses a two-layer architecture for semi-supervised node classi-
fication. In the first layer, operations are performed using the node features directly.
The second layer utilizes the node embeddings obtained from the first layer. The
model can be write by:

Z = f(X,A) = softmax
(
ÃReLU

(
ÃXW (0)

)
W 1
)

(2.9)

In order to fit the parameters for the semi-supervised multi-class classification,
the cross-entropy is evaluated over all the labeled examples.

L = −
∑
l∈yL

F∑
f=1

Ylf lnZlf (2.10)

where yL is the set of node indices that have labels.
They used the batch gradient descent to trained the matrices W 0 and W 1. They

utilize all the nodes during the training iteration phase.
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GraphSAGE

Graph Neural Network (GNN) methods encounter scalability challenges as the com-
plexity of the model increases with the number of nodes in the graph. In order to
avoid this, Hamilton et al. [5] propose the GraphSAGE (Sample and AggreGatE),
an inductive representation learning framework, in other words, it is not necessary
to use all the nodes in the training phase to generate representations for unseen
nodes.

The key idea behind GraphSAGE is to utilize a fixed neighborhood sampling
strategy and an aggregator function. Instead of training a distinct embedding vec-
tor for each node, GraphSAGE trains a set of aggregator functions that learn to
aggregate feature information from the local neighborhood of a node.

Figure 2.7: The GraphSAGE architecture follows several steps. First, a fixed neigh-
borhood is randomly sampled for each node. Second, two aggregator functions are
applied in different layers to aggregate the information from the neighborhood nodes.
Third, a prediction function is applied to learn the model parameters and make pre-
dictions based on the aggregated node representations. Extracted from [5]

Figure 2.7 shows methodology of GraphSAGE, the first stage involves sampling
the neighborhood of a node from two-hop away. Then, two aggregator functions
are applied. The first aggregator function combines the features of the nodes that
are 2-hops away (green nodes), while the second aggregator function combines the
features of the immediate neighbors (blue nodes). Ideally, the aggregator function
be invariant to permutation. Three kinds of aggregators functions are used: mean,
LSTM and pooling aggregators.

The equation below represents an example of one layer of GraphSAGE with the
MEAN aggregator function:

hlu = σ
(
W ·MEAN

(
CONCAT (hl−1

u , hl−1
v

)
,∀v ∈ N(u))

)
(2.11)

Note that hlv is the representation of a node v at layer l, W l is the trainable weight
matrix, N(v) is the set of nodes sampled as neighbours of node v, and MEAN is the
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aggregation function that combines the feature of the neighbours. The CONCAT
operation concatenates the aggregated features with the representation from the
previous layer hl−1

v , and σ denotes the activation function.

2.4.3 Community Detection with GNN

GNN has been successfully applied to node classification [43] and link prediction [44]
in various scenarious [30, 31, 45]. Furthermore, GNNs have more recently been
applied to community detection in attributed networks, where they have shown
promising results [46].

GNNs are commonly employed in supervised or semi-supervised contexts, where
the availability of fully or partially labeled data is used to train the model. GNNs
are not initially designed specifically for the community detection task, which is an
unsupervised problem. Many works apply GNN to community detection by formu-
lating appropriate loss functions that encourage the model to learn representations
that capture hidden information. These loss functions, such as reconstruction graph
and attributes and contrastive loss, are examples that are widely applied to guide
the training process. However, it is important to note that these loss functions do
not directly optimize the model for community structure. Instead, they encourage
the model to learn representations that capture relevant information for community
detection, such as local graph structure or node similarities.

Many works employ GNNs as encoders to map nodes into an embedding space
and then utilize the decoding process to reconstruct the graph and compare the
original graph with the decoded graph. This reconstruction process serves as a
training objective, where the model aims to minimize the discrepancy between the
original graph and the decoded graph. By comparing them, the model can assess
its ability to capture the important characteristics of the graph and uncover any
hidden patterns or structures.

Recent works in community detection using graph neural networks have to pro-
pose loss functions that are more directly related to the community structure. These
loss functions aim to optimize specific community-related objectives and enhance the
detection of community structures. Two examples of such loss functions are entropy-
based losses and modularity-based losses. Entropy-based losses encourage the model
to produce more balanced and diverse community assignments by penalizing highly
concentrated or imbalanced community distributions. Modularity-based losses, on
the other hand, directly optimize the modularity measure, which quantifies the qual-
ity of community structures in a graph. By maximizing the modularity, the model is
incentivized to find partitions of the graph that have a high density of edges within
communities and a low density of edges between communities. By incorporating
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these loss functions into the training process, the models can explicitly focus on
optimizing community-related objectives and improve the detection of community
structures in an unsupervised manner.

Wang et al. [47] propose SGCN a GCN framework with a local label sampling.
They argue that central nodes have a significant impact on the community structure
of a graph. It is suggested that if we have knowledge of at least these central
nodes, we can uncover or reveal the underlying community structure. To accomplish
this, the approach first identifies K initial nodes with high structural centrality,
which serve as the community centers. Then, the labels of these central nodes are
propagated to the top t nearest nodes. This set of labeled nodes is used as the
training set for the GCN model to learn their representations. Subsequently, the
model assigns unlabeled nodes to their respective communities through GCN-based
node classification. SGCN uses the shallow model proposed by Kipf [42].

Chu Wang et al. [6] proposed a Deep Neighbor-aware Embedded Node Clus-
tering framework (DNENC) that utilizes the encoder-decoder GCN for community
detection. The encoder aggregates information from the node neighborhood, and
multiple layers of encoders are stacked to create a deep architecture for embedding
learning. The decoder reconstructs the topological graph information using binary
cross-entropy, as follows:

Lr =
n∑

i=1

loss(Ai,j, Ãi,j) (2.12)

Furthermore, due to the absence of label guidance, they designed a self-training
module that guides the optimization procedure. After the encoder phase, they
applies the Kullback-Leibler Divergence Clustering loss, which gradually optimizes
the embedding for better representation.

Lc = KL(P ||Q) =
∑
i

∑
u

piulog

(
piu
qiu

)
(2.13)

Wheres qiu measures the similarity between node embedding and the cluster
center embedding. Initially, as the clusters are unknown, they applied the K-means
algorithm to select the first cluster. After that, they iterative learn the clusters
centers by using the Stochastic Gradient Descent. In the end, they jointly optimize
the autoencoder embedding and clustering learning with their respective objective
function:

L = Lr + γLc (2.14)

Where γ is a coefficient which controls the trade-off learning between these two loss
functions.
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Figure 2.8: The schematic of the Deep Neighbor-aware Embedded Node Clustering
(DNENC) framework consists of several components. First, an embedding matrix
Z is generated by a GNN-autoencoder, which reconstructs the graph structure and
captures the latent representations of the nodes. Next, the embedding matrix Z
is manipulated using a self-training clustering module, which optimized together
with the autoencoder during training and performs clustering based on the learned
representations. Extracted from [6]

Sambaran and Vishal [7] combined the principle of self-expressiveness with the
framework of self-supervised learning to propose SEComm (Self-Expressive Com-
munity detection in graph).

The key idea is to generate two graphs, denoted as G1 and G2, by applying a
corrupted function that randomly removes a small portion of edges. These corrupted
graphs are then used for contrastive learning, considering both graph topology and
node features. The GCN encoder, based on the work of Kipf et al. [42], is trained
with the following objective function:

LSS =
∑
i∈V

−cos (Z1i, Z2i)

τ
+ log

∑
j∈V−i

e
cos(Z1i,Z1,j)

τ + e
cos(Z1i,Z2j)

τ

 (2.15)
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Figure 2.9: The schematic of the SEComm (Self-supervised Embedded Community
Detection) framework involves several steps. First, a self-supervised Graph Neu-
ral Network (GNN) is trained using two corrupted versions of the original graph,
applying the self-expressive principle to generate the node embeddings Z. Next,
a community detection step is performed using a spectral clustering loss function.
Extracted from [7]

With the node embeddings obtained, a fully-connected multi-layer perceptron
(MLP) is used to map each node embedding to its corresponding soft community
membership. This mapping is performed as follows:

Ci = softmax (MLP (Zi)) (2.16)

In order to capture meaningful signals from the clustering assignment, the pro-
posed framework incorporates a community detection objective function.

Lcom =
∑

(i,j)∈Sext

(
CT

i Cj − Sij

)2
+ λ2||

CTC

||CTC||F
− IK√

K
||2F (2.17)

The total loss used to train SEComm is calculated as a weighted sum of the
self-supervised loss and the community detection loss.

Ltotal = αLSS + LCom (2.18)

Self-supervised learning has been frequently employed in frameworks that aim
to tackle the task of community detection. Zhang et al. [29] proposes CommDGI,
a framework which uses self-supervised learning to encode nodes. They employed
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three distinct objective functions in order to capture the community information.
First, a contrastive method is employed to capture structural similarities. This in-
volves selecting both negative and positive samples and training the model using
a binary cross-entropy loss to learn hidden structures. Second, a differentiable K-
means algorithm is applied to refine the clustering results. This step aims to optimize
the assignment of nodes to different communities based on their learned representa-
tions. Third, a modularity objective is utilized to capture more edge information and
graph-level partition information. This objective function helps to further improve
the community detection by maximizing the modularity score, which quantifies the
quality of the community structure in the graph. The model was adjusted by the
weighted sum of the three losses.

Muller et al.[12] introduce Deep Modularity Networks (DMoN), an unsupervised
framework inspired by the modularity measure. They make two modifications to
the classic GCN architecture proposed by Kipf[42]. First, they remove the self-loop
and introduce a trainable skip connection Wskip. Second, they use the Scaled Ex-
ponential Linear Unit (SeLU) activation function instead of Rectified Linear Unit
(ReLU). SeLU is a self-normalizing activation function that helps mitigate the van-
ishing gradient problem and improves the model’s performance. To train the model,
they propose a modularity loss function with collapse regularization. This loss func-
tion aimed to maximize the modularity score, which measures the quality of the
community structure in the graph. The collapse regularization term was introduced
to prevent trivial solutions and enhance the generalization capability of the model.

Lian et al. [28] propose a framework called Multilayer Graph Contrastive Cluster-
ing Network (MGCCN) for community detection. The framework consists of three
modules. The first module incorporates an attention mechanism to enhance the
capturing of the relevance between nodes and their neighbors. This attention mech-
anism allows the model to focus on the most informative neighbors when learning
the node embeddings. The second module introduces a contrastive fusion strategy
to improve the clustering performance. This strategy leverages contrastive learning
to encourage similar nodes to have similar embeddings, while dissimilar nodes have
different embeddings. By doing so, the model learns to group similar nodes together
in the clustering process. The third module is a self-supervised learning component
that iteratively adjusts the node embeddings and the clusters. This iterative process
refines the embeddings and cluster assignments, leading to improved clustering re-
sults. Overall, the MGCCN framework combines attention mechanisms, contrastive
fusion, and self-supervised learning to enhance the clustering performance in com-
munity detection tasks.
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Note that the mentioned frameworks adopt self-supervised learning as a mech-
anism to guide the optimization process and improve the quality of the detected
clusters at each iteration. By leveraging self-supervised learning techniques, these
frameworks can learn from the intrinsic structure of the data and make use of unsu-
pervised signals to refine the community assignments. This allows for the discovery
of more accurate and meaningful community structures without the need for explicit
labels or supervision.

Both of these algorithms were tested on the three benchmark datasets: Cora,
Citeseer, and PubMed. However, as mentioned in Section 2.2, this limited analysis
makes it difficult to determine which framework is better or whether they suffer
from overfitting.

Our work introduces a novel approach to learning node representations for com-
munity detection in attributed graphs. Unlike theses methods, we do not rely on
specific loss functions. Instead, we employ a dynamic graph and a self-learning mod-
ule that iterative optimize the node embeddings. This approach allows to refine the
dynamic graph based on the evolving node representations, enhancing community
detection performance. Through extensive experiments on various datasets, includ-
ing real-world attributed graphs, we demonstrate the effectiveness and robustness
of our approach. The results show significant improvements in community detec-
tion performance compared to existing methods, highlighting the potential of our
approach in uncovering meaningful community structures in attributed graphs.
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Chapter 3

Proposed Framework: Dynamic
Context Self-Learning-GNN

This chapter presents and describes the framework Dynamic Context Self-Learning
Graph Neural Network (DCSL-GNN), a fully unsupervised framework for cluster-
ing attributed networks. DCSL-GNN comprises three interconnected modules: Dy-
namic Context, Embedding, and Clustering. The Dynamic Context module first
constructs a new network by performing multiple biased random walks on the orig-
inal graph. Second, the Embedding module utilizes GNN to generate latent rep-
resentations of nodes considering both the new network structure and fixed node
attributes. Finally, the Clustering module applies a classic data point algorithm in
the nodesohe Embedding module. Note that clustering task is intrinsically unsuper-
vised, i.e., there is no prior knowledge concerning the node cluster labels. Addition-
ally, GNNs are sometimes trained using supervision. To address this challenge, we
employ a novel learning paradigm known as self-learning to train the model. Thus,
the modules Context Generator, Embedding and Clustering are jointly learned in
an end-to-end manner using several iterations.

3.1 Introduction

Given an attributed graph undirected G = (V,E,X), where V = {v1, v2, . . . , vn} is a
set of n nodes and E is a set of edges with eij = (vi, vj) ∈ E if an edge exists between
nodes vi and vj, and X = {x1, x2, . . . , xn} ∈ Rn×F is the attribute matrix, where
each node vi is associated to an attribute vector xi with dimension F . The problem
under consideration is partition the nodes into disjoint sets accordingly to node
topological structure and their attributes. In order to solve this problem, this thesis
proposes a novel model to learn a function f : V → C, where C = {C1, C2, . . . , CK}
is the set of communities (or clusters), which maps each node into a non-overlapping
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community Ci. This model learns without any supervision and the only information
available is the attributed graph G and number of communities, K.

Important notation used in this work is described in Table 3.1.

Notations Definition
G = (V,E,X) Attributed graph
Gc = (Vc, Ec, X) Context graph
X ∈ Rn×F Node feature matrix
H(·) Embedding for node v

W Learning matrix
Cl ∈ RK Community sets at l-th round
||X,Y || Euclidean distance between X and Y

L(θ) Triplet loss function
K Number of communities
N(v) Neighborhood of node v

s(v) Silhouette value of node v

ne Number of epochs
nu Mini-batch size

Table 3.1: Notation.

Recently, several works have been proposed frameworks that uses GNNs for
clustering attributed networks [6, 7, 12, 27, 47–49]. An illustrative example of an
architectural framework can be observed in Figure 3.1. In this approach, the gen-
eration of embeddings and the clustering task are separated. Specifically, nodes are
initially mapped into Euclidean space, and subsequently, a clustering algorithm is
applied to these latent representations. It is important to note that the learning
model employed in generating the latent representations does not benefit from the
clustering phase. In other words, the cluster information is not used for node map-
ping. This decoupling may potentially result in sub-optimal representations for the
clustering task.

The framework proposed by this work has an architecture represented by Figure
3.2. In this architecture, the graph used as input for generating embeddings is not
original graph, but a graph constructed and referred to as the Context Graph (Gc).
The context of a node is determined by the set of most frequently visited vertices,
according to multiple biased random walks on the original graph. This technique is
commonly employed in other algorithms like PinSage [34] in order to determine the
importance of neighboring nodes.

In the Context graph, nodes that are not neighbour in G can be selected to the
neighbourhood in Gc. For example, the node v in Original Graph, after multiples
random walks, nodes y, x, z were the most visited nodes, and they were included
in the neighborhood of node v in Gc. Note that in the embedding phase, the latent
vectors exhibit characteristics of both classes, but certain characteristics may have a
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Figure 3.1: This framework model is commonly used and is characterized by the
decoupling of the embedding generation and clustering phases. In this approach,
the two phases are independent of each other and not directly benefit from each
other’s results.

stronger influence than others. For example, in the case of the first node, it possesses
more characteristics that align with the red class compared to the other classes. This
implies that its representation in the latent space is closer to the red class, making
it easier for the clustering algorithm to identify the corresponding cluster. Finally,
the latent space representations and soft-assigned clusters obtained in the current
round are reused in the subsequent round.

DCSL-GNN for clustering operates in rounds, with its primary contribution be-
ing the self-learning component and the iterative generation of context throughout
the rounds. At each round of the algorithm, the context of nodes is readjusted based
on the results of the previous round embedding and clustering phases. The contexts
graph allow for nodes that are very representative vertices of a cluster to become
neighbors with others nodes in that cluster, even if they are not neighbors in the
original graph. By considering a broader notion of neighboring vertices, the frame-
work aims to capture a more comprehensive representation of the graph structure
and node attributes, thus improving the quality of the generated embeddings for
the task of clustering.

The core idea is to consider vertices that are up to k hops away candidates
for the the context of a given vertex, as long as these vertices are representative
of a cluster. This approach enables information from the center of the cluster to
be propagated more directly to the vertices, of the cluster as opposed to traveling
through intermediate vertices.

28



Figure 3.2: Schematic representation of DCSL-GNN framework. Note that the
clustering result is used in the next round to build a new contex graph. Thus,
embeddings influence clustering, and clustering influences embeddings.

3.2 Context Generator

GNNs aim to learn node embeddings by integrating attributes with graph structure.
In GNN, a layer can be viewed as a message passing between nodes, where each node
updates its representation (embedding) by aggregating the messages from its direct
neighbors with their respective representations.

In the context of the graph clustering problem, nodes most representative of a
cluster could be more than K hop distance. This imposes a challenge for GNNs to
effectively propagate information from these nodes to others. The reason behind this
challenge arises from the fact that, with the objective of allowing a node to receive
information from nodes within a radius of K, the depth of GNN layer needs to be at
least K. Without this depth, the information propagation is constrained, resulting
in a phenomenon known as under-reaching [50]. Nevertheless, unlike conventional
neural network algorithms, when additional layers are stacked in GNNs, the nodes
representation tends to become increasingly indistinguishable. Consequently, this
leads to a significant degradation in prediction accuracy and overall performance,
known as over-smoothing [42, 51, 52]. For that reason, most GNN models have very
few layers, such as 2 or 3, and often deploy mechanism to avoid over-smoothing.

Due to limitations of the node neighborhood, which could be not representative
to effectively propagate cluster signals and in order to mitigate under-reaching and
over-smoothing issues, we propose generating a new graph that feeds the GNN. By
modifying the node’s neighborhoods with a new set of edges, we aim to improve
the cluster information flow and ensure that relevant cluster signals are properly
propagated. The goal is to create a graph structure that better represents the
relationships between nodes belonging to the same cluster. Hence, we designed a
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flexible neighborhood sampling strategy biased of the original graph by the similarity
of the representation of the nodes generated in the previous round.

Additionally, to facilitate the direct propagation of cluster information to indi-
vidual and representative nodes, we introduced the concept of "virtual edges". The
virtual edges connect a node to a fixed number of nodes, denoted as T , that are
closest to the cluster center of mass in the embedding space as illustrated in, Fig-
ure 3.3. Thus, with a certain probability, the neighborhood of a node can be sampled
from these nodes. This approach enables the aggregation of both information from
the cluster center through virtual edges and the local structure of a node from the
original edges of the graph. Combining these two sources of information, a more
comprehensive graph representation is created with respect to cluster signals and
local structure. The resulting graph is referred to as Context Graph (Gc).

(a) Original Graph (b) Random walk perspective

Figure 3.3: In each step of the random walk, a decision is made to either follow a
virtual edge towards the cluster center nodes or explore the neighborhood of the
current node.

As previously mentioned, the DCSL-GNN framework operates in a self-learning
manner. This mechanism allows the framework to learn from its own predictions
and iteratively update the model parameters to better capture the cluster structure.
In each round of training, the node embeddings and soft-label assignments from the
previous round are reused to guide the learning process of the current round. This
iterative process gradually improves the clustering accuracy (as shown in empirical
results).

DCSL-GNN employs random walk as a mechanism for generate the sequence
of nodes that determine the context of a given node, as adopted by several works
[3, 34, 39]. We propose a random walk mechanism that captures the similarities
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between nodes in terms of cluster membership. This means that a node will move
to another node if they share a higher degree of similarity in terms of their cluster
assignments. As we introduced the concept of virtual edges, during each step of
the random walk, a decision is made to either traverse a real edge in the original
graph or select a virtual edge leading to a node in the cluster center. This choice is
determined by a Bernoulli process, where an original edge is taken with a probability
of p, and a virtual edge is chosen with probability (1 − p). If the random walks
selects a virtual edge, the node in the center of the cluster is chosen by a uniform
probability. Otherwise, when an original edge is chosen, the random walk explores
the neighborhood based on the proximity in the embedding space. Thus, the random
walk is biased and edge weights are inversely proportional to distances between their
representations.

To guide the random walk in the original graph, an edge weight function denoted
by w(·) utilizes the node representations generated in the previous round to bias
the walk. The value of w(·) increases as the Euclidean distance between nodes
representations becomes smaller. This behaviour directs the random walk towards
nodes that are more likely to lead to nodes with similar embeddings, ensuring that
the exploration of the random walk focuses on graph nodes that are closer together
in the embedding space.

The Equation 3.1 presents the edge weight function. It is important to note that
the value maxz∈N(v)(||H(v), H(z)||) represents the longest distance from node v to
its neighbors in the embedding space. The value of edge weight tends to be higher
for nodes closer to v, approaching maxz∈N(v)(||H(v), H(z)||), and tends to be lower
for nodes that are farther away, approaching 0 (note that it is zero for the farthest
node). In a nutshell, the weight function w(·) corresponds to the Euclidean distance
relative to node v.

wH(v, u) = max
z∈N(v)

(||H(v, z)||)− ||(H(v), H(u))|| (3.1)

H(·) is is the latent node representation for the nodes in euclidean space.

Given a node u, we simulate multiples random walks of length L biased by
w(·) in order to select nodes to compose the context for node u. Let ci denote the
i-th node in the walk, starting with c0 = u. Nodes ci are generated by the following
distribution:

P (ci = w|ci−1 = v) =

wH(v, w)/Zv, w ∈ N(v),w.p. p

1/T, w ∈ CC(u),w.p. 1− p
(3.2)
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where CC(u) is the set of nodes in the cluster center of node u, and Zv is the
normalization factor for vertex v given by:

Zv =
∑

i∈N(v)

wH(v, i) (3.3)

To determine the neighborhood of node u in the Context Graph (Gc), denoted
as Nc(u), we adopted Importance-based neighborhoods, as proposed in the PinSage
algorithm [34]. This method defines the neighborhood of a node u as the T nodes
that exert the most influence on node u. As the embeddings are influenced by both
the network structure and attributes, using them to bias the random walks generates
a sequence of nodes that are strongly correlated with the clusters they belong to,
due to the homophily phenomenon. In particular, the most visited nodes will be
the neighbors of node u. Thus, the visits counts of the random walks are used
to select the most important nodes. Since each source node u ∈ VG is associated
with an independent non-identically visit count distribution, we employ a threshold
value to determine if a visited node will be included in the new neighborhood. This
threshold value is defined as the k-th percentile of the distribution, determined by
a parameter. Consequently, the neighborhood of node u, denoted as Nc(u), in the
Context Graph is comprised of nodes that have been visited at least the value of the
k-th percentile.

Note that constructing node neighborhoods based on importance has several
advantages. First, the selection of the most important nodes is based by visits
counts, it enables nodes with high visit counts being direct neighbors in the Context
Graph, even when the node is many hops away, consequently, it reduces the noise
when passing messages between them. Second, a few layers stacked in GNN in the
original graph could already incur unwelcome messages between clusters, however
this is less likely to occurs in the context graph, because the neighborhood contains
only similar nodes that are likely to belongs to the same clusters. Third, as only the
most important nodes are chosen, it allows to reduce the neighbourhood size without
loss of generality and helps to decrease the algorithm memory’s consumption.
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3.3 Learning Embeddings

The encoder proposed in [42] was adopted in the Embedding Module. Given a graph
G with a adjacency matrix A a stack layer of the model is defined as follow:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(3.4)

Where Ã = A + I, where I ∈ Rn×n is the identity matrix with goal to add
self-loops and the diagonal degree matrix with D̃ii =

∑
j∈V Ãij. The matrix W l of

the l-th layer is a trainable parameter in GCN and σ is the activation function, we
use ReLu in ours experiments. In the last layer of embedding matrix H l ∈ Rn×F is
the representation matrix and output from the previous layer and contains in each
row the corresponding node representation with dimension F .

The operator can be defined in the perspective of a node as follow:

H
(l+1)
i = W (l)

∑
j∈N(i)

ej,i√
d̃j d̃i

H
(l)
j (3.5)

where ej,i denotes the weight edge value from source node j to target node i
and d̃j denotes the node j degree.

Initially, all edges in Gc have a weight value of 1, i.e, all messages from the
neighborhood carry equal importance during the aggregation step. However, due
the stochastic nature of context graph, uncertain edges can be part of the neighbor-
hood, which can introduce noise and potentially mix their latent representations.
Furthermore, nodes that exhibit high similarity in their attributes should contribute
with greater importance during the aggregation step. In this way, an edge e(u, v)
is considered uncertain when the attributes from nodes u and v have no correlation
with each other and at least one of them is highly correlated with the attributes of
the cluster which it belongs.

To measure the cohesion of attributes within a cluster, the Silhouette coefficient
algorithm [53] is used. This coefficient measures the similarity of a data point to
its own cluster compared to other clusters. It considers both the distance between
the data point and other points within its own cluster (cohesion) and the distance
between the data point and points in other clusters (separation).

Assuming the node embeddings have been clustered into C clusters using any
clustering algorithm, the silhouette coefficient for each data point i can be defined
as follows:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(3.6)
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Where a(i) is the average intra-cluster distance, i.e the average distance between
each point within the cluster of node i and b(i) is the average inter-cluster distance,
which is the average distance between the node i and all points in other clusters,
defined as follows:

a(i) =
1

|Czi | − 1

∑
j∈Czi ,i ̸=j

d(i, j) (3.7)

b(i) = min
y ̸=zi

1

Cy

∑
j∈Cy

d(i, j) (3.8)

Where d(i, j) represents the Euclidean distance between the data points i and j
in the Euclidean space and Czi is the cluster of node i and zi is the cluster number
of node i.

For each node u in a cluster −1 ≤ s(u) ≤ 1. A silhouette value closer to 1
indicates that the data is appropriately clustered, a value closer by -1 indicates
poor clustering, and a value closer to 0 suggests the value is on the border between
multiples clusters.

The dynamic nature of context graph enables the utilization of the previous clus-
tering results to guide the current optmization process. Thus, DCSL-GNN evaluate
the Gc edges weigths in current process with the cluster obtained by the previous
round. However, this optmization process might take a considerable amount of
rounds to discover consistent clusters. Thus, the attribute X[i] of a node i is con-
sidered properly clustered only if s(i) ≥ β, where is β is a threshold value. If one of
the nodes from an edge satisfies this condition, the edge weight value will depend on
the inverse Euclidean distance between the attribute values of the nodes, otherwise
the weight is considered 1.

For this, we propose a function F describe as follow:

e(j, i) =

min
(

1
∥X[i],X[j]∥ , α

)
, if s(i) ≥ β or s(j) ≥ β

1
(3.9)

An edge e(i, j) with nodes attributes X[i] and X[j] assumes values between
[0, α]. It is important to note that α is a parameter that controls the upper bound
of the weight, in order to prevent the edge weight from approaching infinity and
dominating the integration. Therefore, when e(i, j) < 1, the edge is penalized as it
reduces the importance between the nodes. Conversely, when e(i, j) > 1, it increases
the influence in the messages between them.
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3.4 Clustering Module

From the node embeddings provided by Embedding Module, a data clustering al-
gorithm is applied. Several algorithm could be employed in this module, such as
spectral clustering [54], hierarchical clustering [55] or K-means [56]. We adopted
the K-means in DCSL-GNN, that is a popular centroid-based algorithm. This algo-
rithm was proposed over 50 years ago and is perhaps the most ubiquitous approach
to tackle data clustering.

K-means assigns a set of data points X = {x1, . . . , xn} into K disjoints sets
C = {C1, . . . , Ck} by iteratively fitting the data point to the nearest centroid and
updates the centroid positions until convergence minimizing the objective function.

The objective function is defined as follows:

L =
N∑

n=1

K∑
k=1

rnk||xn − µk||2 (3.10)

This optimization is achieved through the estimation of the parameters µk and
rnk that minimizes the objective function. These parameters are, respectively, the
mean data points that belongs to the cluster k and an indicator variable that indi-
cates when node n belongs to cluster k, as described, respectively, in Equations 3.11
and 3.12. Note that if one of the parameters is known, the other can be inferred.
For this, an iterative method is applied in order to optimize these parameters.

µk =

∑
n rnkxn∑
n rnk

, for k = 1, . . . , K (3.11)

rnk =

 1 if k = argminj ||xn − µj||2, for k = 1, . . . , K

0 ow.
(3.12)

To find the proper values rnk and µk an iterative method is applied that involves
optimizing these variables successively. In the first step, starting from initial values
for µk, K-means minimize the equation 3.10 with respect to rnk. In the second step,
K-means minimize the equation 3.10 with respect to µk with the optimized values of
the variable rnk obtained in the previous step. These two steps are performed until
convergence. The alternating optimization of rnk and µk are the E (Expectation)
and M (Maximization) steps of the Expectation Maximization (EM) algorithm [57].
Once the algorithm converges, rnk is used to determine the sets Ck. In particular,
Ck = {i|rik = 1} for k = 1, . . . , K.
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3.5 Trainning

An important contribution of this work is the inclusion of a self-learning compo-
nent in the proposed framework. In the training stage the process involves passing
through each module, Dynamic Context, Embedding, and Clustering, in iterative
rounds, as illustrated in Figure 3.2. For every round, DCSL-GNN train the GNN
model using a different context graph that is constructed based on the original graph
with nodes embeddings founded in the last round. In a round, the GNN in the Em-
bedding module is trained for a fixed number of epochs to optimize and learn the
weights matrices and bias for each layer. For each epoch, Context Graph (Gc) is
considered, as opposed to a sample the entire network. However, we evaluate the
loss function and update the parameters by n

nb
times using mini-batches of size nb

which are uniformly sampled without replacement from the graph nodes. Despite
using all nodes and edges in message passing, only the nodes in the batch are used
to evaluate the loss function at each mini-batch. This approach allows us to make
efficient use of the entire network while still updating the model parameters in a
batch-wise manner, an approach known to be lead to better convergence.

Algorithm 1 illustrates the DCSL-GNN framework. In the very first round,
before the clusters are formed, each node is considered to be in its own individual
cluster (cluster C0). Thus, during the first random walk procedure, each node in
the neighborhood has an equal probability of being visited, and the walk can return
to the given node (as the node is the cluster center) with probability (1− p).

Algorithm 1 DCSL-GCN: model training using mini-batches for the evaluation
function

Input
G Original Graph
K Number of Clusters

Output
C Clusters sets
H Nodes Embeddings

for r = 1, . . . , nr do
Gc ← GenerateContext(G,Hr−1, Cr−1)
for e = 1, . . . , ne do

Hr = GenerateEmbeddings(Gc,W )
for i = 1, . . . , n

nb
do

S← GenerateSeeds(Vc, nu)
L← ComputeLoss(S,Hr)
UpdateWeights(W,L)

end for
end for
Cr ← GenerateClusters(Hr)

end for
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For trainning the GNN model, a loss function based on triplet loss was adopted,
as shown in Equation 3.13. In this function a sample data point (known as an-
chor) is compared with the matching input (positive sample) and non-matching
input (negative sample). Nodes that belong to the same cluster as the anchor node
are considered positive samples, denoted as x+n . Nodes that do not belong to the
same cluster are considered negative samples, denoted as x−n . This function aims
to minimize the distance between an anchor and a positive sample; and maximizes
the distance between the anchor and a negative sample. The hyper-parameter ∆

enforces a margin distance between positive and negative pairs.

Ltriplet (Θ) =
1

N

N∑
n=1

max
(
||xn − x+n ||2 − ||xn − x−n ||2 +∆, 0

)
(3.13)

This loss function was adopted because it aims to minimize the distances between
similar data points (positive pairs) and increase the distances between dissimilar data
points (negative pairs). This behavior is aligned with the procedure to construct the
Context Graph, as the random walks are biased by the Euclidean distance in the
latent space. Therefore, in every round, similar nodes in embedding space becomes
closer and distinct nodes becomes farther apart away. This process contributes to
create a better context in the subsequent round.

Finally, the relatively simple GCN architecture proposed by [42] was adopted. It
a simple model with only two layers and few trainable parameters (only the weights
and bias matrices). A GCN model with only two layers is considered, and thus, we
need to learn two matrices, W (0) and W (1) as seen in the Equation 3.4. In each round
of training, the parameters of the GCN for round r are initialized with the parameter
values obtained from the previous round r − 1. We can utilize learning algorithms
such as Stochastic Gradient Descent (SGD) [58] or the Adam Optimizer [59]. The
computational cost of a simple model is reduced and the framework becomes relevant
in scenarios where the graph has a large number of vertices and edges. Moreover,
this procedure must be efficient since a model will be trained in every round of the
proposed framework.
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Chapter 4

Evaluation

This chapter presents the methodology used to evaluate the performance of the pro-
posed framework, DCSL-GNN, in various scenarios. The evaluation is conducted
using synthetic attributed networks generated by the method described in Sec-
tion 2.3 as well as benchmark datasets used by the related frameworks described
in Section 2.4. The objective is to demonstrate the capability of the framework in
accurately clustering nodes based on their attributes and network structure.

4.1 Syntethic Graphs

With the objective of understanding the limitations of our proposed framework,
we generated multiple graphs with different community structures and attribute
distributions. These graphs were designed to simulate various scenarios and test
the performance of the DCSL framework. In each scenario, we carefully varied
the parameters related to community structure, such as the interconnectivity be-
tween them. We also considered different attribute distributions to mimic real-world
datasets with diverse characteristics.

4.1.1 Metric

Evaluating the cluster quality outputs from any method can be challenging in unsu-
pervised learning, as there is typically no ground truth or labeled data available to
directly compare the results with. However, there are several metrics and techniques
that can be used to assess the cluster quality. In our analysis, since we have access
to the ground truth labels of the datasets, we have chosen to utilize the Normalized
Mutual Information (NMI) [60] as an evaluation metric.

NMI measures the mutual information between the predicted cluster assignments
and the true class labels, normalized by the entropy of both assignments. The value
ranges from 0 to 1, where a higher value indicates a perfect match between the
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predicted and the ground truth labels, and a value close to 0 indicates a lack of
agreement. Inspired by Shannon Entropy [61], the Mutual Information, represented
by I(·), between two discrete variables X and Y is defined as follows:

I(X;Y ) =
∑
y∈Y

∑
x∈X

P (x, y) log

(
p(x|y)
p(x)

)
= H(X)−H(X|Y ) (4.1)

with:
H(X) = E[− logP (X)]

H(X|Y ) =
∑
y∈Y

P (y)H(X|Y = y)

where H(X) is the entropy of the random variable X and H(X|Y ) is the conditional
entropy.

In order to normalized the Mutual Information to values between 0 and 1, the
measure can be defined as follow:

NMI(X, Y ) =
2 ∗ I(X, Y )

H(X) +H(Y )
(4.2)

4.1.2 Self-learning potential

DCSL-GNN utilizes a self-supervised mechanism to learn through multiple rounds.
The goal is to understand the behavior of the model across these rounds under
different scenarios involving noise in the network structure and node attributes. To
understand the learning evolution of the model, we explore the Normalized Mutual
Information (NMI) over the rounds. This metric provides insights into the learning
process of DCSL-GNN and helps us determine whether the model is effectively
capturing the community structure. A gradual increase in NMI values over the
rounds suggests that the model is improving and refining its clustering ability with
each round. To assess the self-learnin potential of DCSL-GNN, we applied it to the
following scenarios:

Attribute Means (µ) Attribute Variance (σ2) Intra-Cluster inter-cluster
Scenario 1 [10, 20, 30, 40] 1 0.5 0.1

Scenario 2 [10, 20, 30, 40] 50 0.5 0.1

Scenario 3 [10, 20, 30, 40] 1 0.3 0.1

Scenario 4 [10, 20, 30, 40] 50 0.3 0.1

Scenario 5 [10, 20, 30, 40] 1 0.2 0.1

Scenario 6 [10, 20, 30, 40] 50 0.2 0.1

Table 4.1: Indicative of each scenario of the Figure 4.1.
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The experiments were performed using the following parameters:

• N(G) = 400, for network size;

• K = 4, the number of clusters;

• Two-layers GCN with dimensions [64, 32] and epochs = 100.

• Triplet loss parameter ∆ = 10

• 500 random-walks with length s = 5, and return probability to cluster center
p = 0.5

• Context neighborhood with 75th percentile visits.

• Silhouette threshold = 0.5 and α = 1.

The purpose of these experiments was to assess the performance of DCSL-GNN
across multiple rounds in a scenario where the clusters have equal sizes and the
signals from the network and attributes are extreme (high/low network and attribute
information). The results shown in Figure 4.1 demonstrate the effectiveness of the
model in improving the clusters over the rounds.

Figure 4.1: Normalized Mutual Information over rounds in multiples scenarios.
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Initially, in the first few rounds, the clustering performance of DCSL-GNN is
relatively low in the extreme scenarios (5 and 6). However, as the rounds progress,
the model adapts and adjusts its parameters, leading to an improvement in the
quality of the clusters. This improvement can be observed by analyzing the NMI
values over the rounds. A lower NMI indicates less agreement between the predicted
clusters and the ground truth clusters. However, as the rounds increase, the NMI
values tend to increase, indicating a better alignment between the predicted and
ground truth clusters. This suggests that DCSL-GNN is effectively learning and
capturing the underlying community structure of the graph.

Note that after several rounds, the model reaches an upper limit and does not
show further improvement (Scenario 6). This is likely due to the relatively weak
signals from both the network structure and attribute distributions. The probability
of connections within a cluster is only twice the probability of connections between
clusters. In the graph generated, each community has 100 nodes, resulting in a
higher average degree between clusters (30) compared to the average degree within
clusters (20). Therefore, the model receives more information from nodes outside
the cluster, leading to embeddings that are less distinct and closer to nodes from
other clusters. Additionally, the attribute distributions in this scenario are very
sparse, which makes it challenging for the model to capture meaningful information
from them. Due to the challenges posed by the sparse attribute distribution and
the relatively weak signals from the network structure, the model only achieves a
maximum NMI of around 0.2.

We can observe that when the signals from attributes help to indicate the com-
munity structure, the model performs better. When the intra-cluster probability
is fixed and there is a lower variance of data attributes within each community, it
becomes easier for the model to learn the community structure. In such cases, the
attributes provide more reliable and consistent information that aligns with the un-
derlying community divisions. In contrast, when there is a higher variance of data
attributes within each community or when the attribute signals are not strongly
indicative of the community structure, the model have to trust only the network
information. Therefore, the quality and relevance of the attribute signals play a
crucial role in the performance of the model. When the attributes provide meaning-
ful and informative signals about the community structure, it enhances the model’s
ability to learn and detect the communities effectively.
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(a) Round 0 (b) Round 5

(c) Round 10 (d) Round 20

(e) Round 30 (f) Last Round 49

Figure 4.2: Nodes embeddings evolve over the rounds of Scenario 4, where the intra-
cluster value is set to 0.3 and σ2 is equal to 50. The embeddings are visualized using
a two-dimensional projection via t-SNE.
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(a) Round 0 (b) Round 5

(c) Round 10 (d) Round 25

(e) Round 30 (f) Last Round 49

Figure 4.3: Nodes embeddings evolve over the rounds of Scenario 5, where the intra-
cluster value is set to 0.2 and σ2 is equal to 1. The embeddings are visualized using
a two-dimensional projection via t-SNE.
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In Figures 4.2 and 4.3, the t-SNE projections of the node embeddings over the
rounds are shown. Initially, as the model progresses through the rounds, DCSL-
GNN generates embeddings that exhibit a closer proximity for nodes belonging
to the same cluster and a greater distance for nodes in different clusters. This
indicates that the model is effectively learning to separate nodes based on their
community membership, guided by the Triplet-Loss discussed in Chapter 3. The
loss function ensures that nodes from the same community are embedded closer to
each other, while nodes from different communities are embedded farther apart, and
this behavior can be observed in the t-SNE projections.

As described in Chapter 3, our framework introduces a dynamic context, where
the Context Graph used as input to the model is continuously evolving based on a
configuration that is most representative of the cluster detection task. Consequently,
the node neighborhoods are constantly changing as the Context Graph configuration
evolves with each round. To assess the stability of the model, it is crucial to verify
whether the node neighborhoods are reaching a stable configuration. To measure
this, we utilize the Jaccard Similarity J(·), which quantifies the similarity between
two sets X and Y.

J(X, Y ) =
X
⋂
Y

X ∪ Y
(4.3)

So, to evaluate the stability of the neighborhood configuration, we calculate the
Mean Jaccard Similarity between the neighborhood of the current round and the
neighborhood of the previous round. A high mean Jaccard Similarity, closer to 1,
indicates that the neighborhoods are relatively stable, with minimal changes between
rounds. On the other hand, a low mean Jaccard similarity, closer to 0, suggests that
the neighborhoods are undergoing significant changes between rounds, indicating a
lack of stability in the configuration.

Figure 4.4 depicts the evolution of the Mean Jaccard Similarity towards stability
in the scenario where the network information is relatively stronger (intra-cluster
≥ 0.3). However, in scenarios 5 and 6, where the network information is relatively
low, the Mean Jaccard Similarity remains relatively low. The stable neighborhood
configuration only reaches around 30% to 40%, indicating that more than half of the
neighbors change from one round to the next. This suggests that the neighborhood
configuration is less stable in these scenarios due to the weaker network information.
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Figure 4.4: Jaccard Mean measure capturing the neighborhood stability between
the current and previous rounds.

4.1.3 Network and Attributes Sensibility

This experiment aims to analyze the sensitivity of the model to varying signals
from both the network structure and the attributes. To compare the results, we
employ two algorithms: K-Means, which considers only the attribute signals, and
Louvain, which considers only the network structure and optimizes the modularity.
Additionally, to compare the effectiveness of the self-learning module, we employ
DCSL-GNN with only one round, but the GCN is trained with the number of epochs
of each round multiplied by the total number of rounds. We refer to this approach
as NSL (not self-learning).

To ensure statistical significance given the stochastic nature of DCSL-GNN and
the synthetic networks, multiple independent experiments using different sampled
networks were conducted for each scenario. The reported results are the mean values
obtained from the multiples runs (50 runs). This allows us to obtain more robust
and reliable results by considering multiple runs and capturing the variability in the
performance of the model.
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Fixed Attributes Variance

Figure 4.6 presents the results of the experiments where the variance of the attributes
is fixed, while the intra-cluster probability parameter of the Stochastic Block Model
(SBM) is varied. This allows us to examine the influence of individual signals on the
cluster detection process. By manipulating the intra-cluster probability parameter,
we can control the strength of the network structure signal and observe its impact on
the quality of the detected clusters. Figure 4.5 illustrates the distribution sampled
in this experiment for the attributes. The attributes were sampled from a normal
distribution with a fixed mean, while the variances were varied. It can be observed
that as the variance increases, the distribution curves become wider, indicating a
higher spread of attribute values. This increased variance can lead to attribute data
points overlapping more, which reduces the distinctiveness and importance of the
attributes for the clustering problem.

It is worth noting that in Figure 4.6, the blue line represents the DCSL-GNN
with supervised learning (SL), the orange dashed line represents the DCSL-GNN
without supervised learning (NSL), the green dashed line represents the Louvain
algorithm that considers only the network signal, and the red dashed line repre-
sents the K-means algorithm that considers only the attribute strengths. The lines
represent the mean performance of 50 independent experiments, while the shaded
regions represent the 25th and 75th percentiles. This provides a visualization of the
variability and distribution of the results across multiple runs.

The self-learning module shows promising results, as indicated by the comparison
between the blue and orange lines. In all experiments, the performance of the
model with the self-learning module (blue line) is significantly higher than without
it (orange line). This suggests that the self-learning module significantly contributes
to the improvement of the clustering performance in the DCSL-GNN framework.

In scenarios where the attribute signal is extremely strong and effectively reveal
the underlying clustering, the DCSL-GNN performance tends to be higher than al-
gorithms which consider only the network structure (Comparation of Figures 4.6 (a)
and (b)). This is because the attributes provide sufficient information to accurately
determine the cluster membership of nodes. In such cases, even with weaker signals
from the network structure (SBM intra-cluster probability ≤ 0.3), by combining the
information from both the network and attributes, DCSL-GNN effectively capture
and utilize the strong attribute signals for clustering, better than algorithms which
rely solely on the network structure or attributes (Louvain and K-means algorithms).
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From Figure 4.6(c) and (d), it can be observed that DCSL-GNN achieves sim-
ilar performance to the Louvain algorithm, even when the attribute signals are
not strong. This highlights the adaptability of DCSL-GNN in leveraging different
sources of information based on their relative signals strengths. However, when the
attribute signals are too noisy, they can interfere and lead to lower cluster quality,
as demonstrated in Figure 4.6(e).

(a) Variance = 0.5 (b) Variance = 1

(c) Variance = 10 (d) Variance = 30 (e) Variance = 50

Figure 4.5: The cluster attributes in the experiments were sampled from Normal
Distribution, as described in Section 2.3.
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(a) (b)

(c) (d) (e)

Figure 4.6: The results of the 50 runs for each experiment demonstrate that DCSL-
GNN performs well in scenarios where there is low confidence in the network struc-
ture community and higher confidence in the attribute community. In these sce-
narios, DCSL-GNN effectively utilizes the attribute signals to compensate for the
weaker network structure signals.

Fixed SBM Intra-cluster

This experiment evaluates the performance of DCSL-GNN with a fixed intra-cluster
probability over the rounds. Figure 4.7 shows the learning process over multiple
runs, where the line represents the mean and the shaded area represents the 25th
and 75th percentiles. It can be observed that when the cluster signal from the
network structure is not strong, the framework takes a certain number of rounds
to converge. This can be seen in Figure 4.7(a), where the blue and orange lines
(representing a strong attribute signal) continue to increase in value even in the
last rounds. The convergence can be analyzed in Figure 4.7(b), where the attribute
signals are not noisy, and the node neighborhoods in the Context Graph tend to
be more consistent across rounds. However, when there are fewer network and
attribute signals available, the Jaccard similarity between the neighborhood of the
current and previous rounds remains low, indicating that the context neighborhood
does not converge to a stable configuration.
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When comparing the increase in network signals, it can be observed that the Jac-
card similarity increases (Figures 4.7(b), (c), and (d)). This suggests that a strong
network signal contributes to a more stable neighborhood in the Context Graph.
Additionally, it is worth noting that the attribute signals also have an influence on
the stability. When the attribute signals are noisy, the Jaccard Similarity tends to
be lower.

In Figure 4.8, we can observe different scenarios where the intra-cluster proba-
bility remains fixed, but the normal variance of the attributes is varied. It is evident
that as more noise is added to the attributes, the clustering results are negatively
influenced. However, when the network structure is strong enough, the influence of
attribute signals becomes less significant to DCSL-GNN. In such cases, the inherent
connectivity in the network itself are sufficient to reveal the underlying clustering
patterns. Note that in these scenarios, Louvain algorithm (green line) achieves the
highest NMI score among the evaluated algorithms in Figure 4.6(c), (d), (e) and (f).

Note that the K-means, which consider only the attributes, when the variance is
high, and are considered just noisy, because none information can be extracted.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: DCSL-GNN evolution over rounds, with fixed intra-cluster probability
and varying attribute signals. Results include NMI over rounds and the Jaccard
mean of the neighborhood between the current and previous rounds.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: DCSL-GNN performance with fixed intra-cluster probability and varying
attribute signals.
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4.2 Benchmarks datasets

We conducted experiments on three citation networks: Cora, CiteSeer, and PubMed.
These datasets are widely used to test network analysis algorithms, particularly in
community detection studies, where they serve as benchmark graphs to evaluate
the performance of various frameworks and methods, as discussed in Chapter 2.
DCSL-GNN was executed 20 times with manually tuned parameters specific to each
dataset.

4.2.1 Datasets Overview

The Cora dataset, introduced by Andrew McCallum et al.[62], consists of 2708

scientific publications classified into seven classes. The dataset also includes 5278

links representing the citations between the publications. Each publication in the
dataset is described by a binary word vector indicating the absence or presence of
each word from a dictionary of 1433 unique words. The Citeseer dataset, introduced
by Lee Giles et al.[63], is also a collection of scientific publications. Similar to the
Cora dataset, the features in Citeseer are represented by vectors that encode the
presence or absence of words from a dictionary. The Pubmed dataset, introduced by
Prithviraj Sen et al.[64], consists of scientific publications from the PubMed database
related to diabetes. The publications are classified into three classes. The features
for each publication are represented by TF/IDF weighted word vectors derived from
a dictionary of 500 unique words. The basic information of these datasets is shown
in Table4.2.

Dataset Nodes Edges F K cc < k > Imbalance
Cora 2708 5278 1433 7 0.24 3.89 4.54

Citeseer 4230 5337 602 6 0.11 2.52 1.48

PubMed 19717 44324 500 3 0.06 4.49 1.91

Table 4.2: Network characteristics of the benchmark datasets. F represents the
dimension of the node attributes, K is number of clusters, cc denotes the average
clustering coefficient of the network, < k > is the average node degree, and imbalance
is the ratio between the largest and smallest cluster.
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Imbalanced class sizes pose challenges to machine learning algorithms, and Graph
Neural Networks (GNNs) are no exception [65, 66]. When the majority class dom-
inates the dataset, the loss function can be biased towards that class, leading to
poor performance. The class sizes of the citation benchmarks are described in Ta-
ble 4.3. Observe that the Cora dataset exhibits the highest level of class imbalance,
with the largest class (Class 4) having more than 4.5 times the number of examples
compared to the smallest class (Class 7). Furthermore, the size of the largest class
is more than 2 times the mean class size. The most balanced dataset is Citeseer,
with well-distributed class sizes and sizes spread out around the class mean.

Sizes Cora Citeseer PubMed
Class 1 351 628 4103

Class 2 217 740 7739

Class 3 418 778 7875

Class 4 818 831 /

Class 5 426 558 /

Class 6 298 695 /

Class 7 180 / /

Total 2708 4230 19717

Table 4.3: Each row corresponds to the total number of nodes that belong to each
class. The "/" symbol is used to indicate a missing class in the dataset.

4.2.2 Results

Table 4.4 presents the evaluation of multiple frameworks for clustering attributed
graphs, with the NMI metric used to measure the clusters quality. It is noteworthy
that for each benchmark dataset, there is one algorithm that outperforms the others.
In the Cora dataset, the MGCCN framework [28] achieves the highest NMI value
and is considered state-of-the-art. Similarly, in the PubMed dataset, SEComm [7] is
considered the state-of-the-art. Furthermore, the proposed framework DCSL-GNN
demonstrates state-of-the-art performance in the Citeseer dataset.
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Cora Citeseer PubMed
Kmeans 12.8± 3.5 26.54± 2.3 26.77± 0.2

Louvain 41.49 28.62 21.81

GAE 40.69 18.34 22.97

GIC 53.70 45.30 31.90

AGC 53.68 41.13 31.59

MGCCN 60.20 43.20 −
DNENC-Att 52.80 39.70 26.60

DeMoN 48.80 33.70 29.80

CommDGI 57.90 41.90 35.70

SEComm 56.04 42.53 36.50

DCSL-GNN 46.95± 3.1 47.74± 2.8 24.27± 1.20

Table 4.4: Normalized Mutual Information (NMI) results on Cora, Citeseer and
PubMed datasets. Highlighted in red is the best result for each dataset.

These results demonstrate that DCSL-GNN performs well in scenarios where
the clusters are balanced, both in synthetic and real data. Specifically, the perfor-
mance on the Citeseer dataset provides validation for this hypothesis. However, it
is worth noting that imbalanced nodes can affect the performance of DCSL-GNN.
This is because the triplet-loss used for learning the model parameters relies on
the selection of triplets consisting of an anchor, positive, and negative node. Thus,
the classes with fewer examples contribute less to the objective function, which can
result in the dominant class biasing the model. This phenomenon was observed in
the Cora dataset, where the model is biased by the largest cluster, leading to lower
performance of DCSL-GNN in this scenario.
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Chapter 5

Conclusion and Future work

Graph clustering in attributed graphs has indeed emerged as a prominent research
area, garnering significant attention, especially with the growing popularity of Graph
Neural Networks (GNNs). GNNs have the ability to capture both structural and
attribute information, making them suitable for graph clustering tasks. Their ap-
plication in graph clustering has demonstrated promising results, as they can ef-
fectively leverage both types of information to achieve more accurate and effective
clustering compared to methods that consider only one of them. Sereral tecniques
that have been developed utilizing GNNs to trackle the graph clustering task was
discussess [6, 7, 12, 27, 47–49]

In this dissertation, we propose a novel fully unsupervised framework for clus-
tering network attributes. Specifically, our framework combines Graph Neural Net-
works (GNNs) with a self-supervised module that iteratively constructs improved
node representations based on the cluster assignments. The GNN component lever-
ages the structural and attributes information in the network to capture meaningful
representations which are utilized in the clustering process. The self-supervised mod-
ule operates iteratively, using the cluster assignments obtained in previous iterations
to guide the learning process. It takes advantage of the refined node representations
at each iteration to update and improve the cluster assignments. This iterative
approach enables the framework to refine both the node representations and the
clustering assignments in a mutually beneficial manner.

The evaluation of the proposed framework takes into account various scenarios
where the signals of node attributes and network structures are varied. This ap-
proach allows for a comprehensive assessment of the framework performance across
different conditions and signal strengths. A synthetic graph generator was designed
to simulate different combinations of attribute signals and network structures. By
manipulating the strength of attribute signals and the connectivity of the network,
we can create diverse scenarios that represent a range of real-world conditions.
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In addition to the synthetic graphs, real datasets commonly used as bench-
marks in the research community were also employed in the evaluation. These real
datasets provide a means to validate the framework performance in real-world sce-
narios and compare it against existing methods. We observed that the proposed
model achieved state-of-the-art performance in one of the benchmark datasets that
were utilized.These results demonstrate the effectiveness and competitiveness of the
proposed model in tackling the graph clustering problem.

However, it is worth noting that the model performance varied across different
datasets. In some cases, the model exhibited lower performance compared to other
methods in some cases. This discrepancy can be attributed to the specific charac-
teristics of the datasets, such as variations in network structure, attribute signals,
presence of noise or outliers and imbalanced classes.

5.1 Future work

There are several directions for further development that are worth pursuing:

• Compare DCSL-GNN with other frameworks in the same synthetic scenarios.
Evaluate the clustering performance and identify cases where DCSL-GNN out-
performs or falls behind compared to other approaches. This comparison can
provide insights into the relative strengths and limitations of DCSL-GNN.

• Improving the scalability of the proposed model, particularly in terms of mem-
ory load on the GPU, is an important aspect to address. As the iterative
process constructs a new graph at each iteration, loading these new graphs
into GPU memory can lead to a memory bottleneck and impact the overall
scalability of the model.

• Investigate the impact of imbalanced class distributions on the model, and
measuring this impact is crucial to understand the challenges posed by class
imbalance.

• Many frameworks combine multiple loss functions to optimize their perfor-
mance. Adding another signal learning component, especially one that utilizes
an objective function focused on modularity, can be beneficial.

• Design and implement different optimizations to DCSL-GNN such that it can
handle very large graphs (e.g., millions of nodes and edges) while maintaining
low training effort and high accuracy in the clustering process.
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