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Esta tese apresenta LTL-SN, um framework baseado em lógica para modelar redes
sociais usando a Lógica Temporal Linear (LTL). O LTL-SN incorpora propriedades
de redes sociais de adoção, onde os agentes adotam comportamentos baseados no
comportamento de seus amigos. Além disso, ele explora variações do modelo para
analisar a propagação de doenças em populações usando modelos compartimentais.
A tese aproveita linguagens de especificação existentes e implementações de veri-
ficação de modelos, representando redes sociais como caminhos LTL especificados
com modelos nuXmv. Os resultados de pesquisas publicadas são referenciados.
Fornecemos axiomatização e provas de correção e completude para cada variante
lógica apresentada, incluindo os modelos compartimentais SIR e SIRS.
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This thesis introduces LTL-SN, a logic-based framework for modeling social
networks using Linear Temporal Logic (LTL). LTL-SN incorporates social network
properties of adoption, where agents adopt behaviors based on their friends’ behavior.
Additionally, it explores variations of the model for analyzing disease spread in
populations using compartmental models. The thesis leverages existing specification
languages and model checking implementations, representing social networks as LTL
paths specified with nuXmv models. Published research findings are referenced.
We provide axiomatization and proofs of soundness and completeness for each
presented logic variant, including compartmental SIR and SIRS models.
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Chapter 1

Introduction

Earlier studies of social interactions related with diffusion of innovations date back
to at least around the late 19th century [3] and early 20th century [4]. In the
late 1990’s Internet social network services gained traction, with networks such as
Friendster, MySpace, LinkedIn, and with Facebook as one of the more recently
emerging platforms. These services allow people from all over the world to interact
in meaningful ways, and as such, have gained tremendous importance in popular
culture in recent years.

In a broader sense, these networks are commonly defined by a set of actors
(individuals, communities or societies), relations between pairs of entities, and a set
of social interactions [5]. For instance, in Facebook, an entity is a person, user of
the service; the relations between pairs of entities are the friendship relations and
the social interactions are posts which appear on the user’s timeline.

Our goal in this paper is to develop a logic based on Linear Temporal Logic
(LTL), denoted LTL-SN for social network models. Semantics are standard LTL,
but we are interested in models with social network properties of adoption, where an
agent adopts a behavior when a given proportion of its friends exhibit that behavior.

We also explore variations of this model for the spread of diseases among
populations, so called compartmental model for epidemics. Specifically we present
two variations of these models with and without agent recovery.

The reasoning for pursuing this direction is the possibility to leverage existing
specification languages and model checking implementations. The social networks
presented here evolve as standard LTL paths, and can be specified as nuXmv

models, for instance.
A portion of the research presented in this thesis has been published on the

Journal of Logic and Computation, volume 32, issue 6, September 2022, pages
1088–1108 [6].

The roadmap is as follows: In chapter 2 we briefly go over some of the literature
that inspired or served as a basis for this work, providing an overview of the past and
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current tendencies in the study social networks with such frameworks. In chapter 3
we introduce LTL-SN, its language and semantics, present some simple examples of
model evolution and formulas, and in chapter 4 we present some important definitions
that lead on to the axiomatization and finally its soundness and completeness results
in chapter 5. In the next chapters we explore variants of LTL-SN for different
purposes: chapter 6 introduces a variant supporting multiple behaviors. In chapter
7 we briefly discuss model checking and its time complexity. Chapter 8 introduces a
variation which explores a SIR model for the study of infectious diseases. We go on
in chapter 9 expanding the SIR variation to a branching CTL-based variant; And in
chapter 10 a SIRS model which allows agents to become susceptible to infections
again. Finally, we present our closing words and future works in chapter 11.
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Chapter 2

Background

In this chapter, we will introduce and define some key concepts and models that are
commonly used in various fields such as computer science, epidemiology, and social
network analysis. These concepts will be relevant for the work we develop here.

We will introduce linear and branching temporal logics, logics that deals with
reasoning about events that occur over time. Next, we will define social networks
and present some of the literature in logics that aims to study these systems. We will
then introduce SIR compartmental models, which are widely used in epidemiology
to study the spread of infectious diseases. Finally, we will discuss model checking, a
technique used to verify the correctness of models against certain specifications or
properties.

2.1 Kripke structures

Transition systems are representations of states in a system, and transitions between
these states. These transitions can be labelled or unlabelled. Lastly, a transition
system is denoted “total” when every state contains an outbound transition.

Kripke structures are a special case of transition systems: total unlabeled
transition systems [7]. Each state also has a set of propositions associated with
it, via a labelling function. Usually Kripke structures are represented as 4-tuples,
M = (S, I, R, L), such that:

• S is a finite set of states;

• I ⊆ S is a set of initial states;

• R ⊆ S × S is a binary transition relation between states;

• L : S → 2AP is a labelling function associating each state to a set of atomic
propositions (AP ).

3
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Figure 2.1: A Kripke structure represented as a bidirected graph.

Figure 2.1 is an example of a Kripke structure with the following properties:

• S = {s0, s1, s2, s3};

• I = {s1};

• R = {{s0, s1}, {s1, s3}, {s2, s0}, {s2, s1}, {s3, s1}, {s3, s2}, {s3, s3}};

• L = {{s0, {p}}, {s1, {p, q}}, {s2, {p, r}}, {s3, {r}}}.

2.2 Temporal Logics

Temporal logics are formal systems made to represent and reason about propositions
qualified by time-related modalities. As such, temporal logics are modal logics,
meaning they provide operators that act on propositions to generate temporal
propositions. Some examples of temporal quantifiers used in these logics are "in the
future p holds" or "p holds until q holds", and so on.

Some of the most common logics used for model checking systems fall under the
umbrella of temporal logics, first applied to this purpose in [8]. The most commonly
used being Linear Temporal Logic (LTL) and Computation Tree Logic (CTL), or
the LTL superset CTL* [9].

One of the most important concepts for model checking with temporal logics
is that of fairness. A run of a program or automaton is said to be “fair” if every
one of its processes are always given a chance to run indefinitely into the future.
That is, a process never falls into a condition of “starvation”. Many times in model
checking it is convenient to employ fairness constraints [10], in which only paths
that do not ignore indefinitely enabled processes are considered, and paths in which
certain processes are never given a chance to run are discarded.

4



2.2.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) was first introduced in the seminal work of [8].
LTL formulas are evaluated against paths on a Kripke structure, and represent

a series of states over time (e.g.: the execution of a program, or automaton). These
formulas are composed of atomic propositions, the standard classical operators and
temporal operators.

Definition 1 (Language of LTL). The language of LTL is given by the following
BNF:

φ := ⊤ | p | ¬φ | φ1 ∧ φ2 | Xφ | Fφ | Gφ | φ1Uφ2

The operators are read as “Next” (X), “Finally” (F ), “Globally” (G) and “Until”
(U).

The “Next” operator is a unary operator that represents the proposition that
the next state in the sequence satisfies a given condition. For example, the formula
Xp means “the next state satisfies p”. The Next operator is often used to express
statements about immediate future states.

The “Finally” (also sometimes denoted “Future”) operator is a unary operator
that represents the proposition that a given condition will eventually become true
at some point in the future. For example, the formula Fp means “p will eventually
become true”. The Finally operator is often used to express statements about
eventualities.

The “Globally” operator is a unary operator that represents the proposition that
a given condition holds globally, i.e., it holds in all future states. For example, the
formula Gp means “p holds in all future states”. The Global operator is often used
to express statements about invariance or safety conditions.

And finally, the “Until” operator is a binary operator that represents the propo-
sition that a certain condition holds until another condition becomes true. For
example, the formula pUq means “p holds until q is true”. The Until operator is often
used to express statements about future states that satisfy a particular condition.

Figure 2.2 demonstrates models that satisfy each of the temporal operators in
LTL.

Definition 2 (Satisfaction of LTL formulas). Given a model M = (S,R, V ) and
a path π = s0, s1, s2, . . . such that siRsi+1 for all i. The satisfaction of formulas in
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p b

(a) Xp

p

(b) Fp

p

p

p

(c) Gp

p

p

q

(d) pUq

Figure 2.2: Example paths where each of the LTL temporal operators hold. Notice
that the paths are infinite, and dashed lines mean an arbitrarily long path. Figure
2.2c represents a path where p holds in all states, and figure 2.2d a path where q
holds from the first state where it appears and onwards.

LTL is defined as follows:

π, i |= p iff p ∈ V (si)

π, i |= ¬φ iff π, i ̸|= φ

π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2

π, i |= Xφ iff π, i+ 1 |= φ

π, i |= φUψ iff there exists a n ≥ 0 such that
π, n |= ψ and π, j |= φ for all 0 ≤ j < n

Other operators, such as F and G can be defined in terms of these:

• Fφ ≡ ⊤Uφ;

• Gφ ≡ ¬F¬φ.

The complexity of the model checking problem in LTL has a complexity of
PSPACE-complete with an algorithm complexity of O(|TS| · exp(|φ|)) where |TS|
is the size of the transition system model, and |φ| is the size of the formula [11].
The algorithm complexity is linear over the size of the transition system, however
even for a reasonably small model the state explosion problem is still an issue [12].
This means that model checking LTL naïvely is a very complex task for all but the
most simple use cases, and symbolic model checking is commonly employed. Despite
the difficulties in model checking LTL, it is considered to be the most useful for
practical use, due to it being more appropriate for behavioral instead of structural
specifications, and also inherently supporting fairness [13].

Two properties that are commonly considered during model checking are “fairness”
and “invariance”. Consider the expression GFp: it states that for every state in the
path, there is always some state in the future in which p holds. Consider that p

6



p p p

Figure 2.3: This figure provides intuition for a fair path, in which there is always
a state in the future where p holds. In other words, the “absolute fairness” or
“impartiality” statement GFp holds.

p p p

Figure 2.4: This figure provides intuition for an invariant path, where FGp holds.
In other words, in some state in the strict future, p holds and holds in all subsequent
states.

represents a given process being executed, for example. This expression, commonly
denoted “absolute fairness” [14] (see figure 2.3), captures the fact that process p
is always given a chance to run and the system will never reach a situation of
starvation.

Another important property is denoted “invariance” (see figure 2.4), captured
with the expression FGp [13]. It means that, at some point in the future, p will
always hold. It can be used to represent a desirable property in a system, in which
one wishes to assure such property will always eventually be true.

2.2.2 Computation Tree Logic (CTL)

First proposed and used in [15] to model concurrent programs, Computation Tree
Logic (CTL) is a formal logic used to reason about the behavior of systems with a tree-
like structure, such as computer programs, hardware systems, and communication
protocols.

Definition 3 (Language of CTL). The language of CTL is given by the following
BNF:

φ := ⊤ | p | ¬φ | φ1 ∧ φ2 | AXφ | AFφ | AGφ | φ1AUφ2

| EXφ | EFφ | EGφ | φ1EUφ2

The path quantifier prefixes in operators are read as “Eventually” (E) and
“Always” (A). Temporal operator suffixes X, F , G and U are read the same as their
LTL counterparts.

Definition 4 (Satisfaction of CTL formulas). Given a model M = (S,R, V ) and a

7



state s ∈ S. The satisfaction of formulas in CTL is defined as follows:

M, s |= p iff p ∈ V (s)

M, s |= ¬φ iff M, s ̸|= φ

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= EGφ iff for some path π = s0, s1, s2, . . . , si, . . . such that s0 = s

we have for all M, si |= φ

M, s |= φEUψ iff for some path π = s0, s1, s2, . . . , si, . . . such that s0 = s

there exists an i such that M, si |= ψ

and for all j < i we have that M, sj |= φ

M, s |= EXφ iff for some s′ such that sRs′ we have M, s′ |= φ

Some operators can be defined in terms of others [16]:

• AXφ ≡ ¬EX¬φ

• EFφ ≡ E[⊤Uφ]

• AG ≡ ¬EF¬φ

• AF ≡ ¬EG¬φ

• φAUψ ≡ ¬((¬ψEU¬(φ ∨ ψ)) ∨ EG¬ψ)

Figure 2.5 demonstrates models that satisfy each of the path quantifiers and
temporal operators in CTL.

The model checking problem in CTL has complexity of PTIME with an algorithm
complexity of O(|TS| · |φ|) where |TS| is the size of the transition system model,
and |φ| is the size of the formula [11]. While CTL might look like a good alternative
to PSPACE-complete LTL, it is generally less useful in practice. [9] says CTL is
“unintuitive and hard to use, it does not lend itself to compositional reasoning, and
it is fundamentally incompatible with semi-formal verification”.

Lastly, it is also worth noting that, contrary to LTL, the concepts of fairness
cannot be directly expressed in CTL. Since fairness is very useful restriction in real life
applications, some model checkers that do not include LTL or CTL* specifications
still provide the ability to define and enforce fairness constraints for CTL-only
specifications. Some of these model checkers are nuSMV/nuXmv, PRISM and
its-ctl.

2.2.3 CTL*

CTL*, introduced in [17], is a superset of CTL and LTL as shown in figure 2.7, and
allows mixing LTL and CTL formulas.
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Figure 2.5: Example paths where each of the CTL path quantifiers and temporal
operators hold
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Figure 2.6: A model satisfying the formula AFAGp. Notice this is subtly different,
and strictly stronger, than the LTL invariance formula FGp shown in figure 2.4.
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Figure 2.7: The relationship between the expressiveness of LTL, CTL and CTL*
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Figure 2.8: The uppermost path represents a path in which there is always a future
state where p holds. Therefore, it is the case thatM, a |= E(GFp). The statement
GFp is usually denoted “absolute fairness” or “impartiality” and is expressible in
LTL [1]. The statement E(GFp), however, is under the path quantifier E and is
expressible only in CTL*.

Definition 5 (Language of CTL*). The language of CTL* is given by the following
BNF:

φ := ⊤ | p | ¬φ | φ1 ∧ φ2 | Aϕ | Eϕ

ϕ := φ | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | Fϕ | Gϕ | ϕ1Uϕ2

Figure 2.8 shows an example of a formula that is in CTL* and outside of both
LTL and CTL, and a model where the formula holds.

The complexity of the model checking problem in CTL* is dominated by the
LTL complexity [18], that is, it is PSPACE-complete with an algorithm complexity
of O(|TS| · exp(|φ|)) where |TS| is the size of the transition system model, and
|φ| is the size of the formula [11]. This is deceiving, however, as the algorithms
are notoriously more difficult to implement as evidenced by the general lack of
availability of CTL* model checkers [13], though at least one proposal exists [19].

2.3 Social Networks

Social network analysis has been used to study a wide range of social phenomena,
including the spread of information, the formation of social groups, the emergence
of collective behavior, and the diffusion of innovations. Graph-based methods have
also been used to identify key individuals and groups within a network, to detect
communities or clusters of nodes with similar properties, and to predict the future
behavior of the network. Overall, social network studies using graphs have proven
to be a valuable tool for understanding the complex dynamics of social systems.
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A B C

D E

Figure 2.9: This diagram shows a network where agents A, B, C, D, and E are
represented as circles. The edges between the nodes represent the connections
between the agents. For example, A is connected to B, and B is connected to A, C
and D.

“Classical” social networks studies are usually characterized by graph structures
(see figure 2.9), composed of nodes, which represent the actors (eg.: people); and the
edges, which represent relations or interactions between the nodes (eg.: friendship).

Formal studies of social networks in graph theory, called sociometry, began with
[20] as a means to explore how the psychological state of people is related to the
structural features of what was termed the ’social configurations’ [21].

There are a few logic frameworks which attempt to emulate social network
structure and dynamics, and we will now briefly go over some of the most important
ones to provide an overview of the formalisms used to study social networks.

The works of [22, 23] deal with how a group of agents should reach consensus by
assessing the probabilities that each agent assigns to a given proposition, and that
informed disagreements are therefore irrational behavior. These are seminal works
in social networks theory.

2.3.1 Literature on logics for social networks

In this section we review some relevant literature for the study of social networks in
logics, with a focus in models of diffusion for these networks.

Threshold models are some of the most studied in logics for social networks,
such as in [24–27]. In these, agents are influenced by their neighbours into adopting
a behavior depending on the proportion of neighbours who already adopted.

In [24] the focus is on establishing conditions for adoption of a “product” by
agents, and whether the process has a unique outcome or not, or an unavoidable
one. Agents have neighbours and are always aware of their product adoptions. They
have a threshold θ, and will adopt a product if more than θ of its neighbours have
adopted it or not.

The logic in [25] focuses on the influence of groups of agents over other groups,
with formulas such as A ▷ B meaning “if the group of agents A has adopted,
that eventually leads to the adoption by group B”, and a sound and complete
axiomatization.

In [26] the case for recalcitrant agents in a network with unequal weights among
agents is studied. Recalcitrant agents are completely immune to the behavior
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diffusion (or opinion about a product, in the context presented).
In [27] a different approach to threshold models is taken, by constructing the

dynamics using action models and product update. The work proposes an action
model approach to the updates, which consists of applying the product between
the network graph and a graph that encodes the decision rules, and is uniformly
followed by all agents.

A survey of both threshold-based and non threshold-based models is conducted
in [28], with concepts such as ranked friends, reliability of agents, and plausibility
of outcomes.

A more game-theoretic approach is taken in [29], where agents can choose when
their information should be public or private, in what the authors call “games of
influence”. Agents try to achieve goals that are expressed as LTL formulas, such as
FGop(A, p), meaning a goal that “eventually and henceforth, agent A will have an
opinion p”.

In [30] a First-Order Computational Tree Logic (FO-CTL) is presented for SIR
models (Susceptible, Infectious, or Recovered), which model the spread of diseases.
The presence of a single connection in the network is sufficient to spread a disease
to an agent. It is shown that under certain conditions, such as a finite agent set,
the model checking problem is decidable.

Paper [31] investigates the phenomenon of peer pressure, by introducing a
model where a person’s preferences are changed in response to the preferences of a
“peer group”. Relationships among agents are defined within the usual “Facebook
logic” [32] definition: connections between pairs of agents that are both symmetric
(friendship is always reciprocal) and irreflexive (an agent is not a friend of itself).

Private and public opinions are considered under the dynamics of social influence
in [33]. It provides rules for “strong” and “weak” influence, and also rules for when
an agent will express its true inner opinions or a different external opinion. Agents
are capable of evolving their epistemic knowledge to infer the inner opinions of
others, by discarding states which are contradictory to the rules of social influence.

In [2] a “minimal” threshold-model based logic is presented, in the sense that it
does not use static modalities or hybrid logic for its diffusion process. The authors go
on to introduce an epistemic version of this logic, where agents must have sufficient
information about the behaviors of their neighbours before adopting the behavior.
The network diffusion dynamics and axiomatization presented in this work serve as
basis for the work we develop here, which we expand with the new LTL operators
and provide a sound and complete axiomatization for this expanded system.
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2.4 SIR infection models

In this section we briefly introduce a compartmental model for epidemics denoted
“SIR”. Chapters 8 and 9 will explore variations of the logics frameworks presented
earlier that are based on these models.

Compartmental models for epidemics have figured in the literature since 1916
[34], first introduced as sets of differential equations for what is today referred to as
the SIS (Susceptible-Infectious-Susceptible) model. These compartmental models
are usually named after their compartment classes, indicating the evolution of an
individual over time in such models. Later [35] proposed the SIR (Susceptible-
Infectious-Recovered) model, where infected agents are infectious for one round, and
then become recovered and cannot be infected nor spread the disease any further.
The presence of a single connection in the network is sufficient to spread a disease
from one agent to another. In this section we will focus on SIR models in particular.

SIR models are described by a set of ordinary differential equations [36]. For
simplicity, we present the model here without birth and death rate terms:

dS
dt

= −βIS
N
,

dI
dt

= βIS
N
− γI,

dR
dt

= γI

where

• S is the number of susceptible individuals;

• I is the number of infected individuals;

• R is the number of recovered individuals;

• N = S + I +R is the total population;

• β is the infection rate per unit of time of an individual;

• γ is the rate of recovery per unit of time of an individual.

That is, for an infection rate β = 2, one infected individual will infect other two
individuals on every elapsed unit of time. A recovery rate of γ = 1 means that, on
every elapsed unit of time, one infected individual will recover from infection.

Figure 2.10 demonstrates the evolution over time of an initial population of
N = 100,000 individuals, with a single infected individual at the start.

There has been some work on SIR models in the field of logics.
In [37], these models are studied in a sound and complete hybrid logic, and a

tableau system is also provided. In this approach, agents are discrete and infections
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(a) This case demonstrates a moderately infectious disease with a reasonably quick recovery
time. A mild peak of infections occurs, however some agents never become infected.
Population N = 100,000 and a single infected individual at the start. Infection rate is
β = 3, and recovery rate γ = 1.
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(b) This case demonstrates an extremely infectious disease with a slower recovery time.
Many agents are quickly infected, and take a long time to recover. Almost every agent is
infected. Population N = 100,000 and a single infected individual at the start. Infection
rate is β = 5, and recovery rate γ = 0.5.
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(c) This case demonstrates a disease that spreads very slowly, and with a slow recovery time.
The peak of infections becomes extremely flattened over time. Population N = 100,000
and a single infected individual at the start. Infection rate is β = 1.5, and recovery rate
γ = 0.5.

Figure 2.10: Multiple settings showcasing the evolution of SIR models.
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obey an actual network structure connecting agents to each other, much like a social
network.

In [38] and a section of [39] fuzzy logic approaches to SIR epidemic models are
explored. Epidemic and pandemic models are represented as Petri nets in [40], and
such models are then simulated in the “PetriNuts” platform tools.

2.5 Formal Model Checking

In certain mission critical applications, such as air traffic control, electronic com-
merce, communication networks, and others, hardware and software stability and
predictability is crucial. Either due to life-threatening risks or economic impacts,
finding errors in these applications during their operation is extremely undesirable,
and can have serious consequences.

In light of this problem, statically checking program flows has been a point of
study for quite some time, with the seminal papers in automatic model checking
first appearing in 1981 developed independently by Edmund M. Clarke and E. Allen
Emerson [41], and by Jean Queille and Joseph Sifakis [42].

The most common methods used to assess the behavior of a given system include
“simulation”, “testing”, “deductive verification” (or a mathematical proof) and “model
checking” [16].

Simulation and testing both consist of verifying if, for a given set of inputs, the
system produces the expected output. Commonly, “simulation” refers to running an
abstract model of the system, and “testing” to running on an actual implementation
of the system [43, 44].

Deductive verification is based on axioms and rules to achieve a static proof of
some property or behavior of a system. It requires a specification of the system to
be tested in a formal system, and will usually require a specialist to execute the
checking, which can be extremely time and resources-consuming, and error-prone
[45].

The last method, model checking, will be our focus for the remainder of this
work. Model checking consists of, at first glance, exhaustively checking the state
space of a system to determine whether some property is true or false on the system.

As one might guess, naïvely checking the entire space of states of a given system
can quickly become an intractable problem. There are, however, techniques such as
Binary Decision Diagrams (BDDs) [46] and Bounded Model Checking (BMC) [47]
to intelligently reduce the search space and improve speed of verification for certain
types of models. These techniques are collectively referred to as “symbolic model
checking”.

During the modelling phase, the system’s variables and transitions must be
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modelled in the formal logic being used, usually as a finite model; In the specification
phase, the properties that must be checked are devised and written as formulas in
the logic; Finally, in the checking phase the specifications are tested one by one,
and a sequence of steps (known as “traces”) are provided as counterexamples for the
false ones [48].
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Chapter 3

Linear Temporal Logic for Social
Networks

In this chapter we introduce the Linear Temporal Logic for Social Networks (LTL-
SN), define its model, language and semantics, a system for which we will present a
sound and complete axiomatization in chapter 4.

The reasoning behind using a Linear Temporal Logic for this work is twofold.
When looking at the spread of behaviors in a social network, we are mostly interested
in the dynamics of spreading. Such dynamics are governed by the states of each
of the agents in the network, and the connections between them which serve as
the medium for information propagation over time. Temporal logics are a well
established family of logic systems for modelling such dynamics that evolve over
time, therefore their application in this context makes much sense.

Moreover, LTL provides a natural way to express causality and correlation
between events in the network. It can be used to specify temporal patterns, such as
“if event A happens, then event B must happen within a certain time period”, or
“event A and event B are correlated and tend to happen together”. This allows for
the modelling of complex social phenomena such as information diffusion, group
formation, and the emergence of collective behavior.

The second reason to favor the use of LTL is the extensive backlog of model
checking tools available. Tools such as nuSMV, nuXmv, mCRL2, PAT and
LSTmin are all freely available.

The logic presented in this work is largely inspired by the dynamics introduced
in [2], ported over to LTL which allows one to write succinct formulas reasoning
about paths. We also borrow much inspiration from [37], based on which we explore
another type of diffusion applied to infection spread models, later in chapters 8, 9
and 10.

LTL-SN is effectively a special case of LTL models, that give rise to the particular
type of behavior propagation we are interested in capturing. As such, the standard
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set of LTL axioms is not complete, a gap that we fill with reduction axioms which
allows us to prove completeness by a reduction of the logic into its static part.

3.1 Language and semantics

In this section we present the language of LTL-SN, define certain properties of its
models and its semantics. The language presented in definition 6 is very similar
to standard LTL, and they read and behave like such. The usual operators X for
“Next”, F for “Finally”, G for “Globally” and U for “Until” are all available. The
propositional variables, however are restricted to the concepts related to the shape of
social networks and the behaviors agents exhibit. These are expressed, respectively,
by the operators Nab and βa, for given agents a and b.

Definition 6 (Language). The language of LTL-SN is given in Backus-Naur Form
(BNF) as follows:

φ := ⊤ | Nab | βa | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

where a, b ∈ A, a finite set of agents.
The remaining operators can be defined via abbreviations: ⊥ ≡ ¬⊤, φ ∨ ϕ ≡

¬(¬φ ∧ ¬ϕ), φ→ ϕ ≡ ¬(φ ∧ ¬ϕ), Fφ ≡ ⊤Uφ and Gφ ≡ ¬F¬φ. Intuitive readings
of the operators are the same as previously introduced in definition 1.

In this chapter we model the evolution of a single behavior in a social network,
but it is easy to expand this formalism for multiple behaviors, which we will present
in chapter 6.

Before we proceed to the models used in this logic, we must first define the
concept of behavior sets. Behavior sets represent the state of a behavior in the
network, by containing the agents which currently exhibit such behavior.

Definition 7 (Behavior sets). A behavior set B is the set of agents that exhibit the
behavior of the network. The set of all behavior sets is denoted B ⊆ 2A.

A social network model for this logic is composed of a set of agents, and a
relationship between them, which we assume is symmetric and irreflexive following
the usual “Facebook logic” characteristics as we mentioned previously. That is, in
an LTL-SN model, if Nab holds, Nba must hold as well. Being irreflexive means an
agent cannot be a friend of itself, and therefore Naa can never hold in such a model.

A model also contains an initial behavior set, that determines which agents
exhibit the behavior at the start. The network is then allowed to evolve over time,
which here is represented as a sequence of discrete “positions”, over paths which will
be defined later on in definition 10.
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Finally, a model is also defined by an adoption threshold, which is the minimum
proportion of an agent’s neighbors that must exhibit the behavior so that the agent
itself may adopt it.

The model definition presented here is very similar to the one in [2], however in
our case we will extend the model structure to include the concept of “paths”, which
will allow us to traverse it using the temporal logic operators.

Definition 8 (Model). A model is a tuple M = (A, N, θ, I), where

• A is a finite set of agents;

• N is a neighborhood function N : A 7→ 2A such that N is irreflexive, serial
and symmetric;

• θ ∈ (0, 1] is a non-zero positive uniform adoption threshold;

• I ∈ B is a non-empty initial behavior set;

Before we introduce the aforementioned paths, we must first define how such
paths can be formed in the first place. Paths are defined over a strict relation
between states (behavior sets), such that the network evolves in a manner which
conforms with the rules of behavior diffusion. This relation, which we call ≤, is
presented in definition 9.

Definition 9 (Relation ≤). Let ≤ be the binary relation over B × B, where

B ≤ B′ iff B′ = B ∪
{
a ∈ A :

|N(a) ∩B|
|N(a)|

≥ θ

}
Two behavior sets B and B′, are related such that B ≤ B′ when B′ is the

immediate result of the behavior diffusion process over B. It is worth noting that
due to the seriality of the network, N(a) is always non-empty, and therefore B′ is
always well defined. With this relation we are finally able to define paths over a
model, representing the evolution of behaviors on the network. Notice this relation
only permits adoption of new behaviors by agents, without unadoption. See [27],
for instance, for a more extensive look on the mechanics of unadoption. In chapter
10 we also explore compartmental models of infections with agent recovery (SIRS
models), in which a mechanic similar to unadoption occurs.

Definition 10 (Path onM). A path b = b0, b1, b2, . . . on a model M = (A, N, θ, I),
where bi ∈ B for all i, is such that b0 = I and bi ≤ bi+1.

Given that paths are strictly defined by the relation ≤, it’s not particularly hard
to see that such paths are unique for a given starting behavior set.
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Lemma 1 (Path uniqueness). There is exactly one path b such that b0 = I.

Proof. Follows directly from the fact that for any bi the relation ≤ defines strictly
one bi+1 such that bi ≤ bi+1.

From lemma 1, we see that all the information necessary to define satisfaction of
formulas over a modelM is a position i.

Definition 11 (Satisfaction). Given a model M = (A, N, θ, I) and its path b =

b0, b1, b2, . . . , bi, . . ., the notion of satisfaction of formulas in M at a position i is
defined as follows:

M, i |= βa iff a ∈ bi
M, i |= Nax iff x ∈ N(a)

M, i |= ¬φ iff M, i ̸|= φ

M, i |= φ1 ∧ φ2 iff M, i |= φ1 and M, i |= φ2

M, i |= Xφ iff M, i+ 1 |= φ

M, i |= φUψ iff there exists a n ≥ 0 such that
M, i+ n |= ψ and M, i+ j |= φ for all 0 ≤ j < n

All LTL operators, plus propositional operators Nax and βa defined in a standard
way.

Finally, we define the concept of “validity”, which will be important when we
proceed to deal with soundness of the logic.

Definition 12 (Validity). |= φ iff M, i |= φ for all models M and positions i.

3.2 Examples

The diffusion of a behavior in a social network is a temporal process, and as such
the LTL formalism makes it notably easier to express properties related directly
to the behavior diffusion mechanism and the network structure, by leveraging the
Until operator.

We will use two minimal examples of networks to illustrate this. In both cases
the behavior being studied is only expressed by agent a at first, but the slightly
different network structures lead to quite different outcomes.

For instance, consider the formula ¬βdU(βb ∨ βf), which tells us that agent d
will not have adopted the behavior until either agent b or f do. This expression
holds in the network configuration shown in figure 3.1, independently of the initial
behavior set. Notice the similar formula, ¬βdU(βb ∨ βe ∨ βf ), holds in figure 3.2 but
agent d never gets to incorporate the behavior, since none of its friends do.
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Figure 3.1: This figure presents a social network (with θ = 1/3) with some agents
and the evolution of a behavior. Nodes are agents, and the edges represent the
relation between them. Each figure, ordered from left to right and top to bottom,
represents a distinct position as the network evolves. The behavior eventually
dominates the network.

It is also worth pointing out that the expression for cascades from [2], which
holds if all agents eventually adopt the behavior, can be expressed here as

cascade = F
∧
a∈A

βa

It holds on every position of the network in figure 3.1, but does not hold anywhere
in figure 3.2 since some agents never get to incorporate the behavior.

Now we look at a formula using the Next operator: (Nbd∧βb)∨(Nfd∧βf )→ Xβd

holds in figure 3.1 (and vacuously in figure 3.2), and also holds independently of the
initial behavior set. Notice that the left-hand side expresses the necessary conditions
for agent d to incorporate the behavior itself. A generalization of formulas like this
one will be present in the axiomatization in section 4.

Lastly, it is also easy to express global properties, such as G¬βd meaning “agent
d never exhibits the behavior”, which holds in figure 3.2. This expression does not
hold in the network of figure 3.1 because, as we have seen before, it cascades.
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Figure 3.2: Propagation of the behavior is stopped by a “cluster” [2] of agents
(θ = 1/3). The cluster is a large group of interconnected agents, which provide a
difficult “barrier” for behavior diffusion.
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Chapter 4

Axioms for the LTL-SN system

In this section the axioms of LTL-SN are presented. This formalism is based
on reduction axioms, and this strategy allows us to ultimately reduce formulas
into propositional logic. However before we can do that, we need to define a few
abbreviations and enunciate some useful properties.

First, we will define the “Adoption” abbreviation, which is the same as used in
[2]. This formula holds when an agent will adopt the behavior in the next position
of the path, because it holds when a fraction of at least θ of its neighbors have
already adopted the behavior as stated in definition 9.

Definition 13 (Adoption). An abbreviation expressing the adoption threshold:

βN(a)≥θ :=
∨

G⊆N⊆A:
|G|
|N|≥θ

(∧
b∈N

Nab ∧
∧
b̸∈N

¬Nab ∧
∧
b∈G

βb

)

We also define an expansion that is equivalent to the Until operator, and
demonstrate that both are indeed semantically equivalent. This expansion will play
a key part in the axiomatization, because it allows us to reduce Until occurrences
into equivalent finite expressions containing only Next operators. In turn, these
occurrences can be further reduced using the adoption abbreviation.

This approach makes intuitive sense: each position of the network is determined
by the relation ≤, which is deterministic and produces unique paths. Therefore, it
is reasonable to expect that the satisfaction of a formula can be verified over the
initial state of the network.

The Until expansion is broken in two different definitions: definition 14 is a
recurrence over which the expansion, in definition 15, is established with.

Definition 14 (Until expansion steps). Let φUψ be a formula. We define its Until
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expansion steps as

u0(φUψ) := ψ

ui(φUψ) := (φ ∧Xui−1)

Definition 15 (Until expansion). The Until expansion EXPU(φUψ) in a model
with agent set A is defined as

EXPU(φUψ) :=
∨

0≤i≤|A|

ui(φUψ)

Before we can show equivalence of the Until expansion and the Until operator,
we demonstrate that un(φUψ) is equivalent to φUψ if and only if ψ holds before the
next n positions (or vacuously never holds). After that, we also determine that the
longest distance from the current position at which this can happen has to be less
than |A| positions ahead. With both of these, we are able to prove the equivalence.

Lemma 2 (Until expansion step satisfaction). M, i |= un(φUψ) if and only if
M, i+ n |= ψ and M, i+ j |= φ for all 0 ≤ j < n.

Proof. We will abbreviate un(φUψ) as un for this proof. The proof goes by induction
on n.

Base case (n = 0):
It is trivial to see thatM, i |= u0 if and only ifM, i |= ψ, and there is no j such

that 0 ≤ j < n.
Induction hypothesis (n = k):
M, i |= uk if and only ifM, i+ k |= ψ, andM, i+ j |= φ for all 0 ≤ j < k.
Induction step (n = k + 1):
AssumeM, i |= uk+1.
By definition we have that M, i |= φ ∧ Xuk, if and only if M, i |= φ and

M, i |= Xuk. M, i |= Xuk if and only ifM, i+ 1 |= uk.
Without loss of generality, we can rename i to i+ 1 in the induction hypothesis,

and then we haveM, i+1 |= uk if and only ifM, i+1+k |= ψ, andM, i+1+j |= φ

for all 0 ≤ j < k.
M, i+1+j |= φ for all 0 ≤ j < k andM, i |= φ can be rewritten asM, i+j |= φ

for all 0 ≤ j < k + 1.
Therefore we are able to conclude thatM, i+ (k + 1) |= ψ andM, i+ j |= φ for

all 0 ≤ j < k + 1, and that finishes our proof.

One last point we must address is the actual equivalence between the Until
operator and the expansion. While the expansion is intuitive, it relies on the fact
that paths always reach a fixed-point, where no further changes happen to the next
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behavior sets. This is important, otherwise the expansion could potentially require
infinite steps. We can show that, in fact, any path will reach a fixed-point after at
most |A| steps.

Lemma 3 (Fixed-point). Let b = b0, b1, b2, . . . , bn be a path. For some i < |A| a
fixed-point bi = bi+1 is reached.

Proof. This follows directly from the fact that A is finite and bi ⊆ bi+1 for all i by
definition. The slowest possible diffusion scenario is where |b0| = 1 and only one
agent adopts the behavior per position on the path until the fixed-point is reached.
It follows directly that the fixed-point will have to be reached for some i < |A|.

With lemma 3 we can finally show equivalence between the Until operator and
the Until expansion.

Lemma 4 (Until expansion soundness).

|= φUψ ↔ EXPU(φUψ)

Proof. By definition, EXPU(φUψ) = u0(φUψ) ∨ u1(φUψ) ∨ . . . ∨ u|A|(φUψ).
For any modelM and position j, by lemma 2 we know that a term ui holds if

and only if ψ holds in position j + i. By lemma 3 we know that if φUψ holds, ψ
must hold at some position i such that 0 ≤ j + i ≤ |A| + j. Therefore |= φUψ if
and only if |= EXPU(φUψ).

LTL axioms are as seen on [49], presented here on table 4.1. Notice that for
completeness of this particular class of models, only axioms A2, A3, A8 and the rules
of inference MP and NX were used. The others were kept merely for reference.

This is also an appropriate time to introduce two propositions, which will later
be used in the completeness proof.

Proposition 1 (Next rule). The following inference rule is admissible:
⊢ ϕ↔ ψ

⊢ Xϕ↔ Xψ

Proposition 2 (Replacement of equivalents). If ⊢ ϕ1 ↔ ϕ2, then
⊢ [ϕ1/ψ]χ↔ [ϕ2/ψ]χ.

The proof of proposition 1 follows straightforward from axiom A3 and inference
rules NX and MP. The proof of proposition 2 follows by induction on the construction
of χ. These proofs are rather standard in LTL literature [50].
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Network axioms
¬Naa Irreflexivity
Nab ↔ Nba Symmetry∨
b∈A

Nab Seriality

Reduction axioms
XNab ↔ Nab Red.Ax.X.N
Xβa ↔ βa ∨ βN(a)≥θ Red.Ax.X.β
φUψ ↔ EXPU(φUψ) Red.Ax.U
LTL axioms
All classical propositional tautologies
G(φ→ ψ)→ (Gφ→ Gψ) A1
¬Xφ↔ X¬φ A2
X(φ→ ψ)→ (Xφ→ Xψ) A3
G(φ→ Xφ)→ (φ→ Gφ) A4
(φUψ)↔ ψ ∨ (φ ∧X(φUψ)) A5
(φUψ)→ Fψ A6
φU(ψ1 ∨ ψ2)↔ φUψ1 ∨ φUψ2 A7
X(φ ∧ ψ)↔ Xφ ∧Xψ A8
φ φ→ ψ

ψ
MP

⊢ φ
⊢ Gφ

NG

⊢ φ
⊢ Xφ

NX

Table 4.1: LTL-SN axioms.
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Chapter 5

Soundness and completeness

Soundness and completeness are two important properties in a logic system. Sound-
ness refers to the property that a logical system only proves statements that are
true, i.e., all provable statements are valid. Completeness, on the other hand, refers
to the property that a logical system can prove all valid statements, i.e., all valid
statements are provable.

These properties are important because they provide a guarantee of the reliability
and accuracy of a logical system. Soundness ensures that the system does not prove
false statements, which would undermine its usefulness in making decisions or
drawing conclusions. Completeness, on the other hand, ensures that the system
is not missing any valid statements, which would limit its expressive power and
potentially lead to incorrect conclusions.

In practical terms, soundness and completeness are important for ensuring the
correctness and effectiveness of automated reasoning systems, such as theorem
provers, model checkers, and automated decision-making systems. A sound and
complete logical system provides a strong foundation for these systems, allowing them
to make accurate and reliable decisions based on the logical rules and constraints
encoded in the system.

In this chapter we will prove soundness and completeness properties of the
LTL-SN axiomatization presented. As is usually the case, the soundness proof is
quite straightforward. The completeness proof, however, is more elaborate and the
approach used is a two-step translation of LTL-SN formulas into propositional ones.

Since the formulas of LTL-SN are evaluated over conventional LTL paths (or
“flows of time” [51, 52]), all standard LTL axioms, as well as the inference rule, are
also sound in this logic.

Lemma 5 (Soundness). All axiom schemata presented in table 4.1 are valid, per
definition 12.

Proof. For this proof, letM be an arbitrary LTL-SN model and B ∈ B a behavior
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set. Consider each case:

• All network axioms follow directly from definition 8;

• M, i |= XNab ↔ Nab follows directly from the fact that ≤ never alters the
network structure;

• M, i |= φUψ ↔ EXPU(φUψ) follows directly from lemma 4;

• ForM, i |= Xβa ↔ βa ∨ βN(a)≥θ, consider B = bi and a B′ such that B ≤ B′.

M, i |= Xβa iff M, i + 1 |= βa iff a ∈ B′ = B ∪
{
b ∈ A : |N(b)∩B|

|N(b)| ≥ θ
}

iff

M, i |= βa or a ∈
{
b ∈ A : |N(b)∩B|

|N(b)| ≥ θ
}

.

It can be shown that the large disjunct in definition 13 is satisfied iff a ∈{
b ∈ A : |N(b)∩B|

|N(b)| ≥ θ
}

just as in [2].

HenceM, i |= Xβa iffM, i |= βa orM, i |= βN(A)≥θ.

5.1 Completeness

The strategy for this completeness proof is a two-step translation of LTL-SN for-
mulas into propositional formulas. The first step replaces occurrences of the Until
operator in formulas, and the second step replaces Next operator occurrences. Both
translations need proofs of equivalence, and each of these are achieved by induction.

As previously mentioned in chapter 4, this approach makes intuitive sense. The
network evolution has strict rules, and its evolution is determined by the initial
state.

Next, we define the first translation necessary to convert a formula into the static
part of the logic. This translation is responsible for the Until occurrences, using the
expansion from definition 15.

Definition 16 (Until Translation).

tu(Nab) = Nab

tu(βa) = βa

tu(φ ∧ ψ) = tu(φ) ∧ tu(ψ)

tu(¬φ) = ¬tu(φ)

tu(Xφ) = Xtu(φ)

tu(φUψ) = tu(EXPU(φUψ))
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Next lemma assures that every formula is equivalent to another formula without
any occurrence of the Until operator.

Lemma 6. For an LTL-SN formula φ:

⊢ φ↔ tu(φ)

Proof of this lemma is in appendix A.
Now we proceed to the second step of the translation process, with this one

being responsible for occurences of the X operator.

Definition 17 (Translation). Using the reduction axioms it is possible to translate
an LTL-SN formula with no Until occurrences into propositional logic.

t(Nab) = Nab

t(βa) = βa

t(φ ∧ ψ) = t(φ) ∧ t(ψ)

t(¬φ) = ¬t(φ)

t(XNab) = Nab

t(Xβa) = t(βa ∨ βN(a)≥θ)

t(X(φ ∧ ψ)) = t(Xφ ∧Xψ)

t(X¬φ) = t(¬Xφ)

t(XXφ) = t(Xt(Xφ))

Translation inspired by the ones from [53, 54].

Finally we define a cost measure for formulas of the language, a very commonplace
method in literature, which enables us to prove the translation equivalence by
induction over cost, instead of subformulas.
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Definition 18 (Cost measure).

c(βa) = 1

c(Nab) = 1

c(¬φ) = 1 + c(φ)

c(φ1 ∧ φ2) = 1 +max(c(φ1), c(φ2))

c(Xβa) = 4 + 2 · |A|3

c(Xψ) = 2 · c(ψ)

where Xψ matches any formula besides those of form Xβa.

Lemma 7 (Cost of the adoption abbreviation). The cost of the adoption abbreviation
c(βN(a)≥θ) in a model with agent set A is 2 · |A|3.

Proof. For ease of reading we reproduce the adoption abbreviation here:

βN(a)≥θ :=
∨

G⊆N⊆A:
|G|
|N|≥θ

(∧
b∈N

Nab ∧
∧
b̸∈N

¬Nab ∧
∧
b∈G

βb

)

The outer disjunction ranges over two groups, G ⊆ N ⊆ A, therefore in the
worst case there will be as many terms as |A|2 for each possible combinations of
both. Now analyzing each term, the first two conjunctions contribute at most |A|
propositions, and the last conjunction another |A|. Therefore each term contributes,
in the worst case, a cost of 2 · |A|. Therefore, the total cost is 2 · |A|3.

Lemma 8 (Translation costs). For all φ, ψ:

1. c(φ) ≥ c(ψ) if ψ ∈ Sub(φ)

2. c(XNab) > c(Nab)

3. c(Xβa) > c(βa ∨ βN(a)≥θ)

4. c(X(φ ∧ ψ)) > c(Xφ) ∧ c(Xψ)

5. c(X¬φ) > ¬c(Xφ)

6. c(XXφ) > c(Xt(Xφ))

Proof of this lemma is in appendix B.

Lemma 9 (Translation equivalence). For an LTL-SN formula φ with no Until
occurrences:

⊢ φ↔ t(φ)
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Proof of this lemma is in appendix C.

Theorem 1 (Completeness). For every φ ∈ LT L − SN :

|= φ implies ⊢ φ

Proof. Suppose |= φ. By lemma 6 and lemma 9 and since the proof sys-
tem is sound, we have that |= t(tu(φ)). The formula t(tu(φ)) is propositional,
therefore PROP(LT L − SN ) ⊢ t(tu(φ)) by completeness of propositional logic
and by the network axioms. We also have that LT L − SN ⊢ t(tu(φ)) since
PROP(LT L − SN ) is a subsystem of LTL-SN. Again by lemma 9 we have that
LT L − SN ⊢ φ.
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Chapter 6

Generalization for multiple behaviors
and weighted relationships

The logic presented in chapter 3 models a single behavior spreading across the
network. In this chapter, we introduce a simple generalization of LTL-SN supporting
multiple behaviors simultaneously. We redefine the language and semantics, such
that operator βa can be applied to any behavior from a set of behaviors B.

Definition 19 (Model). A model is a tuple M = (A,B, N, θ, I), where

• A is a finite set of agents (a, b, c, . . . );

• B is a finite set of behaviors (α, β, γ, . . . );

• N is the weight function N : A×A 7→ N0 such that:

N(a, a) = 0;

For all a, N(a, b) > 0 for some b ̸= a;

• θ ∈ (0, 1] is a non-zero positive uniform adoption threshold;

• I is a function B 7→ 2A defining the initial behaviors for all agents;

Also consider Na(B) :=
∑

b∈B N(a, b) where B ∈ 2A. Notice Na(A) is the sum
of all weights of a’s relationships.

Definition 20 (Relation ≤). Let ≤ be the binary relation over 2A × 2A, such that

B ≤ B′ iff B′ = B ∪
{
a ∈ A :

Na(B)

Na(A)
≥ θ

}
where B ∈ 2A.
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That is, two behavior sets B and B′, are related such that B ≤ B′ when B′ is
the immediate result of the behavior diffusion process over B. With this relation
we are able to define paths on a model, which represent the evolution of behaviors
on the network. Notice this relation only permits adoption of new behaviors by
agents, without unadoption. See [27] for a more extensive look on the mechanics of
unadoption, for instance.

Definition 21 (Behaviors). B ⊆ 2A is the set of behavior sets.

Definition 22 (Path onM). We define a path b = b0, b1, b2, . . . on a model M =

(A,B, N, θ, I) to be such that b0 = I and for all α ∈ B, bi(α) ≤ bi+1(α).

Lemma 10 (Path uniqueness). There is exactly one path b such that b0 = I.

Proof. Follows directly from the fact that for any bi(α) the relation ≤ defines strictly
one bi+1(α) such that bi(α) ≤ bi+1(α).

Given lemma 10, we can define satisfaction for a model directly over paths.

Definition 23 (Language). The language of LTL-SN is given by the following BNF:

φ := ⊤ | Nab | αa | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

where a, b ∈ A, α ∈ B.
We use the standard abbreviations ⊥ ≡ ¬⊤, φ ∨ ϕ ≡ ¬(¬φ ∧ ¬ϕ), φ → ϕ ≡

¬(φ ∧ ¬ϕ), Fφ ≡ ⊤Uφ and Gφ ≡ ¬F¬φ. Intuitive readings of the operators are
the same as previously introduced in definition 1.

Definition 24 (Satisfaction). Given a model M = (A,B, N, θ, I) and its path b.
The notion of satisfaction of formulas in M at a position i is defined as follows:

M, i |= αa iff a ∈ bi(α)
M, i |= Nab iff N(a, b) > 0

M, i |= ¬φ iff M, i ̸|= φ

M, i |= φ1 ∧ φ2 iff M, i |= φ1 and M, i |= φ2

M, i |= Xφ iff M, i+ 1 |= φ

M, i |= φUψ iff there exists a n ≥ 0 such that
M, i+ n |= ψ and M, i+ j |= φ for all 0 ≤ j < n

All LTL operators, plus propositional operators Nab and αa defined in a standard
way.

Definition 25 (Validity). |= φ iff M, i |= φ for all models M and positions i.
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Definition 26 (Generalized majority). An abbreviation representing “majority”:

αN(a)≥θ :=
∨

G⊆N⊆A:
Wa(G)
Wa(A)

≥θ

(∧
b∈N

Nab ∧
∧
b ̸∈N

¬Nab ∧
∧
b∈G

αb

)

6.1 Expressiveness

This logic is built over LTL, usually of first-order logic expressiveness for discrete-
time initial models [55]. However, this formalism is restricted over a particular class
of models for social networks, and as such yields a logic of reduced expressiveness,
equivalent to that of propositional logic (which is, in fact, the argument used for
the completeness proof). This is not unlike [2], also translatable into propositional
formulas.

The defining characteristic of these models is the fact that their entire trace is
ultimately defined by their initial conditions. This observation enables the expansion
of the non-static operators into static ones, and with that the reduction of either
dynamic or temporal parts of these logics into their static parts.

Notice, however, this is not the case in the hybrid logic of [37]. While this paper
also employs a reduction to its static part, that part is not propositional in nature.
The hybrid formalism, which allows naming agents and therefore agents that are
reflective about their own states, still retains additional expressiveness.

6.2 Examples

In figure 6.1 agent a represents an important and reliable broadcaster (like a TV
channel, for instance) spreading the behavior α. Notice a is not a friend of the
other agents. Figure 6.2 shows a strong cluster of agents resisting to incorporate a
behavior.

Notice the formula (Nfa ∧αa)∨ (Nfd ∧αd ∧Nfc ∧αc ∧Nfe ∧αe)→ Xαf holds in
both of them at every position, and it determines how agent f is able to incorporate
the behavior α itself. A generalization of formulas like this one will be used in the
axiomatization present in section 4.

For an example of an Until formula, consider ¬αeUαc. It holds in figure 6.1, and
expresses the fact that agent e will not have adhered to the behavior until his friend
agent c did. Notice it does not hold in figure 6.2 because e never gets to incorporate
the behavior. Considering the previous statement, it is easy to see that, for instance,
G¬αe holds only in figure 6.2.
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Figure 6.1: This figure presents a social network (with θ = 1/2) with six agents
and the evolution of a behavior. Nodes are agents, their contents indicate their
behaviors, and the edges represent the relations between them. Each figure, ordered
from left to right and top to bottom, represents a distinct position as the network
evolves. Agent a represents a trusted broadcaster, spreading behavior α, which
eventually dominates the network.
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Figure 6.2: Propagation of the behavior is stopped by a cluster of agents (θ = 1/2).
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6.2.1 Soundness and completeness

Most of the definitions, lemmas and proofs presented in chapters 4 and 5 are easily
adapted to the setting presented in this generalization. For instance, the axiom
Red.Ax.X.β presented in table 4.1 is essentially the same, though it now refers to
any arbitrary behavior β ∈ B.

For soundness, we review the case of the αa operator as follows: For M, i |=
Xαa ↔ αa∨αN(a)≥θ, consider B = bi and a B′ = bi+1 such that B ≤ B′. M, i |= Xαa

iffM, i+ 1 |= αa iff a ∈ bi+1(α) and B′ = B ∪
{
b ∈ A : Wa(G)

Wa(A)
≥ θ
}

iffM, i |= αa or

a ∈
{
b ∈ A : Wa(G)

Wa(A)
≥ θ
}

.
It can be shown that the large disjunct in definition 26 is satisfied iff a ∈{

b ∈ A : Wa(G)
Wa(A)

≥ θ
}

just as in [2].
HenceM, i |= Xαa iffM, i |= αa orM, i |= αN(A)≥θ
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Chapter 7

Model checking

Model checking is a technique used for formal verification of the correctness of
a system model with respect to a specified property or set of properties. The
idea behind model checking is to automatically explore all possible states of the
system model and check whether they satisfy the specified properties. This is
done by constructing a mathematical model of the system, typically expressed as a
transition system or automaton, and then using an algorithmic procedure to verify
the properties.

Model checking for verifying the behavior of finite-state systems has been around
since the early 1980s, and since then saw many applications to both theoretical and
practical problems [56], such as verification of sequential circuit designs, communi-
cation protocols.

One of the major problems in model checking is quick explosion of states in a
system, a problem that is usually circumvented by what is called “symbolic model
checking”, that is, model checking that operates on a representation that does not
explicitly contain every individual state [46].

Some of the current approaches to achieve symbolic model checking are the use
of BDDs and SAT-based approaches [57], and more recently also SMT-based [58].
The first two are employed in nuSMV, and all three in nuXmv. nuXmv is
an extension of the nuSMV model checker for fair transition systems, including
support for both finite- and infinite-state systems [58].

For the remaining of this section our focus will be in model checking with
nuXmv, but it is worth mentioning that other approaches and other relevant tools
exist, such as: mCRL2 for modal µ-calculus formulas, a CTL/LTL/CTL* superset;
PAT [10], a model checker for LTL properties with a focus on fairness constraints;
LTSmin, a toolbox with multiple languages and algorithms, including LTL.
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7.1 Model checking complexity

In this section we analyse the computational complexity of the model checking
problem.

Definition 27. The model checking problem consist of, given a formula ϕ and
a finite LTL-SN model M = (A, N, θ, I), determining the set S(ϕ) = {i | bi ∈
b andM, i |= ϕ}

Next, we present the model checking algorithms for LTL-SN. Algorithm 1 is
the entry point, which invokes the remaining algorithms for each of the operators
as they are parsed. Let label(i) denote the set of subformulas that hold at path
position i. We start by initializing label(i) := {βa | a ∈ bi} ∪ {Nab | b ∈ N(a)} for
all path positions i.

Algorithm 1 procedure Check(ϕ)
while |ϕ| ≥ 1 do

if ϕ = (¬ϕ1) then
Check(ϕ1); CheckNOT (ϕ1)

else if ϕ = (ϕ1 ∧ ϕ2) then
Check(ϕ1); Check(ϕ2); CheckAND(ϕ1, ϕ2)

else if ϕ = Xϕ1 then
Check(ϕ1); CheckX(ϕ1)

else if ϕ = ϕ1Uϕ2 then
Check(ϕ1);Check(ϕ2); CheckU(ϕ1, ϕ2)

end if
end while

Algorithm 2 procedure CheckNOT(ϕ)
for all i do

if ϕ ̸∈ label(i) then
label(i) := label(i) ∪ {(¬ϕ)}

end if
end for

Algorithm 3 procedure CheckAND((ϕ1 ∧ ϕ2)
for all i do

if ϕ1 ∈ label(i) and ϕ2 ∈ label(i) then
label(i) := label(i) ∪ {(ϕ1 ∧ ϕ2)}

end if
end for
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Algorithm 4 procedure CheckX(ϕ1)
T := {i | ϕ1 ∈ label(i)}
while T ̸= ∅ do

choose i ∈ T
T := T \ {i}
if Xϕ1 ̸∈ label(i− 1) then
label(i− 1) := label(i− 1) ∪ {Xϕ1}

end if
end while

Algorithm 5 procedure CheckEU(α1,α2)
T := {i | ϕ2 ∈ label(i)}
for all i ∈ T do
label(i) := label(i) ∪ {E(α1Uα2)}

end for
while T ̸= ∅ do

choose maximum i ∈ T
T := T\{i}
while ϕ1 ∈ label(i− 1) do

if E(ϕ1Uϕ2) ̸∈ label(i− 1) then
label(i− 1) := label(i− 1) ∪ {E(ϕ1Uϕ2)}
i := i− 1

T := T\{i}
end if

end while
end while

Theorem 2. Given a LTL-SN model M = (A, N, θ, I) and formula ϕ. The compu-
tational complexity of the model checking problem is O(| ϕ | × | A |), i.e., linear in
the size of the formula times the size of the set of agents.

Proof. By lemma 1, there exists a unique path such that b0 = I. By lemma 3, this
path b0, ..., bn reaches a fixed-point such that n < |A|.

The algorithm Check(ϕ) is called once for each sub-formula of ϕ which is O(|ϕ|)
and each time it activates the algorithms CheckNOT, CheckAND, CheckX and
CheckU. The algorithm CheckX, in the worse case, has to visit all bi, which is O(|A|)
The CheckU, starts with the greatest i where ϕ2 holds, and then it goes labelling
states smaller than i, where ϕ1 holds, with ϕ1Uϕ2. In worse case, it has to search
the whole model which is also O(|A|). The algorithms CheckNOT, CheckAND take
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constant time. Thus, the complexity of Check(ϕ) is O(|A| × |ϕ|). In order to o
build the set S(ϕ) we only need to search label(i), for all 0 ≤ i < |A|, and check if
ϕ ∈ label(i).

7.2 Model checking LTL-SN

In this section we present an example of a social network built under the definitions
of LTL-SN, which we specify in the language of the nuXmv model checker. Notice
however that nuXmv is a general LTL/CTL model checker, as such it is not
optimized for the model restrictions of LTL-SN and therefore can be somewhat slow
for larger models.

It is also important to notice that the Bounded Model Checking (BMC) algorithm
that was used looks for counter-examples only up to configurable length k. As such,
it cannot prove a property is valid, only find counter-examples of limited length [59].

We have used the “Star Wars Social Network” dataset to build a social network
1. The dataset parser source-code is available in appendix D and also on GitHub2.

The parser reads the dataset input and converts it into SMV specification
language, following algorithm 6. This specifications defines the automata that
generates the states of the social network model. It is then possible to check LTL
formulas against it.

In summary, the parser algorithm performs the following steps:

• all the “links” in the model definition are read and used to initialize a matrix
with the relationship weights between each of the agents. Non connected
agents have a relationship of value 0.

• the initial state is read from the “behavior” property of the “nodes”, and defined
as a vector using the init function.

• The next state is defined by the next function, which conditionally attributes
the behavior state for each agent, depending on if the proportion of its
neighbors that display the behavior is above the adoption threshold. This is
calculated by iterating over the previously defined state vector, and summing
the relationship weight from the current agent to each of the agents in the
vector which currently display the behavior.

The parser is also capable of outputting GraphViz files for visualization of the
generated social network. Figures 7.1, 7.2 and 7.3 show one such network model,
where nodes marked in red are ones that were defined to have the behavior initially,

1https://www.kaggle.com/ruchi798/star-wars
2https://github.com/vittau/starwars-dataset-parser
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and yellow nodes denote agents who have just incorporated the behavior of the
network.

Algorithm 6 Star Wars dataset parser
t

for {source, target, value} ∈ links do
relationships[source][target]← value
if symmetric then
relationships[target][source]← value

end if
end for
for {index, behavior} ∈ nodes do
init(agents[index])← behavior
neighbors_with_behavior ←

∑
a∈A|agents[a]=behavior relationships[index][a]

neighbors←
∑

a∈A relationships[index][a]

if neighbors_with_behavior

neighbors
≥ threshold then

next(agents[index])← behavior
end if

end for
Output relationships, init and next in SMV syntax

The commands used in nuXmv to input this model are shown in listing 7.1.

Listing 7.1: nuXmv commands used to load and setup the model

read_model -i input.smv

flatten_hierarchy

encode_variables

build_boolean_model

bmc_setup

An execution trace of the model checker is shown in listing 7.2. The initial state
is represented in block “State: 1.1”, and in the following states several other agents
adhere to the behavior. Agents “DARTH VADER”, “MOTTI” and “TARKIN” never
adhere because they form a strong “cluster” [2], and agent “GOLD FIVE” is isolated.

Listing 7.2: Checking the formula GFβluke against the model in figure 7.1. luke is
agents[2]. Some variables used for calculations were omitted from the trace.

check_ltlspec_bmc -p "G ( F agents [2] = behavior )"

-- specification G ( F agents [2] = behavior) is false

-- as demonstrated by the following execution sequence

Trace Description: BMC Counterexample

Trace Type: Counterexample

-> State: 1.1 <-
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Figure 7.1: Star Wars: Episode IV’s social network initial state. Red agents exhibit
the behavior being modelled; Numbers and thickness of the edges represent the
weight of the relationship (the number of scenes both characters appeared together)

43



C-3PO

LUKE

DARTH VADER

CAMIE

BIGGS

LEIA

BERU
OWEN

OBI-WAN

MOTTI

TARKIN

HAN

GREEDO

JABBA

DODONNAGOLD LEADER

WEDGE

RED LEADER

RED TEN

GOLD FIVE

18

6

2

6

6

1

3

19

2

3

1

1

1

1

7

2

1

4

2

1

1

2

3

17

1

1

1

1

2

3

1

3

2

26

13

9

1

1

1

1

1

1

1

1

3

1

Figure 7.2: On the next state, only Luke incorporates the behavior, indicated by
the yellow node
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Figure 7.3: After Luke incorporates the behavior, and since he is an influential agent
with multiple connections, many other connected agents follow suit
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agents [0] = empty

agents [1] = empty

agents [2] = empty

agents [3] = empty

agents [4] = empty

agents [5] = empty

agents [6] = behavior // BERU

agents [7] = behavior // OWEN

agents [8] = empty

agents [9] = empty

agents [10] = empty

agents [11] = behavior // HAN

agents [12] = behavior // GREEDO

agents [13] = behavior // JABBA

agents [14] = empty

agents [15] = empty

agents [16] = behavior // WEDGE

agents [17] = empty

agents [18] = behavior // RED TEN

agents [19] = empty

[...]

-> State: 1.2 <-

agents [1] = behavior // LUKE

[...]

-- Loop starts here

-> State: 1.3 <-

agents [0] = behavior // C-3PO

agents [3] = behavior // CAMIE

agents [4] = behavior // BIGGS

agents [5] = behavior // LEIA

agents [8] = behavior // OBI -WAN

agents [14] = behavior // DODONNA

agents [15] = behavior // GOLD LEADER

agents [17] = behavior // RED LEADER

[...]

-> State: 1.4 <-
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Chapter 8

SIR model variation

The previously introduced LTL-SN logic provides a good basis for modelling diffusion
phenomena. In this chapter we introduce another type of diffusion model to be
studied in this LTL framework, a compartmental model for epidemics denoted “SIR”
which we previously mentioned in chapter 2.4.

In [40] a Probabilistic Linear Temporal Logic (PLTL) approach is briefly proposed
for model checking SIR models. Here, we expand our LTL formalism for such models,
which include again a sound and complete axiomatization.

To work with these we define a different subset of LTL models that will conform
to the SIR model behavior, previously introduced in section 2.4. To do so, we must
first redefine behavior sets, model definition and the binary relation ≤ that defines
the evolution of the network at each step.

The language and semantics are the same as in LTL-SN, presented here in
definitions 28 and 29 for self-containedness.

Definition 28 (Language). The language of LTL-SIR is given in Backus-Naur
Form (BNF) as follows:

φ := ⊤ | Nab | α(a,i) | α(a,r) | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

where a, b ∈ A, a finite set of agents.
The remaining operators can be defined via abbreviations: ⊥ ≡ ¬⊤, φ ∨ ϕ ≡

¬(¬φ ∧ ¬ϕ), φ→ ϕ ≡ ¬(φ ∧ ¬ϕ), Fφ ≡ ⊤Uφ and Gφ ≡ ¬F¬φ. Intuitive readings
of the operators are the same as previously introduced in definition 1.

Definition 29 (Satisfaction). Given a model M = (A, N, θ, I) and its path b =

b0, b1, b2, . . . , bi, . . ., the notion of satisfaction of formulas in M at a position i is
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defined as follows:

M, i |= α(a,i) iff (a, i) ∈ bi
M, i |= α(a,r) iff (a, r) ∈ bi
M, i |= Nax iff x ∈ N(a)

M, i |= ¬φ iff M, i ̸|= φ

M, i |= φ1 ∧ φ2 iff M, i |= φ1 and M, i |= φ2

M, i |= Xφ iff M, i+ 1 |= φ

M, i |= φUψ iff there exists a n ≥ 0 such that
M, i+ n |= ψ and M, i+ j |= φ for all 0 ≤ j < n

We redefine behavior sets as sets of tuples indicating the current state of agents.
For simplicity, we explicitly mark agents as either “Infected” (i) or “Recovered” (r),
and all other agents are assumed “Susceptible”.

Definition 30 (SIR Behavior sets). A behavior set B is a set of tuples indicating
the current state of agents. Therefore, B ⊆ B = {(a, x) | a ∈ A, x ∈ {i, r}}, such
that {(a, i), (a, r)} ̸⊂ B for all a.

We proceed to adjust the model definition: the adoption threshold θ is removed,
since agents are infected by the presence of a single infected neighbour, and I is a
subset of B instead of being an element of it.

Definition 31 (SIR Model). A model is a tuple M = (A, N, I), where

• A and N are defined as in definition 8;

• I ⊆ B is a non-empty initial behavior set.

Before we proceed to the definition of the ≤ relation for SIR models, we define
abbreviations for the sets of infected, recovered and exposed agents. Exposed agents
are those that have infected neighbours, and are not yet infected or recovered.

Definition 32 (Infected, recovered and exposed agent sets). Let B ∈ B be a behavior
set. We define the sets of Infected, Recovered and Exposed agents in B respectively
as:

IB = {a : (a, i) ∈ B}

RB = {a : (a, r) ∈ B}

EB = {a : {N(a) ∩ IB} ≠ ∅ and a ̸∈ IB and a ̸∈ RB}

With these we proceed to define the ≤ relation for SIR models.
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Definition 33 (SIR relation ≤). Let ≤ be the binary relation over B × B, where

B ≤ B′ iff B′ = {(a, i) : a ∈ EB} ∪ {(a, r) : a ∈ IB ∪RB}

Intuitively, the first term of the union captures agents that were exposed and
become infected, and the second term captures agents that were infected and become
recovered.

It is straightforward to see that SIR models without reinfections, and with a
fixed set of agents, always reach a fixed point [37].

Lemma 11 (Fixed-point for the SIR model). Let b = b0, b1, b2, . . . , bn be a path. For
some i < |A| a fixed-point bi = bi+1 is reached.

Proof. This follows directly from the fact that A is finite and the compartment of
each agent can only strictly follow the path S → I → R. In the slowest diffusion
case, a single agent is infected ((a, I)), and for each subsequent position another
agent becomes infected and the previous one recovers ((a,R)). Since a recovered
agent cannot become infected again, it follows directly that a fixed-point must be
reached in some position i < |A|.

Therefore it is possible to adapt the argument used for the Until expansion
satisfaction (lemma 2) for this type of process.

A single infected neighbor is sufficient to infect an agent, and this behavior is
captured in the revised adoption threshold abbreviation.

Definition 34 (Revised Adoption). An abbreviation expressing the adoption thresh-
old for SIR models:

βN(a) :=
∨

c∈N⊆A

(∧
b∈N

Nab ∧
∧
b̸∈N

¬Nab ∧ (c, i)

)

Definition 35 (Revised cost measure).

c(βa) = 1

c(Nab) = 1

c(¬φ) = 1 + c(φ)

c(φ1 ∧ φ2) = 1 +max(c(φ1), c(φ2))

c(Xβa) = 4 + 2 · |A|2

c(Xψ) = 2 · c(ψ)

where Xψ matches any formula besides those of form Xβa.
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Figure 8.1: In this simple SIR setting, every agent reachable from an infected agent
via the neighborhood relationship N will eventually become infected.

Lemma 12 (Revised cost of the adoption abbreviation). The cost of the adoption
abbreviation c(βN(a)≥θ) in a model with agent set A is 2 · |A|2.

Proof. The outer disjunction ranges over one group, N ⊆ A, therefore in the worst
case there will be as many terms as |A| for each possible combinations of both. Now
analyzing each term, the first conjunction contributes at most |A| propositions, and
the second conjunction another |A|. Therefore each term contributes, in the worst
case, a cost of 2 · |A|. Therefore, the total cost is 2 · |A|2.

The soundness and completeness proofs are dependant on the following: cor-
rectness of lemma 2; the fact that paths generated by this model are equivalent to
conventional LTL paths; the revised adoption abbreviation and cost measure defini-
tion, with which the proof of lemma 8 can be adapted; and the ability to express
the adoption threshold as a formula in the logic (definition 34). Therefore this logic
is also sound and complete used in conjunction with SIR models as presented here.

Lastly, the model checking technique presented in section 7 can be applied
almost directly, merely adapting the label initialization to label(i) := {βa | (a, I) ∈
bi}∪{βa | (a,R) ∈ bi}∪{Nab | b ∈ N(a)} for all path positions i. As such, it remains
possible to verify SIR models under the LTL formalism with the same tooling and
time complexity previously presented.

As figures 8.1 and 8.2 showcase, these models are very simple and predictable.
They don’t allow for any variation of the basic reproduction number, that is, the
expected number of agents infected by a single infected agent. While we don’t tune
this number directly, the modelling present in chapter 9 allows us to explore more
diverse infection-rate scenarios by leveraging the branching time formalism of CTL.
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Figure 8.2: In this simple SIR setting, every agent reachable from an infected agent
via the neighborhood relationship N will eventually become infected.
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Chapter 9

Branching SIR models using CTL

Compartmental models for epidemics have figured in the literature since 1916 [34],
first introduced as sets of differential equations for what is today referred to as
the SIS (Susceptible-Infectious-Susceptible) model. These compartmental models
are usually name after their compartment classes, indicating the evolution of an
individual over time in such models. Later [35] proposed the SIR (Susceptible-
Infectious-Recovered) model, where infected agents are infectious for one round, and
then become recovered and cannot be infected nor spread the disease any further.
The presence of a single connection in the network is sufficient to spread a disease
from one agent to another. In this section we will focus on SIR models in particular.

There has been some work on SIR models in the field of logics. In [37], these
models are studied in a sound and complete hybrid logic, and a tableau system is
also provided. While [38] and a section of [39] explore fuzzy logic approaches to SIR
epidemic models.

In [60] for the first time the logic of branching-time CTL was presented, with
the aim of dealing with the set of every possible execution tree generated by a given
program. This logic was specially designed to take care of the consequences of non-
determinism just like the one generated by programs that interact asynchronously.

In [15] the usual CTL specification was presented, providing a decision procedure,
and for this reason the logic presented here is closely related to the previously
established logic.

In this section we explore SIR models, which are closely related to social networks
behavior spreading models, using CTL. CTL allows us to introduce branching time
events as part of the model evolution over time. In our particular case, whenever
an agent is exposed to another infected agent, time branches: in one line the agent
is infected, and in the other the agent evades infection. This allows us to see
multiple “what-if” scenarios along the evolution of the network, and we can also
see and analyze social constructs which act as “barriers” for the spread of diseases,
and conversely, social components which facilitate superspreading events where the
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likelihood of contagion is extremely high.
We redefine behavior sets as sets of tuples indicating the current state of agents.

For simplicity, we explicitly mark agents as either “Infected” (i) or “Recovered” (r),
and all other agents are assumed “Susceptible”.

Definition 36 (SIR Behavior sets). Let B = 2A×{i,r} be the set of all possible
behaviors of agents. A behavior set B ∈ B is a set of tuples, each of which indicates
the state of an agent in the network. Therefore, B = {(a, x) | a ∈ A and x ∈ {i, r}},
such that {(a, i), (a, r)} ̸⊂ B for all a.

We proceed to adjust the model definition: the adoption threshold θ is removed,
since agents are infected by the presence of a single infected neighbour, and I is a
subset of B instead of being an element of it.

Definition 37 (SIR Model). A model is a tuple M = (A, N, I), where

• A and N are defined as in definition 8;

• I ⊆ B is a non-empty initial behavior set.

Before we proceed to the definition of the ≤ relation for SIR models, we define
abbreviations for the sets of infected, recovered and exposed agents. Exposed agents
are those that have infected neighbours, and are not yet infected or recovered.

Definition 38 (Infected, recovered and exposed agent sets). Let B ∈ B be a behavior
set. We define the sets of Infected, Recovered and Exposed agents in B respectively
as:

IB = {a : (a, i) ∈ B}

RB = {a : (a, r) ∈ B}

EB = {a : {N(a) ∩ IB} ≠ ∅ and a ̸∈ IB and a ̸∈ RB}

With these we proceed to define the ≤ relation for SIR models.

Definition 39 (SIR relation ≤). Let ≤ be the binary relation over B × B, B′
1 =

{(a, i) : a ∈ EB}, B′
2 = {(a, r) : a ∈ IB} and B′

3 = {(a, r) : a ∈ RB}:

B ≤ B′ iff B′
2 ⊆ B′ and (B′ \B′

2) ⊆ B′
1 and B′

3 ⊆ B′

Intuitively, the B′
1 captures agents that were exposed and become infected, B′

2

captures agents that were infected and become recovered, and B′
3 captures agents

that were already recovered and stay recovered. Notice this relation is not linear,
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and allows branching: every agent infected in B must recover in B′, but not every
exposed agent in B must become infected in B′.

It is straightforward to see that SIR models without reinfections, and with a
fixed set of agents, always reach a fixed point [37].

Lemma 13 (Fixed-point for the SIR model). Let b = b0, b1, b2, . . . , bn be a path. For
some i < |A| a fixed-point bi = bi+1 is reached.

Proof. This follows directly from the fact that A is finite and the compartment of
each agent can only strictly follow the path S → I → R. In the slowest diffusion
case, a single agent is infected ((a, I)), and for each subsequent position another
agent becomes infected and the previous one recovers ((a,R)). Since a recovered
agent cannot become infected again, it follows directly that a fixed-point must be
reached in some position i < |A|.

Therefore it is possible to adapt the argument used for the Until expansion
satisfaction (lemma 2) for this type of process.

A single infected neighbor is sufficient to infect an agent, and this behavior is
captured in the revised adoption threshold abbreviation.

Definition 40 (Infection). An abbreviation expressing the infection for SIR models:

αN(a) :=
∨

c∈N⊆A

(∧
b∈N

Nab ∧
∧
b̸∈N

¬Nab ∧ α(c,i)

)

Definition 41 (CTL Language). The language of SIR-CTL is given by the following
BNF:

φ := ⊤ | Nab | α(a,i) | α(a,r) | ¬φ | φ1 ∨ φ2 | EXφ | EGφ | E[φ1Uφ2]

where a, b ∈ A, α ∈ B.
We use the standard abbreviations [16]: ⊥ ≡ ¬⊤, φ ∧ ϕ ≡ ¬(¬φ ∨ ¬ϕ), φ →

ϕ ≡ ¬(φ ∧ ¬ϕ), AXφ ≡ ¬EX¬φ, EFφ ≡ E[⊤Uφ],AG ≡ ¬EF¬φ, AF ≡ ¬EG¬φ,
A(αUβ) ≡ (¬E((¬β) U (¬α ∧ ¬β))) ∧ (¬[EG](¬β)). Intuitive readings of the
operators are the same as previously introduced in definition 1.

Definition 42 (CTL Satisfaction). Given a model M = (A,B, N, I) and a set
of paths b(s) such that b0 = s. The notion of satisfaction of formulas in M at a
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position s is defined as follows:

M, s |= α(a,i) iff (a, i) ∈ b0
M, s |= α(a,r) iff (a, r) ∈ b0
M, s |= Nab iff N(a, b) > 0

M, s |= ¬φ iff M, s ̸|= φ

M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

M, s |= EXφ iff there exists a path b ∈ b(i) such that M, b1 |= φ

M, s |= EGφ iff for all paths b ∈ b(i) it is the case that M, b0 |= φ

M, s |= E[φUψ] iff there exists a path b ∈ b(i) and an n ≥ 0 such that
M, bn |= ψ and M, bj |= φ for all 0 ≤ j < n

All CTL operators are defined in a standard way.

Definition 43 (CTL Validity). |= φ iff M, s |= φ for all models M and positions
s.

Definition 44 (CTL Until expansion). Let E[φUψ] be a formula. We define its
Until expansion steps as

u0(E[φUψ]) := ψ

ui(E[φUψ]) := (φ ∧ EXui−1)

Then, its Until expansion EXPU(φUψ) in a model with agent set A is defined as

EXPU(E[φUψ]) :=
∨

0≤i≤|A|

ui(E[φUψ])

Definition 45 (CTL EG expansion). Let EGφ be a formula. We define its EG
expansion steps as

g0(EGφ) := φ

gi(EGφ) := (φ ∧ EXgi−1)

Then, its EG expansion EXPEG(φ) in a model with agent set A is defined as

EXPEG(EGφ) :=
∨

0≤i≤|A|

gi(EGφ)

Proposition 3 (Replacement of equivalents). If ⊢ ϕ1 ↔ ϕ2, then
⊢ [ϕ1/ψ]χ↔ [ϕ2/ψ]χ.

The proof of proposition 3 is standard and uses the fact that the semantics is
compositional, meaning that the truth value of a formula is determined by the truth
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Network axioms
¬Naa Irreflexivity
Nab ↔ Nba Symmetry∨
b∈A

Nab Seriality

Reduction axioms
EXNab ↔ Nab Red.Ax.EX.N
EXα(a,i) ↔ αN(a) Red.Ax.EX.α.i
EXα(a,r) ↔ α(a,i) ∨ α(a,r) Red.Ax.EX.α.r
EGφ↔ EXPEG(EGφ) Red.Ax.EG
E[φUψ]↔ EXPU(E[φUψ]) Red.Ax.EU
CTL axioms
All classical propositional tautologies
AGφ↔ ¬EF¬φ
EGφ↔ ¬AF¬φ
EX(φ ∨ ψ)↔ EXφ ∨ EXψ
AXφ↔ ¬EX¬φ

Table 9.1: SIR-CTL axioms.

values of its subformulas. We can then use mathematical induction to show that for
any equivalent subformulas ϕ and ψ in φ, substituting ϕ for ψ (or vice versa) in φ
does not change the set of traces that satisfy φ.

9.1 Examples

These are some examples of interesting situations and phenomena that can be
captured with this framework. Notice that each of these figures only show one of
many possible paths: at each position, there are as many branching paths as there
are combinations of non-infected/non-recovered agents being exposed to infected
agents. Filled nodes indicate infected agents, and nodes with dashed lines indicate
a recovered agent.

Figure 9.1 portraits a situation where a single agent is exposed to multiple
infected agents, and yet this does not increase the likelihood of this agent becoming
infected. In step 9.1a agent a is infected, while agents b, c and d are exposed. There
will be 8 distinct paths after this position, for the combinations of each of these
agents becoming infected or not. Let’s consider the path such that all three of them
become infected, which leads us to step 9.1b. In this step, agent e is exposed to 3

infected agents simultaneously. A characteristic of this simple contact model, is that
the chances of agent e becoming infected are exactly the same as if it were exposed
to a single infected agent. This differs from a threshold model, where infection is
directly related to the amount of exposure and only happens if this exposure exceeds
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Figure 9.1: Simultaneous exposure to multiple infected agents does not increase
the likelihood of an agent to be infected in this modelling. After agents b, c and d
are (possibly) infected, they will expose agent e to infection simultaneously. Agent
e will either be infected or resist, just as if it were exposed to a single agent. An
inherent limitation of a simple contact model, as opposed to a threshold model.

a given threshold.
In contrast, figure 9.2 illustrates a more dangerous sequence of events for agent

e. In this case, it is exposed to infected agents at multiple different positions, and
in each position it can become infected (if it hasn’t already become infected and/or
recovered before). This figure shows only one of the possible paths, in which agent
e is exposed to agent c but does not get infected. It is then exposed to agent d on
the next position.

Next, we look at characteristics of infection events themselves. For instance,
figure 9.3 depicts a possible superspreading event, that is, when a single agent (agent
a in this case) infects multiple other agents simultaneously. There are 25 = 32

branching paths from this position, and in all but one there is at least one infected
agent as a result.

Whereas figure 9.4 depicts a much harder barrier for the infection to transpose,
since only a single agent gets exposed to infection at every position.

Some interesting questions arise: how many steps must pass until a given agent
can become infected? How likely is it for an agent to become infected?

9.2 Expansion equivalences

Before we can show equivalence of the entire EG and Until expansions, we demon-
strate that its first n steps are equivalent to the operator if and only if the right-hand
side holds before the next n positions (or vacuously never at all). After that, we
also determine that the longest distance from the current position at which this can
happen has to be less than |A| positions ahead. With both of these, we are able to
prove equivalence of the complete EG and Until expansions.

57



a

c

b d e

(a) Position 1

a

c

b d e

(b) Position 2

a

c

b d e

(c) Position 3

Figure 9.2: A situation where an agent, agent e in this case, is exposed to infected
agents multiple times. Therefore it has a higher chance of being infected than in
figure 9.1. Dashed lines indicate a recovered agent. This is only one of the possible
paths, in which agent e is exposed to agent c but does not get infected. It is then
exposed to agent d on the next position.
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Figure 9.3: An easy barrier for the infection to transpose. Agent a will likely become
a super-spreader, as in only 1 of 32 paths no other agent is infected. In this path,
agents c and e became infected, while the others resisted.

a b c d

Figure 9.4: A hard barrier for the infection to transpose. For every agent in series
the likelihood of infection spreading halves.
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Lemma 14 (CTL Until expansion step satisfaction). M, s |= un(E[φUψ]) if and
only if there exists a path b ∈ b(s) such that M, bn |= ψ and M, bj |= φ for all 0 ≤
j < n.

Proof. We will abbreviate un(E[φUψ]) as un for this proof. The proof goes by
induction on n.

Base case (n = 0):
It is trivial to see thatM, s |= u0 if and only ifM, s |= ψ, and there is no j such

that 0 ≤ j < n.
Induction hypothesis (n = k):
M, s |= uk if and only if there exists a path b ∈ b(s) and an k ≥

0 such thatM, bk |= ψ andM, bj |= φ for all 0 ≤ j < k.
Induction step (n = k + 1):
AssumeM, s |= uk+1.
By definition we have thatM, s |= φ∧EXuk, if and only ifM, s |= φ andM, s |=

EXuk. M, s |= EXuk if and only if there exists a path b ∈ b(s) andM, b1 |= uk.
Using the I.H.,M, b1 |= uk if and only if there exists a path b′ ∈ b(b1) and an k ≥

0 such thatM, b′k |= ψ andM, b′j |= φ for all 0 ≤ j < k.
By definition of paths, b′k = bk+1 and b′j = bj+1.
Replacing the first, we getM, bk+1 |= ψ. Replacing the second, we getM, bj+1 |=

φ for all 0 ≤ j < k, which can be written asM, bj |= φ for all 0 ≤ j < k + 1.
Therefore we are able to conclude that M, b(k+1) |= ψ and M, bj |= φ for all

0 ≤ j < k + 1, and that finishes our proof.

Lemma 15 (CTL Until expansion soundness).

|= E[φUψ]↔ EXPU(E[φUψ])

Proof. By definition, EXPU(E[φUψ]) = u0(E[φUψ]) ∨ u1(E[φUψ]) ∨ . . . ∨
u|A|(E[φUψ]). For this expansion to hold, a right-hand side term un must hold, and
by lemma 18 it is such that n ≤ |A|+ 1.

Suppose for some model and some position s we haveM, s |= un(E[φUψ]). By
lemma 14, this is if and only if there exists a path b ∈ b(s) such that M, bn |=
ψ and M, bj |= φ for all 0 ≤ j < n. But this is if and only if M, s |= E[φUψ] by
definition 42.

Therefore |= E[φUψ] if and only if |= EXPU(E[φUψ]).

Lemma 16 (CTL EG expansion step satisfaction). M, s |= gn([EG]φ) if and only
if there exists a path b ∈ b(s) and for all j, n ≥ j ≥ 0, M, bj |= φ.
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Proof. We will abbreviate gn(EG)φ as gn for this proof. The proof goes by induction
on n.

Base case (n = 0):
It is trivial to see thatM, s |= g0 if and only ifM, s |= φ.
Induction hypothesis (n = k):
M, s |= gk if and only if there exists a path b ∈ b(s) and for all j, k ≥ j ≥

0, M, bj |= φ.
Induction step (n = k + 1):
AssumeM, s |= gk+1.
By definition we have thatM, s |= φ∧EXgk, if and only ifM, s |= φ andM, s |=

EXgk. M, s |= EXgk if and only if there exists a path b ∈ b(s) andM, b1 |= gk.
By the induction hypothesis, we haveM, b1 |= gk if and only ifM, b1+j |= φ for

all 0 ≤ j < k.
M, b1+j |= φ for all 0 ≤ j ≤ k andM, s |= φ can be rewritten asM, bj |= φ for

all 0 ≤ j < k + 1.
Therefore we are able to conclude thatM, bj |= φ for all 0 ≤ j < k+1, and that

finishes our proof.

Lemma 17 (CTL EG expansion soundness).

|= EGφ↔ EXPEG(EGφ)

Proof. By definition, EXPEG(EGφ) = g0 ∨ g1 ∨ . . . ∨ g|A|.
Suppose M, s |= [EG]φ. But this is iff there exists a path b ∈ b(s) such that

thatM, bj |= φ, for all j ≥ 0. By lemma 18, we know that path b reaches a fix point
for some k ≤ |A|, bk = bk+1. By lemma 16, we have that M, s |= gk. Therefore
M, s |= [EG]φ if and only if |= EXPEG(EGφ).

Lemma 18 (CTL Fixed-point). Let b = b0, b1, b2, . . . , bn be a path. For some i < |A|
a fixed-point bi = bi+1 is reached.

Proof. This follows directly from the fact that A is finite and bi ⊆ bi+1 for all i by
definition. The slowest possible diffusion scenario is where |b0| = 1 and only one
agent becomes infected per position on the path until the fixed-point is reached. It
follows directly that the fixed-point will have to be reached for some i ≤ |A|+1.

9.3 Soundness and completeness

Since SIR-CTL is a specialization of standard CTL for a class of social networks
models, all standard CTL axioms are sound in SIR-CTL.
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Lemma 19 (Soundness). We will show all the axiom schemata presented are valid,
per definition 43. For this, let M be an arbitrary SIR-CTL model and B ∈ B a
behavior set.

Proof. Consider each case:

• All network axioms follow directly from definition 37;

• M, s |= EXNab ↔ Nab follows directly from the fact that ≤ never alters the
network structure;

• M, s |= E[φUψ]↔ EXPU(E[φUψ]) follows directly from lemma 15;

• M, s |= EGφ↔ EXPEG(EGφ) follows directly from lemma 17;

• M, s |= EXα(a,i) ↔ αN(a): By definition,M, s |= EXα(a,i) if and only if there
exists a path b ∈ b(s) and M, b1 |= α(a,i). By definition 39, M, b1 |= α(a,i) is
the case if and only if M, s |= α(c,i) for some c ∈ N(a). Since c ∈ N(a), the
first two terms in definition 40 ensure c ∈ N , and sinceM, s |= α(c,i), it can
be concluded thatM, s |= αN(a).

• M, s |= EXα(a,r) ↔ α(a,i) ∨ α(a,r) follows directly from the term REC ⊆ B′ in
definition 39.

For the completeness proof, our procedure is a translation of formulas into
equivalent formulas with no EG and Until operator occurrences, and then a subse-
quent replacement of the occurrences of EX in this formula. The resulting formula
contains only standard propositional operators, which yields the proof directly.

Definition 46 (EG-Until Translation).

t(Nab) = Nab

t(αa) = αa

t(φ ∧ ψ) = t(φ) ∧ t(ψ)

t(¬φ) = ¬t(φ)

t(EXφ) = EXt(φ)

t(EGφ) = t(EXPEG(EGφ))

t(E[φUψ]) = t(EXPU(E[φUψ]))

The next lemma assures that every formula is equivalent to another formula
without any occurrence of the EG and EU operators.
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Lemma 20 (EG-Until translation equivalence).

⊢ φ↔ t(φ)

Proof. Proof by induction on the length |φ| = n of the formula φ.
Base case (n = 1): φ = Nab or φ = αa

This is straightforward from definition 16.
Induction hypothesis: ⊢ φ↔ t(φ) for |φ| ≤ n.
Induction step:

We have five cases:

1. φ = ¬ψ: we have that t(¬ψ) = ¬t(ψ).

By the I. H., ⊢ ψ ↔ t(ψ) and
⊢ ¬ψ ↔ ¬t(ψ). Thus ⊢ φ↔ t(¬ψ).

2. φ = φ1 ∨ φ2: we have that t(φ1 ∨ φ2) = t(φ1) ∨ t(φ2).

By the I. H., ⊢ φ1 ↔ t(φ1) and ⊢ φ2 ↔ t(φ2).
Thus ⊢ φ1 ∨ φ2 ↔ t(φ1) ∨ t(φ2) and
⊢ φ1 ∨ φ2 ↔ t(φ1 ∨ φ2).

3. φ = EXψ: we have that t(EXψ) = EXt(ψ).

By the I. H., ⊢ ψ ↔ t(ψ).
Using using Replacement of equivalents rule (proposition 3),
⊢ EXψ ↔ t(EXψ). Thus ⊢ φ↔ t(EXψ).

4. φ = E[φ1Uφ2]: we have that t(E[φ1Uφ2]) = t(EXPU(E[φ1Uφ2])).

Claim 1: ⊢ t(EXPU(E[φ1Uφ2]))↔ EXPU(E[t(φ1)Ut(φ2)])

Proof: EXPU(E[t(φ1)Ut(φ2)]) =
∨

0≤i≤|A|+1

ui(E[t(φ1)Ut(φ2)])

= u0 ∨ u1 ∨ . . . = t(φ2) ∨ (t(φ1) ∧ EXt(φ2)) ∨ . . .

Using 1., 2. and 3., we can bring the translation operator outside yielding
⊢ t(EXPU(E[φ1Uφ2]))↔ EXPU(E[t(φ1)Ut(φ2)]).

Returning to the proof of 4., we have t(E[φ1Uφ2]) = t(EXPU(E[φ1Uφ2]))

= EXPU(E[t(φ1)Ut(φ2)]) by Claim 1. Using axiom Red.Ax.EU , we have
⊢ EXPU(E[t(φ1)Ut(φ2)])↔ (E[t(φ1)Ut(φ2)])

By the I. H., ⊢ φ1 ↔ t(φ1) and ⊢ φ2 ↔ t(φ2). And so
⊢ EXPU(E[t(φ1)Ut(φ2)])↔ (E[φ1Uφ2]).

Using Claim 1, we obtain ⊢ t(EXPU(E[φ1Uφ2]))↔ (E[φ1Uφ2]). Thus,
⊢ t(E[φ1Uφ2])φ↔ (E[φ1Uφ2]).
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5. φ = [EG]φ1: we have that t([EG]φ1) = t(EXPEG([EG]φ)).

Claim 2: ⊢ t(EXPEG([EG]φ))↔ EXPEG([EG]t(φ))

Proof: EXPEG([EG]t(φ)] =
∨

0≤i≤|A|+1

ui([EG]t(φ))

= u0 ∨ u1 ∨ . . . = t(φ) ∨ (t(φ) ∧Xt(φ)) ∨ . . .

Using 1., 2. and 3., we can bring the translation operator outside yielding
⊢ t(EXPEG([EG]φ))↔ EXPEG([EG]t(φ)).

Returning to the proof of 5., we have t([EG]φ1) = t(EXPEG(EGφ1))

= EXPEG([EG]t(φ1)) by Claim 2. Using axiom Red.Ax.EG, we have ⊢
EXPEG([EG]t(φ1))↔ [EG]t(φ1)

By the I. H., ⊢ φ1 ↔ t(φ1). And so
⊢ EXPEG([EG]t(φ1))↔ [EG]φ1.

Using Claim 2,we obtain ⊢ t(EXPEG([EG]φ1))↔ [EG]φ1. Thus,
⊢ t(EXPEG([EG]φ1))↔ [EG]φ1.

Next we present the replacement of EX occurrences for a formula with no EG
and Until occurrences. The intuition behind this replacement stems from the fact
that relation ≤ directly binds the state of the following position, in which the
content of EX is evaluated. Therefore we are able to represent a given formula
EXφ directly from the state of the current position.

Definition 47 (Replacement of EXφ). For a formula of the form φ = EXϕ where
ϕ does not contain any CTL operator (EX, EG and EU), then a replacement ϕ |R
is such that all instances of α(a,i) are replaced with αN(a) and instances of α(a,r) are
replaced with (α(a,i) ∨ α(a,r)).

Example: EX¬(α(a,i) ∨ α(a,r) ∨ α(b,i)) turns into ¬(αN(a) ∨ α(a,i) ∨ α(a,r) ∨ αN(b))

Lemma 21 (EX replacement equivalence). For a formula of the form φ = EXϕ

where ϕ does not contain instances of EX and a replacement ϕ |R, it is the case
that ⊢ φ↔ ϕ |R.

Proof. Induction on the number of operators in ϕ.
Base case (n = 0): Trivial by the reduction axioms.
Induction hypothesis (n = k):
⊢ EXϕ↔ ϕ |R for a ϕ with k operators.
Induction step (n = k + 1): There are two possible cases:

• EXφ1∨φ2: By the axioms, EX distributes over ∨, and we have that EXφ1∨
φ2 ↔ EXφ1 ∨ EXφ2. By the I.H. we can replace on the previous formula
such that EXφ1 ∨ EXφ2 ↔ φ1 |R ∨φ2 |R, which is equivalent to (φ1 ∨ φ2) |R.

63



• EX¬φ: This can be in two forms:

– EX¬¬ψ: This is the same as EXψ, which is equivalent to ψ |R by the
I.H..

– EX¬(ψ1 ∨ ψ2): We consider each direction separately:

∗ ⊢ EX¬(ψ1 ∨ ψ2) → ¬(ψ1 ∨ ψ2) |R: Since it is equivalent to
EX(¬ψ1 ∧ ¬ψ2) and EX distributes over ∧ in the → direction,
EX(¬ψ1 ∧ ¬ψ2) → EX¬ψ1 ∧ EX¬ψ2 ↔ (¬ψ1) |R ∧(¬ψ2) |R.
(¬ψ1) |R ∧(¬ψ2) |R is equivalent to ¬(ψ1 ∨ ψ2) |R.

∗ ⊢ EX¬(ψ1 ∨ ψ2) ← ¬(ψ1 ∨ ψ2) |R: ¬(ψ1 ∨ ψ2) |R is equivalent
to ¬(ψ1 |R ∨ ψ2 |R). By the I. H., this is equivalent to ¬(EXψ1 ∨
EXψ2), which is equivalent to ¬EX(ψ1∨ψ2) due to EX’s distributive
property. This is equivalent to AX¬(ψ1∨ψ2). This implies EX¬(ψ1∨
ψ2).

We prove every formula φ with no occurrences of EG and Until is equivalent to
a formula without any occurrences EX. Before that we define the EX-degree of a
formula. Intuitively, it is the maximum nesting of EX operators occurring in the
formula.

Definition 48 (EX-degree). Let φ be a formula without any occurrence of EG and
Until operators. We define the EX-degree of φ, D(φ), as follows

• D(p) = 0, for all propositional symbol p;

• D(¬φ) = D(φ);

• D(φ1 ∨ φ2) = max(D(φ1), D(φ2));

• D(EXφ) = D(φ) + 1.

Lemma 22 (Translation equivalence).

⊢ φ↔ φ̂

where φ is a formula without occurrences of EG and Until, and φ̂ is a formula
without EX.

Proof. By induction on D(φ), the EX-degree of φ.
Base case: D(φ) = 0. φ̂ = φ by definition.
D(φ) = 1. Every occurrence ψ = EXϕ is equivalent to its translation by lemma

17 (EX Repl), that is, t(ψ) = ψ |R. By CTL replacement of equivalents, we can
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replace each of these occurrences in φ by their equivalent translation, which yields
a φ′ without any EX occurrences. φ̂ = φ′.

Induction hypothesis: For all φ such that D(φ) < n : ⊢ φ↔ φ̂ such that φ̂ is
a formula without EX.

Induction step:
Consider φ with D(φ) = n. Every occurrence ϕ = EXψ in φ such that D(ϕ) = 1

is equivalent to ϕ |R by lemma 17. By CTL replacement of equivalents, we can
replace each of these occurrences in φ by their equivalent translation, which yields
a φ′ of degree n − 1. By the I.H. ⊢ φ′ ↔ φ̂′ where φ̂′ has no EX occurrences.
Therefore ⊢ φ↔ φ̂ where φ̂ = φ̂′ and φ̂ has no EX occurrences.

Theorem 3 (Completeness). For every φ ∈ SIR− CTL:

|= φ implies ⊢ φ

Proof. Suppose |= φ. By lemma 20 we have that ⊢ φ↔ t(φ), and t(φ) is a formula
with no EG and Until occurrences. By lemma 22 and since the proof system
is sound, we have that |= φ ↔ t(φ) ↔ t̂(φ). The formula t̂(φ) is propositional,
therefore PROP ⊢ t̂(φ) by completeness of propositional logic. We also have that
SIR− CTL ⊢ t̂(φ) since PROP is a subsystem of SIR-CTL. Again by lemma 22
we have that SIR− CTL ⊢ φ.
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Chapter 10

SIRS Models in CTL

In this chapter we explore another approach for compartmental models using CTL.
This time we will go through an SIRS model where, in contrast do SIR models, agents
do become susceptible to infection again after they recover. We will demonstrate
the syntax and semantics of the logic and a few examples, and then proceed to
define an axiomatization that is sound and complete. We show completeness via
construction of a canonical model, in contrast to the previous approach of translating
the formulas onto the propositional part of the logic.

10.1 SIRS model definition

Unlike the simpler SIR model, the SIRS model allows for individuals to transition
from the recovered compartment back to the susceptible compartment, representing
the loss of immunity over time. This feature is particularly relevant for diseases
with short-lived immunity or where multiple strains of the disease exist [61].

Definition 49 (SIRS condition sets). A condition set B is a set of tuples indicating
the current state of agents. Therefore, B ⊆ B = {(a, x) | a ∈ A, x ∈ {i, r}}.

Definition 50 (SIRS Model). A model is a tuple M = (A, N, I), where

• A is a finite set of agents;

• N is a neighborhood function N : A 7→ 2A such that N is irreflexive, serial
and symmetric;

• I ⊆ B is an initial condition set, such that for any agent a, (a, i) and (a, r)

cannot be in I simultaneously.

Before we proceed to the definition of the ≤ relation for SIRS models, we define
abbreviations for the sets of infected, recovered and exposed agents. Exposed agents
are those that have infected neighbours, and are not yet infected or recovered.
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(a) This case demonstrates a moderately infectious disease with a reasonably quick recovery
time. Infection peaks quickly and stabilizes. Population N = 100,000 and a single infected
individual at the start. Infection rate is β = 3, and recovery rate γ = 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1
·105

time

po
pu

la
ti

on

Susceptible
Infected

Recovered

(b) This case demonstrates a mild infectious disease with a slow recovery time. Agents
take a long time to be infected, and recovery has a long tail. Population N = 100,000
and a single infected individual at the start. Infection rate is β = 1.5, and recovery rate
γ = 0.5.
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(c) This case demonstrates a disease that spreads very quickly, with a moderate recovery
time. In this case agents have an immunity period, and the susceptibility rate is f = 0.5.
Waves can be seen, and the peak of infections becomes flattened over time. Population
N = 100,000 and a single infected individual at the start. Infection rate is β = 10, and
recovery rate γ = 5.

Figure 10.1: Multiple settings showcasing the evolution of SIRS models.
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Definition 51 (Infected, recovered and exposed agent sets). Let B ∈ B be a
condition set. We define the sets of Infected, Recovered and Exposed agents in B

respectively as:

IB = {a : (a, i) ∈ B}

RB = {a : (a, r) ∈ B}

EB = {a : {N(a) ∩ IB} ≠ ∅ and a ̸∈ IB and a ̸∈ RB}

With these we proceed to define the ≤ relation for SIRS models.

Definition 52 (SIRS relation ≤). Let ≤ be the binary relation over B × B, where

B ≤ B′ iff {(a, i) ∈ B′} ⊆ INF , REC ⊆ B′ and SUS ⊆ B′

where

• INF = {(a, i) : a ∈ EB} (Infected)

• REC = {(a, r) : a ∈ IB} (Recovered)

• SUS = RB (Susceptible)

10.2 SIRS Logic

In this section we define LSIRS, the logic for SIRS models, and a sound and complete
axiomatization for it.

10.2.1 Language

Definition 53 (SIRS-CTL Language). The language of SIRS-CTL is given by the
following BNF:

φ := ⊤ | Nab | α(a,i) | α(a,r) | ¬φ | φ1 ∨ φ2 | EXφ | EGφ | E[φ1Uφ2]

where a, b ∈ A, α ∈ B.
We use the standard abbreviations [16]: ⊥ ≡ ¬⊤, φ ∧ ϕ ≡ ¬(¬φ ∨ ¬ϕ), φ →

ϕ ≡ ¬(φ ∧ ¬ϕ), AXφ ≡ ¬EX¬φ, EFφ ≡ E[⊤Uφ],AG ≡ ¬EF¬φ, AF ≡ ¬EG¬φ,
A(αUβ) ≡ (¬E((¬β) U (¬α ∧ ¬β))) ∧ (¬[EG](¬β)). Intuitive readings of the
operators are the same as previously introduced in definition 1.
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Figure 10.2: A simple SIRS model with a reinfection loop. Notice that in this
particular path, agent a infected agent b but not c in the first position. Had agent a
infected both b and c the loop would not have happened, since a would be recovered
and both b and c would be simultaneously infected, leaving no other agent to be
infected.

10.3 Sound and complete system

The Until and EG expansion definitions are very similar to definitions 44 and 45
respectively, the difference being the range of the disjunctions which is now |3A| to
capture all possible combinations of states. The reason for this will become clearer
later with lemma 23 and the soundness proofs for each of the expansions.

Definition 54 (SIRS-CTL Until expansion). Let E[φUψ] be a formula. We define
its Until expansion steps as

u0(E[φUψ]) := ψ

ui(E[φUψ]) := (φ ∧ EXui−1)

Then, its Until expansion EXPU(φUψ) in a model with agent set A is defined as

EXPU(E[φUψ]) :=
∨

0≤i≤|3A|

ui(E[φUψ])

Definition 55 (SIRS-CTL EG expansion). Let EGφ be a formula. We define its
EG expansion steps as

g0(EGφ) := φ

gi(EGφ) := (φ ∧ EXgi−1)
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Network axioms
¬Naa Irreflexivity
Nab ↔ Nba Symmetry∨
b∈A

Nab Seriality

Reduction axioms
EXNab ↔ Nab Red.Ax.EX.N
EX¬(α(a,i) ∨ α(a,r))↔ α(a,r) Red.Ax.EX.α.s
EXα(a,i) ↔ αN(a) Red.Ax.EX.α.i
EXα(a,r) ↔ α(a,i) Red.Ax.EX.α.r
EGφ↔ EXPEG(EGφ) Red.Ax.EG
E[φUψ]↔ EXPU(E[φUψ]) Red.Ax.EU
CTL axioms
All classical propositional tautologies
AGφ↔ ¬EF¬φ
EGφ↔ ¬AF¬φ
EX(φ ∨ ψ)↔ EXφ ∨ EXψ
AXφ↔ ¬EX¬φ

Table 10.1: SIRS-CTL axioms. The only axiom added from SIR-CTL is
Red.Ax.EX.α.s, which conveys the transition from being recovered to suscepti-
ble again. The abbreviation αN(a) is presented in definition 40.

Then, its EG expansion EXPEG(φ) in a model with agent set A is defined as

EXPEG(EGφ) :=
∨

0≤i≤|3A|

gi(EGφ)

Lemma 23 (Path cycles). Any path s will cycle in at most |3A| steps.

Proof. The set of agents A is finite by definition. The neighborhood function is
invariant for any given model, therefore it is irrelevant as a distinction between
states. Each agent can be in only one condition ci in any given step i. ci can be
either (a, i), (a, r) or neither. Therefore, the total number of combinations of agent
conditions is |3A|, which implies no path can contain a sequence of unique states
larger than |3A|.

The axiom schemata for LSIRS are presented in table 10.1.

10.3.1 Expansion equivalences

Refer to lemmas 14 and 16 for the step satisfaction of the Until and EG equivalences,
respectively. Here we focus solely on the full expansion equivalence expressions,
which now must account for the different range of the expansion terms.

Lemma 24 (Until expansion equivalence). |= E[φUψ]↔ EXPU(E[φUψ]).
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Proof. A direct consequence of lemma 23 is that no path can contain a sequence
of unique states larger than |3A|. Therefore, if φUψ holds in a position i0, then
either φ holds in the entire unique sequence or ψ holds at some position in where
0 ≤ n ≤ |3A|. With this, it is sufficient to expand the Until expression using axiom
A5 up to |3A| terms.

Definition 56 (Until replacement). For a formula φ a replacement φ |U is such
that all instances of ψUϕ are replaced with EXPU(ψUϕ).

Lemma 25 (Until replacement equivalence). For a formula φ and a replacement
φ |U , it is the case that ⊢ φ↔ φ |U .

Proof. Induction on the number n of operators in the formula φ.
Base case (n = 1): The only case affected by the replacement is φ = ψUϕ,

which is valid by direct consequence of lemma 24.
Induction hypothesis (n = k):
⊢ φ↔ φ |U for a φ with k operators.
Induction step (n = k + 1): The only relevant case is φ = φ1Uφ2, as the rest

is trivial by the I.H..
We have that φ1Uφ2 = EXPU(φ1Uφ2) by lemma 24.
By the I.H. we know that ⊢ φ1Uφ2 ↔ φ1 |U Uφ2 |U .
Therefore ⊢ EXPU(φ1Uφ2)↔ EXPU(φ1 |U Uφ2 |U), which is equivalent to φ |U

by definition.

10.3.2 Soundness

The soundness proof for SIRS-CTL consists on the validity of the items of the SIR-
CTL proof presented in lemma 19, with the inclusion of the axiom Red.Ax.EX.α.s,
which captures the transition of agents becoming susceptible again after infection.
All items are presented again for self-containedness.

Lemma 26 (Soundness). We will show all the axiom schemata presented are valid,
in the usual sense of validity. For this, let M be an arbitrary LSIRS model and
B ∈ B a behavior set.

Proof. Consider each case:

• All network axioms follow directly from definition 50;

• M, s |= EXNab ↔ Nab follows directly from the fact that ≤ never alters the
network structure;

• M, s |= E[φUψ]↔ EXPU(E[φUψ]) follows directly from lemma 15;
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• M, s |= EGφ↔ EXPEG(EGφ) follows directly from lemma 17;

• M, s |= EXα(a,i) ↔ αN(a): By definition,M, s |= EXα(a,i) if and only if there
exists a path b ∈ b(s) and M, b1 |= α(a,i). By definition 52, M, b1 |= α(a,i) is
the case if and only if M, s |= α(c,i) for some c ∈ N(a). Since c ∈ N(a), the
first two terms in definition 40 ensure c ∈ N , and sinceM, s |= α(c,i), it can
be concluded thatM, s |= αN(a).

• M, s |= EXα(a,r) ↔ α(a,i) ∨ α(a,r) follows directly from the term REC ⊆ B′ in
definition 52.

• M, s |= EX¬(α(a,i) ∨α(a,r))↔ α(a,r) follows directly from the term SUS ⊆ B′

in definition 52.

10.3.3 Completeness

CTL in general is not a compact logic. A semantics is said to be compact if and
only if every finite subset of a set of sentences has a model, and so does the entire
set. This is not the case for CTL, as demonstrated by the following formula:

{¬AGp} ∪ {AX ip | i ∈ N}

It can be shown that this set of CTL sentences has a model, but it has no finite
model. Intuitively, this is because for any finite subset of sentences from this set,
there is always a path in the system that satisfies that subset, but when taken for
all N it cannot be the case that ¬AGp. Therefore, no finite model can satisfy all
the sentences in this set, and thus the compactness theorem is violated.

A non-compact logic cannot be canonical [62], which means it cannot have a
single canonical model built such that any valid formula holds in it, a common
approach to proving completeness in many logics.

It is possible, however, to build a finitary canonical model. This consists in
building a specific canonical model for a given consistent set of formulas.

We demonstrate the axiomatization for LSIRS is complete by showing that a
canonical model in CTL constructed from any given φ and the set of Network and
Diffusion axioms is in fact an LSIRS model.

Before we proceed to the proof, the definition of a maximal consistent set is
necessary.

Definition 57 (Maximal consistent set). A set Φ of formulas in LSIRS is said to
be a maximal consistent set if and only if:
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• Φ is a consistent set, i.e., there is no formula ϕ such that both ϕ and ¬ϕ are
in Φ.

• For any formula ψ in LSIRS, either ψ or ¬ψ can be added to Φ while main-
taining its consistency, i.e., Φ ∪ {ψ} or Φ ∪ {¬ψ} is consistent.

The completeness proof goes as follows:

• We define a canonical model for an arbitrary formula φ in LSIRS;

• We demonstrate the Lindenbaum lemma, which states that, for any consistent
set of logical sentences, there exists a consistent, complete, and maximal
extension of that set;

• We demonstrate the Truth Lemma, which states that given a maximal con-
sistent set for a formula and a canonical model constructed for that set,
every formula contained in that maximal set must be true in the constructed
canonical model;

• And finally, the completeness proof is by contraposition: we assume that
a formula φ is not a tautology of LSIRS; therefore, its negation must be a
consistent set;

• Then, by the Lindenbaum lemma, we can extend the negation of φ to a
consistent maximal set;

• With this set, we can construct a canonical model, and according to the Truth
Lemma, we know that this model satisfies the negation of φ;

• Finally, from there, we know that φ is not valid in LSIRS since its negation
was satisfied in a model, and this is what we need to conclude the proof by
contraposition.

Through this entire section we assume a finite set of agents A. See section 7.2 of
[53] and lectures 1 and 2 of [63].

Definition 58 (LSIRS canonical model for Γ). The canonical model construction is
based on standard CTL (and modal logics in general) [62].

Given an arbitrary formula φ, let Γ be a maximally consistent set containing φ.
The canonical model MC = ⟨NC , IC⟩ for Γ is defined as follows:

• NC(Nab) = {Nab | Nab ∈ Γ}

• IC(Γ) = {(a, i) | (a, i) ∈ Γ} ∪ {(a, r) | (a, r) ∈ Γ}
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Notice there are many possible maximally consistent sets containing φ, and
therefore many possible canonical models for a given Γ. This is, however, not an
issue for the completeness proof: the model MC is a SIRS-CTL model because
the neighborhood function is built ranging over a maximal consistent set which is,
crucially, consistent with the irreflixivity, symmetry and seriality axioms.

For the completeness proof we will need to demonstrate Lindenbaum’s lemma.
The lemma states that for any consistent set of propositional logical sentences, there
exists a consistent, complete and maximal extension of that set.

A consistent set of sentences is one in which no sentence in the set contradicts
another sentence in the set. A complete extension of a set of sentences is one that
includes all the logical consequences of the original set, and a maximal extension is
one that cannot be further extended without becoming inconsistent.

Lemma 27 (Lindenbaum). Every consistent set can be extended to a maximally
consistent set.

Proof. Take an enumeration of all LSIRS formulas, which is possible because the set
of agents is finite, and therefore the atomic propositions are also finite. Let φk be
the k-th formula in this enumeration. Now, consider Φ an arbitrary consistent set,
and the following sequence of sets of formulas:

Γ0 = Φ (10.1)

Γn =

{
Γk ∪ {φk+1} if Γk ∪ {φk+1} is consistent
Γk otherwise

(10.2)

Take Γ = Γ0 ∪ Γ1 ∪ Γ2 ∪ . . . ∪ ΓN , where N is the last N -th formula in the
enumeration. Γ is a consistent set because it is the union of a chain of consistent
sets. Finally, Γ has to be maximal, otherwise there would be a formula in LSIRS

not present in the enumeration.

Lemma 28 (Auxiliary). If Γ and ∆ are maximal consistent sets, then

1. φ ∈ Γ iff ¬φ ̸∈ Γ;

2. φ ∧ ϕ ∈ Γ iff φ ∈ Γ and ϕ ∈ Γ;

3. Γ ≤ ∆ iff {φ | Xφ ∈ Γ} ⊆ ∆.

Proof. 1. ⇒ Suppose φ ∈ Γ. By consistency ¬φ ̸∈ Γ.

⇐ Suppose ¬φ ̸∈ Γ. By maximality Γ∪{¬φ} ⊢ ⊥. But then Γ ⊢ φ. Therefore
φ ∈ Γ, because Γ is maximally consistent and therefore deductively closed (i.e.,
it contains every formula than can be logically deduced from Γ, including φ).

74



2. φ ∧ ϕ ∈ Γ is equivalent to φ ∈ Γ and ϕ ∈ Γ because Γ is deductively closed.

3. ⇒ Direct from the definition of ≤ and the fact that Γ and ∆ are maximally
consistent.

⇐ Suppose {φ | Xφ ∈ Γ} ⊆ ∆. For every atomic proposition (a, x) ∈ Γ, there
is an Xφ according to the diffusion axioms. By supposition φ ∈ ∆, therefore
it must be that Γ ≤ ∆.

Lemma 29 (Truth). Let Γ be a maximally consistent set containing φ. Let MC =

⟨NC , IC⟩ be the canonical model for Γ. For all φ ∈ Γ:

φ ∈ Γ iff MC , 0 |= φ

Proof. By induction on φ |U (definition 56).
Base case Suppose φ is a propositional variable p of form Nab or (a, x). Then

by definition of N and I, p ∈ Γ iff Γ ∈ NC or Γ ∈ IC , respectively. By semantics,
this is equivalent to MC , 0 |= p.

Induction hypothesis For a given φ and ψ it is the case that φ ∈ Γ iff
MC , 0 |= φ, and ψ ∈ Γ iff MC , 0 |= ψ.

Induction step We distinguish the following cases:

• ¬φ: ¬φ ∈ Γ is equivalent to φ ̸∈ Γ by item 1 of lemma 28. By the induction
hypothesis this is equivalent toMC , 0 ̸|= φ, which by the semantics is equivalent
to MC , 0 |= ¬φ.

• φ ∧ ψ: φ ∧ ψ ∈ Γ is equivalent to φ ∈ Γ and ψ ∈ Γ by item 2 of lemma 28.
By the induction hypothesis this is equivalent to MC , 0 |= φ and MC , 0 |= ψ,
which by semantics is equivalent to MC |= φ ∧ ψ.

• Xφ: ⇒: Suppose Xφ ∈ Γ. Take an arbitrary maximal consistent set ∆.
Suppose Γ ≤ ∆. By item 3 of lemma 28 and since both sets are maximally
consistent, it must be the case that φ ∈ ∆. By the I.H. this is iff ∆, 0 |= φ. By
the semantics definition, and since Γ ≤ ∆, this is equivalent to w, 1 |= φ where
w0 = Γ. Since Γ is maximally consistent, it must be the case that w, 0 |= Xφ.

⇐: Suppose w, 0 |= Xφ. Therefore w, 1 |= φ, where w0 = Γ and w1 = ∆, such
that Γ ≤ ∆. By the I.H. it is the case that φ ∈ ∆. By item 3 of lemma 28, it
is the case that Xφ ∈ Γ.
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Theorem 4 (Completeness). For every φ ∈ LSIRS

|=LSIRS
φ⇒ ⊢LSIRS

φ (10.3)

Proof. This is a standard proof by contraposition, as shown in [53]. Suppose ̸⊢LSIRS
φ.

Then {¬φ} is a consistent set. By lemma 27 we have that {¬φ} is a subset of a
maximal consistent set Γ. Using definition 58 we construct a canonical modelMΓ

from Γ, such thatMΓ, 0 |=LSIRS
¬φ by lemma 29. Therefore ̸|=LSIRS

φ.
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Chapter 11

Conclusion and future works

The paper presented a class of models for the study of social networks, based on
threshold models as seen across the literature. With this, we have developed a
logic with the same operators as LTL, but for a restricted class of models focused
specifically on the study of social networks, proved its soundness and its completeness
via a translation argument, and briefly discussed model checking complexity. With
this framework one is able to capitalize on existing model checking solutions for
LTL, which we believe is a good incentive to pursue this line of work.

Given the previous conclusion, a natural future work is to explore these model
checkers and analyze the evolution of some network instances and compare them
against data from real social networks.

In section 8 we mention a few preconditions for the validity of the soundness
and completeness proofs, all of which remain valid in the SIR model and allowed us
to expand the proofs for these models. We believe this to be case for any arbitrary
model definition, and that is an interesting generalization for this framework.

Another potential future work is to extend the framework to include more
complex behaviors beyond simple threshold adoption. For example, one could
consider models where agents are influenced by multiple thresholds or have different
preferences for adopting a behavior based on their social network connections.

Regarding SIR and SIRS models, a point of further research would be to compare
the evolution of our logic models presented in the paper against the standard non-
discrete differential approach. While the logic-based models offer a discrete and
intuitive framework for modeling the spread of infectious diseases, it is unclear
how they compare to more traditional continuous models in terms of accuracy and
computational efficiency. By comparing the two approaches, one could identify the
strengths and limitations of each and determine which approach is better suited for
different scenarios.

Finally, it would be interesting to investigate the relationship between the
threshold-based models presented in the paper and other well-known models of

77



social influence, such as the DeGroot model [64]. This could provide insights into the
similarities and differences between these models, as well as identify the conditions
under which they lead to similar or divergent outcomes. Such comparisons could
shed light on the strengths and limitations of different modeling approaches for
social networks.
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Appendix A

Proof of lemma 6

Proof. Proof by induction on the length |φ| = n of the formula φ.
Base case (n = 1): φ = Nab or φ = βa

This is straightforward from definition 16.
Induction hypothesis: ⊢ φ↔ tu(φ) for |φ| ≤ n.
Induction step:

We have four cases:

1. φ = ¬ψ:

By the I. H., ⊢ ψ ↔ tu(ψ).
Thus ⊢ ¬ψ ↔ ¬tu(ψ) by replacement (proposition 2), and
⊢ ¬ψ ↔ tu(¬ψ) by definition 16.

2. φ = ψ1 ∧ ψ2:

By the I. H., ⊢ ψ1 ↔ tu(ψ1) and ⊢ ψ2 ↔ tu(ψ2).
Thus ⊢ ψ1 ∧ ψ2 ↔ tu(ψ1) ∧ tu(ψ2) by replacement, and
⊢ ψ1 ∧ ψ2 ↔ tu(ψ1 ∧ ψ2) by definition 16.

3. φ = Xψ:

By the I. H., ⊢ ψ ↔ tu(ψ).
Thus ⊢ Xψ ↔ Xtu(ψ) by the Next rule (proposition 1).
Thus ⊢ Xψ ↔ tu(Xψ) by definition 16.

4. φ = ψ1Uψ2:

First we will show that ⊢ tu(EXPU(ψ1Uψ2))↔ EXPU(tu(ψ1)Utu(ψ2)). Con-
sider EXPU(tu(ψ1)Utu(ψ2)) =

∨
0≤i≤|A|

ui(tu(ψ1)Ut(ψ2)) =

= u0 ∨ u1 ∨ . . . = tu(ψ2) ∨ (t(ψ1) ∧Xtu(ψ2)) ∨ . . ..

Using 1., 2. and 3., we can bring the translation operator outside yielding
⊢ tu(EXPU(ψ1Uψ2))↔ EXPU(tu(ψ1)Utu(ψ2)).
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Considering the above and definition 16, we have
tu(ψ1Uψ2) = tu(EXPU(ψ1Uψ2)) = EXPU(tu(ψ1)Utu(ψ2)).
Using axiom Red.Ax.U , we have
⊢ EXPU(tu(ψ1)Utu(ψ2))↔ (tu(ψ1)Utu(ψ2)).

By the I. H., ⊢ ψ1 ↔ tu(ψ1) and ⊢ ψ2 ↔ tu(ψ2). And so
⊢ EXPU(tu(ψ1)Utu(ψ2))↔ (ψ1Uψ2).

Thus ⊢ tu(EXPU(ψ1Uψ2)) ↔ (ψ1Uψ2), and ⊢ tu(ψ1Uψ2)φ ↔ (ψ1Uψ2) by
definition 16.
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Appendix B

Proof of lemma 8

Proof. We analyze case by case:
Case c(φ) ≥ c(ϕ) if ϕ ∈ Sub(φ):
By induction on φ.
Base case: if φ is βa or Nab, its complexity is 1 and it is its only subformula.
Induction hypothesis: c(φ) ≥ c(ϕ) if ϕ ∈ Sub(φ).
Induction step:

• Negation (¬φ): ϕ is a subformula of ¬φ, therefore ϕ is either ¬φ itself or a
subformula of φ. In the first case it follows directly that c(¬φ) ≥ c(ϕ). In the
second case, we have that c(¬φ) = 1 + c(φ), and since ϕ is a subformula of φ,
it follow directly by the I. H. that c(¬φ) ≥ c(ϕ).

• Conjunction (φ∧φ′): ϕ is a subformula of φ∧φ′, therefore ϕ is either φ∧φ′ itself
or a subformula of φ or φ′. In the first case it follows directly that c(φ∧φ′) ≥
c(ϕ). In the second case, we have that c(φ ∧ φ′) = 1 +max(c(φ), c(φ′)), and
since ϕ is a subformula of either φ or φ′, it follow directly by the I. H. that
c(φ ∧ φ′) ≥ c(ϕ).

• Next (Xφ): ϕ is a subformula of Xφ, therefore ϕ is either Xφ itself or a
subformula of φ. In the first case it follows directly that c(Xφ) ≥ c(ϕ). The
second case can be broken down in two: formulas of the form Xβa, and
otherwise. The first case is trivial, and for the second case we have that
c(Xφ) = 2 · c(φ), and since ϕ is a subformula of φ, it follow directly by the I.
H. that c(Xφ) ≥ c(ϕ).
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Case c(XNab) > c(Nab):

c(XNab) = 2 · c(Nab) = 2

and

c(Nab) = 1

Case c(Xβa) > c(βa ∨ βN(a)≥θ):

c(Xβa) = 4 + 2 · |A|3

and

c(βa ∨ βN(a)≥θ) = c(¬(¬βa ∧ ¬βN(a)≥θ))

= 1 + c(¬βa ∧ ¬βN(a)≥θ)

= 2 +max(c(¬βa), c(¬βN(a)≥θ))

= 2 +max(1 + c(βa), 1 + c(βN(a)≥θ))

= 2 +max(2, 1 + c(βN(a)≥θ))

= 2 +max(2, 1 + 2 · |A|3)

= 3 + 2 · |A|2

3 + 2 · |A|3 is less than 4 + 2 · |A|3.
Case c(X(φ ∧ ψ)) > c(Xφ ∧Xψ):

c(X(φ ∧ ψ)) = 2 · c(φ ∧ ψ) = 2 · (1 +max(c(φ), c(ψ)))

= 2 + 2 ·max(c(φ), c(ψ))

and

c(Xφ ∧Xψ) = 1 +max(c(Xφ), c(Xψ)) = 1 +max(2 · c(φ), 2 · c(ψ))

= 1 + 2 ·max(c(φ), c(ψ))

1 + 2 ·max(c(φ), c(ψ)) is less than 2 + 2 ·max(c(φ), c(ψ)).
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Case c(X¬φ) > c(¬Xφ):

c(X¬φ) = 2 · c(¬φ) = 2 · (1 + c(φ))

= 2 + 2 · c(φ)

and

c(¬Xφ) = 1 + c(Xφ) = 1 + 2 · c(φ)

1 + 2 · c(φ) is less than 2 · (1 + c(φ)).
Case c(XXφ) > c(Xt(Xφ)):

c(XXφ) = 2 · c(Xφ)

and

c(Xt(Xφ)) = 2 · c(t(Xφ))

Now we show c(Xφ) > c(t(Xφ)) by induction on the length of φ.
Base case: if φ has length 1, then it is either βa or Nab:

c(Xφ) = 2 · 1 = 2

and

c(t(Xφ)) = c(Nab) = 1

or

c(t(Xφ)) = c(βa) = 1

Induction hypothesis: c(Xφ) > c(t(Xφ)) for |φ| ≤ n.
Induction step:
Case φ = ¬ϕ:

c(Xφ) = c(X¬ϕ) = c(¬Xϕ) = 1 + c(Xϕ)

and

c(t(Xφ)) = c(t(X¬ϕ)) = c(t(¬Xϕ)) = c(¬t(Xϕ))

= 1 + c(t(Xϕ))

By I. H., we can conclude 1 + c(Xϕ) > 1 + c(t(Xϕ)), therefore c(Xφ) > c(t(Xφ)).
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Case φ = ϕ1 ∧ ϕ2:

c(Xφ) = c(X(ϕ1 ∧ ϕ2)) = 2 · c(ϕ1 ∧ ϕ2)

= 2 · (1 +max(c(ϕ1), c(ϕ2))) = 2 + 2 ·max(c(Xϕ1), c(Xϕ2))

and

c(t(Xφ)) = c(t(X(ϕ1 ∧ ϕ2))) = c(t(Xϕ1 ∧Xϕ2))

= c(t(Xϕ1) ∧ t(Xϕ2)) = 1 +max(c(t(Xϕ1)), c(t(Xϕ2)))

By I. H., we can conclude
2 + 2 ·max(c(Xϕ1), c(Xϕ2)) > 1 +max(c(t(Xϕ1)), c(t(Xϕ2))), therefore c(Xφ) >
c(t(Xφ)).

Case φ = Xϕ:

c(Xφ) = c(XXϕ) = 2 · c(Xϕ)

and

c(t(Xφ)) = c(t(XXϕ)) = c(t(Xt(Xϕ))) = □

By I. H., we know c(Xt(Xϕ)) > □. c(Xt(Xϕ)) = 2 · c(t(Xϕ)). By I. H. we know
2 · c(Xϕ) > 2 · c(t(Xϕ)) > □, therefore c(Xφ) > c(t(Xφ)).
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Appendix C

Proof of lemma 9

Proof. By induction on c(φ).
Base case: φ is either βa or Nab, translation keeps them unchanged and therefore

⊢ φ↔ t(φ).
Induction hypothesis: For all φ such that c(φ) < n : ⊢ φ↔ t(φ).
Induction step: Case for negation and conjunction: straightforward from

lemma 8 item 1.
Case XNab: This case follows from the Red.Ax.X.N axiom, item 2 of lemma 8

and the I. H..
Case Xβa: This case follows from the Red.Ax.X.β axiom, item 3 of lemma 8

and the I. H..
Case X(φ ∧ ψ): This case follows from the A8 axiom, item 4 of lemma 8 and

the I. H..
Case X¬φ: This case follows from the A2 axiom, item 5 of lemma 8 and the I.

H..
Case XXφ: By I. H. we know ⊢ Xφ↔ t(Xφ). Therefore we can replace into

Xt(Xφ) by proposition 2, and it follows from item 6 of lemma 8.
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Appendix D

Dataset parser source code

The external dependencies of this source-code are the command-line manager library
“commander” (version 7.2.0) and the functional programming utilities library “lodash”
(version 4.17.21).

Listing D.1: Source-code entrypoint file, containing the input parameters parsing
logic and output type controller code.

const { Command , Option } = require("commander");

const fs = require("fs");

const program = new Command ();

program.requiredOption("-f, --file <file >", "Star Wars

network file");

program.addOption(new Option("-o, --output <type >",

"output type").choices (["smv", "graphviz"]));

program.option("-tn , --threshold_num <number >", "The

network adoption threshold numerator");

program.option("-td , --threshold_den <number >", "The

network adoption threshold denominator");

program.option("-l, --ltlspec <string >", "LTL

specification for the nuXmv model checker");

program.option("-s, --symmetric", "Relationships will be

considered symmetric");

program.parse(process.argv);

const { file , threshold_num , threshold_den , output =

"smv", ltlspec , symmetric = false } = program.opts();

try {
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if (fs.existsSync(file)) {

const network = JSON.parse(fs.readFileSync(file ,

"utf8"));

switch (output) {

case "smv":

if (! threshold_num || !threshold_den) {

throw new Error("Threshold is required for the

SMV output");

}

const smvOutput = require("./ processors/smv");

const smvOutputStr = smvOutput(network ,

threshold_num , threshold_den , !!symmetric ,

ltlspec);

console.log(smvOutputStr);

break;

case "graphviz":

const graphvizOutput =

require("./ processors/graphviz");

const graphvizOutputStr =

graphvizOutput(network , !! symmetric);

console.log(graphvizOutputStr);

break;

default:

console.error("Invalid output type");

}

} else {

console.error(‘File "${file}" not found ‘);

}

} catch (err) {

console.error(err);

}

Listing D.2: Controller code for the SMV output, responsible for the general format
of the generated SMV model file. The content of the file is a modal with an initial
state and operations describing how the model evolves over time.

const _ = require("lodash");

const { initAgents , initSum , nextBehaviors , nextSum } =

require("./smv/assign");

const { setThreshold , setRelationships } =

95



require("./smv/define");

const { defineBehaviors , defineSum } =

require("./smv/var");

const setLTLSpecs = (ltlspec) => ‘LTLSPEC ${ltlspec };‘;

const smvOutput = (network , threshold_num ,

threshold_den , isSymmetric , ltlspec) => {

const { nodes , links } = network;

const numAgents = nodes.length;

// Initialize the matrix

const linksMatrix = _.chunk(

_.range(numAgents * numAgents).map((i) => 0),

numAgents

);

// Fill the matrix with the weights

links.forEach (({ source , target , value }) => {

if (linksMatrix.length > source) {

if (linksMatrix[source ]. length > target) {

linksMatrix[source ][ target] = value;

if (isSymmetric) {

linksMatrix[target ][ source] = value;

}

}

}

});

return ‘MODULE main

DEFINE

${setThreshold(threshold_num , threshold_den)}

${setRelationships(linksMatrix)}

VAR

${defineBehaviors(numAgents)}

${defineSum(numAgents , linksMatrix)}

ASSIGN

${initAgents(nodes)}

96



${initSum(numAgents)}

${nextBehaviors(numAgents)}

${nextSum(numAgents)}

${ltlspec ? setLTLSpecs(ltlspec) : ""}‘;

};

module.exports = smvOutput;

Listing D.3: Controller code for the GraphViz output, responsible for the general
format of the generated GraphViz file. The content of the file is a representation of
the initial state of the model.

const _ = require("lodash");

const { behaviorNodes } = require("./ graphviz/behavior");

const { relationships } =

require("./ graphviz/relationships");

const graphvizOutput = (network , isSymmetric) => {

const { nodes , links } = network;

const numAgents = nodes.length;

// Initialize the matrix

const linksMatrix = _.chunk(

_.range(numAgents * numAgents).map((i) => 0),

numAgents

);

// Fill the matrix with the weights

links.forEach (({ source , target , value }) => {

if (linksMatrix.length > source) {

if (linksMatrix[source ]. length > target) {

linksMatrix[source ][ target] = value;

}

}

});

return ‘strict ${isSymmetric ? "graph" : "digraph"} {

${behaviorNodes(nodes)}

${relationships(nodes , linksMatrix , isSymmetric)}}‘;
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};

module.exports = graphvizOutput;

Listing D.4: Assigns the initial state and the “next” state following LTL-SN seman-
tics.

const _ = require("lodash");

const initAgents = (nodes) =>

nodes

.map(

(node , index) =>

‘init(agents[${index }]) := ${node.behavior ?

"behavior" : "empty"}; -- Agent

"${_.snakeCase(node.name)}"‘

)

.join("\n ");

const innerSumLine = (curAgentIndex , agentIndexes ,

hasNext) => {

const line = agentIndexes.map(

(agentIndexInternal) =>

‘(${hasNext ? "next(" :

""}agents[${agentIndexInternal }]${

hasNext ? ")" : ""

} = behavior ?

relationships[${curAgentIndex }][${agentIndexInternal }]

: 0)‘

);

return line.join(" + ");

};

const sumLine = (numAgents , type) => {

const agentIndexes = _.range(0, numAgents);

const sums = agentIndexes.map(( agentIndex) => {

const line = innerSumLine(agentIndex , agentIndexes ,

type === "next");
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return ‘${type}( agents_behavior[${agentIndex }]) :=

${line};‘;

});

return sums.join("\n ");

};

const initSum = (numAgents) => sumLine(numAgents ,

"init");

const nextSum = (numAgents) => sumLine(numAgents ,

"next");

const innerNextBehaviorsLine = (curAgentIndex ,

agentIndexes) => {

const line = agentIndexes.map(( agentIndexInternal) =>

‘relationships[${curAgentIndex }][${agentIndexInternal }]‘);

return line.join(" + ");

};

const nextBehaviors = (numAgents) => {

const agentIndexes = _.range(0, numAgents);

const sums = agentIndexes.map(( agentIndex) => {

const line = innerNextBehaviorsLine(agentIndex ,

agentIndexes);

return ‘next(agents[${agentIndex }]) := threshold_den

* agents_behavior[${agentIndex }] > (${line}) *

threshold_num ? behavior :

agents[${agentIndex }];‘;

});

return sums.join("\n ");

};

module.exports = { initAgents , initSum , nextBehaviors ,

nextSum };

Listing D.5: Defines the adoption threshold and the relationships between agents of
the model.
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const _ = require("lodash");

const setThreshold = (threshold_num , threshold_den) =>

‘threshold_num := ${threshold_num };\n threshold_den

:= ${threshold_den };‘;

const setRelationships = (linksMatrix) => {

// Build the string

let result = "relationships := [\n ";

result += linksMatrix.map((row) =>

‘[${row.toString ()}]‘).join(" ,\n ") + "];";

return result;

};

module.exports = { setThreshold , setRelationships };

Listing D.6: Defines the block of variables declarations.

const _ = require("lodash");

const defineBehaviors = (numAgents) => ‘agents: array

0..${numAgents - 1} of {empty , behavior };‘;

const defineSum = (numAgents , linksMatrix) => {

const sumWeights = linksMatrix.map(_.sum);

const maxNeighborsInfluence = _.max(sumWeights);

return ‘agents_behavior: array 0..${numAgents - 1} of

0..${maxNeighborsInfluence };‘;

};

module.exports = { defineBehaviors , defineSum };

Listing D.7: Builds and returns the nodes’ definitions block

const map = require("lodash/fp/map");

const filter = require("lodash/fp/filter");

const flow = require("lodash/fp/flow");

const snakeCase = require("lodash/fp/snakeCase");

const behaviorNodes = (nodes) => {

const nodesStr = flow(
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filter ((node) => node.behavior),

map((node) => ‘${snakeCase(node.name)};‘)

)(nodes);

return ‘node [style=filled ,color=red];

${nodesStr.join("")}‘;

};

module.exports = { behaviorNodes };

Listing D.8: Builds and returns the nodes’ relationships block.

const snakeCase = require("lodash/fp/snakeCase");

const relationships = (nodes , links , isSymmetric) => {

const lines = links.map((source , srcIdx) =>

source

.map(

(value , tgtIdx) =>

‘ ${snakeCase(nodes[srcIdx ].name)}

${isSymmetric ? "--" : "->"} ${snakeCase(

nodes[tgtIdx ].name

)} [label=${value}]‘

)

.filter ((line) => !line.includes("[label =0]"))

.join("\n")

);

return ‘node [style=filled ,color=grey];

${lines.filter ((line) => line).join("\n")}‘;

};

module.exports = { relationships };
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