
A CONDITIONAL BRANCH PREDICTOR BASED ON WEIGHTLESS
NEURAL NETWORKS

Luis Armando Quintanilla Villon

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
de Sistemas e Computação, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia de Sistemas e
Computação.

Orientadores: Diego Leonel Cadette Dutra
Felipe Maia Galvão França

Rio de Janeiro
Setembro de 2023

A CONDITIONAL BRANCH PREDICTOR BASED ON WEIGHTLESS
NEURAL NETWORKS

Luis Armando Quintanilla Villon

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO
GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E
COMPUTAÇÃO.

Orientadores: Diego Leonel Cadette Dutra
Felipe Maia Galvão França

Aprovada por: Prof. Diego Leonel Cadette Dutra
Prof. Claudio Luis de Amorim
Profa. Ana Cristina Costa Aguiar

RIO DE JANEIRO, RJ – BRASIL
SETEMBRO DE 2023

Villon, Luis Armando Quintanilla
A conditional branch predictor based on weightless

neural networks/Luis Armando Quintanilla Villon. – Rio
de Janeiro: UFRJ/COPPE, 2023.

XV, 49 p.: il.; 29, 7cm.
Orientadores: Diego Leonel Cadette Dutra

Felipe Maia Galvão França
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2023.
Referências Bibliográficas: p. 31 – 34.
1. Branch predictor. 2. Weightless Neural Networks.

3. WiSARD. I. Dutra, Diego Leonel Cadette et al.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Título.

iii

Ao primórdio indefinido de todas
as coisas.

iv

Agradecimentos

Gostaria de agradecer em primeiro lugar à minha esposa, Lilian, por sua dedicação,
suporte e ajuda incontrastáveis e incomparáveis, sem os quais este trabalho não teria
sido possível.

Aos meus pais, Rosa e Washington, por incutir em mim a importância da con-
tinuidade do ensino superior e por sempre buscar a excelência.

Aos meus orientadores, Diego e Felipe, pela compreensão, paciência e por me
guiar nos meus primeiros passos no mundo da pesquisa acadêmica de alto nível.
Igualmente gostaria de agradecer à professora Priscila que junto ao professor Felipe
me guiaram neste processo com paciencia e dedicação.

Ao PESC, por me permitir participar desse desafio abrindo as portas e me dando
oportunidade de crescimento profissional em benefício da sociedade.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UM PREDITOR DE DESVIO CONDICIONAL BASEADO EM REDES
NEURAIS SEM PESO

Luis Armando Quintanilla Villon

Setembro/2023

Orientadores: Diego Leonel Cadette Dutra
Felipe Maia Galvão França

Programa: Engenharia de Sistemas e Computação

A previsão de desvio condicional permite a busca especulativa e a execução de
instruções antes de saber a direção de instruções condicionais. Como em outras
áreas, as técnicas de aprendizado de máquina são uma abordagem promissora para
a construção de preditores de desvio, como por exemplo, o preditor Perceptron. No
entanto, essas soluções tradicionais exigem grandes tamanhos de entrada, o que im-
põe uma considerável sobrecarga de área. Esta dissertação propõe um preditor de
desvio condicional baseado no modelo de rede neural sem peso WiSARD (Wilkie,
Stoneham e Aleksander’s Recognition Device). O preditor baseado em WiSARD im-
plementa one-shot online training projetado para abordar a previsão de desvio como
um problema de classificação binária. Este trabalho compara o preditor baseado em
WiSARD com dois preditores do estado da arte: TAGE-SC-L (TAgged GEometric
- Statistical Corrector - Loop) e o Multiperspective Perceptron. A avaliação experi-
mental mostra que o preditor proposto, com um tamanho de entrada menor, supera
o preditor baseado em perceptron em cerca de 0,09% e atinge precisão semelhante à
do TAGE-SC-L. Além disso, foi realizada uma análise de sensibilidade experimental
para encontrar o melhor preditor para cada conjunto de dados e, com base nesses
resultados, projetaram-se novos preditores especializados usando uma composição
de parâmetros específica para cada conjunto de dados. Os resultados mostram que
o preditor especializado baseado em WiSARD supera o estado da arte em mais de
2,3% no melhor caso. Ademais, por meio da implementação de classificadores de
preditores especializados, descobriu-se que utilizar 90% do preditor especializado
para um conjunto de dados específico rendeu desempenho comparável ao preditor
especializado correspondente.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

A CONDITIONAL BRANCH PREDICTOR BASED ON WEIGHTLESS
NEURAL NETWORKS

Luis Armando Quintanilla Villon

September/2023

Advisors: Diego Leonel Cadette Dutra
Felipe Maia Galvão França

Department: Systems Engineering and Computer Science

Conditional branch prediction allows the speculative fetching and execution of in-
structions before knowing the direction of conditional statements. As in other areas,
machine learning techniques are a promising approach to building branch predictors,
e.g., the Perceptron predictor. However, those traditional solutions demand large
input sizes, which impose a considerable area overhead. This dissertation proposes
a conditional branch predictor based on the WiSARD (Wilkie, Stoneham, and Alek-
sander’s Recognition Device) weightless neural network model. The WiSARD-based
predictor implements one-shot online training designed to address branch prediction
as a binary classification problem. This work compares the WiSARD-based predic-
tor with two state-of-the-art predictors: TAGE-SC-L (TAgged GEometric - Sta-
tistical Corrector - Loop) and the Multiperspective Perceptron. The experimental
evaluation shows that the proposed predictor, with a smaller input size, outper-
forms the perceptron-based predictor by about 0.09% and achieves similar accuracy
to that of TAGE-SC-L. In addition, an experimental sensitivity analysis was per-
formed to find the best predictor for each dataset, and based on these results, we
designed new specialized predictors using a particular parameter composition for
each dataset. The results show that the specialized WiSARD-based predictor out-
performs the state-of-the-art by more than 2.3% in the best case. Furthermore,
through the implementation of specialized predictor classifiers, we discovered that
utilizing 90% of the specialized predictor for a specific dataset yielded comparable
performance to the corresponding specialized predictor.

vii

Contents

List of Figures x

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and contribution . 2
1.3 Structure of the text . 2

2 Background 4
2.1 Conditional branches . 4

2.1.1 Instruction-Level parallelism and branch hazards 4
2.1.2 Branch prediction . 5

2.2 Conditional branch predictor . 6
2.2.1 Branch history table . 6
2.2.2 Two-level adaptive predictor 7
2.2.3 The gshare predictor . 8
2.2.4 Neural based branch predictors 9
2.2.5 The TAGE-SC-L predictor . 10

2.3 Weightless neural networks . 10
2.3.1 RAM-Discriminators . 11

2.4 WiSARD . 11

3 Proposal: WiSARD-based conditional branch predictor 13
3.1 Input composition . 13
3.2 Input composition example . 15
3.3 Predictor architecture . 15

4 Methodology and experimental setup 17
4.1 Dataset . 17

viii

4.2 Experimental setup . 17

5 Results and discussion 19
5.1 Best result - preliminary exploration 19
5.2 Sensitivity analysis . 22
5.3 Best predictor for each dataset . 25
5.4 Analysis of specialized predictor classifiers 26

6 Conclusion 29

References 31

A Supplementary sensitivity analysis 35

B Published papers 48

ix

List of Figures

2.1 A state diagram of 2-bit saturation counter modeled as a FSM. Each
state is associated with 2 bits. These 2 bits encode the four states in
the system. The weakly taken and not taken states are represented
with dashed lines. 7

2.2 A representation of the BHT. Each entry of the BHT consists of the
address of a branch instruction and a two-bit saturating counter. . . . 7

2.3 The three types of global history predictors (GAx). 8
2.4 The three types of per-set history predictors (SAx). 8
2.5 The three types of per-address history predictors (PAx). 9
2.6 Architecture of the gshare predictor 9
2.7 Main architectural view of the Multiperspective Perceptron predictor.

This hashed predictor that uses not only global path and pattern
histories, but also other features and metrics. 10

2.8 Depiction of the TAGE-SC-L predictor. It consists on a TAGE pre-
dictor backed with a loop predictor and a statistical corrector 10

2.9 The RAM-discriminator basic structure 11
2.10 In this representation of the WiSARD model example, the input im-

age contains “0”. It shows an outline of the training phase on the left
side. On the right side, the corresponding discriminator produces the
strongest response in the classification phase. 12

2.11 A representation of the RAM-Discriminator structure. 12

3.1 Structure and composition of a LHT. Each row in the table represent
a particular LHR . 14

3.2 A depiction of the input composition. In this example the input size
is 208 bits . 15

3.3 A depiction of the WiSARD-based predictor. In this example there
are three local history registers . 16

x

5.1 Results of accuracy obtained by the WiSARD-based predictor in the
classification phase as the size of the n-tuple increases. The “Avg”
line represents the average accuracy of all datasets. Higher is better. . 20

5.2 Sensitivity Analysis for each dataset. The horizontal and vertical axis
represent the parameter associated to each feature and the accuracy,
respectively. Each curve represents the best result for each feature
along Figures A.1 - A.6 from Appendix A. 23

5.3 Behavior of the classifier of the best predictors for each dataset repre-
sented in each subfigure, where the X-axis represents the precision of
the customized predictor classifier. The accuracy is displayed on the
Y -axis in each case. Each bar represents the execution with a certain
instruction block size, labeled as 1k, 2k, 5k and 10k, where ’k’ means
1000 instructions. 28

A.1 Sensitivity Analysis for dataset I1. The PC is the most important
feature (Figure A.1a) since the accuracy increases as its correspond-
ing parameter a increases when compared to the other features (Fig-
ures A.1b - A.1i). For the other features, the accuracy drops or re-
mains oscillating (Figures A.1b - A.1h). The exception is the feature
GPHR, in which the initial behavior depends on the n-tuple sizes
and for large values of e the accuracy remains nearly constant (Fig-
ure A.1i). In addition, in nearly all cases, the accuracy drops as
n-tuple size increases. 37

A.2 Sensitivity Analysis for dataset I2. In this case the PC and the PCx-
orGHR are the most relevant features since the accuracy increases
as its corresponding parameter a and c increases when compared
to the other features (Figures A.2a and A.2c). In nearly all cases
(Figures A.2b - A.2i) the accuracy decreases as the n-tuple size in-
creases. For LHR2, LHR3, LHR4 features, the accuracy keeps fluctu-
ating as the corresponding parameter increases in the largest n-tuple
sizes (Figures A.2f - A.2h). 39

A.3 Sensitivity Analysis for dataset M1. The results show differences in
accuracy trends for each feature in each case. The accuracy increases
or decreases smoothly for the features PC, GHR and PCxorGHR
(Figures A.3a - A.3c), but substantially drops for LHR0, LHR1, LHR2

(Figures A.3d - A.3f). Interestingly, the accuracy initially increases
and then drops smoothly for large values of e for GPHR (Figure A.3i).
In most cases, the accuracy decreases for large n-tuple sizes (Fig-
ures A.3b - A.3h). 41

xi

A.4 Sensitivity Analysis for dataset M2. In this case, the accuracy
increases for LHR0, LHR1, LHR2 (Figures A.4d - A.4f); remains
nearly constant for the features LHR3 and LHR4 (Figures A.4g
and A.4h) and drops significantly for the other features (Fig-
ures A.4a, A.4b, A.4c, A.4i). For this dataset it is important to
highlight the feature GPHR, since the accuracy degrades significantly
as the parameter e increases (Figure A.4i). In addition, in almost all
cases the accuracy increases as the n-tuple size increases. 43

A.5 Sensitivity Analysis for dataset S1. The most relevant features are
the PC and GPHR (Figures A.5a and A.5i) since accuracy achieves
the highest values, particularly for high values of the parameter a.
The accuracy also increases for the features GHR and PCxorGHR
(Figures A.5b and A.5c) but decreases for all other LHR type features
(Figures A.5d - A.5h). Furthermore, in almost all cases the best and
worst curves correspond to n-tuple sizes 20 and 32 respectively. 45

A.6 Sensitivity Analysis for dataset S2. The most important features
are the PC and GPHR (Figures A.6a and A.6i) since the accuracy
achieves the highest values when compared to the other features. The
accuracy also increases for the features GHR and PCxorGHR (Fig-
ures A.6b and A.6c) but decreases significantly for all other LHR type
features (Figures A.6d - A.6h). In addition, the worst results corre-
spond to n-tuple size 16. Thus, interestingly, the trends of results for
both datasets S1 and S2 are somehow similar. 47

xii

List of Tables

2.1 Variations of the Two-level Adaptive Predictor 8

5.1 Accuracy results for datasets I1 and I2 compare the best configura-
tions of the WiSARD-based predictor with other predictors previously
mentioned in Chapter 2: Branch History Table, the nine variations
of the Two-level Adaptive (Table 2.1), gshare, the TAGE-SC-L and
the Multiperspective Perceptron predictors. We labeled them WNN,
BHT, GAx, SAx, PAx, Gshare, T and MP, respectively. 21

5.2 Accuracy results for datasets M1 and M2 compare the best configura-
tions of the WiSARD-based predictor with other predictors previously
mentioned in Chapter 2: Branch History Table, the nine variations
of the Two-level Adaptive (Table 2.1), gshare, the TAGE-SC-L and
the Multiperspective Perceptron predictors. We labeled them WNN,
BHT, GAx, SAx, PAx, Gshare, T and MP, respectively. 21

5.3 Accuracy results for datasets S1 and S2 compare the best configura-
tions of the WiSARD-based predictor with other predictors previously
mentioned in Chapter 2: Branch History Table, the nine variations
of the Two-level Adaptive (Table 2.1), gshare, the TAGE-SC-L and
the Multiperspective Perceptron predictors. We labeled them WNN,
BHT, GAx, SAx, PAx, Gshare, T and MP, respectively. 22

5.4 Accuracy results compare the best configurations of the WiSARD-
based predictor with the state-of-the-art (TAGE-SC-L) and the Mul-
tiperspective Perceptron predictor. We labeled them WNN, T, and
MP, respectively. 22

5.5 Accuracy results of the WiSARD-based predictor by using the inputs
from the TAGE-SC-L and the Multiperspective Perceptron predic-
tors, labeled as Input-T and Input-MP respectively. For the sake of
comparison, the bottom row, labeled as Input-W, represents the best
input configurations of the WiSARD-based predictor from Table 5.4. 24

5.6 Best parameters configuration for each dataset 25

xiii

5.7 Accuracy results for the best parameters configuration (Table 5.6) for
each dataset . 25

5.8 Comparison of the accuracy results reported in Tables 5.4 and 5.6 . . 25
5.9 Most relevant feature of the input for each dataset 26

xiv

List of Abbreviations

ANN Artificial Neural Networks, p. 10

BHR Branch History Register, p. 7

BHT Branch History Table, p. 6

CBP-3 3rd Championship Branch Prediction, p. 17

FSM Finite State Machine, p. 6

GHR Global History Register, p. 7

GPHR Global Path History Register, p. 13

ILP Instruction Level Parallelism, p. 4

LHR Local History Register, p. 13

LHT Local History Table, p. 14

LUTs Lookup Tables, p. 1

PCxorGHR xor operation for the PC and GHR, p. 13

PC Program Counter, p. 5

PHT Pattern History Table, p. 7

RAM Random Access Memory, p. 1

TAGE-SC-L TAgged GEometric - Statistical Corrector -
Loop, p. 2

TAGE TAgged-GEometric, p. 10

WNNs Weightless neural networks, p. 1

WiSARD Wilkie, Stoneham, and Aleksander’s Recognition
Device, p. 1

xv

Chapter 1

Introduction

Recently, academia and industry [1] have used neural networks to address several
problems and challenges related to computer microarchitecture. Specifically, inno-
vative techniques for implementing conditional branch prediction were covered using
perceptron [2] [3], feedforward neural networks [4], recurrent networks and convolu-
tional networks [5] [6]. Conditional branch prediction is an essential technique and
a keystone of modern superscalar computer processors. This type of prediction uses
a dedicated branch predictor unit implemented in hardware. Those predictors aim
to identify patterns in the execution history of a program to predict the outcome of
a particular branch in the instruction stream. An increment in the branch predictor
accuracy is a relatively simple and effective way to enhance performance and reduce
energy consumption [7]. Also, the area and energy costs of the branch predictor
unit are key considerations in the microprocessor design.

Weightless neural networks (WNNs) are a category of neural models which use
neurons called Random Access Memory (RAM) nodes to perform prediction. The
neurons are made up of lookup tables (LUTs) and do not perform complex arithmetic
operations. One main advantage of WNNs RAM nodes is the ability to learn non-
linear functions of their inputs, which is not possible in a conventional weighted
neural network, such as the perceptron. The WiSARD (Wilkie, Stoneham, and
Aleksander’s Recognition Device) [8] was the first weightless neural model to achieve
commercial success and is the neural network model adopted in this dissertation.

1.1 Motivation

Due to the ability to learn non-linear features indirectly represented by the inputs
and the relatively simple arithmetic operations, the WiSARD model is an attractive
alternative to traditional neural-based predictors. Nevertheless, as far as we aware,
there has been no previous work using the WiSARD technique or any weightless
neural model to implement a conditional branch predictor. This work aims to explore

1

the potential gain in accuracy of using a WiSARD-based branch predictor, for which
we propose a new predictor architecture.

1.2 Goals and contribution

As the main goal of this dissertation, the novel predictor approach based on weight-
less neural networks was designed to treat branch prediction as a binary classification
problem. This work also explores how the proposed predictor performs one-shot on-
line training methodology.

In this dissertation, we perform four experimental approaches. First, by making
a pseudo-exhaustive hyperparameters search, we found a WiSARD-based predictor
configuration that requires smaller input sizes when compared to state-of-the-art
predictors, the TAgged GEometric - Statistical Corrector - Loop (TAGE-SC-L) and
the Multiperspective perceptron. These results show that the WiSARD-based pre-
dictor can achieve similar accuracy and even outperform the other two predictors,
depending on the analyzed dataset. On average, the WiSARD-based predictor is
tied in accuracy with TAGE-SC-L, and outperforms the Multiperspective perceptron
by approximately 0.09%.

Next, we performed a sensitivity analysis in order to explore the most important
input fields, which directly leads to find the best predictor parameters configuration
for each dataset. Then, we compared the best results of these specialized predictors
with another three predictors, namely: The first result with the first input com-
position, the TAGE-SC-L and the Multiperspective perceptron. This comparison
shows that a particular specialized WiSARD-based predictor outperforms the state
of the art by more than 2.3% in the best case. Furthermore, for all cases, the best
specialized predictor configuration for each dataset exceeds the first preliminary
corresponding result.

Lastly, by employing dedicated predictor classifiers, this work revealed that using
90% of the specialized predictor for a particular dataset resulted in performance
comparable to that of the corresponding specialized predictor.

1.3 Structure of the text

The rest of this dissertation is organized as follows. Chapter 2 presents the back-
ground and fundamental concepts related to branch prediction, the most important
branch predictors historically used in the industry and weightless neural networks.
Chapter 3 describes the proposed WiSARD-based predictor architecture as well
as how its input is composed. Chapter 4 presents the experimental data and the

2

methodology used. Chapter 5 shows the experimental results and the main discov-
eries are discussed in detail. Finally, Chapter 6 concludes this work. In addition,
Appendix A shows the full results of the sensitivity analysis described in Chapter 5.

3

Chapter 2

Background

This Chapter provides the relevant background on fundamental concepts related to
conditional branch prediction, weightless neural networks and the WiSARD model.
In particular, section 2.4 exhibits the main type of WNNs employed to construct
the proposed predictor architecture in this dissertation.

2.1 Conditional branches

Conditional branches are usually employed to make decisions in the execution of a
program, based on comparison between logical expressions. In high level program-
ming languages, conditional branches are usually expressed by if or if-else state-
ments. From the computer architecture perspective, the compiler interprets the
conditional branches statements to conditional branch instructions. This instruc-
tions modify the flow of the program so that the processor can fetch instructions
that are not in sequential order in memory [9], which lead to performance issues.

2.1.1 Instruction-Level parallelism and branch hazards

In order to avoid bubbles and stalls due to conditional branch instructions, nearly
all modern processors are pipelined in several stages to overlap the execution of
instructions and improve performance. Because instructions can be evaluated in
parallel, this mechanism among instructions is called Instruction Level Parallelism
(ILP) [10] .

In general, to establish how much parallelism exists and if this parallelism can
be exploited in the flow of a program, it is necessary to know how the instructions
depend on each other. Specifically, for branch instructions it is critical to determine
the ordering of instructions after the branch because every instruction in the branch
block must be executed after the the instruction preceded by the branch. The control
of the flow of the instructions in a pipelined processor is called control dependence. A

4

Branch Hazard occurs when the proper instruction after a branch in the instruction
stream can not execute during its designated clock cycle due because the instruction
that was fetched is not the one that is needed [11].

Branch hazards can cause a greater performance loss in a pipelined processor,
reinforced by the fact that branch instructions are frequent, composing nearly 20-
30% of all instructions of computer programs [12]. When a branch is executed, it
may or may not change the Program Counter (PC) to something other than its
current value plus 4. If a branch changes the PC to its target address, it is a taken
branch; otherwise, it is not taken [10].

2.1.2 Branch prediction

A method of resolving a branch hazard is to predict a given outcome for the condi-
tional branch and proceeds from that assumption rather than waiting to ascertain
the actual outcome [11]. In most applications, branches are usually highly pre-
dictable, and fortunately, the vast majority of programs have branches with this
characteristic most of the time through the analysis of some of its relevant fea-
tures [13]. The technology dedicated to solve branch hazard using some type of
prediction strategy is called branch prediction

The simplest method of predicting branches is by analyzing only the data col-
lected from earlier runs provided by profile-based information [10]. This type of
prediction is called static branch prediction and in most cases the instructions do
not change. This technique are useful for some specialized applications in which
branches can be predicted with a medium-high or tolerable accuracy at compile
time, such as in scientific and floating-point programs [13].

Static branch prediction is based on stereotypical behavior and does not take into
account some characteristics of conditional branches, such as the individuality of a
specific branch instruction which may depend on particular conditions. In contrast,
dynamic branch prediction makes a prediction depending on the demeanor of each
conditional branch and can change predictions for a conditional branch over the
entire execution of a program [11]. In order to increase the accuracy by implementing
a dynamic branch prediction technique, a processor explores and takes advantage of
current execution patterns, which can come from different micro-architectural data
sources.

Dynamic branch predictors for conditional branches are the focus of this disser-
tation, and several of the main related techniques are mentioned in Section 2.2.

5

2.2 Conditional branch predictor

Nearly all modern processors implement a conditional branch predictor unit in its
microarchitecture design [10]. Instead of stopping when a conditional branch is
encountered in the execution of a program, a processor employs a conditional branch
predictor to fetch and speculatively execute instructions along a predicted path. The
main idea consist in predict branches based on dynamic information provided by the
behavior coming from the lowest layer in the microarchitecture level.

In general, a branch predictor is composed of three elements: 1) an input, which
carries information and features about the current instruction; 2) the prediction,
which is going to notify the system if the current branch will be taken or not; 3)
and the main predictor architecture, which uses arithmetic or logic operations to
perform the prediction.

Furthermore, as computer architectures become more complex and the number of
instructions issued per cycle increases, the penalty for a prediction error (mispredic-
tion) increases [2]. Since branch misprediction can result in both high latency and
high energy consumption, a minimal improvement in branch prediction accuracy
can boost performance and energy efficiency significantly, as indicated in related
work [14] [5] [15].

The following subsections describe in detail the most important conditional
branch prediction techniques.

2.2.1 Branch history table

By far, the simplest way to implement a dynamic branch predictor is to index the
lower portion of some information that represents the conditional branch [10]. This
information can be taken from the address of the branch instruction directly. The
most common implementation is a 2-bit prediction scheme [16], which can be mod-
eled as a Finite State Machine (FSM) . Finite state machines or finite automata are
the most simple computational model and are useful tools for recognizing patterns
in data [17]. In particular, the 2-bit saturation counter predictor is a Moore State
Machine because its output depends on the state of the system [9]. The design of
a 2-bit FSM is shown in Figure 2.1. There are four states indexed using two-bit
counters: strong taken (11), weak taken (10), weak not taken (01), and strong not
taken (00). Weak states are related to the current state transition, that is, how easy
it is to change the state. The state is updated depending on the real direction of its
corresponding conditional branch.

A Branch History Table (BHT) is a memory indexed by the lower portion of
the address of the branch instruction (Figure2.2). When using a 2-bit prediction
scheme, the BHT contains 2 bits in each row in the table that notify whether the

6

branch was previously taken or not. The outcome of the prediction will be based on
the position of the state machine. It will predict taken if the state is (11) or (10),
otherwise and it will predict not taken.

Figure 2.1: A state diagram of 2-bit saturation counter modeled as a FSM. Each
state is associated with 2 bits. These 2 bits encode the four states in the system.
The weakly taken and not taken states are represented with dashed lines.

Figure 2.2: A representation of the BHT. Each entry of the BHT consists of the
address of a branch instruction and a two-bit saturating counter.

2.2.2 Two-level adaptive predictor

An important disadvantage of the BHT is that it only uses the recent behavior of a
particular conditional branch in order to predict the future outcome of that branch.
A possible way to improve the accuracy is to look at the recent behavior of other
conditional branches from the execution of the program.

In general, conditional branch predictors that use the information of other
branches outcomes are called two-level adaptive predictors or correlating predic-
tors [10] [18]. This type of predictors stores different branch histories in two levels
of memory called Branch History Register (BHR) and branch Pattern History Table
(PHT) [19] [20] . The BHR is a table somehow similar to the BHT from the 2-bit
prediction scheme. The BHR is also called Global History Register (GHR)

7

This branch predictor is highly reconfigurable and there are nine possible config-
urations 2.1. In GAx schemes, the first level is represented by a single GHR, which
is a shift register that keeps the actual last k branches encountered (Figure 2.3).
Meanwhile, in SAx schemes, the first level consists in a BHR table that stores the
last occurrences of the conditional branch instructions from the same subset (Figure
2.4). On the other hand, in PAx schemes the first level conrresponds to information
of the same branch instruction (Figure 2.5), thus, one history register is associated
with each conditional branch [20]. In all two-level predictor variations, the second
level keeps the information in a PHT table.

Name (Variation) First Level (Branch History) Second Level (Pattern History)
GAg Kept Globally Kept Globally
GAs Kept Globally Kept per Set
GAp Kept Globally Kept per Address
SAg Kept per Set Kept Globally
SAs Kept per Set Kept per Address
SAp Kept per Set Kept per Set
PAg Kept per Address Kept Globally
PAs Kept per Address Kept per Address
PAp Kept per Address Kept per Set

Table 2.1: Variations of the Two-level Adaptive Predictor

Figure 2.3: The three types of global history predictors (GAx).

Figure 2.4: The three types of per-set history predictors (SAx).

2.2.3 The gshare predictor

In order to reduce aliasing in a two-level predictor which uses global history of
conditional branches, the gshare predictor brings the best of global history and

8

Figure 2.5: The three types of per-address history predictors (PAx).

branch information together [21] [14]. The strategy consist in apply the exclusive
disjunction, or xor operation, between the PC and the GHR. Then, the result is
indexed in order to get or update information in a table of 2-bit counters (Figure 2.6),
similar to the BHT from the 2-bit predictor scheme.

Figure 2.6: Architecture of the gshare predictor

2.2.4 Neural based branch predictors

Another state-of-the-art branch predictor is the perceptron-based predictor. The
first relevant work used a single-layer perceptron [2] which was later improved in
more sophisticated versions [22] [23] [3]. Research projects to reduce the power
consumption, complexity [24] [25] [26], and also, to deal with the impossibility,
inherent to perceptron models, to learn nonlinear functions from the inputs [27] [28]
also are found in the literature.

One of the most recent versions is the Multiperspective Perceptron predictor,
based on the idea of viewing branch history from multiple perspectives [29]. This
predictor uses pattern histories and features based on other metrics, which results
in large input sizes for the data to be linearly separable (Figure 2.7). The weights
are chosen by hashing across the different features used to make a prediction.

The success of perceptron-based predictors confirms that neural networks can be
useful in branch prediction for industrial applications [30].

9

Figure 2.7: Main architectural view of the Multiperspective Perceptron predictor.
This hashed predictor that uses not only global path and pattern histories, but also
other features and metrics.

2.2.5 The TAGE-SC-L predictor

Most modern branch predictors are variants of the TAgged-GEometric (TAGE) [31]
and/or perceptron branch predictors [2]. In particular, the TAGE-SC-L [32] predic-
tor is considered the state-of-the-art in the industry [33] and it won the last branch
predictor championship celebrated in 2016. In this predictor, the input consist of a
large global history register and other microarchitecture features (Figure 2.8). The
history register contains tagged predictor components indexed with distinct history
lengths forming a geometric series. TAGE updates the tag after the execution of each
branch instruction. In addition a neural-based statistical corrector is implemented
to detect some unlikely predictions and to revert them.

Figure 2.8: Depiction of the TAGE-SC-L predictor. It consists on a TAGE predictor
backed with a loop predictor and a statistical corrector

2.3 Weightless neural networks

WNNs were developed by BLEDSOE e BROWNING [34] who named it as n-tuple
classifier. Similarly to traditional Artificial Neural Networks (ANN) in their early
days [35], WNNs were initially inspired by the human nervous system. However, in
WNNs the dendritic tree is prioritized, unlike conventional ANN paradigms which
are based on weighted-sum-and-threshold neurons [36]. This is an important fact
since the vast majority of synapses terminate on the neuron’s dendritic tree [37].

10

In the n-tuple classifier, the nodes are based on RAM where the information
learned is stored. The functionality of a neuron can be modified by changes in the
RAM contents. In contrast to weighted-sum-and-threshold artificial neurons, WNNs
can directly map exclusive-OR functions on a n-tuple RAM node [38].

2.3.1 RAM-Discriminators

A Discriminator is a set of N RAM nodes which have n address lines each. Thus,
the input of a RAM-discriminator is a binary pattern of N · n bits. A biunivocal
pseudo-random mapping is established between the RAM addresses lines and the
the input pattern (Figure 2.9). The n-tuple classifier randomly chooses groups of n
binary positions of an input and use them to address what is called Address Groups,
each tuple addressing one group. Moreover, n-tuple classifier implements a summing
device in order to obtain an input in a classification process.

2.4 WiSARD

The WiSARD was the first weightless neural network distributed commercially. It
consists of a n-tuple classifier composed of class discriminators. Each discriminator
is a set of N RAM nodes having n address lines each [39] and is trained on a
particular class of patterns.

To illustrate how the WiSARD model works, Figure 2.10 describes an example
implemented for digit recognition tasks, applied to a binarized image in a matrix
representation. The learning phase consists of writing 1’s in each RAM node in
the respective discriminator that is selected using n address bits randomly (but
consistently) extracted from the input pattern value. In the classification phase, all
RAM nodes similarly designated by the input, are read. Then the resulting values
are added to produce a response value. The index of the discriminator with the
highest response value is taken as the predicted class. To deal with the problem of

Figure 2.9: The RAM-discriminator basic structure

11

learning saturation, the contents of the RAM nodes are implemented as an access
counter which is incremented, during the training phase, with each access. The RAM
node counter must have a value greater than a threshold defined by a “bleaching”
algorithm [40] that is used to resolve ties during prediction (when discriminator
responses are ambiguous because their differences are below a tolerance error). On
performing inference, the output of a RAM is “1” if the addressed value is greater
than the threshold, otherwise, it is “0”. In addition, Figure 2.11 presents the structure
of RAMs in a Discriminator.

Figure 2.10: In this representation of the WiSARD model example, the input image
contains “0”. It shows an outline of the training phase on the left side. On the
right side, the corresponding discriminator produces the strongest response in the
classification phase.

Figure 2.11: A representation of the RAM-Discriminator structure.

12

Chapter 3

Proposal: WiSARD-based
conditional branch predictor

This dissertation proposes a novel predictor architecture based on the WiSARD
model, which can be modified depending on the constraints of the applications.
The WiSARD-based predictor is designed to perform one-shot online training and
the respective classification phase performs a binary classification. This chapter
illustrates, in Sections 3.1 and 3.2 respectively, how the input is composed and the
entire predictor architecture.

3.1 Input composition

The binary input is a linear combination of different sources of current and recent
branch address information. We choose the features inspired by previous work re-
lated to conditional branch techniques shown in Section 2.2. These features are
the following: Some bits of the Program Counter (PC) which represents the least
significant bits from the current branch address instruction, Global History Register
(GHR) from the last conditional branches outcomes, the xor operation for the PC
and GHR (PCxorGHR) , Local History Register (LHR) from the current branch
and the Global Path History Register (GPHR) which stores the 8 less significant
bits from the last 8 conditional branches. Thus, the input can be expressed by the
relation:

input = a · PC + b ·GHR + c · PCxorGHR+∑N−1
i=0 di · LHRi + e ·GPHR (3.1)

The additional parameters a, b, c, di and e represent the strength of its associated
feature in the input. This input composition assumes that there are N LHR of
different sizes. The following paragraphs describe these features through a more

13

complete and detailed explanation.

Program counter (PC). The PC is a register which contains the address bits of
the current instruction being executed in a given program. In most modern general
purpose processors, the size of the PC is 32 or 64 bits. In the datasets analyzed in
this dissertation, the size is 32 bits.

Global history register (GHR). The idea of GHR is to track the global history
of all conditional branches real outcomes, which can be 0 (Not taken branch) or 1
(Taken branch). This information is stored in a shift register which is updated with
the result of the actual branch outcome in the execution of a program.

XOR operation between PC and GHR (PCxorGHR). As mentioned and
previously addressed in related works [21], the XOR operation (exclusive-OR) be-
tween PC and GHR can synthesize the information in a smaller memory space. This
leads to a more compact branch predictor unit.

Local history register (LHR). This register stores the last occurrences of the
same branch instruction. One LHR is associated with one or a particular set of
conditional branches. The Local History Registers for all branches are contained
in a Local History Table (LHT) , in which each entry is indexed by the branch
instruction address [20]. Figure 3.1 illustrates how the least significant bits of the
PC are employed to update the LHR in the LHT.

Figure 3.1: Structure and composition of a LHT. Each row in the table represent a
particular LHR

Global path history register (GPHR). This memory represents an array of
the last 8 branch addresses. As branches are executed, their addresses are shifted
into the first position of this array. In this work, the elements of the array are simply
the lower 8 bits of the branch address. In other related works, this register is known
as Global Addresses [41] [33].

14

3.2 Input composition example

As an example, suppose we express the values of the variables and parameters as
follows: PC = 24, GHR = 24, PCxorGHR = 24, LHR0 = 4, LHR1 = 8, GPHR
= 64, a = 2, b = 2, c = 1, d0= 2, d1 = 2, e = 1. From an architectural point of
view and a hardware perspective, Figure 3.2 shows how we use the parameters and
registers to compose the input. In this example, the input size is 208 bits.

Figure 3.2: A depiction of the input composition. In this example the input size is
208 bits

In System Verilog language, we can represent the input by the following relation
using replication concatenation and exclusive-or operators.

input = {{2{PC[23 : 0]}}, {1{PC[23 : 0] ∧ GHR}}, {2{GHR}},

{2{LHR0}}, {2{LHR1}}, {1{GPHR}}} (3.2)

3.3 Predictor architecture

Figure 3.3 shows the WiSARD-based predictor architecture. At the beginning,
the RAM node counters are initialized with zero contents. The classification phase
occurs first since the predictor uses an online learning methodology. In this phase,
we pseudo-randomly divided the current input information in n-tuples of bits to get
the address of a RAM node located in two discriminators: Discriminator “0”, which
represents a not taken branch and Discriminator “1” otherwise. We generate response
from both discriminators, and the one with the highest response value determines
the corresponding final output. In addition, the architecture implements a bleaching
algorithm, which sets a threshold that must be exceeded every time there is a tie in
the classification process.

Once the classification phase for the current input finishes, next comes the train-
ing phase, where the input is again split in n-tuples of bits to get the address of

15

all RAM nodes located in the respective Discriminator. Then the counters in each
designated RAM node are updated accordingly. This procedure, including the clas-
sification and training phase, is performed for all the subsequent inputs of a given
dataset.

Figure 3.3: A depiction of the WiSARD-based predictor. In this example there are
three local history registers

16

Chapter 4

Methodology and experimental setup

This Chapter describes the datasets and the required experimental setup to evaluate
the proposed predictor described in Chapter 3.

4.1 Dataset

This Dissertation uses datasets from the 3rd Championship Branch Prediction (CBP-
3) organized by the JILP Workshop on Computer Architecture Competitions, which
can be found in Kaggle [42]. The information is composed only of conditional
branch information, and it is distributed in 3 categories, according to the benchmark
application class: integer workloads (I1 and I2), multimedia (M1 and M2), and server
(S1 and S2) applications. All of them have 4x105 conditional branch instructions,
with the exception of dataset M1, which has 3x105 elements.

Among these datasets, this dissertation only considers the PC and the actual
outcome of each branch. These are used to build the microarchitecture information
that compounds the input, as described in Chapter 3 and Appendix A. Moreover, as
we design the proposed WiSARD-based branch predictor assuming already existing
hardware structures of the branch predictor unit, i.e., Local History Table and Global
History Register, we use the whole available dataset to evaluate our proposed designs
and the existing solutions, as they all assume the branch unit works using online
learning.

4.2 Experimental setup

This dissertation performed 100 experiments on each group of datasets. The quanti-
tative results and plots, shown later, represent the average of 100 values. We choose
this number to evaluate how the mapping and uniform distribution of inputs over
RAMs impacts the overall performance of the proposed design. Even though a given

17

final hardware implementation must have a fixed mapping, this approach allows one
to understand how the results depend on the input mapping. We set a fixed size, in
bits, for the features in the input from Equation 3.1, as follows: PC = 24, GHR =
24, PCxorGHR = 24, LHR0 = 24, LHR1 = 16, LHR2 = 9, LHR3 = 7, LHR5 = 5,
GPHR = 64. Therefore, we express the input in a more simplified way:

input = 24a + 24b + 24c + 24d0 + 16d1 + 9d2 + 7d3 + 5d4 + 64e (4.1)

In the rest of this dissertation, we will use the Equation 4.1 for all different
experimental scenarios. Furthermore, this dissertation compare the proposed solu-
tion against the TAGE-SC-L and the Multiperspective Perceptron predictors on all
datasets. The input size for both predictors is 3127 and 2329 bits, respectively, and
their training and classification phase do not use a random process, as they are final
hardwired architecture implementation models.

18

Chapter 5

Results and discussion

This chapter shows the results from four different but complementary experimental
approaches. In the first part, we made a pseudo-exhaustive hyperparameter search
to find the best input composition for the proposed predictor whose accuracy would
outperform, on average, the state-of-the-art predictors. It is important to point out
that the current state-of-the-art branch predictors area achieve performances in the
high 99%s for some relevant benchmarks. Moreover, because of the sheer amount
of instructions executed in a CPU quantum or time slice, that can have as much
as 25, 000, 000 branches in a 1 GHz microprocessor and, due to the complexities
of superscalar processors, any fluctuation in the branch predictor accuracy causes a
relevant impact in the overall system performance. Subsequently, we performed a
sensitivity analysis of all features that compound the input to explore the particular
behavior and trends. Then, we obtain the parameter configuration to find the best
potential and specialized predictor for each dataset. In the next step, we performed
an experimental analysis of specialized predictor classifiers.

5.1 Best result - preliminary exploration

Preliminary, the first pseudo-exhaustive search (given that WNNs allows for very
agile implementations) showed that the best configuration for the parameters is:
a = 24, b = 12, c = 12, d0 = 8, d1 = 8, d2 = 8, d3 = 6, d4 = 12, e = 8. Thus, according
to the Equation 4.1, the size of this input is: 24·24 + 12·24 + 12·24 + 8·24 + 8·16
+ 8·9 + 6·7 + 12·5 + 8·64 = 2158 bits, which is smaller than the TAGE-SC-L and
the Multiperspective Perceptron counterparts.

We present the details of this first experimental result in Figure 5.1. It illustrates
how the accuracy varies as the size of the n-tuple increases. First, we notice that
the accuracy in the datasets I1 and I2 remains almost constant. In datasets M1 and
S1, the accuracy increases up to n-tuple size = 22 and then decreases, being dataset
S1 where we observe this effect more pronounced. On the other hand, in datasets

19

S2 and M2, we see a more prominent accuracy benefit. On average (black line), the
accuracy increases up to n-tuple size = 25.

Figure 5.1: Results of accuracy obtained by the WiSARD-based predictor in the
classification phase as the size of the n-tuple increases. The “Avg” line represents
the average accuracy of all datasets. Higher is better.

This dissertation compares these results with the other predictors mentioned in
Chapter 2, including the state-of-the-art, namely the TAGE-SC-L and Multiper-
spective Perceptron predictors (shown in Tables 5.1 - 5.3 where WNN, T and MP
stand for the WiSARD-based, TAGE-SC-L and Multiperspective Perceptron pre-
dictors respectively). We extended the results to a precision of four decimal places
to illustrate a more complete exploration. Also, the memory size of all predictors
except WNN is 64KiB. Undoubtedly, the WNN, T and MP predictors substantially
exceeds the others ones in all six datasets (Tables 5.1 - 5.3). In consequence, we
only present accuracy results of WNN, T and M predictors in Table 5.4 for bet-
ter visualization. On average, the WiSARD-based predictor achieves approximately
the same accuracy as the TAGE-SC-L and slightly outperforms the Multiperspective
Perceptron by approximately 0.09%. It is important to emphasize that the proposed
predictor shows a higher accuracy value on the dataset M2 compared to the other
predictors.

In addition, we performed supplementary experiments using the same input from
TAGE-SC-L and Multiperspective Perceptron in the WiSARD-based predictor. The
results are shown in Table 5.5. Interestingly, the accuracies obtained with these

20

Predictor I1 I2
WNN 99.7948±.0016 99.9749±.0010
BHT 98.5892±.0000 98.2440±.0000
GAg 99.0910±.0000 99.1568±.0000
GAs 98.6785±.0000 99.9635±.0000
GAp 98.7087±.0000 99.0348±.0000
SAg 98.5027±.0000 97.3440±.0000
SAs 99.1813±.0000 98.3370±.0000
SAp 99.2002±.0000 97.6135±.0000
PAg 99.2185±.0000 99.9608±.0000
PAs 99.2067±.0000 99.9350±.0000
PAp 99.1990±.0000 99.9585±.0000

Gshare 99.2245±.0000 99.1470±.0000
T 99.8138±.0000 99.9782±.0000

MP 99.7700±.0000 99.9792±.0000

Table 5.1: Accuracy results for datasets I1 and I2 compare the best configura-
tions of the WiSARD-based predictor with other predictors previously mentioned in
Chapter 2: Branch History Table, the nine variations of the Two-level Adaptive (Ta-
ble 2.1), gshare, the TAGE-SC-L and the Multiperspective Perceptron predictors.
We labeled them WNN, BHT, GAx, SAx, PAx, Gshare, T and MP, respectively.

Predictor M1 M2
WNN 96.0540±.0224 86.4968±.1458
BHT 87.1183±.0000 83.6300±.0000
GAg 92.5803±.0000 81.3975±.0000
GAs 93.5330±.0000 82.2255±.0000
GAp 93.2197±.0000 82.7135±.0000
SAg 86.1627±.0000 79.1850±.0000
SAs 88.7113±.0000 79.7140±.0000
SAp 90.0560±.0000 80.7100±.0000
PAg 89.4027±.0000 82.4775±.0000
PAs 91.2670±.0000 83.1155±.0000
PAp 89.8390±.0000 83.2752±.0000

Gshare 92.3827±.0000 79.8717±.0000
T 96.1357±.0000 85.8582±.0000

MP 96.2340±.0000 85.7533±.0000

Table 5.2: Accuracy results for datasets M1 and M2 compare the best configura-
tions of the WiSARD-based predictor with other predictors previously mentioned in
Chapter 2: Branch History Table, the nine variations of the Two-level Adaptive (Ta-
ble 2.1), gshare, the TAGE-SC-L and the Multiperspective Perceptron predictors.
We labeled them WNN, BHT, GAx, SAx, PAx, Gshare, T and MP, respectively.

inputs, on average, were 77.1948% and 89.7698% respectively. As expected, the
proposed predictor has a completely different knowledge acquisition process than
the other predictors since the discrepancy in accuracy is considerable.

21

Predictor S1 S2
WNN 96.0651±.0349 97.8504±.0124
BHT 92.6352±.0000 92.4316±.0000
GAg 91.8653±.0000 92.5344±.0000
GAs 92.3012±.0000 93.1333±.0000
GAp 92.6478±.0000 93.1271±.0000
SAg 90.2090±.0000 89.6268±.0000
SAs 91.4223±.0000 90.8722±.0000
SAp 91.8902±.0000 91.3441±.0000
PAg 93.5727±.0000 93.1425±.0000
PAs 93.8405±.0000 93.4029±.0000
PAp 93.1838±.0000 92.5567±.0000

Gshare 94.9577±.0000 92.6609±.0000
T 97.8710±.0000 95.9964±.0000

MP 97.7645±.0000 95.9525±.0000

Table 5.3: Accuracy results for datasets S1 and S2 compare the best configura-
tions of the WiSARD-based predictor with other predictors previously mentioned in
Chapter 2: Branch History Table, the nine variations of the Two-level Adaptive (Ta-
ble 2.1), gshare, the TAGE-SC-L and the Multiperspective Perceptron predictors.
We labeled them WNN, BHT, GAx, SAx, PAx, Gshare, T and MP, respectively.

Dataset WNN T MP
I1 99.7948±.0016 99.8138±.0000 99.7700±.0000
I2 99.9749±.0010 99.9782±.0000 99.9792±.0000
M1 96.0540±.0224 96.1357±.0000 96.2340±.0000
M2 86.4968±.1458 85.8582±.0000 85.7533±.0000
S1 96.0651±.0349 96.3213±.0000 96.2143±.0000
S2 97.8504±.0124 97.8710±.0000 97.7645±.0000

Average 96.0393±.0621 95.9964±.0000 95.9525±.0000

Table 5.4: Accuracy results compare the best configurations of the WiSARD-based
predictor with the state-of-the-art (TAGE-SC-L) and the Multiperspective Percep-
tron predictor. We labeled them WNN, T, and MP, respectively.

5.2 Sensitivity analysis

We performed a sensitivity analysis in order to determine the most relevant features
that comprise the input. This dissertation carried out this study across all the six
datasets. In all scenarios, the parameters for the base case were: a = 2, b = 2, c =

2, d0 = 2, d1 = 2, d2 = 3, d3 = 4, d4 = 5, e = 1.
We show and explain the full results in B. In Figure 5.2, we report the best

curves achieving the highest accuracy for each feature and dataset. In the legend,
the n-tuple size used in each curve is indicated within parentheses for each case.

In datasets I1 and I2, the PC is the most relevant feature (Figures 5.2a and 5.2b)
since the accuracy increases as its corresponding parameter also increases. On the

22

(a) I1 (b) I2

(c) M1 (d) M2

(e) S1 (f) S2

Figure 5.2: Sensitivity Analysis for each dataset. The horizontal and vertical axis
represent the parameter associated to each feature and the accuracy, respectively.
Each curve represents the best result for each feature along Figures A.1 - A.6 from
Appendix A.

23

Dataset Input-W Input-T Input-MP
I1 99.7948±.0016 96.2828±.1219 99.6334±.0220
I2 99.9749±.0010 99.8607±.0011 99.9342±.0012
M1 96.0540±.0224 62.8316±.2016 82.8533±.2203
M2 86.4968±.1458 69.4551±.0404 74.3839±.4133
S1 96.0651±.0349 64.5249±.0415 87.1223±.0692
S2 97.8504±.0124 82.2137±.0540 94.6945±.0188

Average 96.0393±.0621 79.1948±.0103 89.7698±.0375

Table 5.5: Accuracy results of the WiSARD-based predictor by using the inputs
from the TAGE-SC-L and the Multiperspective Perceptron predictors, labeled as
Input-T and Input-MP respectively. For the sake of comparison, the bottom row,
labeled as Input-W, represents the best input configurations of the WiSARD-based
predictor from Table 5.4.

other hand, for the other features, the accuracy drops smoothly. The exceptions are
features LHR0 and GPHR, in which the accuracy decreases quickly in I1 and I2,
respectively.

A different situation occurs in datasets M1 and M2. In both datasets, the
accuracy increases for features PCxorGHR and LHR0 respectively (Figures 5.2c
and 5.2d). Interestingly in M1, the worst trends are characterized by all LHRs,
specifically LHR0. While in M2, the accuracy drops significantly for the feature
GPHR.

In addition, in datasets S1 and S2, the most relevant features are GPHR and PC
for large value of their corresponding parameter (Figures 5.2e and 5.2f). The accu-
racy also increases for features GHR and PCxorGHR while it decreases significantly
for the features LHR1 and LHR0 in datasets S1 and S2, respectively.

These results show that datasets that correspond to the same category have
the same correlation. This happens in the group integers (datasets I1 and I2) and
server (datasets S1 and S2). Nevertheless, this behavior went unobserved in the
multimedia category (datasets M1 and M2).

Among all these results, we must highlight the cases in which this analysis exceeds
the precision previously obtained in the first experiment (Table 5.4). Clearly, in
datasets I1 and I2, there is at least one curve that surpasses the previous result
for some value of the parameters (Figure 5.2a and 5.2b). In datasets M1 and S2,
there is no such a curve that outperforms the horizontal line (Figure 5.2c and 5.2f).
Lastly, in dataset M2, the results can be significantly more than 1% better than the
previous WNN-predictor result (Figure 5.2d); while in dataset S1, this occurs for
large values of the parameter associated with PC (Figure 5.2e).

24

5.3 Best predictor for each dataset

Based on these previous results, we perform a second pseudo-exhaustive hyperpa-
rameters search to find the best particular results for each dataset. Table 5.6 shows
the results for best parameters configuration accordingly. We present the accuracy
results obtained in this study in Table 5.7, and we consolidate them with the re-
sults of Table 5.4 in Table 5.8. In the experimental approach of this section, it is
more important to outperform the accuracy described in Table 5.4 versus the neces-
sity of smaller input sizes. This dissertation achieves this objective for all datasets
compared to the previous WNN version, while the best proposed predictors only
outperform the state-of-the-art in the datasets M2, S1, and S2. It is pertinent to
emphasize the results in dataset M2, where the accuracy obtained is at least 2.3%
higher than TAGE-SC-L and Multiperspective Perceptron counterparts.

Dataset n-tuple a b c d0 d1 d2 d3 d4 e Input size
I1 17 24 2 2 2 8 3 4 5 1 992
I2 27 24 6 6 2 2 3 4 0 2 1127
M1 24 72 24 72 16 16 16 12 24 16 6044
M2 23 10 10 10 150 10 15 20 25 5 5200
S1 38 140 10 10 4 4 4 10 12 8 4678
S2 38 150 16 16 2 2 8 16 26 8 5274

Table 5.6: Best parameters configuration for each dataset

Dataset Accuracy(Best)
I1 99.8067±.0018
I2 99.9786±.0009
M1 96.1322±.0157
M2 88.1783±.0202
S1 96.8521±.0179
S2 98.0946±.0110

Table 5.7: Accuracy results for the best parameters configuration (Table 5.6) for
each dataset

Dataset Accuracy(Best) Accuracy(WNN) Accuracy(T) Accuracy(M)
I1 99.8067±.0018 99.7948±.0016 99.8138±.0000 99.7700±.0000
I2 99.9786±.0009 99.9749±.0010 99.9782±.0000 99.9792±.0000
M1 96.1322±.0157 96.0540±.0224 96.1357±.0000 96.2340±.0000
M2 88.1783±.0202 86.4968±.1458 85.8582±.0000 85.7533±.0000
S1 96.8521±.0179 96.0651±.0349 96.3213±.0000 96.2143±.0000
S2 98.0946±.0110 97.8504±.0124 97.8710±.0000 97.7645±.0000

Table 5.8: Comparison of the accuracy results reported in Tables 5.4 and 5.6

25

Dataset Most important feature(s) Least important feature(s)
I1 PC LHR0

I2 PC GPHR
M1 PC, PCxorGHR LHR0

M2 LHR0 GPHR
S1 PC, GPHR LHR1

S2 PC, GPHR LHR0, LHR1

Table 5.9: Most relevant feature of the input for each dataset

When comparing the results from Table 5.6 to the sensitivity analysis (Fig-
ures A.1 - A.6), a direct correlation between the parameters and the features from
the input it is observed, as expected. Table 5.9 summarizes this correlation. Mani-
festly, the PC is the most relevant feature.

5.4 Analysis of specialized predictor classifiers

Since the WiSARD-based predictor outperforms the other state-of-the-art predictors
significantly in some cases, it opens several avenues to research the behavior of
a classifier of specialized predictors for each dataset corresponding to particular
applications, as proposed in a related work [43]. Thus, this dissertation performed
an additional analysis using the best predictors for each dataset, according to the
results from Table 5.6.

The main goal is to identify the potential gain in accuracy when all the six
category-specific specialized predictors are implemented and used to perform pre-
diction for each corresponding dataset. We envisioned a computer system having a
classifier that can, with a given probability, select the correct specialized predictor
for a given application. From a computer architecture perspective, the Operating
System (OS) can inform the processor core of the optimal predictor during the pro-
cess scheduling or even be a specialized unit inside the processor core doing the
classification according to the current behavior of the process. The classifier in our
setup can choose among the six existing datasets in the three categories the one that
best matches the behavior of a given program.

This dissertation implemented the classification algorithm of specialized predic-
tors by defining the rate of precision of its selection. To quantify the final accuracy
of the prediction, we divide the number of instructions in each dataset into blocks of
a fixed size, where the prediction of each block of instructions where performed by
all the specialized predictors. We summarize these results in Figure 5.3. The results
of the specialized predictors and the initial version of the WiSARD-based predictor
(Table 5.4), are also displayed by means of horizontal solid lines and are labeled as
“Best” and “WNN” respectively.

26

In datasets I1 and I2, the use of at least 50% of the specialized predictor out-
performs the WNN predictor up to more than 0.006% and 0.003%, respectively,
(Figure 5.3a and Figure 5.3a). Nevertheless, in dataset I2, the prediction accuracy
with a 90% precision classifier ties with the corresponding specialized predictor in
this case.

Moreover, in dataset M1, the use of the classifier did not improve the necessary
accuracy to outperform the WNN predictor version. Meanwhile, in dataset M2 the
use of 50% and 90%, the specialized predictor surpasses the WNN version by more
than 0.2% and 1.4%, respectively. In both datasets, the use of the classifier fails to
approach the accuracy of the best results obtained by the corresponding specialized
predictor.

In addition, in dataset S1, the use of 90% of the specialized predictor outperforms
the WNN predictor up to more than 0.7%. In dataset S2, with the prediction
accuracy of the classifier at 80% and 90% of precision, respectively, the presented
results tie and outperform by more than 0.1% the accuracy of the corresponding
specialized predictor.

Finally, we also observed that the presented results are independent of the size
of the blocks of instructions, as the accuracy remains almost similar in each group
of the bar charts among all datasets (Figures 5.3a - 5.3f).

27

(a) Dataset I1 (b) Dataset I2

(c) Dataset M1 (d) Dataset M2

(e) Dataset S1 (f) Dataset S2

Figure 5.3: Behavior of the classifier of the best predictors for each dataset repre-
sented in each subfigure, where the X-axis represents the precision of the customized
predictor classifier. The accuracy is displayed on the Y -axis in each case. Each bar
represents the execution with a certain instruction block size, labeled as 1k, 2k, 5k
and 10k, where ’k’ means 1000 instructions.

28

Chapter 6

Conclusion

WiSARD is one of the most important WNN models, which are neural networks
based on RAM that do not perform complex arithmetic operations, and as a conse-
quence, it can be implemented in hardware and real-time applications. One interest-
ing and potential area of application of WNN is computer architecture. Specifically,
WNN can be explored as part of the conditional branch predictor architecture, a
well-established technology implemented in nearly all modern computer processors.

In this dissertation, we proposed and evaluated a conditional branch predictor
based on WNNs, particularly using the WiSARD model. This work performed four
different experiments to obtain a complete exploration of general potential, plus
some particular insights.

First, through a pseudo-exhaustive hyperparameter search, this dissertation ex-
perimented with the WiSARD-based predictor to compare it with TAGE-SC-L, a
state-of-the-art, and with the Multiperspective Perceptron, a neural-based predictor.
Using a smaller input size (and thus taking fewer hardware resources), the proposed
predictor predictor achieves, on average, similar accuracies to the TAGE-SC-L and
outperforms the Multiperspective Perceptron by approximately 0.09%.

Next, this dissertation performed a sensitivity analysis in all datasets to deter-
mine the most relevant features of the input. The results show that the PC value is
the most important feature at the microarchitecture level to our predictor.

Subsequently, the third experimental results show that a deeper pseudo-
exhaustive parameter search for each dataset leads to different configurations for
our first WiSARD-based predictor, outperforming the TAGE-SC-L and the Multi-
perspective Perceptron for three datasets. The difference in accuracy for the best
case is higher than %2.3.

In addition, since the use of predictor configurations adapted to specific dataset
characteristics indicated a promising new venue for further performance gains, we
designed specialized predictor classifiers, that with a certain probability, select the
correct specialized predictor for an application. Our experiments demonstrated that

29

employing specialized predictors in at least 50% of the branches in our datasets
yielded superior results compared to our initial WiSARD-based predictor across
four of the six datasets analyzed. Notably, in one specific case, utilizing the spe-
cialized predictor on 90% of the branches achieved comparable performance to its
corresponding specialized predictor.

We can extend this work by using Bloom filters [44] to reduce the hardware area
of our design while reducing memory and power consumption, making the training
and classification phases more efficient. A crucial aspect for expanding this study
involves investigating various feature selection methods to compare the sensitivity
analysis using novel experimental approaches. As the predictor utilizes an online
training approach that relies on binary data, which one can interpret as categorical
information, the feature selection techniques applicable to this research may diverge
from the sensitivity analysis. This comprehensive examination of the approach will
be the subject of future research.

Finally, based on the results obtained for the branch predictor problem, we be-
lieve the WiSARD model is a good fit for other types of predictors used in computer
architecture, specifically at the microarchitecture layer. Since this dissertation shows
that WNN can be, at least, explored in this area, we surmise that we are at the
start of an interesting research field, and further research is warranted.

30

References

[1] PENNEY, D. D., CHEN, L. “A survey of machine learning applied to computer
architecture design”, arXiv preprint arXiv:1909.12373, 2019.

[2] JIMÉNEZ, D. A., LIN, C. “Dynamic branch prediction with perceptrons”.
In: Proceedings HPCA Seventh International Symposium on High-
Performance Computer Architecture, pp. 197–206. IEEE, 2001.

[3] JIMÉNEZ, D. A. “Fast path-based neural branch prediction”. In: Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36., pp. 243–252. IEEE, 2003.

[4] SMITH, A. “Branch prediction with neural networks: Hidden layers and recur-
rent connections”, Department of Computer Science University of Cali-
fornia, San Diego La Jolla, CA, v. 92307, 2004.

[5] TARSA, S. J., LIN, C.-K., KESKIN, G., et al. “Improving branch prediction
by modeling global history with convolutional neural networks”, arXiv
preprint arXiv:1906.09889, 2019.

[6] MAO, Y., ZHOU, H., GUI, X., et al. “Exploring convolution neural network for
branch prediction”, IEEE Access, v. 8, pp. 152008–152016, 2020.

[7] MICHAUD, P. “An alternative tage-like conditional branch predictor”, ACM
Transactions on Architecture and Code Optimization (TACO), v. 15, n. 3,
pp. 1–23, 2018.

[8] ALEKSANDER, I., THOMAS, W., BOWDEN, P. “WISARD·a radical step
forward in image recognition”, Sensor Review, v. 4, n. 3, pp. 120–124,
1984. ISSN: 0260-2288. doi: 10.1108/eb007637.

[9] HARRIS, S. L., HARRIS, D. Digital Design and Computer Architecture, RISC-V
Edition. USA, Morgan Kaufmann, 2021.

[10] HENNESSY, J. L., PATTERSON, D. A. Computer architecture: A Quantita-
tive Approach. USA, Elsevier, 2019.

31

[11] PATTERSON, D. A., HENNESSY, J. L. Computer organization and design
RISC-V edition: the hardware/software interface. USA, Morgan Kauf-
mann, Cambridge, 2017.

[12] JIANG, T., WU, N., ZHOU, F., et al. “Design of a High Performance Branch
Predictor Based on Global History Considering Hardware Cost”. In: 2021
IEEE 4th International Conference on Electronics Technology (ICET),
pp. 422–426. IEEE, 2021.

[13] KONFLANZ, D. M. “Investigating hierarchical temporal memory networks
applied to dynamic branch prediction”, 2019.

[14] MITTAL, S. “A survey of techniques for dynamic branch prediction”, Concur-
rency and Computation: Practice and Experience, v. 31, n. 1, pp. e4666,
2019.

[15] LIN, C.-K., TARSA, S. J. “Branch prediction is not a solved problem:
Measurements, opportunities, and future directions”, arXiv preprint
arXiv:1906.08170, 2019.

[16] SMITH, J. “A study of branch prediction techniques”. In: Proceedings of the
8th Annual Symposium on Computer Architecture, pp. 135–147, 1981.

[17] SIPSER, M. Introduction to the Theory of Computation. Introduction to the
Theory of Computation. USA, Cengage Learning, 2012.

[18] PAN, S.-T., SO, K., RAHMEH, J. T. “Improving the accuracy of dynamic
branch prediction using branch correlation”. In: Proceedings of the fifth
international conference on Architectural support for programming lan-
guages and operating systems, pp. 76–84, 1992.

[19] YEH, T.-Y., PATT, Y. N. “Alternative implementations of two-level adaptive
branch prediction”, ACM SIGARCH Computer Architecture News, v. 20,
n. 2, pp. 124–134, 1992.

[20] YEH, T.-Y., PATT, Y. N. “A comparison of dynamic branch predictors that
use two levels of branch history”. In: Proceedings of the 20th annual in-
ternational symposium on computer architecture, pp. 257–266, 1993.

[21] MCFARLING, S. Combining branch predictors. Relatório técnico, Citeseer,
1993.

[22] JIMÉNEZ, D. A., LIN, C. “Perceptron learning for predicting the behavior of
conditional branches”. In: IJCNN’01. International Joint Conference on

32

Neural Networks. Proceedings (Cat. No. 01CH37222), v. 3, pp. 2122–2127.
IEEE, 2001.

[23] JIMÉNEZ, D. A., LIN, C. “Neural methods for dynamic branch prediction”,
ACM Transactions on Computer Systems (TOCS), v. 20, n. 4, pp. 369–
397, 2002.

[24] LOH, G. H., JIMENEZ, D. A. “Reducing the power and complexity of path-
based neural branch prediction”. In: Proceedings of the 5th Workshop on
Complexity Effective Design (WCED5), pp. 1–8, 2005.

[25] JIMÉNEZ, D. A., LOH, G. H. “Controlling the power and area of neural branch
predictors for practical implementation in high-performance processors”.
In: 2006 18th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD’06), pp. 55–62. IEEE, 2006.

[26] AMANT, R. S., JIMÉNEZ, D. A., BURGER, D. “Low-power, high-performance
analog neural branch prediction”. In: 2008 41st IEEE/ACM International
Symposium on Microarchitecture, pp. 447–458. IEEE, 2008.

[27] JIMÉNEZ, D. A. “Piecewise linear branch prediction”. In: 32nd International
Symposium on Computer Architecture (ISCA’05), pp. 382–393. IEEE,
2005.

[28] JIMÉNEZ, D. A. “Generalizing neural branch prediction”, ACM Transactions
on Architecture and Code Optimization (TACO), v. 5, n. 4, pp. 1–27,
2009.

[29] JIMÉNEZ, D. A. “Multiperspective perceptron predictor”. In: 5th JILP Work-
shop on Computer Architecture Competitions: Championship Branch Pre-
diction (CBP-5), p. 5, 2016.

[30] GRAYSON, B., RUPLEY, J., ZURASKI, G. Z., et al. “Evolution of the sam-
sung exynos cpu microarchitecture”. In: 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pp. 40–51.
IEEE, 2020.

[31] SEZNEC, A., MICHAUD, P. “A case for (partially) TAgged GEometric history
length branch prediction”, The Journal of Instruction-Level Parallelism,
v. 8, pp. 23, 2006.

[32] SEZNEC, A. “Tage-sc-l branch predictors”. In: JILP-Championship Branch
Prediction, p. 9, 2014.

33

[33] MAO, Y., HUIYANG, Z., GUI, X. “Exploring deep neural networks for branch
prediction”, ECE Department, NC University, 2017.

[34] BLEDSOE, W. W., BROWNING, I. “Pattern recognition and reading by ma-
chine”. In: Papers presented at the December 1-3, 1959, eastern joint
IRE-AIEE-ACM computer conference, pp. 225–232, 1959.

[35] MCCULLOCH, W. S., PITTS, W. “A logical calculus of the ideas immanent
in nervous activity”, The bulletin of mathematical biophysics, v. 5, n. 4,
pp. 115–133, 1943.

[36] ALEKSANDER, I., DE GREGORIO, M., FRANÇA, F. M. G., et al. “A brief
introduction to weightless neural systems.” In: ESANN, pp. 299–305. Cite-
seer, 2009.

[37] SPRUSTON, N., STUART, G., HÄUSSER, M. “Dendritic integration”, Den-
drites, pp. 231–271, 1999.

[38] ALEKSANDER, I. “Ideal neurons for neural computers”, Parallel Processing
in Neural Systems and Computers, pp. 225–228, 1990.

[39] FILHO, L. A. L., OLIVEIRA, L. F., FILHO, A. L., et al. “Prediction of Palm Oil
Production with an Enhanced n-Tuple Regression Network”. In: ESANN,
p. 6, 2019.

[40] GRIECO, B. P., LIMA, P. M., DE GREGORIO, M., et al. “Producing pattern
examples from “mental” images”, Neurocomputing, v. 73, n. 7-9, pp. 1057–
1064, 2010.

[41] JIMÉNEZ, D. “Idealized piecewise linear branch prediction”, Journal of
Instruction-Level Parallelism, v. 7, pp. 1–11, 2005.

[42] SHKADAREVICH, D. “Branch Prediction”. https://www.kaggle.com/

dmitryshkadarevich/branch-prediction, 2020.

[43] KHAN, T. A., UGUR, M., NATHELLA, K., et al. “Whisper: Profile-guided
branch misprediction elimination for data center applications”. In: 2022
55th IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pp. 19–34. IEEE, 2022.

[44] SANTIAGO, L., VERONA, L., RANGEL, F., et al. “Weightless neural net-
works as memory segmented bloom filters”, Neurocomputing, v. 416,
pp. 292–304, 2020.

34

https://www.kaggle.com/dmitryshkadarevich/branch-prediction
https://www.kaggle.com/dmitryshkadarevich/branch-prediction

Appendix A

Supplementary sensitivity analysis

This appendix shows the full results of the sensitivity analysis exhibited in Fig-
ures A.1 - A.6. In all subfigures, the vertical and horizontal axis represent, re-
spectively, the accuracy and the parameter associated to each feature according to
relation 3.1. Each dashed curve represent the behavior for a particular n-tuple size.
In addition, the continuous horizontal line exhibits the previous experimental result
(Table 5.4). For each feature, this horizontal line also references, in parentheses, the
corresponding parameter value and the n-tuple size previously employed.

The results show the importance of the parameters, and consequently the cor-
responding features, for each dataset. In some cases, the accuracy degrades when a
particular parameter increases. We hypothesize the reason for this behavior is di-
rectly related to the microarchitectural characteristics of the input associated with
each benchmark. Furthermore, as the n-tuple size increases, the accuracy drops
significantly depending on the datasets analyzed. This result can be explained by
the response of the WiSARD model, which depends on the n-tuple size [36].

In addition, in some cases we observe oscillatory trends of the accuracy curves,
especially in the results of datasets I1 and I2 (Figures A.1 and A.2). This is explained
by the fact that binary input size is not a multiple of the n-tuple size in these cases.
The WiSARD-based predictor is designed to add “0s” to fill a multiple number of
bits of the n-tuple size in the input. Therefore, the standard deviation tends to
increase slightly in the experimental results, generating this oscillatory behavior.

35

(a) PC (b) GHR

(c) PCxorGHR (d) LHR0

(e) LHR1 (f) LHR2

36

(g) LHR3 (h) LHR4

(i) GPHR

Figure A.1: Sensitivity Analysis for dataset I1. The PC is the most important
feature (Figure A.1a) since the accuracy increases as its corresponding parameter
a increases when compared to the other features (Figures A.1b - A.1i). For the
other features, the accuracy drops or remains oscillating (Figures A.1b - A.1h). The
exception is the feature GPHR, in which the initial behavior depends on the n-tuple
sizes and for large values of e the accuracy remains nearly constant (Figure A.1i).
In addition, in nearly all cases, the accuracy drops as n-tuple size increases.

37

(a) PC (b) GHR

(c) PCxorGHR (d) LHR0

(e) LHR1 (f) LHR2

38

(g) LHR3 (h) LHR4

(i) GPHR

Figure A.2: Sensitivity Analysis for dataset I2. In this case the PC and the PCx-
orGHR are the most relevant features since the accuracy increases as its correspond-
ing parameter a and c increases when compared to the other features (Figures A.2a
and A.2c). In nearly all cases (Figures A.2b - A.2i) the accuracy decreases as the n-
tuple size increases. For LHR2, LHR3, LHR4 features, the accuracy keeps fluctuating
as the corresponding parameter increases in the largest n-tuple sizes (Figures A.2f -
A.2h).

39

(a) PC (b) GHR

(c) PCxorGHR (d) LHR0

(e) LHR1 (f) LHR2

40

(g) LHR3 (h) LHR4

(i) GPHR

Figure A.3: Sensitivity Analysis for dataset M1. The results show differences in
accuracy trends for each feature in each case. The accuracy increases or decreases
smoothly for the features PC, GHR and PCxorGHR (Figures A.3a - A.3c), but
substantially drops for LHR0, LHR1, LHR2 (Figures A.3d - A.3f). Interestingly,
the accuracy initially increases and then drops smoothly for large values of e for
GPHR (Figure A.3i). In most cases, the accuracy decreases for large n-tuple sizes
(Figures A.3b - A.3h).

41

(a) PC (b) GHR

(c) PCxorGHR (d) LHR0

(e) LHR1 (f) LHR2

42

(g) LHR3 (h) LHR4

(i) GPHR

Figure A.4: Sensitivity Analysis for dataset M2. In this case, the accuracy increases
for LHR0, LHR1, LHR2 (Figures A.4d - A.4f); remains nearly constant for the
features LHR3 and LHR4 (Figures A.4g and A.4h) and drops significantly for the
other features (Figures A.4a, A.4b, A.4c, A.4i). For this dataset it is important
to highlight the feature GPHR, since the accuracy degrades significantly as the
parameter e increases (Figure A.4i). In addition, in almost all cases the accuracy
increases as the n-tuple size increases.

43

(a) PC (b) GHR

(c) PCxorGHR (d) LHR0

(e) LHR1 (f) LHR2

44

(g) LHR3 (h) LHR4

(i) GPHR

Figure A.5: Sensitivity Analysis for dataset S1. The most relevant features are the
PC and GPHR (Figures A.5a and A.5i) since accuracy achieves the highest values,
particularly for high values of the parameter a. The accuracy also increases for the
features GHR and PCxorGHR (Figures A.5b and A.5c) but decreases for all other
LHR type features (Figures A.5d - A.5h). Furthermore, in almost all cases the best
and worst curves correspond to n-tuple sizes 20 and 32 respectively.

45

(a) PC (b) GHR

(c) PCxorGHR (d) LHR0

(e) LHR1 (f) LHR2

46

(g) LHR3 (h) LHR4

(i) GPHR

Figure A.6: Sensitivity Analysis for dataset S2. The most important features are
the PC and GPHR (Figures A.6a and A.6i) since the accuracy achieves the highest
values when compared to the other features. The accuracy also increases for the
features GHR and PCxorGHR (Figures A.6b and A.6c) but decreases significantly
for all other LHR type features (Figures A.6d - A.6h). In addition, the worst results
correspond to n-tuple size 16. Thus, interestingly, the trends of results for both
datasets S1 and S2 are somehow similar.

47

Appendix B

Published papers

This appendix includes the first pages of works developed in authorship or co-
authorship during the preparation of the current dissertation.

48

49

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Goals and contribution
	Structure of the text

	Background
	Conditional branches
	Instruction-Level parallelism and branch hazards
	Branch prediction

	Conditional branch predictor
	Branch history table
	Two-level adaptive predictor
	The gshare predictor
	Neural based branch predictors
	The TAGE-SC-L predictor

	Weightless neural networks
	RAM-Discriminators

	WiSARD

	Proposal: WiSARD-based conditional branch predictor
	Input composition
	Input composition example
	Predictor architecture

	Methodology and experimental setup
	Dataset
	Experimental setup

	Results and discussion
	Best result - preliminary exploration
	Sensitivity analysis
	Best predictor for each dataset
	Analysis of specialized predictor classifiers

	Conclusion
	References
	Supplementary sensitivity analysis
	Published papers

